CA2428349A1 - Physiological sample collection devices and methods of using the same - Google Patents

Physiological sample collection devices and methods of using the same Download PDF

Info

Publication number
CA2428349A1
CA2428349A1 CA002428349A CA2428349A CA2428349A1 CA 2428349 A1 CA2428349 A1 CA 2428349A1 CA 002428349 A CA002428349 A CA 002428349A CA 2428349 A CA2428349 A CA 2428349A CA 2428349 A1 CA2428349 A1 CA 2428349A1
Authority
CA
Canada
Prior art keywords
test strip
lance
sample
meter
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002428349A
Other languages
French (fr)
Inventor
Vadim Yuzhakov
Devin Mcallister
Lorin Olson
Koon-Wah Leong
Maria Teodorczyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LifeScan Inc
Original Assignee
LifeScan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29249855&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2428349(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LifeScan Inc filed Critical LifeScan Inc
Publication of CA2428349A1 publication Critical patent/CA2428349A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150068Means for enhancing collection by tissue compression, e.g. with specially designed surface of device contacting the skin area to be pierced
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150213Venting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • A61B5/150419Pointed piercing elements, e.g. needles, lancets for piercing the skin comprising means for capillary action
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • A61B5/150435Specific design of proximal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150801Means for facilitating use, e.g. by people with impaired vision; means for indicating when used correctly or incorrectly; means for alarming
    • A61B5/150824Means for facilitating use, e.g. by people with impaired vision; means for indicating when used correctly or incorrectly; means for alarming by visual feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150954Means for the detection of operative contact with patient, e.g. by temperature sensitive sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15107Piercing being assisted by a triggering mechanism
    • A61B5/15113Manually triggered, i.e. the triggering requires a deliberate action by the user such as pressing a drive button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15115Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids
    • A61B5/15117Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids comprising biased elements, resilient elements or a spring, e.g. a helical spring, leaf spring, or elastic strap
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • A61B5/15148Constructional features of stocking means, e.g. strip, roll, disc, cartridge, belt or tube
    • A61B5/15178Stocking means comprising separate compartments or units for new and for used piercing elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • A61B5/15188Constructional features of reusable driving devices
    • A61B5/1519Constructional features of reusable driving devices comprising driving means, e.g. a spring, for propelling the piercing unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • A61B5/15188Constructional features of reusable driving devices
    • A61B5/15192Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing
    • A61B5/15194Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing fully automatically retracted, i.e. the retraction does not require a deliberate action by the user, e.g. by terminating the contact with the patient's skin

Abstract

Devices, systems and methods are provided for piercing the skin, accessing and collecting physiological sample therein, and measuring a characteristic, e.g., an analyte concentration, of the sampled physiological sample. The subject devices are in the form of a test strip that include a biosensor and at least one skin-piercing element affixed to the test strip. The skin-piercing element conveys a biological fluid sample to a sensor element in the test strip. Systems are provided which include one or more test strip devices and a meter for making analyte concentration measurements. Methods for manufacturing and using the devices and systems are also provided.

Description

PHYSIOLOGICAL SAMPLE COLLECTION DEVICES
AND METHODS OF USING THE SAME
FIELD OF THE INVENTION
[0001 ] The invention relates to the collection of physiological samples and the determination of analyte concentrations therein.
BACKGROUND OF THE IN VENTION
[0002] Analyte concentration determination in physiological samples is of ever increasing importance to today's society. Such assays find use in a variety of application settings, including clinical laboratory testing, home testing, etc., where the results of such testing play a prominent role in the diagnosis and management of a variety of disease conditions. Analytes of interest include glucose for diabetes management, cholesterol for monitoring cardiovascular conditions, and the like. In response to this growing importance of analyte concentration determination, a variety of analyte concentration determination protocols and devices for both clinical and home testing have been developed.
[0003] In determining the concentration of an analyte in a physiological sample, a physiological sample must first be obtained. Obtaining the sample often involves cumbersome and complicated devices which may not be easy to use or may be costly to manufacture. Furthermore, the procedure for obtaining the sample may be painful. For example, pain is often associated with the size of the needle used to obtain the physiological sample and the depth to which the needle is inserted.

Depending on the analyte and the type of test employed, a relatively large, single needle or the like is often used to extract the requisite amount of sample.
[0004] The analyte concentration determination process may also involve a multitude of steps. First, a sample is accessed by use of a skin-piercing mechanism, e.g., a needle or lancet, which accessing may also involve the use of a sample collection mechanism, e.g., a capillary tube. Next, the sample must then be transferred to a testing device, e.g., a test strip or the like, and then oftentimes the test strip is then transferred to a measuring device such as a meter.
Thus, the steps of accessing the sample, collecting the sample, transferring the sample to a biosensor, and measuring the analyte concentration in the sample are often performed as separate, consecutive steps with various device and instrumentation.
[0005] Because of these disadvantages, it is not uncommon for patients who require frequent monitoring of an analyte to simply become non-compliant in monitoring themselves. With diabetics, for example, the failure to measure their glucose level on a prescribed basis results in a lack of information necessary to properly control the level of glucose. Uncontrolled glucose levels can be very dangerous and even life threatening.
[0006] Attempts have been made to combine a lancing-type device with various other components involved in the analyte concentration deterniination procedure in order to simplify the assay process. For example, U.S. Patent No. 6,099,484 discloses a sampling device which includes a single needle associated with a spring mechanism, a capillary tube associated with a pusher, and a test strip.
An analyzer may also be mounted in the device for analyzing the sample.
Accordingly, the single needle is displaced toward the skin surface by un-cocking a spring and then retracting it by another spring. A pusher is then displaced to push the capillary tube in communication with a sample and the pusher is then released and the fluid is transferred to a test strip.
[0007] U.S. Patent No. 5,820,570 discloses an apparatus which includes a base having a hollow needle and a cover having a membrane, whereby the base and cover are connected together at a hinge point. When in a closed position, the needle is in communication with the membrane and fluid can be drawn up through the needle and placed on the membrane of the cover.
[0008] There are certain drawbacks associated with each of the above devices and techniques. For example, the devices disclosed in the aforementioned patents are complex, thus decreasing ease-of use and increasing manufacturing costs. Furthermore, as described, a single needle design may be associated with increased pain because the single needle must be large enough to extract the requisite sample size. Still further, in regards to the '484 patent, the steps of activating and retracting a needle and then activating and retracting a capillary tube adds still more user interaction and decreases ease-of use.
[0009] As such, there is continued interest in the development of new devices and methods for use in the determination of analyte concentrations in a physiological sample: Of particular interest would be the development of integrated devices, and methods of use thereof, that are efficient, involve minimal pain, are simple to use and which may be used with various analyte concentration determination systems. However, in producing such devices the present invention places particular emphasis on issues associated with manufacturing and distribution, thereby offering more cost effective and flexible options, both to consumers and manufactures.
SUMMARY OF THE INVENTION
[0010] Devices, systems and methods are provided for piercing the skin, accessing and collecting physiological sample therein, and measuring a characteristic of the physiological sample. The subject devices include at least one microneedle or skin-piercing element affixable to a test strip. The subject test strips include a biosensor, wherein the at least one skin-piercing element is separately attached to the biosensor.
[0011] In one form of the invention, there is provided a lance element for attachment to a test strip to access body fluid and convey it to a test strip sensor, said lance comprising:
a substantially planar base;
a piercing element comprising an opening occupying a substantial portion of a width, diameter or length dimension of said piercing element; and a fluid pathway in communication with said opening, wherein a pooling area is created within the skin by said opening upon insertion of said piercing element into the skin of a subject.
[0012] Preferred skin-piercing elements have a space-defining configuration in which, upon insertion into the skin, creates a space or volume within the pierced tissue. This space serves as a reservoir or pooling area within which bodily fluid is caused to pool while the skin-piercing element is in situ. A
capillary channel or fluid pathway extending from the pooling space to within the test strip transfers pooled fluid present within the pooling space to the biosensor. In certain embodiments, the space-defining configuration is a recess within a surface of the skin-piercing element. Such a recess may have a concave configuration. In other embodiments, the space-defining configuration is an opening which extends transverse to a dimension of the skin-piercing element and occupies a substantial portion of a width or diameter dimension as well as a substantial portion of a length dimension of the microneedle.
[0013) In one form of the invention, there is provided a test strip combination comprising:
a complete test strip comprising biosensor and a support member;
a separate lance element attached to said test strip, said lance element comprising at least one piercing element and being adapted to convey a fluid sample obtained by said piercing element to said biosensor.
[0014] Generally, test strips used in connection with the needle or lance members of the present inventions may include electrochemical or photometric/colorimetric sensors. Other types of test strips may be used as well.
(0015] Needles or lance members according to the present invention may be affixed to test steps members in a number of ways. They may be affixed directly, e.g., using adhesive, chemical or ultrasonic welding. Alternately, mechanical attachment via clips hasps or the like may be employed.
[0016) Numerous advantages are presented in so-producing completed test strips/lances member combinations.
[0017] The subject systems include one or more subject test strip devices and a meter for receiving a subject test strip and for determining a characteristic of the sampled fluid, e.g., the concentration of at least one analyte in the sample, collected by within the test strip's biosensor. Moreover, such a meter may also provide means for activating and manipulating the test strip wherein the skin-piercing structure is caused to pierce the skin. Additionally, the meter may provide means for storing one or more subject test strips, or a cartridge containing a plurality of such test strips.
[0018] In one form of the invention, there is provided a system for determining the concentration of at least one analyte in a physiological sample, said system comprising:
at least one test strip combination described above, and a meter for automatically determining the concentration of analyte in the physiological sample, wherein said meter is configured for receiving said test strip device.
[0019] Also provided are methods for using the subject devices, as well as kits that include the subject devices and/or systems for use in practicing the subject methods. The subject devices, systems and methods are particularly suited for collecting physiological sample and determining analyte concentrations therein and, more particularly, glucose concentrations in blood, blood fractions or interstitial fluid. The present invention further includes methods for fabricating the subject test strip devices, in which a microneedle or skin-piercing element is affixed to a complete/discrete test strip unit. The subject fabrication methods may be used to fabricate individual test strip devices or a plurality of such test strip devices on a web, filin or sheet of suitable material.
[0020] In one form of the present invention, there is provided a method for determining the concentration of at least one analyte within a physiological fluid sample, said method comprising:
providing a system as set out above wherein said test strip combination is operatively received within a distal end of said meter;
spring-loading said test strip combination within said meter;
operatively contacting said distal end of said meter with a targeted skin surface;
releasing the spring-loaded test strip combination, wherein said targeted skin surface is pierced by said piercing element; and collecting sample and applying it to said biosensor.
[0021 ] In one form of the present invention, there is provided a method of producing a tester, the method comprising:
providing a lance element as described above, providing a test strip having a substrate and biosensor; and attaching said lance element base to said test strip.
[0022] These and other objects, advantages, and features of the invention will become apparent to those persons skilled in the art upon reading the details of the methods and systems of the present invention which are more fully described below.

BRIEF DESCRIPTION OF THE DRAWINGS
[0023) Each of the following figures diagrammatically illustrate aspects of the present invention. Variation of the invention from that shown in the figures is contemplated.
[0024] Figure 1 is a perspective view of a representative meter as may be used in connection with variations of the present invention.
[0025) Figures 2A and 3A are perspective views of the invention as used in colorimetric test devices; figures 2B and 3B are perspective views of lance members to be attached to test strips by adhesive and mechanical fasteners.
[0026) Figures 4A and 4B are perspective hidden-line views of the invention as used in electrochemical test devices, wherein plastic and metal lance member are shown.
[0027] Figures SA is an exploded perspective view of an alternate lance configuration employing dispersion channels; figure SB is a perspective view of the components in FIG 4A shown assembled from below.
[0028] Figure 6 is a perspective view of an alternate lance member resembling that in FIGS SA and SB, but provided in a low-profile format.
[0029] Figure 7 is a perspective view of yet another lance member, this one employing an inset dispersion zone.
DETAILED DESCRIPTION OF THE INVENTION
[0030) In describing the invention in greater detail than provided in the Summary above, colorimetric and electrochemical test strips sensors are first described, followed by discussion of features and the use of exemplary combination test strip meter and lancing device of the present invention. Then, the manner in which colorimetric and electrochemical test strip may be provided in connection with examples of the present invention is set forth. This description is followed by disclosure of various alternate lancelneedle member configurations. Then, methods of manufacture and kits advantageously incorporating components of the present invention are described.
[0031] Before the present invention is described in such detail, however, it is to be understood that this invention is not limited to particular variations set forth and may, of course, vary. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process acts) or step(s), to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.
For example, description of the use of electrochemical and photometric sensor type test strips is not intended to be limiting; those skilled in the art will appreciate that the subject devices, systems and methods are useful in the measurement of other physical and chemical characteristics of biological substances, e.g., blood coagulation time, blood cholesterol level, etc.
[0032] Methods recited herein may be carned out in any order of the recited events which is logically possible, as well as the recited order of events.
Furthermore, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.
[0033] All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail). The referenced items are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such material by virtue of prior invention.
[0034] Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms "a," "and," "said" and "the" include plural referents unless the context clearly dictates otherwise. It is finther noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as "solely,"
"only"
and the like in connection with the recitation of claim elements, or use of a "negative" limitation. Finally, it is noted that unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
Colorimetric/Photometric Sensor Variations [0035] In testers including colorimetric or photometric (herein used interchangeably) biosensor, the same is provided by at least a matrix and/or a membrane for receiving a sample and a reagent composition (set within the matrix or membrane) set upon a support structure. Where a membrane as well as a matrix is provided, the membrane will generally be placed opposite of the support structure upon the matrix. A membrane advantageously includes apertures or pores for sample access.
[0036] In some embodiments, the sensor comprises a membrane containing a reagent composition impregnated therein while a matrix may or may not contain reagent composition. Often the matrix preferably provides a deposition area for the various members of the signal producing system, described infra, as well as for the light absorbing or chromogenic product produced by the signal producing system, i.e., the indicator, as well as provides a location for the detection of the light-absorbing product produced by the indicator of the signal producing system.
[0037] A membrane provided may comprise a membrane that exhibits aqueous fluid flow properties and is sufficiently porous (i.e., provides sufficient void space) for chemical reactions of a signal producing system to take place. Ideally, the membrane pore structure would not support red blood cell flow to the surface of the membrane being interrogated (i.e., the color intensity of which is a subject of the measurement correlated to analyte concentration). Any matrix provided may or may not have pores and/or a porosity gradient, e.g. with larger pores near or at the sample application region and smaller pores at the detection region.
[0038] Materials from which a membrane may be fabricated vary, include polymers, e.g. polysulfone, polyamides, cellulose or absorbent paper, and the like, where the material may or may not be functionalized to provide for covalent or non-covalent attachment of the various members of the signal producing system. In a tester made a thin membrane material, the tester may require less than 1l2 p1 of sample to wet a sufficiently large area of the membrane to obtain a good optical measurement.
[0039] Regarding suitable matrices, a number of different types have been developed for use in various analyte detection assays, which matrices may differ in terms of materials, dimensions and the like, where representative matrices include, but are not limited to, those described in U.S. Patent Nos.:
4,734,360;
4,900,666; 4,935,346; 5,059,394; 5,304,468; 5,306,623; 5,418,142; 5,426,032;
5,515,170; 5,526,120; 5,563,042; 5,620,863; 5,753,429; 5,573,452; 5,780,304;
5,789,255; 5,843,691; 5,846,486; 5,968,836 and 5,972,294; the disclosures of which are herein incorporated by reference.
[0040] However configured, one or more members of a signal producing system of the biosensor produce a detectable product in response to the presence of analyte, which detectable product can be used to derive the amount of analyte present in the assayed sample. In the subject test strips, the one or more members of the signal producing system are preferably associated with (e.g., covalently or non-covalently attached to) at least a portion of (i.e., the detection region) the matrix or membrane, and in many embodiments to substantially all of the same.
[0041] The signal producing system may comprise an analyte oxidation signal producing system. By analyte oxidation signal producing system, it is meant that in generating the detectable signal from which the analyte concentration in the sample is derived, the analyte is oxidized by a suitable enzyme to produce an oxidized form of the analyte and a corresponding or proportional amount of hydrogen peroxide. The hydrogen peroxide is then employed, in turn, to generate the detectable product from one or more indicator compounds, where the amount of detectable product generated by the signal measuring system, i. e. the signal, is then related to the amount of analyte in the initial sample. As such, the analyte oxidation signal producing systems present in the subject test strips are also correctly characterized as hydrogen peroxide based signal producing systems.
[0042] Hydrogen peroxide based signal producing systems include an enzyme that oxidizes the analyte and produces a corresponding amount of hydrogen peroxide, where by corresponding amount is meant that the amount of hydrogen peroxide that is produced is proportional to the amount of analyte present in the sample. The specific nature of this first enzyme necessarily depends on the nature of the analyte being assayed but is generally an oxidase or dehydrogenase. As such, the first enzyme may be: glucose oxidase (where the analyte is glucose), or glucose dehydrogenase either using NAD or PQQ as cofactor; cholesterol oxidase (where the analyte is cholesterol); alcohol oxidase (where the analyte is alcohol);
lactate oxidase (where the analyte is lactate) and the like. Other oxidizing enzymes for use with these and other analytes of interest are known to those skilled in the art and may also be employed. In those preferred embodiments where the reagent test strip is designed for the detection of glucose concentration, the first enzyme is glucose oxidase. The glucose oxidase may be obtained from any convenient source (e.g. a naturally occurring source such as Aspergillus niger or Penicillum, or recombinantly produced).
[0043] The second enzyme of such a signal producing system is an enzyme that catalyzes the conversion of one or more indicator compounds into a detectable product in the presence of hydrogen peroxide, where the amount of detectable product that is produced by this reaction is proportional to the amount of hydrogen peroxide that is present. This second enzyme is generally a peroxidase, where suitable peroxidases include: horseradish peroxidase (HRP), soy peroxidase, recombinantly produced peroxidase and synthetic analogs having peroxidative activity and the like. See, e.g., Y. Ci, F. Wang;
Analytica Chimica Acta, 233 (1990), 299-302:
[0044] Indicator compound or compounds provided are preferably ones that are either formed or decomposed by the hydrogen peroxide in the presence of the peroxidase to produce an indicator dye that absorbs light in a predetermined wavelength range. Preferably the indicator dye absorbs strongly at a wavelength different from that at which the sample or the testing reagent absorbs strongly. The oxidized form of the indicator may be a colored, faintly-colored, or colorless final product that evidences a change in color of the testing side of the membrane. That is to say, the testing reagent can indicate the presence of glucose in a sample by a colored area being bleached or, alternatively, by a colorless area developing color.
[0045] Indicator compounds that are useful in the present invention include both one- and two-component chromogenic substrates. One-component systems include aromatic amines, aromatic alcohols, azines, and benzidines, such as tetramethyl benzidine-HC1. Suitable two-component systems include those in which one component is MBTH, an MBTH derivative (see e.g., those disclosed in U.S. Patent Application S/N 08/302,575), or 4-aminoantipyrine and the other component is an aromatic amine, aromatic alcohol, conjugated amine, conjugated alcohol or aromatic or aliphatic aldehyde. Exemplary two-component systems are 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) combined with 3-dimethylaminobenzoic acid (DMAB); MBTH combined with 3,5-dichloro-2hydroxybenzene-sulfonic acid (DCHBS); and 3-methyl-2-benzothiazolinone hydrazone N-sulfonyl benzenesulfonate monosodium (MBTHSB) combined with 8-anilino-1 naphthalene sulfonic acid ammonium (ANS). In certain embodiments, the dye couple MBTHSB-ANS is preferred.
[0046] In yet other embodiments of colorimetric sensors that may be used in the present invention, signal producing systems that form a fluorescent detectable product (or detectable non- fluorescent substance, e.g. in a fluorescent background) may be employed, such as those described in Kiyoshi Zaitsu, ~'osuke Ohkura, New fluorogenic substrates for Horseradish Peroxidase: rapid and sensitive assay for hydrogen peroxide and the Peroxidase, Analytical Biochemistry (1980) 109, 109-113. Examples of such colorimetric reagent test strips suitable for use with the subject invention include those described in U.S. Patent Nos. 5,563,042; 5,753,452; 5,789,255, herein incorporated by reference.
Electrochemical Sensor 'Variations (0047] Instead of using a colorimetric sensor as described above, the present invention may employ an electrochemical sensor. Typically, an electrochemical sensor comprises at least a pair of opposing electrodes, although electrochemical test strips with planar electrodes may be used in the present invention.

[0048] Where opposing-electrode type strips are employed, at least the surfaces of electrodes facing each other are comprised of a conductive layer such as a metal, where metals of interest include palladium, gold, platinum, silver, iridium, stainless steel and the like as well as carbon (conductive carbon ink) and indium doped tin oxide.
[0049] One conductive layer is preferably formed by sputtering a thin layer of gold (Au), the other by sputtering a thin layer of palladium (Pd).
Alternately, the electrodes may be formed by screen printing a selected conductive pattern, including conductive leads, with a carbon or metal ink on the backing surfaces. An additional insulating layer may be printed on top of this conductive layer which exposes a precisely defined pattern of electrodes.
However formed, after deposition of conductive layers, the surface may be subsequently treated with a hydrophilic agent to facilitate transport of a fluid sample into the reaction zone there between. Depending on the voltage sequence applied to the cell, one electrode may serve as a counter/reference electrode and the other as the working electrode of the electrochemical cell.
However, where a double pulse voltage waveform is employed, each electrode acts as a counter/reference and working electrode once during analyte concentration measurement.
[0050] Regardless of reaction zone or electrode configuration, a reagent coating is typically provided therein. Reagent systems of interest typically include an enzyme and a redox active component (mediator). The redox component of the reagent composition, when present, is made up of one or more redox agents. A variety of different redox agents (i.e., mediators) are known in the art and include: ferricyanide, phenazine ethosulphate, phenazine methosulfate, pheylenediamine, 1-methoxy-phenazine methosulfate, 2,6-dimethyl-1,4-benzoquinone, 2,Sdichloro-1,4-benzoquinone, ferrocene derivatives, osmium bipyridyl complexes, ruthenium complexes, and the like. In many embodiments, the redox active component of particular interest is ferncyanide, and the like. The enzyme of choice may vary depending on the analyte concentration which is to be measured. For example, suitable enzymes for the assay of glucose in whole blood include glucose oxidase or dehydrogenase (NAD or PQQ based).
Suitable enzymes for the assay of cholesterol in whole blood include cholesterol oxidase and esterase.
[0051] Other reagents that may be present in the reaction area include buffering agents (e.g., citraconate, citrate, malic, malefic, phosphate, "Good" buffers and the like); divalent cations (e.g., calcium chloride, and magnesium chloride); surfactants (e.g., Triton, Macol, Tetronic, Silwet, Zonyl, Aerosol, Geropon, Chaps, and Pluronic); and stabilizing agents (e.g., albumin, sucrose, trehalose, mannitol and lactose).
[0052) Examples of electrochemical biosensors suitable for use with the subject invention include those described in co-pending U.S. Application Serial Nos.
09/333,793; 09/497,304; 09/497,269; 09/736,788 and 09/746,116, the disclosures of which are herein incorporated by reference.
Test Strip Systems and Use [0053) As mentioned above, the subject devices may be used in the context of a subject system, which generally includes a system capable of obtaining a physiological sample and determining a property of the sample, where determining the property of interest may be accomplished automatically by an automated device, e.g., a meter. The subject system is more particularly described herein in the context of analyte concentration determination. However, kits or systems according to the present invention include at least one subject test strip device Z, oftentimes a plurality of test strip devices, where the at least one test strip device comprises at least on skin-piercing element 4. The kits may also include a reusable or disposable meter 6 that may be used with disposable tests strip devices. Further, test strip kits may include a control solution or standard (e.g., a glucose control solution that contains a standardized concentration of glucose). A kit may also include instructions for using test strips according to the invention in the determination of an analyte concentration in a physiological sample. These instructions may be present on one or more of container(s), packaging, a label insert or the like associated with the subject test strips.
[0054] When a plurality of test strip devices is provided, they may be collectively packaged within a cartridge, which may be reusable or disposable. Certain of such kits may include various types of test strip devices, (e.g., electrochemical and/or colorimetric test strip devices). These various test strip devices may contain the same or different reagents.
[0055] Regardless of the nature of the constituent components of any systems according to the present invention, the subject test strip devices, (whether electrochemical, calorimetric or otherwise), are preferably configured and adapted to be inserted into the meter. More specifically, as illustrated in FIG 1, test strip device 2 has a first end 8 and a second end 10, wherein the skin-piercing or lancing blade or needle 4 is associated with first end 8 and at least the second end is configured for insertion into meter 6.
[0056] Meter 6 preferably has an ergonomically-designed housing 12 having dimensions which allow it to be comfortably held and manipulated with one hand.
Housing 12 may be made of a metal, plastic or other suitable material, preferably one that is light weight but sufficiently durable. 'The distal portion 14 of the housing provides an aperture 16 through which test strip device 2 is advanced from a retracted position within meter 6 to an extended position wherein at least a portion of the test strip microneedle/lancet 4 extends a distance outside aperture 16.
[0057) Distal portion 14 further defines a chamber in which test strip device 2 is received within a test strip receiving mechanism 18. Test strip device 2 may be inserted into meter 6 by removing distal housing portion 14 from housing 12 and inserting test strip device 2 into test strip receiving mechanism 18.
Alternatively, test strip device 2 may be inserted into meter 6 and received into mechanism 18 via aperture 14.
[0058] Preferably, distal housing portion 14 is transparent or semi-transparent to allow the user to visually confirm proper engagement between test strip device 2 and receiving area 18 prior to conducting the analyte concentration assay, as well as to visualize the test site and to visually confirm the filling of strip 2 with body fluid during the assay (especially if electronic sensing is not provided to discern the same) . When test strip device 2 is properly seated within receiving mechanism 18, the biosensor with test strip device 2 operatively engages with the meter's testing components. In the case of electrochemical test strip embodiments, the electrodes of the biosensor operatively engage with the meter's electronics; with colorimetric test strip embodiments, the matrix or membrane area having a signal producing system is operatively aligned with the meter's optical components. The meter's electronics or optical componentry, upon sensing when the reaction zone or matrix area, respectively, within test strip device 2 is filled with the sampled fluid, supplies an input signal to the test strip biosensor and receives an output signal therefrom which is representative of the sample fluid characteristic being measured.
[0059] Circumferentially positioned about aperture 16 is a pressure ring 20, the distal surface of which is applied to the skin and encircles the piercing site within the skin during a testing procedure. The compressive pressure exerted on the skin by pressure ring 20 facilitates the extraction of body fluids from the surrounding tissue and the transfer of such fluid into test strip device 2.
[0060] Distal housing portion 14 is preferably itself in movable engagement with meter 6 wherein distal housing portion 14 is slightly translatable or depressible along a longitudinal axis of the meter. Between distal housing portion 14 and the a proximal portion of housing 12, is a pressure sensor 22 which senses and gauges the amount of pressure exerted on distal housing portion 14 when compressing pressure ring 20 against the skin. Pressure sensor 22 is preferably an electrical type sensor which may be of the kind commonly known in the field of electronics. Pressure sensor indicators 24, in electrical communication with pressure sensor 22, are provided to indicate the level of pressure being applied to distal housing portion 14 so that the user may adjust the amount of pressure being applied, if necessary, in order to apply an optimal pressure.
[0061 ] In many embodiments, meter 6 has a display 26, such as an LCD
display, for displaying data, such as input parameters and test results.
Additionally, meter 6 has various controls and buttons for inputting data to the meter's processing components and for controlling the piercing action of test strip device 2. For example, lever 28 is used to retract test strip device 2 to a loaded position within meter 6 and thereby pre-load a spring mechanism (not shown) for later, on demand extension or ejection of test strip device 2 from aperture 16 by depressing button 30. When distal housing portion 04 is properly positioned on the skin, such ejection of test strip device 2 causes microneedle 4 to instantaneously pierce the skin for accessing the body fluid therein. Buttons 32 and 34, when depressed, input signals to the meter's processing components indicating whether the measurement to be made is for testing/information purposes (and for recovering the test results from a memory means within the meter's electronics) or for calibration purposes, respectively.
[0062] Meter 6 may further be configured to receive and retain a replaceable cartridge containing a plurality of the subject test strip devices. After using a test strip device, the meter may either eject the used test strip from the meter or store them for disposal at a later time. Such a configuration eliminates the necessary handling of test strips, thereby minimizing the likelihood of damage to the strip and inadvertent injury to the-patient. Furthermore, because manual handling of the test strips is eliminated, the test strips may be made much smaller thereby reducing the amount of materials required, providing a cost savings. The meter disclosed in U.S. Patent Application Serial No.
entitled "Minimal Procedure Analyte Test System," having attorney docket no. LIFE-054 and filed on the same day herewith, is of particular relevance in regard to these considerations.
[0063] Additionally, certain aspects of the functionality of meters suitable for use with the subject systems are disclosed in U.S. Patent No. 6,193,873, as well as in co-pending, commonly owned U.S. Application Serial Nos.
09/497,304, 09/497,269; 09/736,788; 09/746,116 and 09/923,093. Of course, in those embodiments using a colorimetric assay system, a spectrophotometer or optical meter will be employed, where certain aspects of the functionality of such meters suitable for use are described in, for example, U.S. Patent Nos.
4,734,360; 4,900,666; 4,935,346; 5,059,394; 5,304,468; 5,306,623; 5,418,142;
5,426,032; 5,515,170; 5,526,120; 5,563,042; 5,620,863; 5,753,429; 5,773,452;
5,780,304; 5,789,255; 5,843,691; 5,846,486; 5,968,836 and 5,972,294.
[0064] In use, the subject invention provides methods for determining a characteristic of the sample, e.g., the concentration of an analyte in a sample.
The subject methods fmd use in the determination of a variety of different analyte concentrations, where representative analytes include glucose, cholesterol, lactate, alcohol, and the like. In many embodiments, the subject methods are employed to determine the glucose concentration in a physiological sample. Test devices 2 according to the present invention are particularly suited for use in determining the concentration of an analyte in blood or blood fractions, and more particularly in whole blood or interstitial fluid.
[0065] In practicing the subject methods, at least one subject test strip device as described above, is provided, and a subject microneedle 4 thereof is inserted into a target area of skin. Typically, the skin-piercing element is inserted into the skin of a finger or forearm for about 1 to 60 seconds, usually for about 1 to 15 seconds and more usually for about 1 to 5 seconds. Depending on the type of physiological sample to be obtained, the subject skin-piercing element 4 may be penetrated to various skin layers, including the dermis, epidermis and the stratum corneum, but in many embodiments will penetrate no farther than the subcutaneous layer of the skin.
[0066] While the subject test strips may be handled and inserted into the skin manually, the -subject test strips are preferably used with a hand-held meter such as described above. As such, a single test strip device 2 is either initially inserted into test strip meter or the test strip may be provided by a pre-loaded cartridge (not shown). In the latter approach embodiment, the cartridge is preferably. removably engageable with meter 6. Used strips may be automatically disposed of, e.g., either ejected from the meter or deposited into a separate compartment within the cartridge, while an unused test strip is automatically removed from the cartridge and inserted into a receiving area of the meter.
[0067] Once test strip device 2 is properly received within mechanism 18, it may then be spring loaded or cocked by means of lever 28, thereby retracting the test strip device 2 and preparing it for firing. Meter 6 is then positioned substantially perpendicular to the targeted skin surface wherein distal housing portion 14, and more specifically pressure ring 20, is caused to contact the target skin area. .Some compressive pressure may be manually applied to the target skin area, i. e., by pressing the distal end of meter 14 against the target skin area, to ensure that skinpiercing element 4 is properly inserted into the skin. By applying such pressure, a counter force causes distal housing portion 14 to press back upon pressure sensor 22.
(0068] The relative amount (i.e., high, normal and low) of counter pressure is then measured and displayed by optional pressure sensor indicators 24.
Preferably, the amount of pressure applied should generally be in the "normal" range. Indicators 24 inform the user as to when too much or too little pressure is being applied. When the indicators show that the applied pressure is "normal", the user may then depress the spring-release button 30.
Due to the spring force released, receiving/carrying mechanism 18 and test strip device 2 are caused to thrust forward thereby causing skin-piercing element 4 to extend from aperture 16 and puncture the targeted skin area.
[0069] Whether by manual means or by use of meter 6, the penetration of skinpiercing element 4 into the skin may create a fluid sample pooling area (defined by the recess or opening within skin-piercing element variations shown in FIGS 4A-7 and described further therewith). In which case, sample fluid enters the pooling area by the open-space configuration (e.g., recess or opening, within skin piercing element 4), and possibly also from the opposite side of the skin-piercing element. The pooled sample fluid is then transferred directly to the reaction zone of a test strip or thereto by a fluid pathway by at least a capillary force exerted on the pooled fluid. Where no enlarged pooling area is provided, a simple capillary channel may prove effective in certain situations as well, though such a set-up may not be most preferred.
[0070] In any case, the transfer of fluid from the wound site to the biosensor may be further facilitated by exerting physical positive pressure circumferentially around the penetration site by means of a pressure ring 20 or by applying a source of negative pressure through the fluid channel thereby vacuuming the body fluid exposed to the distal end of the channel.
Fluid passing into the biosensor reaction zone may simply fill the area or alternately be distributed by subchannels or another similar distribution feature.
[0071] Once meter 6 senses that the reaction zone or matrix area is completely filled with the sample of body fluid, the meter electronics or optics are activated to perform analysis of the extracted sample. At this point, the meter may be removed by the patient from the penetration site or kept on the skin surface until the test results are shown on the display.
Meter 6 may alternatively or additionally include means for automatically retracting the microneedle strip from the skin once the reaction cell is filled with the body fluid sample.
[0072] With an electrochemical-based analyte concentration determination assay, an electrochemical measurement is made using the counter/reference and working electrodes. The electrochemical measurement that is made may vary depending on the particular nature of the assay and the meter with which the electrochemical test strip is employed, (e.g., depending on whether the assay is coulometric, amperometric or potentiometric). Generally, the electrochemical measurement will measure charge (coulometric), current (amperometric) or potential (potentiometric), usually over a given period of time following sample introduction into the reaction area. Methods for making the above described electrochemical measurement are further described in U.S. Patent Nos.: 4,224,125; 4,545,382; and 5,266,179; as well as in International Patent Publications WO 97/18465 and WO 99/49307.
[0073] Following detection of the electrochemical signal generated in the reaction zone, the amount of the analyte present in the sample is typically determined by relating the electrochemical signal generated from a series of previously obtained control or standard values. In many embodiments, the electrochemical signal measurement steps and analyte concentration derivation steps, are performed automatically by a device designed to work with the test strip to produce a value of analyte concentration in a sample applied to the test strip. A representative reading device for automatically practicing these steps, such that user need only apply sample to the reaction zone and then read the final analyte concentration result from the device, is further described in co-pending U.S. Application S/N 09/333,793 filed June 15, 1999.
[0074] For a colorimetric or photometric analyte concentration determination assay, sample applied to a subject test strip, more specifically to a reaction area of a test strip, is allowed to react with members of a signal producing system present in the reaction zone to produce a detectable product that is representative of the analyte of interest in an amount proportional to the initial amount of analyte present in the sample. The amount of detectable product (i.e., signal produced by the signal producing system) is then determined and related to the amount of analyte in the initial sample. With such colorimetric assays, optical-type meters are used to perform the above mentioned detection and relation steps. The above described reaction, detection and relating steps, as well as instruments for performing the same, are further described in U.S. Patent Nos. 4,734,360; 4,900,666; 4,935,346;
5,059,394; 5,304,468; 5,306,623; 5,418,142; 5,426,032; 5,515,170; 5,526,120;
5,563,042; 5,620,863; 5,753,429; 5,773,452; 5,780,304; 5,789,255; 5,843,691;
5,846,486; 5,968,836 and 5,972,294; the disclosures of which are herein incorporated by reference. Examples of such colorimetric or photometric reagent test strips suitable for use with the subject invention include those described in U.S. Patent Nos.: 5,563,042; 5,753,452; 5,789,255, herein incorporated by reference.
Test Stri~Devices [0075] Turning now to FIGS. 2A and 2B, a first test element or tester 2 is shown. It comprises a test strip 36 and a needle/microneedle or lance/lancet portion 38 (herein used interchangeably). FIG 2B shows the lance element 38 shown separately, whereas a discrete test strip 36 and lance element 38 and are affixed, held or attached to each other in FIG 2A to form tester 2.
[0076] The test strip includes a biosensor 40 set upon a substrate 42.
Adhesive members) 44 may be provided to make the connection. The biosensor shown in FIG 2A is a colorimetric-type sensor provided in connection with a membrane and/or matrix. An aperture or transparent window 46 may be provided in substrate 42 to enable sensor reading.
[0077] To attach the lance element in FIG 2B to the test strip in FIG 2A
adhesive members) 48 are applied to a base 50 of the lance element to connect it to an opposing portion of the test strip. The orientation of such members may, of course, vary. Generally they will be set so as not to interfere with relevant structure. FIGS SA and SB provide an example of alternate adhesive portion placement used to attach the lance element to a test strip.
[0078] Regardless of relative orientation or configuration, as with optional adhesive portions 44, adhesive portions 48 may comprise double-stick tape or directly-applied adhesive. Alternately, adhesive affixation of elements 36 and 38 may be foregone in favor of mechanically welding (for instance, using ultrasonics) or chemically welding the components together. Still further, supplemental attachment members may be provided to connect a test strip with a lance element according to the present invention.
[0079] An example of such an approach is shown in FIGS 3A and 3B. Here, lance member 38 includes hooks or clasp members 52 provided on opposites sides of base 50. The clips may be integrally formed in the lance element as shown, or comprise independent or discrete members themselves.
[0080] The variations of the invention in FIGs 4A and 4B axe shown using adhered-on lance members 38 on their respective undersides. The base of each lance member may be affixed to the test strip body 36 by an adhesive layer or layers 44. Of course clip-on lance members may alternately be used as may be other methods of connection.

[0081 ] As shown, the lance member in FIG 4A is of a different thickness than that in FIG 4B. This is because the former is sized to be made from plastic, while it is contemplated that the latter be produced from a metal. Indeed, any of the various lance member variations shown may alternately be made of either metal, plastic, composite material, ceramic or another material and be configured accordingly. Likewise, as may already be apparent, any of the attachment approaches described may be use in or with any of the lance member variations. Still.further, each of the optional features regarding needle 4 structure and fluid conveyance as described further below may be used in each of the variations with either type of test strip 36 disclosed and still others.
[0082] However, details of the test strip embodiment in FIGS 4A and 4B is first described. Specifically, this test strip 36 comprises a first electrode 54 and a second electrode 56, preferably constructed as described above in connection with electrochemical sensor production. The thickness of the any substrate material provided typically ranges from about 25 to 500 ~m and usually from about 50 to 400 wm, while the thickness of the metal layer typically ranges from about 10 to 100 nm and usually from about 10 to 50 nm.
[0083] An adhesive member 58 may serve as a spacer between the electrodes, defining a reaction zone or area 60 for which the electrodes generally face each other and are separated by only a short distance, such that the spacing between the electrodes is extremely narrow. The thickness of spacer layer 58 may range from 10 to 750 ~m and is often less than or equal to 500 ~,m, and usually ranges from about 25 to 175 Vim. Any spacer layer preferably has double-sided adhesive to capture the adjacent electrodes. In any case spacer layer 58 may be fabricated from any convenient material, where representative suitable materials include polyethylene terephthalate, glycol modified polyethylene terephthalate (PETG), polyimide, polycarbonate, and the like.
[0084] As depicted, the working and reference electrodes are generally configured in the form of strips. Typically, the length of the electrodes ranges from about 0.75 to 2 in ( 1.9 to 5.1 cm), usually from about 0.79 to 1.1 in (2.0 to 2.8 cm). The width of the electrodes ranges from about 0.15 to 0.30 in (0.38 to 0.76 cm), usually from about 0.20 to 0.27 in (0.51. to 0.67 cm).
In certain embodiments, the length of one of the electrodes is shorter than the other, wherein in certain embodiments it is about 0.135 in (3.5 mm) shorter.
Preferably, electrode and spacer width is matched where the elements overlap. The spacer incorporated in the strip may be set back about 0.3 in (7.6 mm) from the end of electrode 56, leaving openings) 62 between the electrodes about 0.165 in (4.2 mm) deep. However, configured, such openings) provide space for receipt of a meter probe.
[0085] A vent opening 64 is provided across the reaction zone from the inlet port. 66. Providing a vent allows for capillary action between the electrodes to draw sample into the reaction zone without backpressure interference.
Spacer layer 58 is preferably configured or cut-out so as to provide a reaction zone or area with a volume in the range from about 0.01 to 10 ~,L, usually from about 0.1 to 1.0 ~L and more usually from about 0.05 to 1.0 ~,L. The amount of physiological sample that is introduced into the reaction area of the test strip may vary, but generally ranges from about 0.1 to 10 ~1, usually from about 0.3 to 0.6 p1.
(0086] Such introduction of sample is preferably accomplished at notched section 68. It interfaces with features of needle 4 to pick up pooling or conveyed sample and direct it inwardly toward the test strip reaction zone, at least partially pinning the sample along the edges of the notch.
[0087] As such, the variations of the invention shown in FIGS 4A and 4B
represent front-loaded test strips. Those in figures 2A and 2B are loaded with or accept sample along the face of the sensor (as present on the underside of the test strip). Still further modes of introduction are possible, however. Side loaded test strips may be employed (such as those described in the above- referenced patent application Attorney Docket Nos. LIFE-031/LIFE-039 with minor modifications of the lance elements depicted. Such approaches are contemplated as part of the present invention.
Lance Elements [0088] Also contemplated as aspects of the present invention are various features regarding the lance elements 38 shown. In accordance with the text above, each lance element includes a lancet/needle or skin piercing element 4, typically having a pointed tip 70. In addition the body of lance 4 and base 50 may incorporate various features to collect and/or convey a biological sample to a given test strip sensor 40.
[0089] Actually, any suitable shape of skin-piercing element 4 may be employed with the subject test strip devices, as long as the shape enables the skin to be pierced with minimal pain to the patient. For example, the skin-piercing element may have a substantially flat or planar configuration, or may be substantially cylindrical-like, wedge-like or triangular in shape such as a substantially flattened triangle-like configuration, blade-shaped, or have any other suitable shape.
The cross-sectional shape of the skin-piercing element, or at least the portion of skin-piercing element that is penetrable into the skin, may be any suitable shape, including, but not limited to, substantially rectangular, oblong, square, oval, circular, diamond, triangular, star, etc. Additionally, the skin-piercing element may be tapered or may otherwise define a point or apex at its distal end. Such a configuration may take the form of an oblique angle at the tip or a pyramid or triangular shape or the like.
[0090] The dimensions of the skin-piercing element may vary depending on a variety of factors such as the type of physiological sample to be obtained, the desired penetration depth and the thickness of the skin layers of the particular patient being tested. Generally, the skin-piercing element is constructed to provide skin-piercing and fluid extraction functions and, thus, is designed to be sufficiently robust to withstand insertion into and withdrawal from the skin.
Typically; to accomplish these goals, the ratio of the penetration length (defined by the distance between the base of the skin-piercing element and its distal tip) to diameter (where such diameter is measured at the base of the skin-piercing element) is from about 1 to l, usually about 2 to 1, more usually about S to 1 or 10 to I and oftentimes 50 to 1.
[0091] The total length of the skin-piercing elements generally ranges from about 1 to 30,000 microns, usually from about 100 to 10,000 microns and more usually from about 1,000 -to 3,000 microns. The penetration length of the skin-piercing elements generally ranges from about 1 to 5000 microns, usually about 100 to 3000 microns and more usually about 1000 to 2000 microns. The height or thickness of skin-piercing elements 38, at least the thickness of the distal portion 4, typically ranges from about 1 to 1000 microns, usually from about 10 to 500 microns and more usually from about SO to 250 microns. The outer diameter at the base generally ranges from about 1 to 2000 microns, usually about 300 to 1000 microns and more usually from about 500 to 1000 microns. In many embodiments, the outer diameter of the distal tip generally does not exceed about I00 microns and is generally less than about 20 microns and more typically less than about 1 micron. However, it will be appreciated by one of skill in the art that the outer diameter of the skin-piercing element may vary along its length or may be substantially constant.
[0092] Regarding the fluid-conveying features noted as may be incorporated in lance element 38, one variation incorporates only a channel 72, preferably of capillary dimensions, for this purpose. Configured to work with the test strips in FIGS 2A and 3A, the channel preferably extends a sufficient length so that it is in fluid communication with the sensor matrix or membrane. The channel may be open on either one side (thereby taking the form of a trench) or both. The channel length is preferably limited to match-up with intended target in order to avoid inadvertent loss of sample fluid.
[0093] FIGS 4A and 4B show a somewhat different lance configuration. In each figure, a recessed pooling area 74 is provided. No capillary is required to carry fluid from the pooling area since (as noted above) fluid is able to directly transfer from the lancet 4 to access port 66 in this variation of the invention. The purpose of the recessed or space-defining area in the variations shown in FIGS 4A and (as well as in FIGS SA-7) is to create a space or volume within the pierced tissue.
This space serves as a reservoir within which bodily fluid is caused to pool in situ prior to being transferred to the biosensor portion of the subject test strip devices.
As such, the availability of a greater volume of body fluid can be provided with a tip that is smaller and/or sharper than conventional microneedles, thereby reducing pain. The greater availability of body fluid also results in a faster collection rate of sampling.
[0094] Generally, the space-defining lancet configurations of the present invention create or define a space within the pierced tissue having a volume at least as great as the available fluid volume in the reaction zone of the biosensor.
Such space or volume ranges from about 10 to 1,000 nL, and more usually from about 50 to 250 nL. Such volume occupies a substantial portion of the entire volume occupied by the structure of the skin-piercing element, and ranges from about 50% to 99% and more usually from about 50% to 75% of the entire volume occupied by the skin piercing element.
(0095] The lance member variations shown in FIGS SA-7 incorporate a channel 72 and a recess 74. The variations in FIGs 5 and 6 include an opening 76 adjacent the pooling region as well. The pooling area opening in the former variations is best pictured in FIG SB. The purpose of such an opening (and for providing an open capillary iii the lance member variations referenced above from FIGS 2A3B) is to further expose the sample-gathering structure area to the outside environment, thereby increasing the volume and flow rate of body fluid into the area.
[0096] As illustrated, the recesses and/or openings may occupy a substantial portion of the width of their respective skin-piercing elements, as well as a substantial portion of a length dimension. Side walls 78 defining each of the structures will have a thickness sufficient to maintain the structure of the microneedle when subject to normal forces, but may be minimized in order to maximize negative space for collecting sample.
[0097] Another optional feature or set of features that may be employed, especially in connection with a fluid conveying channel 72 incorporated in a lance element is shown in each of FIGS SA-7. The features being referred to are the secondary fluid transfer pathways 80. These elements, set in fluid communication with channel 72 convey sample outwardly, dispersing the same across the sensor employed in an opposing, attached test strip.
[0098] Like channel 72, pathways or channels 80 are preferably dimensioned so as to exert a capillary force on fluid within the pooling area defined by the open space portion of the microneedle, and draws or wicks physiological sample to within the reaction zone or matrix area of the biosensor. As such, the diameter or width of a single fluid channel or pathway does not exceed 1000 microns and will usually be about 100 to 200 microns in diameter. This diameter may be constant along its length or may vary. It may be preferred that sub-channels 80 have crosssectional diameters in the range from about 1 to 200 microns and more usually from about 20 to 50 microns in that they are not required to convey the same volume of fluid as a primary channel 72.

[0099] In the illustrated embodiments, branch channels 80 extend perpendicularly from channel 72; however, they may extend angularly from their respective channels. Another variation concerning lance member configuration relative to channels 80 is to inset or surround the same within base as shown in FIG 7. Accomplished in this manner or another way, bounding the area to which channels 80 can convey fluid can be employed to ensure that sample is directed fully and only to a reaction or sensor area of the test strip 36 employed with lance element 38.
[00100] In certain embodiments of the invention, the fluid pathway may further include one or more agents to facilitate sample collection. For example, one or more hydrophilic agents may be present in the fluid pathway, where such agents include, but are not limited to types of surface modifiers or surfactants such as mercaptoethane sulfonic acid (MESA), Triton, Macol, Tetronic, Silwet, Zonyl, Aerosol, Geropon, Chaps, and Pluronic.
Test Strip Device Fabrication [00101] Many of the techniques described in U.S. Application Atty Docket No.
LIFE-035 entitled "PHYSIOLOGICAL SAMPLE COLLECTION DEVICES
AND METHODS OF USING THE SAME" are applicable to fabricating test strip devices as described herein - especially those details regarding needle/lance production. Details as to electrochemical test strip production may also be appreciated in view of Application Atty Docket Nos. LIFE-031 entitled "SOLUTION DRYING SYSTEM" and LIFE-039 entitled "SOLUTION STRIPING SYSTEM".

[00102] A primary distinction, however, between the approach taught in the former application and that taught herein, is that in the present invention complete test strips may be provided, to which lance elements are attached as auxiliary structure. FIGs 2A and 3A provide examples of such an approach.
Alternately, test strips adapted for use with the lance elements of the invention may be provided, to which lance elements are affixed. FIGs 4A and 4B
provide examples of such an approach.
[00103] In either case, it is possible to separately produce or procure lance and test strip elements that are later brought together. The initially independent nature of the products/devices permits relatively optimized manufacture. In contrast, in the integral test strip devices described in the above-referenced application, certain considerations of material selection and manufacturing processes applicability that do not necessarily affect manufacture of the present invention.
[00104] One example of the flexibility offered by producing test strip devices according to the present invention by affixing a lance element to an otherwise complete test strip is that a user may feasibly take such action. This may be especially true for the clip-type embodiments disclosed (or variations of the embodiments shown in which clip-type structure may be employed.) By virtue of such flexibility, there is market opportunity for selling lance members for use with any of a variety of commercially available test strips to be used with a meter according to the present invention. Of course, flexibility exists in designing the lance elements so they will interface (by clips, adhesive or other means) with a wide variety of test strips - both, present and future.

[00105] Though the invention has been described in reference to certain examples, optionally incorporating various features, the invention is not to be limited to the set-ups described. The invention is not limited to the uses noted or by way of the exemplary description provided herein. It is to be understood that the breadth of the present invention is to be limited only by the literal or equitable scope of the following claims.

Claims (10)

  1. A lance element for attachment to a test strip to access body fluid and convey it to a test strip sensor, said lance comprising:
    a substantially planar base;
    a piercing element comprising an opening occupying a substantial portion of a width, diameter or length dimension of said piercing element; and a fluid pathway in communication with said opening, wherein a pooling area is created within the skin by said opening upon insertion of said piercing element into the skin of a subject.
  2. 2. The lance element of claim 1, wherein said fluid pathway is dimensioned to apply a capillary force on fluid present within said pooling area.
  3. 3. The lance element of claim 1, further comprising a recess within a surface of said base, wherein said recess is in fluid communication with said opening.
  4. 4. A test strip combination comprising:
    a complete test strip comprising biosensor and a support member;
    a separate lance element attached to said test strip, said lance element comprising at least one piercing element and being adapted to convey a fluid sample obtained by said piercing element to said biosensor.
  5. 5. The test strip combination of claim 4, wherein said test strip has an electrochemical configuration.
  6. 6. The test strip combination of claim 4, wherein said test strip has a photometric or colorimetric configuration.
  7. 7. The test strip combination of claims 4, 5 or 6, wherein said lance element is a lance element according to claims 1, 2 or 3.
  8. 8. A system for determining the concentration of at least one analyte in a physiological sample, said system comprising:
    at least one test strip combination according to claims 4 to 7, and a meter for automatically determining the concentration of analyte in the physiological sample, wherein said meter is configured for receiving said test strip device.
  9. 9. A method for determining the concentration of at least one analyte within a physiological fluid sample, said method comprising:
    providing the system of claim 8 wherein said test strip combination is operatively received within a distal end of said meter;
    spring-loading said test strip combination within said meter;
    operatively contacting said distal end of said meter with a targeted skin surface;
    releasing the spring-loaded test strip combination, wherein said targeted skin surface is pierced by said piercing element; and collecting sample and applying it to said biosensor.
  10. 10. A method of producing a tester, the method comprising:
    providing a lance element as described in claims 1, 2 or 3, providing a test strip having a substrate and biosensor; and attaching said lance element base to said test strip.
CA002428349A 2002-05-09 2003-05-08 Physiological sample collection devices and methods of using the same Abandoned CA2428349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/143,442 2002-05-09
US10/143,442 US20030212344A1 (en) 2002-05-09 2002-05-09 Physiological sample collection devices and methods of using the same

Publications (1)

Publication Number Publication Date
CA2428349A1 true CA2428349A1 (en) 2003-11-09

Family

ID=29249855

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002428349A Abandoned CA2428349A1 (en) 2002-05-09 2003-05-08 Physiological sample collection devices and methods of using the same

Country Status (15)

Country Link
US (1) US20030212344A1 (en)
EP (1) EP1360933B1 (en)
JP (1) JP2004000600A (en)
KR (1) KR100854255B1 (en)
CN (1) CN1456888A (en)
AT (1) ATE332667T1 (en)
CA (1) CA2428349A1 (en)
DE (1) DE60306711T2 (en)
ES (1) ES2268287T3 (en)
HK (1) HK1057984A1 (en)
IL (1) IL155348A0 (en)
PT (1) PT1360933E (en)
RU (1) RU2003113551A (en)
SG (1) SG115538A1 (en)
TW (1) TWI283570B (en)

Families Citing this family (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7144495B2 (en) * 2000-12-13 2006-12-05 Lifescan, Inc. Electrochemical test strip with an integrated micro-needle and associated methods
US6620310B1 (en) * 2000-12-13 2003-09-16 Lifescan, Inc. Electrochemical coagulation assay and device
CN1525834A (en) 2001-01-22 2004-09-01 - Lancet device having capillary action
US7310543B2 (en) * 2001-03-26 2007-12-18 Kumetrix, Inc. Silicon microprobe with integrated biosensor
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) * 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
DE60238119D1 (en) 2001-06-12 2010-12-09 Pelikan Technologies Inc ELECTRIC ACTUATOR ELEMENT FOR A LANZETTE
EP1404232B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Blood sampling apparatus and method
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
DE10134650B4 (en) * 2001-07-20 2009-12-03 Roche Diagnostics Gmbh System for taking small amounts of body fluid
DE10142232B4 (en) 2001-08-29 2021-04-29 Roche Diabetes Care Gmbh Process for the production of an analytical aid with a lancet and test element
US7004928B2 (en) 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
DE20213607U1 (en) 2002-02-21 2003-07-03 Hartmann Paul Ag Blood analyzer for the determination of an analyte
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7815579B2 (en) * 2005-03-02 2010-10-19 Roche Diagnostics Operations, Inc. Dynamic integrated lancing test strip with sterility cover
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
RU2004132832A (en) * 2003-03-06 2005-08-27 Лайфскен, Инк. (Us) SYSTEM AND METHOD FOR PUNCTING DERMAL TISSUE
US7052652B2 (en) 2003-03-24 2006-05-30 Rosedale Medical, Inc. Analyte concentration detection devices and methods
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US20040253736A1 (en) * 2003-06-06 2004-12-16 Phil Stout Analytical device with prediction module and related methods
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
EP1529488A1 (en) 2003-06-27 2005-05-11 Ehrfeld Mikrotechnik AG Device and method for sampling and analysing body fluids
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
US20050113739A1 (en) * 2003-11-21 2005-05-26 Matthias Stiene Device and method for extracting body fluid
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
DE102004002874A1 (en) * 2004-01-20 2005-08-11 Roche Diagnostics Gmbh Analyzer for analysis of blood samples
DE102004010529B4 (en) * 2004-03-04 2007-09-06 Roche Diagnostics Gmbh Handheld analyzer
CA2557966C (en) 2004-03-06 2012-07-10 F. Hoffmann-La Roche Ag Body fluid sampling device
US7819822B2 (en) * 2004-03-06 2010-10-26 Roche Diagnostics Operations, Inc. Body fluid sampling device
JP2007532161A (en) 2004-04-10 2007-11-15 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method and system for removing body fluids
EP1737345A1 (en) * 2004-04-15 2007-01-03 Roche Diagnostics GmbH Integrated spot monitoring device with fluid sensor
JP4944770B2 (en) 2004-04-16 2012-06-06 ファセット・テクノロジーズ・エルエルシー Cap displacement mechanism for puncture device and multi-lancet cartridge
US8591436B2 (en) * 2004-04-30 2013-11-26 Roche Diagnostics Operations, Inc. Lancets for bodily fluid sampling supplied on a tape
US7909776B2 (en) * 2004-04-30 2011-03-22 Roche Diagnostics Operations, Inc. Lancets for bodily fluid sampling supplied on a tape
US7322942B2 (en) * 2004-05-07 2008-01-29 Roche Diagnostics Operations, Inc. Integrated disposable for automatic or manual blood dosing
WO2006011062A2 (en) 2004-05-20 2006-02-02 Albatros Technologies Gmbh & Co. Kg Printable hydrogel for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
US7582262B2 (en) 2004-06-18 2009-09-01 Roche Diagnostics Operations, Inc. Dispenser for flattened articles
US20060000549A1 (en) * 2004-06-29 2006-01-05 Lang David K Method of manufacturing integrated biosensors
US20060006574A1 (en) * 2004-06-29 2006-01-12 Lang David K Apparatus for the manufacture of medical devices
JP2008504893A (en) * 2004-06-30 2008-02-21 ファセット・テクノロジーズ・エルエルシー Puncture device and multi-lancet cartridge
US20060030788A1 (en) * 2004-08-04 2006-02-09 Daniel Wong Apparatus and method for extracting bodily fluid utilizing a flat lancet
JP2006068384A (en) * 2004-09-03 2006-03-16 Advance Co Ltd Body fluid transfer implement, and body fluid inspecting system using the same
CA2580583A1 (en) 2004-09-20 2006-03-30 Bayer Healthcare Llc System and method for repositioning a diagnostic test strip after inoculation
US7488298B2 (en) * 2004-10-08 2009-02-10 Roche Diagnostics Operations, Inc. Integrated lancing test strip with capillary transfer sheet
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7935063B2 (en) * 2005-03-02 2011-05-03 Roche Diagnostics Operations, Inc. System and method for breaking a sterility seal to engage a lancet
US7695442B2 (en) 2005-04-12 2010-04-13 Roche Diagnostics Operations, Inc. Integrated lancing test strip with retractable lancet
US20060275890A1 (en) * 2005-06-06 2006-12-07 Home Diagnostics, Inc. Method of manufacturing a disposable diagnostic meter
US20060281187A1 (en) 2005-06-13 2006-12-14 Rosedale Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
JP4682361B2 (en) * 2005-07-05 2011-05-11 独立行政法人産業技術総合研究所 Puncture device integrated biosensor
US20070078414A1 (en) * 2005-08-05 2007-04-05 Mcallister Devin V Methods and devices for delivering agents across biological barriers
EP1759633A1 (en) * 2005-09-01 2007-03-07 F.Hoffmann-La Roche Ag Device for sampling bodily fluids and its fabrication method
US8298389B2 (en) * 2005-09-12 2012-10-30 Abbott Diabetes Care Inc. In vitro analyte sensor, and methods
US20070117171A1 (en) * 2005-09-13 2007-05-24 Greta Wegner Method of manufacturing a diagnostic test strip
US7846311B2 (en) * 2005-09-27 2010-12-07 Abbott Diabetes Care Inc. In vitro analyte sensor and methods of use
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
EP3461406A1 (en) 2005-09-30 2019-04-03 Intuity Medical, Inc. Multi-site body fluid sampling and analysis cartridge
EP1772099B8 (en) 2005-10-08 2011-10-05 Roche Diagnostics GmbH Piercing system
JP4935286B2 (en) * 2005-10-12 2012-05-23 パナソニック株式会社 Blood sensor
US20070100256A1 (en) * 2005-10-28 2007-05-03 Sansom Gordon G Analyte monitoring system with integrated lancing apparatus
US20100036281A1 (en) * 2005-12-01 2010-02-11 Arkray, Inc. Integrated Sensor and Lancet Device and Method for Collecting Body Fluid Using the Same
US7658728B2 (en) * 2006-01-10 2010-02-09 Yuzhakov Vadim V Microneedle array, patch, and applicator for transdermal drug delivery
JP4670013B2 (en) * 2006-02-03 2011-04-13 独立行政法人産業技術総合研究所 Biosensor and manufacturing method thereof
JP4665135B2 (en) * 2006-02-03 2011-04-06 独立行政法人産業技術総合研究所 Biosensor manufacturing method
US8940246B2 (en) * 2006-03-13 2015-01-27 Nipro Diagnostics, Inc. Method and apparatus for coding diagnostic meters
US8388905B2 (en) * 2006-03-13 2013-03-05 Nipro Diagnostics, Inc. Method and apparatus for coding diagnostic meters
US11559810B2 (en) 2006-03-13 2023-01-24 Trividia Health, Inc. Method and apparatus for coding diagnostic meters
US8388906B2 (en) * 2006-03-13 2013-03-05 Nipro Diagnostics, Inc. Apparatus for dispensing test strips
JP4635260B2 (en) * 2006-03-16 2011-02-23 独立行政法人産業技術総合研究所 Biosensor and manufacturing method thereof
US20090093735A1 (en) * 2006-03-29 2009-04-09 Stephan Korner Test unit and test system for analyzing body fluids
JP2007289358A (en) * 2006-04-24 2007-11-08 Sumitomo Electric Ind Ltd Biosensor chip and its manufacturing method
JP2009171988A (en) * 2006-04-24 2009-08-06 National Institute Of Advanced Industrial & Technology Bio sensor chip
JP4957121B2 (en) * 2006-08-22 2012-06-20 住友電気工業株式会社 Biosensor cartridge
EP1891898A1 (en) * 2006-08-25 2008-02-27 Roche Diagnostics GmbH Lancing device
US8372015B2 (en) * 2006-08-28 2013-02-12 Intuity Medical, Inc. Body fluid sampling device with pivotable catalyst member
US20080083618A1 (en) * 2006-09-05 2008-04-10 Neel Gary T System and Methods for Determining an Analyte Concentration Incorporating a Hematocrit Correction
US20080124692A1 (en) * 2006-10-26 2008-05-29 Mcevoy Mary Method for tutoring a user during use of a system for determining an analyte in a bodily fluid sample
US7785301B2 (en) * 2006-11-28 2010-08-31 Vadim V Yuzhakov Tissue conforming microneedle array and patch for transdermal drug delivery or biological fluid collection
KR100834286B1 (en) * 2007-01-23 2008-05-30 엘지전자 주식회사 Multi layer strip for bio material and apparatus for measuring bio material
US8460524B2 (en) * 2007-04-18 2013-06-11 Nipro Diagnostics, Inc. System and methods of chemistry patterning for a multiple well biosensor
US20110092854A1 (en) 2009-10-20 2011-04-21 Uwe Kraemer Instruments and system for producing a sample of a body fluid and for analysis thereof
EP2545854B1 (en) * 2007-04-30 2014-06-04 Roche Diagnostics GmbH Instrument and system for producing a sample of a body liquid and for analysis thereof
EP2015067A1 (en) * 2007-06-15 2009-01-14 Roche Diagnostics GmbH System for measuring the analyte concentration in a body fluid sample
JP2009008574A (en) * 2007-06-29 2009-01-15 Sumitomo Electric Ind Ltd Sensor chip, biosensor cartridge, and biosensor device
JP5044334B2 (en) * 2007-09-06 2012-10-10 株式会社ニコン Collection container
EP2205153B1 (en) 2007-10-08 2017-04-19 Roche Diabetes Care GmbH Analysis system for automatic skin prick analysis
TWI516601B (en) * 2007-10-26 2016-01-11 環球生物醫療感測器私人有限公司 Apparatus and method for electrochemical detection
US7766846B2 (en) 2008-01-28 2010-08-03 Roche Diagnostics Operations, Inc. Rapid blood expression and sampling
JP2011511665A (en) 2008-02-04 2011-04-14 バイエル・ヘルスケア・エルエルシー Analyte sensor and method using semiconductors
EP2265324B1 (en) 2008-04-11 2015-01-28 Sanofi-Aventis Deutschland GmbH Integrated analyte measurement system
JP5816080B2 (en) 2008-05-30 2015-11-17 インテュイティ メディカル インコーポレイテッド Body fluid collection device and collection site interface
ES2907152T3 (en) 2008-06-06 2022-04-22 Intuity Medical Inc Blood glucose meter and method of operation
US9636051B2 (en) 2008-06-06 2017-05-02 Intuity Medical, Inc. Detection meter and mode of operation
US8178313B2 (en) * 2008-06-24 2012-05-15 Lifescan, Inc. Method for determining an analyte in a bodily fluid
GB0812680D0 (en) * 2008-07-10 2008-08-20 Sec Dep For Innovation Univers Fluid decontamination method and apparatus
EP2316339A4 (en) * 2008-08-01 2012-10-24 Lightnix Inc Sensor with fine needle having channel formed therein
CN102171557B (en) 2008-09-19 2016-10-19 安晟信医疗科技控股公司 There is electrochemical appliance and the manufacture method thereof of the electro-chemical activity of enhancing
EP2341830A4 (en) * 2008-09-19 2012-10-31 Bayer Healthcare Llc Analyte sensors, systems, testing apparatus and manufacturing methods
CA2735606A1 (en) * 2008-09-19 2010-03-25 Bayer Healthcare Llc Lancet analyte sensors and methods of manufacturing
CN102227636A (en) * 2008-09-30 2011-10-26 梅纳伊医疗科技有限公司 Sample measurement system
EP2181651A1 (en) * 2008-10-29 2010-05-05 Roche Diagnostics GmbH Instrument and system for producing a sample of a body liquid and for analysis thereof
EP2375985B1 (en) 2008-12-18 2013-06-19 Facet Technologies, LLC Lancing device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8696917B2 (en) * 2009-02-09 2014-04-15 Edwards Lifesciences Corporation Analyte sensor and fabrication methods
EP2218400A1 (en) 2009-02-12 2010-08-18 Roche Diagnostics GmbH Lance with test area
US20120277629A1 (en) 2011-04-29 2012-11-01 Seventh Sense Biosystems, Inc. Systems and methods for collection and/or manipulation of blood spots or other bodily fluids
WO2012018486A2 (en) 2010-07-26 2012-02-09 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
WO2010101620A2 (en) 2009-03-02 2010-09-10 Seventh Sense Biosystems, Inc. Systems and methods for creating and using suction blisters or other pooled regions of fluid within the skin
EP2430977B1 (en) * 2009-05-14 2020-01-08 Biotechnology Institute, I Mas D, S.L. Method for preparing at least one compound from blood, and sampling device for use when carrying out said method
EP2263526A1 (en) 2009-06-19 2010-12-22 Roche Diagnostics GmbH Piercing system
KR101104391B1 (en) 2009-06-30 2012-01-16 주식회사 세라젬메디시스 Sensor for measuring biomaterial used with measuring meter, and measuring device using this sensor
EP2283774A1 (en) 2009-08-13 2011-02-16 Roche Diagnostics GmbH Test element for analysing a body fluid
WO2011048200A2 (en) 2009-10-22 2011-04-28 Roche Diagnostics Gmbh Micro-capillary system having increased sample volume
EP3106871B1 (en) 2009-11-30 2021-10-27 Intuity Medical, Inc. A method of verifying the accuracy of the operation of an analyte monitoring device
WO2011094573A1 (en) 2010-01-28 2011-08-04 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
GB201005357D0 (en) 2010-03-30 2010-05-12 Menai Medical Technologies Ltd Sampling plate
GB201005359D0 (en) 2010-03-30 2010-05-12 Menai Medical Technologies Ltd Sampling plate
USD634426S1 (en) 2010-04-08 2011-03-15 Facet Technologies, Llc Lancing device
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2011163347A2 (en) 2010-06-23 2011-12-29 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
EP2584964B1 (en) 2010-06-25 2021-08-04 Intuity Medical, Inc. Analyte monitoring devices
WO2012009613A1 (en) 2010-07-16 2012-01-19 Seventh Sense Biosystems, Inc. Low-pressure environment for fluid transfer devices
WO2012021801A2 (en) 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
US9562256B2 (en) 2010-10-23 2017-02-07 Pop Test LLC Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
BR112013009797A2 (en) * 2010-10-23 2020-06-09 Pop Test LLC method of producing a device for conducting a non-invasive analysis and a device for conducting a non-invasive analysis
JP5661424B2 (en) * 2010-10-29 2015-01-28 アークレイ株式会社 Electrochemical sensor
WO2012064802A1 (en) 2010-11-09 2012-05-18 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
PL2469264T3 (en) * 2010-12-21 2017-08-31 Grundfos Management A/S Monitoring system
EP2701600B1 (en) 2011-04-29 2016-06-08 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
WO2012149155A1 (en) 2011-04-29 2012-11-01 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
EP2520225B1 (en) 2011-05-06 2014-05-21 Roche Diagnostics GmbH Lancet
US9782114B2 (en) 2011-08-03 2017-10-10 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
USD745675S1 (en) * 2011-11-08 2015-12-15 “HTL-STREFA” Spolka Akcyjna Device for puncturing the patient's skin
EP2790581B1 (en) 2011-12-15 2016-06-08 Facet Technologies, LLC Latch mechanism for preventing lancet oscillation in a lancing device
CA2869342A1 (en) 2012-04-11 2013-10-17 Facet Technologies, Llc Lancing device with moving pivot depth adjust
US10456069B2 (en) 2012-04-12 2019-10-29 Facet Technologies, Llc Lancing device with side activated charge and eject mechanisms
WO2014039909A1 (en) * 2012-09-06 2014-03-13 Theranos, Inc. Systems, devices, and methods for bodily fluid sample collection
WO2014205412A1 (en) 2013-06-21 2014-12-24 Intuity Medical, Inc. Analyte monitoring system with audible feedback
EP3422958A1 (en) 2016-03-01 2019-01-09 Kitotech Medical, Inc. Microstructure-based systems, apparatus, and methods for wound closure
EP3496614B1 (en) * 2016-08-12 2022-04-06 Medtrum Technologies Inc. A one step all in one apparatus for body fluid sampling and sensing
WO2018027935A1 (en) * 2016-08-12 2018-02-15 Medtrum Technologies Inc. A pen-shaped one-step apparatus for body fluid sampling and sensing
KR102349487B1 (en) * 2016-08-24 2022-01-10 벡톤 디킨슨 앤드 컴퍼니 device for obtaining a blood sample
EP3315069A1 (en) 2016-10-25 2018-05-02 Roche Diabetes Care GmbH Method for determination of an analyte concentration in a body fluid and analyte concentration measurement device
US11408881B2 (en) * 2017-05-04 2022-08-09 Roche Diabetes Care, Inc. Test meter and method for detecting undue pressure applied to an inserated test strip
EP3713489B1 (en) * 2017-10-12 2024-04-03 Atomo Diagnostics Limited Integrated blood test device
KR102291392B1 (en) * 2018-03-30 2021-08-20 랩앤피플주식회사 Multi type micro-needle
WO2020232299A1 (en) * 2019-05-15 2020-11-19 Probus Medical Technologies Inc. Blood sampling device, system, and method
CN113109577B (en) * 2021-04-01 2022-04-15 广州南雪医疗器械有限公司 Test paper for detecting total cholesterol
WO2023159181A1 (en) 2022-02-18 2023-08-24 Kitotech Medical, Inc. Force modulating deep skin staples and instruments

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964482A (en) * 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
JPS5912135B2 (en) * 1977-09-28 1984-03-21 松下電器産業株式会社 enzyme electrode
EP0078636B2 (en) * 1981-10-23 1997-04-02 MediSense, Inc. Sensor for components of a liquid mixture
US4966159A (en) * 1981-12-14 1990-10-30 Maganias Nicholas H Allergy test strip
US4900666A (en) * 1983-07-12 1990-02-13 Lifescan, Inc. Colorimetric ethanol analysis method and test device
US4734360A (en) * 1983-07-12 1988-03-29 Lifescan, Inc. Colorimetric ethanol analysis method and test device
US4627445A (en) * 1985-04-08 1986-12-09 Garid, Inc. Glucose medical monitoring system
US4731726A (en) * 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US5029583A (en) 1986-07-22 1991-07-09 Personal Diagnostics, Inc. Optical analyzer
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US5059394A (en) * 1986-08-13 1991-10-22 Lifescan, Inc. Analytical device for the automated determination of analytes in fluids
AU640162B2 (en) * 1989-08-28 1993-08-19 Lifescan, Inc. Blood separation and analyte detection techniques
US5306623A (en) * 1989-08-28 1994-04-26 Lifescan, Inc. Visual blood glucose concentration test strip
US5620863A (en) * 1989-08-28 1997-04-15 Lifescan, Inc. Blood glucose strip having reduced side reactions
US5697901A (en) * 1989-12-14 1997-12-16 Elof Eriksson Gene delivery by microneedle injection
US5161532A (en) * 1990-04-19 1992-11-10 Teknekron Sensor Development Corporation Integral interstitial fluid sensor
JPH0820412B2 (en) * 1990-07-20 1996-03-04 松下電器産業株式会社 Quantitative analysis method and device using disposable sensor
US5376668A (en) * 1990-08-21 1994-12-27 Novo Nordisk A/S Heterocyclic compounds
US5607401A (en) * 1991-09-03 1997-03-04 Humphrey; Bruce H. Augmented polymeric hypodermic devices
AU4282793A (en) * 1992-04-10 1993-11-18 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University A microneedle for injection of ocular blood vessels
GR1002549B (en) * 1992-05-12 1997-01-28 Lifescan Inc. Fluid conducting test strip with Transport Medium
US5843691A (en) * 1993-05-15 1998-12-01 Lifescan, Inc. Visually-readable reagent test strip
US5582184A (en) * 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
US5457041A (en) * 1994-03-25 1995-10-10 Science Applications International Corporation Needle array and method of introducing biological substances into living cells using the needle array
US5591139A (en) 1994-06-06 1997-01-07 The Regents Of The University Of California IC-processed microneedles
US5700695A (en) * 1994-06-30 1997-12-23 Zia Yassinzadeh Sample collection and manipulation method
US5515170A (en) * 1994-09-08 1996-05-07 Lifescan, Inc. Analyte detection device having a serpentine passageway for indicator strips
ES2168389T3 (en) * 1994-09-08 2002-06-16 Lifescan Inc STRIP OF OPTICAL READING AND INCORPORATED PATTERN FOR THE DETECTION OF AN ANALYTE.
US5526120A (en) * 1994-09-08 1996-06-11 Lifescan, Inc. Test strip with an asymmetrical end insuring correct insertion for measuring
AU5740496A (en) * 1995-05-22 1996-12-11 General Hospital Corporation, The Micromechanical device and method for enhancing delivery of compounds through the skin
US5573452A (en) * 1995-07-18 1996-11-12 Liu; Yu-Chieh Drill grinder
AU7015096A (en) * 1995-09-08 1997-04-09 Integ, Inc. Body fluid sampler
US5879367A (en) * 1995-09-08 1999-03-09 Integ, Inc. Enhanced interstitial fluid collection
AU722471B2 (en) * 1995-10-17 2000-08-03 Lifescan, Inc. Blood glucose strip having reduced sensitivity to hematocrit
IL120587A (en) 1996-04-04 2000-10-31 Lifescan Inc Reagent test strip for determination of blood glucose
WO1997042883A1 (en) * 1996-05-17 1997-11-20 Mercury Diagnostics, Inc. Disposable element for use in a body fluid sampling device
US6332871B1 (en) * 1996-05-17 2001-12-25 Amira Medical Blood and interstitial fluid sampling device
EP0914178B1 (en) * 1996-06-18 2003-03-12 Alza Corporation Device for enhancing transdermal agent delivery or sampling
US5753429A (en) * 1996-08-09 1998-05-19 Lifescan, Inc. Analyte concentration measurement using a hollow frustum
US5846486A (en) * 1996-08-09 1998-12-08 Lifescan, Inc. Hollow frustum reagent test device
JP3394262B2 (en) * 1997-02-06 2003-04-07 セラセンス、インク. Small volume in vitro analyte sensor
US5961451A (en) * 1997-04-07 1999-10-05 Motorola, Inc. Noninvasive apparatus having a retaining member to retain a removable biosensor
US5928207A (en) * 1997-06-30 1999-07-27 The Regents Of The University Of California Microneedle with isotropically etched tip, and method of fabricating such a device
US5938679A (en) * 1997-10-14 1999-08-17 Hewlett-Packard Company Apparatus and method for minimally invasive blood sampling
US6155992A (en) * 1997-12-02 2000-12-05 Abbott Laboratories Method and apparatus for obtaining interstitial fluid for diagnostic tests
US6071294A (en) 1997-12-04 2000-06-06 Agilent Technologies, Inc. Lancet cartridge for sampling blood
US6036924A (en) * 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6091975A (en) * 1998-04-01 2000-07-18 Alza Corporation Minimally invasive detecting device
US6503231B1 (en) * 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US5972249A (en) * 1998-10-26 1999-10-26 Bausch & Lomb Incorporated Method and apparatus for curing contact lenses
US6132449A (en) * 1999-03-08 2000-10-17 Agilent Technologies, Inc. Extraction and transportation of blood for analysis
US6368563B1 (en) * 1999-03-12 2002-04-09 Integ, Inc. Collection well for body fluid tester
US6379324B1 (en) * 1999-06-09 2002-04-30 The Procter & Gamble Company Intracutaneous microneedle array apparatus
US6193873B1 (en) * 1999-06-15 2001-02-27 Lifescan, Inc. Sample detection to initiate timing of an electrochemical assay
JP4210782B2 (en) 1999-10-13 2009-01-21 アークレイ株式会社 Blood sampling position indicator
US6283982B1 (en) * 1999-10-19 2001-09-04 Facet Technologies, Inc. Lancing device and method of sample collection
US6375627B1 (en) * 2000-03-02 2002-04-23 Agilent Technologies, Inc. Physiological fluid extraction with rapid analysis
DE10010587A1 (en) * 2000-03-03 2001-09-06 Roche Diagnostics Gmbh System for the determination of analyte concentrations in body fluids
US6620112B2 (en) * 2000-03-24 2003-09-16 Novo Nordisk A/S Disposable lancet combined with a reagent carrying strip and a system for extracting and analyzing blood in the body utilizing such a disposable lancet
US6612111B1 (en) 2000-03-27 2003-09-02 Lifescan, Inc. Method and device for sampling and analyzing interstitial fluid and whole blood samples
US6561989B2 (en) * 2000-07-10 2003-05-13 Bayer Healthcare, Llc Thin lance and test sensor having same
US6337894B1 (en) * 2000-09-20 2002-01-08 Analogic Corporation Rotary bearing assembly for CT scanner gantry
GB0030929D0 (en) * 2000-12-19 2001-01-31 Inverness Medical Ltd Analyte measurement
CN1525834A (en) * 2001-01-22 2004-09-01 - Lancet device having capillary action
US6783502B2 (en) * 2001-04-26 2004-08-31 Phoenix Bioscience Integrated lancing and analytic device
CA2419200C (en) * 2002-03-05 2015-06-30 Bayer Healthcare Llc Fluid collection apparatus having an integrated lance and reaction area

Also Published As

Publication number Publication date
SG115538A1 (en) 2005-10-28
EP1360933B1 (en) 2006-07-12
RU2003113551A (en) 2004-11-27
ES2268287T3 (en) 2007-03-16
JP2004000600A (en) 2004-01-08
HK1057984A1 (en) 2004-04-30
IL155348A0 (en) 2003-11-23
ATE332667T1 (en) 2006-08-15
KR100854255B1 (en) 2008-08-26
KR20030087949A (en) 2003-11-15
PT1360933E (en) 2006-10-31
EP1360933A1 (en) 2003-11-12
DE60306711T2 (en) 2007-07-12
DE60306711D1 (en) 2006-08-24
CN1456888A (en) 2003-11-19
TWI283570B (en) 2007-07-11
TW200408371A (en) 2004-06-01
US20030212344A1 (en) 2003-11-13

Similar Documents

Publication Publication Date Title
EP1360933B1 (en) Physiological sample collection devices and methods of using the same
EP1369083B9 (en) Test strip container system
CA2428365C (en) Physiological sample collection devices and methods of using the same
US7060192B2 (en) Methods of fabricating physiological sample collection devices
EP1281352A1 (en) Test strip for analyte concentration determination of a physiological sample
US6990367B2 (en) Percutaneous biological fluid sampling and analyte measurement devices and methods
US20030212423A1 (en) Analyte test element with molded lancing blade
AU2003204245A1 (en) Test strip container system

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued