CA2434882C - Method and device for generating and/or decoding a scalable data stream with provision for a bit savings bank, encoder and scalable encoder - Google Patents

Method and device for generating and/or decoding a scalable data stream with provision for a bit savings bank, encoder and scalable encoder Download PDF

Info

Publication number
CA2434882C
CA2434882C CA002434882A CA2434882A CA2434882C CA 2434882 C CA2434882 C CA 2434882C CA 002434882 A CA002434882 A CA 002434882A CA 2434882 A CA2434882 A CA 2434882A CA 2434882 C CA2434882 C CA 2434882C
Authority
CA
Canada
Prior art keywords
encoder
block
output data
data
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002434882A
Other languages
French (fr)
Other versions
CA2434882A1 (en
Inventor
Ralph Sperschneider
Bodo Teichmann
Manfred Lutzky
Bernhard Grill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of CA2434882A1 publication Critical patent/CA2434882A1/en
Application granted granted Critical
Publication of CA2434882C publication Critical patent/CA2434882C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders

Abstract

In a method for generating a scalable data stream, when a block (11) of output data of a first encoder is present, this block of output data is written into the scalable data stream. If output data (0) of a second encoder is present for a preceding period of time, this output data for the preceding section is written in transmission direction behind the block (11) of output data of the first encoder into the data stream. When the output data (1) of the scalable encoder for the current section is present, the output data of the second encoder is written into the bit stream subsequent to the output data of the first encoder. A determining data block (200) is generated and written into the bit stream delayed by a period of time (250) which corresponds to the size of the bit savings bank of the second encoder. Finally, buffer information (260) is written into the bit stream, which indicates, where the beginning of the output data of the second encoder for the current section regarding the determining data block is, wherein the buffer information (260) corresponds to the bit savings bank level. Thus, it is possible to simply signalize a bit savings bank in a scalable data stream. The maximum size of the bit savings bank may further be adjusted depending on the intended decoder delay and be communicated to a decoder by positioning the determining data block in the scalable data stream without an effort of additional bits in order to reduce the initial delay of the decoder.

Description

Method and Device far Generwting and/or Decoding a Sewlabli Data Stxgam with Provision for a Bit 9aviags Bank, Ersaoder and Scalable Lncoder Descrxption The present invention relates to scalable encoders and decoders and in particular to the generation of scalable data streams.
Scalable encoders are shown in EP 0 046 315 B1. zn general, scalability is understood as the possibility of decoding a partial section of a bit stream representing an encoded data signal, e_g. an audio signal or a video signal into a useful signal. This property is particularly desirable when e.g. a data transmission channel fails to provide the complete bandwidth necessary for transmitting a complete bit stream- On the other hand, an incomplete decoding is possible on a decoder with reduced complexity.
Generally, different discrete scalability layers are defined in practice.

An example of a scalable encoder as defined in Subpart 4 (General Audio) of Part 3 (Audio) of the MPEG-4 Standard (1S0/IEC 14496-3; 1999 Subpart 4) is shown in Fig. 1. An audio signal s(t) to be encoded is fed into the scalable encoder on the input side. The scalable encoder shown in Fig. I contains a first encoder 120, which is an MPEG Celp encoder. The second encoder 140 is an AAC encoder, which provides high-cquality audio encoding and is defined in the Standard MPEG-2 AAC (ISO/IEC 13818).. The Celp encoder 120 provides a first scaling layer via an output line 16,
2 while the AAC encoder 140 provides a second scaling layer via a second output line 18, to a bit stream multiplexer (BitMux) 20. On the output side the bit stream multiplexer then outputs an MPEG-4-LATM bit stream 22 (LATM - Low-averhead MPEC-4 Audio Transport Multiplex). The ILATM
format is described in Section 6.5 of Part 3 (Audio) of the first supplement to the MQEt-4 Standard (ISO/IEC
14496-3t1999/AlrJD1:2000) .

The scalable audio encoder further includes some further elements. First, there exists a delay stage 240 in the AAC
branch and a delay stage 26 in the Celp branch. With both delay stages it is possible to set an optional delay for the respective branch. A downsampling stage 28 is downstream of the delay stage 26 of the Celp braneh to adjust the sampling rate of the input aignmi s(t) to the sampling rate requested by the Celp encoder. An inverse Celp decoder 30 is downstream to the Celp encoder 120, wherein the CeJ.p encoded/decoded signal is then supplied to an upsampling stage 32. The upsampled signal is then supplied to a further delay stage 34, which is termed "Core Coder Delay" in th8 MPEG-4 Standard.

The stage CoreCoderDelay 34 has the following funotion. If the delay is set to zero, the first encoder 140 and the sccond encoder 120 process exactly the same samples of the audio input signal in a so-called superframe. A superframe might e.g. consist of three AAC frames, which together represent a certain number of samples N. x to No. y of the audio signal_ The superframe further includes e.g. 8 CELP blocks, which represent the same number of samples
3 and also the same samples No. x to No. y if CoreCoderDelay - 0.

if, however, a CareCoderDelay D is set as a time value other than zero, the three blocks of AAC frames nevertheless represent the same samples No. x to No. y.
The eight blocks of CELP frames, in contrast, acepresent the samples No . x - Fs D.to No. y - Fs D, wherein Fs is the sampling frequency of the input signal.
The current time sections of the input signal in a superfraiae foz the AAC blocks and the CELP blocks can thus be either identical, when CoreCoderDelay p= 0, or be shifted relative to each other by CoreCoderDelay, when D
is not equal to zero. For the following implementations, however, it will be assumed, on the grounds of simplicity and without restriction of generality, that CoreCoderDelay = 0, so that the current time section of the input signal for the first encoder and the current time seCtion for the second encoder are identical. In general, however, the only requirement for a superframe is, that the AAC
block(s) and the CET,P block(s) in a superframe represent the same number of samples, wherein it is not necessary for the samples themselves to be identical to one another, but they may also be shifted relative to each other by GoreCoderDelay.

It shoul.d be noted that the Celp encoder, depending on the configuration, may process a section of the input signal s(t) faster than the AAC encoder 140. In the AAC branch a block decision stage 26 is downstream to the optional delay stage 240 which establishes among other things
4 whether short or long windows should be used for windowing the input signal s(t), wherein short windows must be chosen for strongly transient signals, while long windows are preferred for less transient eignals since the relationship between the amount of payload data and page information is better than for short windows.

By the block decision stage 26 a fixed delay by e. g. 5/8 times a block is performed in the present example. This is referred to as a look-ahead function in the art. The block decision stage must already look ahead a certain.time ta be able to determine whether there are transient signals in future that must be encoded with short windows. After that the corresponding signal in the Celp branch as well as the signal in the AAC branch are fed to means for converting the time-related illustration to a spectral illustration, which is deaignated as MDCT 36 or 3$, respectively, in Fig. 1(MpCT s modified discrete cosine transform). The output signals of the MDCT blocks 36, 36 are then supplied to a subtracter 40.

At this point, samples belonging together regarding time must be present, i.e. the delay must be identical in both = branches.
The following block 44 determines whether it is more favorable to supply the input signal itself to the AAC
encoder 140. This is enabled via the bypass branch 42. If it is determined, however, that the differential signal at the output of the subtracter 40 is smaller regarding energy than the signal output by the MDCT block 38, then not the original signal but the differential eignal is taken to be encoded by the AAC encoder 140 to finally form the second scaling layer 18. This comparison may be performed band by band, which is indicated by frequency-selective switching means (k'SS) 44. The exact functions of
5 the individual elements are known in the art and are described for example in the MFEG-4 standard as well as in further MPEG standards.

One main feature in the MPEG-4 standard and in other encoder standards, respectively, is that the transmission of the compressed data signal is to be performed with a constant bit rate via a channel. All high-quality audio codecs operate based on blocks, i.e. they process blocks of audio data (order 480 - 1024 samples) to pieces of a compressed bit stream, which are also referred to as frames. The bit stream format must here, be set up so that a decader without a priory information where a frame starts is able to recogni2e the beginning of a frame in order to start the output of decoded audio signal data with a lowest possible- delay. Thus, each header or - determining data block of a frame starts with a certain synchronization word which may be searched for in a continuous bit stream. Further comnon components within the data stream apart from the determining data block are the main data or "payload data" of the individual layers i.n which the actual compressed audio data is contained.
Fig. 4 shows a bit stream format with a fixed frame length. In this bit stream format the headers or determining data blocks are inserted equidistantly into the bit stream. The side information associated with this header and the main data follow immediately afterwards.
6 The length, i.e. the number of bits, for the main data is the same in each frame. Such a bit stream format as it is shown in Fig. 4 is for example used in the MPEG layer 2 or the MPEG-CELP.

Fig. 5 shows another bit stream format with a fixed frame length and a backpointer. In this bit stream format the header and the side information are arranged equidistantly as in the format illustrated in Fig. 4. The start of the associated main data is, however, only performed exceptionally directly following a header. In most cases the start is in one of the preceding frames. The number of bits by which the start of the main data is shifted in the bit stream is transferred by the page information variable backpointer. The end of these main data may lie within this frame or within a preceding frame. The length of the main data is therefore not constant any more. Therefore, the number of bits with which a block is encoded may be adjusted to the characteristics of the signal.
Simultaneously, a constant bit rate may be achieved, however. This technology is called "bit savings bank" and increases the theoretical delay within the transmission chain. Such a bit stream format is for example used in the MPEG layer 3 (MP3). The technology of the bit savings bank is further described in the standard MPEG layer 3.

Generally, the bit savings bank represents a buffer of bits which may be used to provide more bits for encoding a block of time sample as is actually allowed by the constant output data rate. The technology of the bit savings bank takes into account that some blocks of audio samples may be encoded with less bits than predetermined
7 by the constant transmission rate, so that through these blocks the bit savings bank is filled, while again other blocks of audio samples comprise psychoacoustic characteristics which do not allow such a high compression so that for these blocks the available bits would actually not be enough for a low-interference or interference-free encoding, respectively. The additional bits needed are taken from the bit savings bank so that the bit savings bank is emptied with such blocks.

Such an audio signal may, however, be also transmitted by a format with a variable frame length, as it is shown in Fig. 6. With the bit stream format "variable frame length", as it is illustrated in Fig. 6, the fixed sequence of the bit stream elements header, page information and main data is maintained, as with the "fixed frame length". As the length of the main data is not constant, the bit savings bank technology may also be used here, there are, however, no backpointers needed as in Fig. 5. One example for a bit stream format, as it is illustrated in Fig. 6, is the transport format ADTS (audio data transport stream), as it is defined in the standard MPEG 2 AAC.

It is to be noted that the above-mentioned encoders are no scalable encoders but include only one single audio encoder.

In MPEG 4 the combination of different encoder/decoders to a scalable encoder/decoder is provided. It is therefore possible and sensible to combine one CELP voice encoder as the first encoder with an AAC encoder for the further = CA 02434882 2003-07-15
8 scaling layer(s) and pack the same into one bit stream.
The purpose of this combination is that the possibility remains open either to decode all scaling layers and therefore reach a best possible audio quality, or parts of the same, maybe even only the first scaling layer, with the correspondingly restricted audio quality. Reasons for only decoding the lowest scaling layer may be that due to a bandwidth of the transmission channel which is too small, the decoder only received the first scaling layer of the bit stream. Because of this the parts of the first scaling layer in the bit stream are favored over the second and the further scaling layers in the transmission, whereby the transmission of the first scaling layer is guaranteed with capacity bottlenecks in the transmission network, while the second scaling layer may be lost completely or in part.

A further reason may be that a decoder wants to achieve a lowest possible codec delay and therefore decodes only the first scaling layer. It is to be noted that the codec delay of a Celp code is generally significantly smaller than the delay of the AAC code.

In MPEG 4 version 2 the transport format LATM is standardized, which may among other things also transmit scalable data streams.

In the following, reference is made to Fig. 2a. Fig. 2a is a schematical illustration of the samples of the input signal s(t). The input signal may be divided into different successive sections 0, 1, 2, 3, wherein each section comprises a certain fixed number of time samples.
9 Usually, the AAC encoder 140 (Fig. 1) processes a whole section 0, 1, 2 or 3 in order to provide an encoded data signal for this section. The CELP encoder 120 (Fig. 1), however, processes usually a smaller amount of time samples per encoding step. Thus, it is shown as an examp7.e in Fig. 2b, that the CELP encoder or generally speaking the first encoder or encoder 1 comprises a block length which is one fourth of the block lenqth of the second encoder. It is to be noted that this division is completely random. The block length of the first encoder may also be half as long, might, however, also be one eleventh of the block length of the second encoder. Thus, the first encoder will generate four blocks (11, 12, 13, 14) from the section of the input signal, from which the second encoder provides one block of data. In Fig. 2c a common LAT'M bit stream format is shown.

One superframe may comprise several ratios of number of AAC frames to number of CELP frames, as it is illustrated in tabu].ar form in MPEG 4. Thus, a superframe may for example comprise one AAC block and 1 to 12 CELP blocks, 3 AAC blocks and B CELP blocks but also e_g. for example more AAC blocks than CELP blocks, depending on the configuxation. An I,ATM frame which comprises an LATM
determining data block includes a superframe or also several superframes.

The generation of the 7ATM frame opened by the header 1 is described as an exampXe_ First, the output data blocks 11, 12, 23, 14 of the Celp encoder 12 (Fig. 1) are generated and buffered. In parallel, the output data block of the AAC encoder designated with "1" in Fig. 2c is generated.

Then, when the output data block of the AAC encoder has been generated, first of all the determining data block (header 1) is written. Depending on the convention, the output data block of the first encoder which was generated 5 first, designated with 11 in Fig. 2c, may be written, i.e.
transmitted, directly following header 1. Usually (regarding the few necessary signalizing information) an equidistant distance of the output data blocks of the first encoder is selected for a further writing and/or
10 transmitting of the data stream, as it is illustrated in Fig. 2c. This means, that after writing and/or transmitting block 11 the second output data block 12 of the first encoder, then the third output data block 13 of the first encoder and then the fourth output data block 14 of the first encoder are written and/or transmitted in equidistant distances. The output data block 1 of the second encoder is filled into the remaining gaps during the transmission. Then, an LATM frame is fully written, i.e. fully transmitted.
One disadvantage of the bit stream formats illustrated in Fig. 4 to 6 is the fact that they are only known for simple encoders, not, however, for scalable encoders and in particular not for scalable encoders having a bit savings bank function.

As it is known, the bit savings bank is used so that the variable output data rate which a psychoacoustic encoder generates inherently may be adjusted to a constant output data rate. In other words, the number of bits an audio encoder needs depends on the signal characteristics. If the signal is comprised such that it may be quantized in
11 relatively coarse way, then a relatively low amount of bits is needed for encoding this signal. If the signal is, however, comprised such that it has to be quantized very finely, a relatively low amount of bits is needed for encoding this signal. If the signal is, however, comprised such that it needs to be quantized very finely in order not to introduce audible interferences, then a larger amount of bits is needed for encoding this signal.

In order to achieve a constant output data rate, a medium amount of bits is determined for one section of a signal to be encoded. If the actually needed amount of bits for encoding a section is smaller than the determined number of bits, then the bits which are not needed may be placed into the bit savings bank. Thus, the bit savings bank is filled. If, however, a section of a signal to be encoded is comprised such that a larger number than the determined number of bits is needed for encoding in order not to introduce audible interferences into the signal, then the additionally needed bits may be taken from the bit savings bank. That way, the bit savings bank is emptied. Thereby it may be guaranteed that a constant output data rate is maintained and at the same time no audible interferences are introduced into the audio signal. A precondition for this is that the bit savings bank is selected to be sufficiently large.

In the standard MPEG AAC (13818-7:1997) a bit savings bank is referred to as "bit reservoir". The maximum size of the bit savings bank for channels with a constant data rate may be calculated by subtracting the average amount of bits per block from the maximum decoder input buffer size.
12 Its value is usually firmly preset to a value of 10,240 bits according to the standard MPEG AAC with a transmission rate of 96 kBit/s for a stereo signal with a sampling rate of 48 kHz. The maximum value of the bit savings bank, i.e. the size of the bit savings bank is sized so that also under bad conditions, i.e. also when the signal comprises many sections which may not be encoded with the determined number of bits, audible interferences need to be introduced into the audio signal in order to maintain the constant output data rate. This is only possible when the bit savings bank is sized sufficiently large so that it is emptied at no time.

On the decoder side this has the following consequence.
After the decoder has to consider that both the case of a full bit savings bank and the case of an empty bit savings bank may occur in the course of decoding an audio signal, the decoder needs to buffer a number of bits corresponding to the size of the bit savings bank before it starts decoding at all. Thereby it is guaranteed that the decoder does not run out of bits during decoding the audio signal.
If a decoder would immediately decode a signal encoded with the bit savings bank function when it has received the same, then the bits for the output would already run out when the first block to be decoded by accident needed a smaller number than the determined number for encoding, i.e. when the bit savings bank was filled up by the first block. In other words, the bit savings bank function inevitably leads to a delay within the decoder, wherein this delay corresponds to the size of the bit savings bank.
13 For the preceding example the size of the bit savings bank is 10,240 bits. This leads to an inherent initial delay due to the bit savings bank of about 0.1 s. The delay gets larger, the larger the maximum size of the bit savings bank is selected and the smaller the transmission rate is selected.

If, for example, real-time transmissions of a telephone call are considered, in which a continuous change of speakers takes place, then already due to the bit savings bank a delay of the mentioned size occurs with each change of speaker. Such a delay is extraordinarily disturbing for both communication partners and typically leads to the fact that one speaker, because he does not immediately hear a reaction of the other speaker, that the one speaker repeats the question again, which contributes to a further confusion. Therefore, it is determined that a product designed this way is not suitable for real-time applications and would not have a chance of a breakthrough in the market, respectively.

It is the object of the present invention to provide an encoder comprising a bit savings bank function through which a smaller transmission delay may be achieved.
This object is achieved by an encoder according to claim 5 or by a scalable encoder according to claim 6.

It is a further object of the present invention to provide a method and a device for generating a scalable data stream in which a bit savings bank function may be signalized.
14 This object is achieved by a method according to claim 1 or by a device according to claim 7.

It is a further object of the present invention to provide a method and a device for decoding a scalable data stream in which a bit savings bank function is signalized.

This object is achieved by a method according to claim 8 or by a device according to claim 9.

The present invention is based on the findings that the present concept of the fixed set bit savings bank size must be discarded in order to achieve a reduced-delay decoding. According to the invention, this is achieved by making the maximum size of the bit savings bank of an encoder adjustable, wherein depending on the application and depending on the intended decoder function a certain adjustment of the bit savings bank is achieved. For the case of a one-directional data transmission only a large bit savings bank may be selected in order to satisfy highest possible audio quality requirements, while for the case of a bi-directional communication in which a frequent change of transmitter and receiver and a frequent change of speakers takes place, respectively, a smaller bit savings bank size is to be adjusted. So that the decoder may profit from a smaller bit savings bank size adjustment, the bit savings bank size must be transmitted to the decoder in some way. This may on the one hand be achieved by the transmission of additional information in the data stream, it may however also be performed implicitly without the transmission of additional side information and signalizing information, respectively, as it is illustrated in particular with reference to the scalable case.

5 One advantage of the present invention is that now direct influence may be taken on the decoder delay via the adjustment of the maximum size of the bit savings bank. If the maximum size of the bit savings bank is selected smaller, then the decoder may also insert a smaller delay 10 before it starts decoding without risking the danger that it may run out of output data during decoding which needs to be prevented in any case. The "price" which has to be paid for this is that one or the other section of the audio signal was not encoded with 100 % of the audio
15 quality, as the bit savings bank was empty and no additional bits were available any more. Usually, an audio encoder reacts in this case by violating the psychoacoustic masking threshold when quantizing and, in order to make do with the available number of bits, selects a coarser quantization as is really needed. The main advantage of the smaller delay of the decoder is, however, guaranteed. The reduction of the size of the bit savings bank in order to reach a smaller delay also on the decoder side is therefore achieved with a lower audio quality, wherein this lower audio quality only occurs now and then in the audio signal, and when the audio signal is simple to decode it may not occur at all. As a result, the inflexibility regarding the bit savings bank according to the prior art is overcome, which may be over-dimensioned for many applications in order to encode all possible cases with a high audio quality, so that a use of encoders for a bi-directional communication with frequently
16 changing speakers becomes possible which was not conceivable up to now due to the large fixedly adjusted bit savings bank.

The inventive variability of the bit savings bank and the accompanying variability of the delay on the decoder side is especially of an advantage in the case of a scalable audio encoder, as now also here a reduced-delay decoding may not only be achieved of the first lowest scaling layers but also a reduced-delay decoding of higher scaling layers which are for example generated by an AAC encoder may be achieved. In particular in the scalable case only one scaling layer is influenced by the variable adjustment of the bit savings bank, while the other scaling layer(s) remain unaffected. It is thus possible to act upon individual scaling layers deliberately without causing any changes in the other scaling layers.

As it was already discussed it is necessary to communicate the freely selectable and the freely selected bit savings bank size, respectively, to the decoder. This was not necessary in the prior art, as a fixed bit savings bank size was always agreed upon, so that a decoder introduced the corresponding delay for example by dimensioning its input buffer knowing the bit savings bank size which was firmly agreed on.

In particular for scalable encoders and scalable data stream an adjustable bit savings bank size without additional side information may be achieved simply by positioning a determining data block within the scalable data stream. According to the invention, the determining
17 data block is positioned within the bit stream so that the decoder needs to receive as many bits for the respective layer as it is determined by the average block length when it receives the determining data block.
After receiving a frame, the decoder may start decoding without calculating or inserting a delay. This is achieved due to the fact that already within the scalable data stream the determining data block is written in a delayed manner regarding the first and the second scaling layer, i.e. preferably delayed by a period of time which corresponds to the adjustment of the bit savings bank.
Thereby it is achieved that the encoder may select any bit savings bank size depending on the requirement and that the selected bit savings bank size simply implicitly signalizes to the decoder, for it to enter the determining data block in the bit stream in a delayed manner with regard to the payload data.

In other words, the consequence is that the determining data block is not written at the first possible point of time anymore, i.e. delay-optimized, as in the prior art, but at the latest possible point of time, without delaying the AAC block. The current level of the bit savings bank may then be signalized by the so-called backpointer, where the data of a preceding section end and where the data of the current section begin.

This is true both for the scalable case in which only output data of one individual encoder occur in the bit stream, and also for the scalable case, in which data of at least two different encoders occur in the scalable bit
18 stream. If a superframe, i.e. a section in the bit stream comprising a first number of output data blocks of a first encoder and a second number of output data blocks of a second encoder which relate to the same number of samples of a input signal, comprises a plurality of blocks of an encoder, then the number of blocks of the one encoder which are associated with a determining data block can simply be signalized by the fact that offset information is transferred with the bit stream. The offset information may also be interpreted by the decoder as backpointer in order to know which data of the bit stream now belong to a determining data block and therefore correspond to a time section of the input signal if necessary considering the variable core coder delay.

One main advantage of this arrangement is that the decoder, when it receives an inventive data stream, must not calculate and insert a delay, but that the delay was already considered by the positioning of the determining data block alone on the encoder side. The decoder can therefore output a frame immediately after the reception.
This also provides the possibility to. signalize an adjusted maximum bit savings bank size in a simple way, i.e. without additional bits. As the signalization may be performed in a simple and without efforts, i.e. by the position of the determining data block, it is also possible easily and in particular without access to the decoder to vary the bit savings bank size in order to be able to adjust the transmission delay as desired.
19 In the following, preferred embodiments of the present invention are explained in more detail referring to the accompanying drawings, in which:

Fig. la shows a scalable encoder according to MPEG 4 which comprises the present invention;

Fig. lb shows a decoder according to the present invention;
Fig. 2a shows a schematical illustration of an input signal which is divided into successive time sections;

Fig. 2b shows a schematical illustration of an input signal which is divided into successive time sections, wherein the ratio of the block length of the first encoder to the block length of the second encoder is illustrated;

Fig. 2c shows a schematical illustration of a scalable data stream with a high delay in decoding the first scaling layer;

Fig. 2d shows a schematical illustration of a scalable data stream with a low delay in decoding the first scaling layer;

Fig. 2e shows a schematical illustration of an inventive scalable data stream wherein the determining data block is delayed with reference to the payload data;

Fig. 3 shows a detailed illustration of the inventive scalable data stream regarding the example of a Celp encoder as the first encoder and an AAC
5 encoder as the second encoder with a bit savings bank function;

Fig. 4 shows an example for a bit stream format with a fixed frame length;
Fig. 5 shows an example for a bit stream format with a fixed frame length and a backpointer; and Fig. 6 shows an example of a bit stream format with a variable frame length.

In the following, Fig. 2d is referred to in comparison to Fig. 2c in order to explain a bit stream with a small delay of the first scaling layer for purposes of comparison. As in Fig. 2c the scalable data stream contains successive determining data blocks which are referred to as header 1 and header 2. In the preferred embodiment of the present invention which is implemented according to the MPEG 4 standard the determining data blocks are LATM headers. Like in the prior art in the transmission direction from an encoder to a decoder, which is illustrated in Fig. 2d with an arrow 202, behind the LATM header 200 the parts hatched from top right to bottom left of the output data block of the AAC encoder are located which are inserted in gaps remaining between the output data blocks of the first encoder.

In contrast to the prior art, there are not only output data blocks of the first encoder within the frame started by the LATM header 200 anymore, which belong to this frame, like for example the output data blocks 13 and 14, but also the output data blocks 21 and 22 of the following section of input data. In other words, in the example illustrated in Fig. 2d, the two output data blocks of the first encoder, which are designated with 11 and 12, are present in the bit stream in the transmission direction (arrow 202) before the LATM header 200. In the example illustrated in Fig. 2d the offset information 204 indicate an offset of two output data blocks of the output data blocks of the first encoder. When Fig. 2d is compared to Fig. 2c it may be seen that the decoder may already decode the lowest scaling layer earlier by a time which exactly corresponds to this offset than it is the case in Fig. 2c, if the decoder is only interested in the first scaling layer. The offset information, which may for example be signalized in the form of a "core frame offset", serve to determine the position of the first output data block 11 in the bit stream.

For the case of core frame offset = zero, the bit stream indicated in Fig. 2c results. If, however, core frame offset > zero, then the corresponding output data block of the first encoder 11 is transmitted earlier by the number of core frame offset at the output data blocks of the first encoder. In other words, the delay between the first output data block of the first encoder after the LATM
header and the first AAC frame results from core coder delay (Fig. 1) + core frame offset x core block length (block length of encoder 1 in Fig. 2b) . As it becomes clear from the comparison of Fig. 2c and 2d, for the case of core frame offset = zero (Fig. 2c), the output data blocks 11 and 12 of the first encoder are transmitted after the LATM header 200. By the transmission of core frame offset = 2 the output data blocks 13 and 14 may follow after the LATM header 200, whereby the delay with a pure CELP decoding, i.e. the decoding of the first scaling layer, is reduced by two CELP block lengths. An offset of three blocks would be optimum in the example. An offset of one or two blocks brings, however, already a delay advantage.

Thnough this bit stream structure it is possible for the Celp encoder to transmit the generated Celp block directly after the encoding. In this case no additional delay is added to the CELP encoder by the bit stream multiplexer
(20). Thus, for this case no additional delay is added to the Celp delay by the scalable combination, so that the delay is at its minimum.
It is noted that the case illustrated in Fig. 2d is only exemplary. This way, different ratios of the block length of the first encoder to the block length of the second encoder are possible, which may for example vary from 1:2 to 1:12, may however also take different ratios.

In the extreme case this means (1:12 for MPEG 4 AAC/CELP), that for the same time section of the input signal for which the AAC encoder generates an output data block, the Celp encoder generates twelve output data blocks. The delay advantage by the data stream illustrated in Fig. 2d in contrast to the data stream illustrated in Fig. 2c may in this case easily take magnitudes from one fourth up to half a second. This advantage will be increased the greater the ratio between the block length of the second encoder and the block length of the first encoder becomes, wherein in the case of an AAC encoder as the second encoder a block length as great as possible is aimed at due to the ratio which is then more favorable from payload information to side information, if the encoding signal admits it.
In Fig. 2c a scalable data stream according to the LATM
format is illustrated in which the data blocks of the first encoder have to be buffered, i.e. delayed. In the format of Fig. 2 this results from the fact, as it was discussed, that the header may only be written when the output data of the second encoder are present, as the header includes information about the length and the number of bits, respectively, within the output data block of the second encoder.
Thus, in Fig. 2d for purposes of illustration an improvement is already illustrated regarding the fact that the output data blocks of the first encoder are already written into the bit stream earlier in order to reduce the delay when a decoder only wants to decode the lowest scaling layer. Nevertheless, the determining data block is still located before the output data block of the second encoder, which is designated with "1" in Fig. 2d.

In Fig. 2e now, compared to Fig. 2c, the inventive scalable data stream is illustrated, wherein the determining data block (header 1 200) is not immediately written anymore when it is available, i.e. before the output data block of the first encoder which is designated with "11", but in which the determining data block 200 is written into the data stream delayed by a period of time in relation to the case of Fig. 2c. This period of time equals the maximum size of the bit savings bank (max bufferfullness 250) in a preferred embodiment of the present invention. Therefore the output data block of the second encoder for the current section of the input signal, designated by the determining data block 200, starts a number of bits equal to bufferfullness 260 before the determining data block in the transmission direction from an encoder to a decoder, whereas it can be seen from Fig. 2c that the AAC data have started behind the determining data block.

From the point of view of the decoder the pointer 260 is therefore a backpointer.

For the case, that the first encoder provides a larger number of blocks for a number of samples than the second decoder, wherein in the example illustrated in Fig. 2e the ratio of four blocks of output data of the first encoder to a block of output data of the second encoder is only exemplary for the same number of samples, based on the determining data block, as in the case of Fig. 2e, a core frame offset is signalized, so that a decoder knows which blocks of output data of the first encoder for example belong to a block of output data of the second encoder or are related to each other via core coder delay, respectively.

If now Fig. 2d is compared to Fig. 2e, then it may be seen that also in Fig. 2e an offset 204 is present. The offset 204 of Fig. 2d which has a value of 2 in Fig. 2d would increase to a value of 5 with regard to the case of Fig.
5 2e, as the determining data block 200 in Fig. 2e compared to Fig. 2d has been shifted backwards by three output data blocks of the first encoder.

In the following, reference is made to Fig. la again. In 10 addition to the scalable encoder already described in the description introduction, the inventive scalable encoder illustrated in Fig. la contains a block bit savings bank control 50 and a control line 52 from the AAC encoder 14 to the bit stream multiplexer 20, via which the maximum 15 size of the bit savings bank which was adjusted by the bit savings bank control 50, may be communicated to the bit stream multiplexer so that the same may perform the bit stream formatting required in Fig. 2e.

20 In Fig. lb a schematical block diagram of a scalable decoder may be found which is complementary to the scalable encoder in Fig. la. The scalable bit stream which is supplied to the encoder via a line 60 is fed into an input buffer/bit stream demultiplexer 62 of the decoder.
25 Here, the bit stream is divided, to extract the required blocks for a CELP decoder 64 and an AAC decoder 66. The inventive decoder further includes an AAC delay stage 68 which serves for introducing a delay corresponding to the bit savings bank size, so that the AAC decoder 66 never runs out of data to put out. According to the invention, this AAC delay stage is now implemented variably, wherein the delay is controlled depending on the bit savings bank information, which are extracted from the bit stream by the bit stream demultiplexer 62 and supplied to the AAC
delay stage 68 via a bit savings bank information line 60.
Depending on the bit savings bank level now the delay of the AAC delay stage 68 is adjusted. If a small bit savings bank is adjusted by bit savings bank control means 50 of Fig. la, then also the AAC delay stage 68 may be adjusted to a small delay, so that a reduced-delay decoding of the second scaling layer may be achieved.
The scalable decoder of Fig. lb further includes MDCT
means 72 to transform the time domain output signals of the CELP decoder 64 into the frequency domain, and an upsampling stage upstream to the same. The spectrum is delayed by the delay stage 74, which compensates time differences present between the two branches, so that at means 76 which are referred to as adder/FSS-1, the same ratios are present. Means 66 basically performs the analog function to the subtractor 40 and the FSS 44 of Fig. la.
After block 76 the spectral values are transformed by means 78 for performing a back-transformation from the frequency domain into the time domain, so that at an output 80 either only the second scaling layer or the first and the second scaling layer are present in the time domain. At an output 82, however, only the first scaling layer is present in the time domain generated by the CELP
decoder 64.

In the following, reference is made to Fig. 3, which is similar to Fig. 2, illustrates, however, the special implementation referring to the example of MPEG 4. In the first row again a current time section is shown hatched.

In the second row the windowing which is used with the AAC
encoder is illustrated schematically. As it is known, an overlap-and-add of 50 % is used so that a window usually comprises double the length of time samples than the current time section which is illustrated hatched in the top row of Fig. 3. In Fig. 3 the delay tdip is further illustrated, which corresponds to block 26 of Fig. 1 and comprises a size of 5/8 of the block length in the selected example. Typically, a block length of the current time section of 960 samples is used so that the delay tdip of 5/8 of the block length comprises 600 samples. For example, the AAC encoder provides a bit stream of 24 kbit/s, while the CELP encoder schematically illustrated below provides a bit stream comprising a rate of 8 kbit/s.
The overall bit rate is then 32 kbit/s.

As it may be seen from Fig. 3, the output data blocks zero and one of the CELP encoder correspond to the current time section for the first encoder. The output data block comprising the number 2 of the CELP encoder already corresponds to the next time section. The same holds true for the CELP block with the number 3. In Fig. 3, the delay of the downsampling stage 28 and the CELP encoder 12 is further illustrated by an arrow which is designated by the reference numeral 302. From this, the delay designated by core coder delay and illustrated by an arrow 304 in Fig. 3 results as the delay which needs to be adjusted by stage 34 so that at the subtraction location 40 of Fig. 1 equal ratios are present. This delay may alternatively be generated by block 26. For example:

core coder delay =

= tdip - Celp encoder delay - downsampling delay =
= 600 - 120 - 117 = 363 samples.
For the case without a bit savings bank function and for the case, respectively, that the bit savings bank (bit mux outputbuffer) is full, which is indicated by the variable bufferfullness = max, the case indicated in Fig. 2d results. In contrast to Fig. 2d in which four output data blocks of the first encoder are generated corresponding to one output data block of the second encoder, in Fig. 3 two output data blocks of the CELP encoder designated with "0"
and "1" are generated for an output data block of the second encoder which is drawn in black in the two last rows of Fig. 3. According to the invention, now, however, not the output data block of the CELP encoder with the number "0" is written behind a first LATM header 306 anymore, but the output data block of the CELP encoder with the number "one", as the output data block with the number "zero" has already been transmitted back to the decoder. In the equidistant grid distance provided for the CELP data blocks, the CELP block 1 is then followed by the CELP block 2 for the next time section, wherein then for the completion of a frame the rest of the data of the output data block of the AAC encoder is written into the data stream until a next LATM header 308 for the next time section follows.

The present invention may simply be combined with the bit savings bank function, as it is illustrated in the last row of Fig. 3. For the case, that the variable "bufferfullness" which indicates the filling of the bit savings bank, is smaller than the maximum value, this means, that the AAC frame for the directly preceding time section needed more bits than it is actually admissible.
This means, that behind the LATM header 306 the CELP
frames are written as before, that however first the at least one output data block of the AAC encoder needs to be written from one or several preceding time sections in the bit stream before the writing of the output data block of the AAC encoder for the current time section may be started. From the comparison of the last two rows of Fig.
3 which are designated by "1" and "2" it may be seen that the bit savings bank function also directly leads to a delay in the encoder for the AAC frame. So the data for the AAC frame of the current time domain, which is designated by 310 in Fig. 3, is however present at the same point of time as in case "1", can however only be written into the bit stream after the AAC data 312 for the directly preceding time section have been written into the bit stream. Depending on the bit savings bank level of the AAC encoder therefore the initial position of the AAC
frame is shifted.

The bit savings bank level is to be transferred in the LATM element StreamMuxConfig by the variable "bufferfullness". The variable bufferfullness is calculated from the variable bit reservoir divided by the 32-fold of the actually present channel number of the audio channels.
It is to be noted that the pointer designated by the reference numeral 314 in Fig. 3, whose length = max bufferfullness - bufferfullness, is a forward-pointer which points to the future as it were, while the pointer illustrated in Fig. 5 is a backpointer which points to the past as it were. The reason for this is that according to 5 the present embodiment the LATM header is always written into the bit stream after the current time section has been processed by the AAC encoder, although AAC data may still have to be written into the bit stream from preceding time sections.
It is further noted that the pointer 314 is deliberately drawn interrupted below the Celp block 2 as it does neither consider the length of the CELP block 2 nor the length of the CELP block 1 as this data has of course nothing to do with the bit savings bank of the AAC
encoder. Further, no header data and bits of possibly present further layers are considered.

In the decoder first of all an extraction of the CELP
frames from the bit stream is performed which is easily possible as the same are for example arranged equidistantly and comprise a fixed length.

In the LATM header, however, length and distance of all Celp blocks may be signalized so that in every case a direct decoding is possible.

Thereby, the parts of the output data of the AAC encoder of the directly preceding time section which were so to speak separated by the CELP block 2 are jointed again and the LATM header 306 so to speak moves to the beginning of the pointer 314, so that the decoder knowing the length of the pointer 314 knows when the data of the directly preceding time section are over in order to then decode the directly preceding time section together with the Celp data blocks present for the same with full audio quality when these data is completely read in.

In contrast to the case illustrated in Fig. 2c, in which an LATM header is followed both by the output data blocks of the first encoder as well as the output data block of the second encoder, now on the one hand a shift from the output data blocks of the first encoder forward in the bit stream may be performed by the variable core frame offset, while by the arrow 314 (max bufferfullness -bufferfullness) a shift of the output data block of the second encoder to the back of the scalable data stream may be achieved, so that the bit savings bank function may be implemented easily and safely also in the scalable data stream, while the basic raster of the bit stream is maintained by the successive LATM determining data blocks which are always written when the AAC encoder has encoded a time section and which therefore may serve as a reference point also when a major part of the data in the frame designated by an LATM header originate on the one hand from the next time section (regarding the CELP
frames) or, however, from the preceding time section (regarding the AAC frame), as it is illustrated in the last row in Fig. 3, wherein the respective shifts are communicated, however, to a decoder by two variables additionally to be transmitted in the bit stream.
For purposes of illustration the last row of Fig. 3 describes the case, as it has been discussed, in which the LATM header 306 is written into the bit stream immediately after it has been generated, so that the LATM header 306 is followed by output data of the second encoder 312 of the preceding time section, wherein the output data of the second encoder for the current time section which the LATM
header 306 refers to only follow after a distance in the transmission direction behind the LATM header, wherein the distance is given by the difference between max bufferfullness and bufferfullness, as it is illustrated in Fig. 3.

In contrast to this, according to the present invention, as it is illustrated referring to Fig. 2e, the LATM header 306 is not written anymore when it has been generated but is written delayed by a period of time which corresponds to max bufferfullness. According to the invention, the LATM header 306 would therefore stand behind a position 330 within the bit stream depending on the value of bufferfullness and the forward-pointer 314 is replaced by a backward-pointer (260 in Fig. 2e).

According to the invention the arrangement selected in the Fig. 2c and 2d and also in Fig. 3 is discarded in which a CELP block immediately follows the LATM header.
Instead of that, preferably the following priority distribution is preferred when writing data into the scalable bit stream in order to achieve a reduced-delay decoding of the first scaling layer as well as a reduced-delay decoding of the second scaling layer.

The output data blocks of the first encoder enjoy a high priority. Always when an output data block of the first encoder is completely written, this output data block is written into the bit stream. From this the equidistant raster of output data blocks of the first encoder automatically results which further have an equal length when using a CELP encoder.

If no output data of the first encoder to be written are currently present, output data of the AAC encoder for the preceding time section of the input signal is written into the bit stream until no corresponding data is present anymore. Only then the writing of the output data of the AAC encoder for the current section is started. The writing of this output data into the bit stream is obviously always interrupted when the output data of the first encoder are available again, as it may be seen in Fig. 2e.

The writing of the output data of the AAC encoder for the current time section is further also interrupted when an LATM header is complete and the same has been delayed by max bufferfullness 350 (Fig. 2e). The scalable bit stream is complete when the corresponding values for bufferfullness 260 and offset 270 have been entered into the bit stream either separately or via the determining data block.

In the following, reference is made to a decoding of a bit stream generated this way. When the decoder is only interested in the first scaling layer, i.e. the output data blocks of the first encoder (CELP encoder), then it will simply take one CELP block after the other from the bit stream and decode the same, without consideration for the LATM header or the AAC data. As the CELP blocks are preferably written into the bit stream immediately after their creation, a reduced-delay decoding of the CELP
blocks is guaranteed.

When the decoder wishes a decoding both of the first as well as the second scaling layer, i.e. wants to achieve an audio signal with a high quality, then he need to achieve the association between the CELP blocks and the several AAC block(s) for a superframe, i.e. for a certain number of samples, wherein if necessary a core coder delay (34 of Fig. la) is to be considered when the current time section of the input signal of the AAC encoder regarding a superframe is shifted from the current time section of the CELP encoder.

This is performed by the decoder buffering the bit stream until it hits an LATM header, e.g. the header 200 of Fig.
2e. Knowing the offset 270, the decoder may then determine which output data blocks of the first encoder belong to the LATM header 200. Considering the variable bufferfullness the decoder further knows where in the data stored in the decoder input buffer the AAC frame of the time section begins that the LATM header refers to. In the case of bufferfullness equal max already the whole interesting AAC frame is contained in the decoder input buffer. In the case of bufferfullness equal 0, the interesting AAC frame begins immediately behind the LATM
header, so that the decoder may begin to decode without delay using the data already stored in the input buffer or also using a part of the data stored in the input buffer and using a directly arriving part of data which stands behind the LATM header in the transmission direction. The bit savings bank size is therefore signalized only 5 implicitly by the position of the determining data block with reference to the payload data in the bit stream, without any side information being required. In this case also the stage with a variable delay in the decoder (block 68 of Fig. lb) and the line 70 of Fig. lb are disposed of.

Claims (10)

Claims
1. Method for generating a scalable data stream from at least one block of output data of a first encoder and at least one block of output data of a second encoder, wherein the second encoder includes a bit savings bank which is defined by a maximum size and a current level of a buffer of bits, wherein the at least one block of output data of the first encoder represents a number of samples of the input signal in the first encoder, wherein the number of samples defines a current section of the input signal for the first encoder, and wherein the at least one block of output data of the second encoder represents a number of samples of the input signal in the second encoder, wherein the number of samples represents a current section of the input signal for the second encoder, wherein the number of samples for the first encoder and the number of samples for the second encoder are equal and wherein the current sections for the first and the second encoder have the same portion of the input signal or relate to portions of the input signal, which are shifted in time in relation to each other by an adjustable period of time, comprising:

when a block of output data of the first encoder is available, writing the at least one block of output data of the first encoder into the scalable data stream;

if output data of the second encoder for a directly preceding section of the input signal for the second encoder is available, writing the output data of the second encoder for the directly preceding section of the input signal for the second encoder in the transmission direction behind a block of output data of the first encoder;

if output data of the second encoder for the current section of the second encoder is available, writing the output data of the second encoder in the transmission direction behind the output data of the second encoder for a directly preceding section of the input signal for the second encoder into the scalable data stream;

generating a header data block, when the block of output data of the second encoder for the current section of the second encoder is complete, and writing the header data block delayed by a period of time with regard to the generation of the header data block into the scalable data stream, wherein the period of time is smaller or equal to a delay which corresponds to the maximum size of the bit savings bank of the second encoder; and writing buffer information into the scalable data stream which indicates where the beginning of the output data of the second encoder for the current section of the input signal for the second encoder is with regard to the header data block.
2. Method according to claim 1, wherein the period of time is equal to a delay which corresponds to the maximum size of the bit savings bank for the second encoder, and wherein the buffer information corresponds to the current level of the bit savings bank for the current section of the input signal for the second encoder.
3. Method according to claim 1 or 2, wherein in case of a concurrent availability or a header data block, a block of output data of the first encoder or a block of output data of the second encoder, a writing of data into the scalable data stream is determined by priorities associated to the data, wherein the header data blockis written into the scalable data stream with a high priority, wherein the blocks of output data of the first encoder are written into the scalable data stream with a lower priority, and wherein the at least one block of output data of the second encoder for a directly preceding section of the input signal is written with a higher priority into the scalable data stream than the at least one block of output data of the second encoder for the current section.
4. Method according to claim 1, 2, or 3, wherein the first encoder provides at least two blocks for a number of samples, wherein the method further comprises:

writing offset information into the scalable data stream, which indicates, how many blocks of output data of the first encoder in transmission direction before the header data block belong to the current section of the first encoder.
5. Scalable encoder, comprising:

a first encoder for generating a block of output data for the first encoder;

a second encoder comprising a bit savings bank, wherein the bit savings bank comprises a maximum size, the second encoder being operative to generate a block of output data for the second encoder, wherein the second encoder further comprises means for adjusting the maximum size of the bit savings bank depending on an initial delay provided for an audio decoder;

a bit stream multiplexer for generating a scalable data stream, wherein the bit stream multiplexer is implemented to write the block of output data for the first encoder into a scalable data stream, write the block of output data for the second encoder into the scalable data stream;

generate a header data block after the block of output data of the second encoder has been output by the second encoder, write the header data block into the scalable data stream delayed by a period of time with regard to the generation of the header data block, wherein the period of time corresponds the maximum size of the bit savings bank, and write buffer information into the scalable data stream which indicates the beginning of the output data of the second encoder in the scalable data stream in the transmission direction of the scalable data stream before the header data block, wherein the buffer information corresponds to a current level of the bit savings bank.
39 Device for generating a scalable data stream from at least one block of output data of a first encoder and at least one block of output data of a second encoder, wherein the second encoder includes a bit savings bank which is defined by a maximum size and a current level of a buffer of bits, wherein the at least one block of output data of the first encoder represents a number of samples of the input signal into the first encoder, wherein the number of samples defines a current section of the input signal for the first encoder and wherein the at least one block of output data of the second encoder represents a number of samples of the input signal into the second encoder, wherein the number of samples represents a current section of the input signal for the second encoder, wherein the number of samples for the first encoder and the number of samples for the second encoder are equal and wherein the current sections for the first and the second encoder have the same portion of the input signal or relate to portions of the input signal, which are shifted in time in relation to each other by an adjustable period of time, comprising:

means for writing a block of output data of the first encoder into the scalable data stream, when a block of output data of the first encoder is available;

means for writing output data of the second encoder for a directly preceding section of the input signal for the second encoder in transmission direction behind a block of output data of the first encoder if the output data of the second encoder for the directly preceding section of the input signal are available for the second encoder;

means for writing output data of the second encoder for the current section of the time signal for the second encoder in transmission direction behind the output data of the second encoder for a directly preceding section of the input signal for the second encoder into the scalable data stream when the output data of the second encoder is available for the current section of the second encoder;

means for generating a header data block when the block of output data of the second encoder for the current section of the second encoder is complete, and for writing the header data block delayed by a period of time with regard to the generation of the header data block, wherein the period of time is smaller or equal to a delay which corresponds to the maximum size of the bit savings bank of the second encoder; and means for writing buffer information into the scalable data stream which indicates where the beginning of the output data of the second encoder is for the current section of the second encoder with regard to the header data block.
7. Method for decoding a scalable data stream from at least one block of output data of a first encoder and at least one block of output data of a second encoder, wherein the second encoder includes a bit savings bank which is defined by a maximum size and a current level of a buffer of bits, wherein the at least one block of output data of the first encoder represents a number of samples of the input signal into the first encoder, wherein the number of samples define a current section of the input signal for the first decoder and wherein the at least one block of output data of the second encoder represents a number of samples of the input signal into the second encoder, wherein the number of samples represents a current section of the input signal for the second encoder, wherein the number of samples for the first encoder and the number of samples for the second encoder are equal, and wherein the current sections for the first and the second encoder have the same portion of the input signal or relate to portions of the input signal, which are shifted in time in relation to each other by an adjustable period of time, wherein the scalable data stream comprises output data of the first encoder, output data of the second encoder for a directly preceding section, output data of the second encoder for the current section, a header data block and buffer information, comprising;

buffering the scalable data stream;

reading the block of output data of the first encoder for the current section of the first encoder;

reading the header data block and the buffer information from the buffered data stream;

determining the beginning of the block of output data of the second encoder for the current section of the second encoder using the buffer information; and decoding the block of output data of the first encoder and the block of output data of the second encoder, the step of decoding including the step of considering the adjustable period of time by which the current section of the first encoder and the current section of the second encoder are time-shifted in relation to each other.
8. Device for decoding a scalable data stream from at least one block of output data of a first encoder and at least one block of output data of a second encoder, wherein the second encoder includes a bit savings bank which is defined by a maximum size and a current level of a buffer of bits, wherein the at least one block of output data of the first encoder represents a number of samples of the input signal into the first encoder, wherein the number of samples define a current section of the input signal for the first encoder and wherein the at least one block of output, data of the second encoder represents a number of samples of the input signal into the second encoder, wherein the number of samples represent a current section of the input signal for the second encoder, wherein the number of samples for the first encoder arid the number of samples for the second encoder are equal and wherein the current sections for the first and the second encoder have the same portion of the input signal or relate to portions of the input signal, which are shifted in time in relation to each other by an adjustable period of time, wherein the scalable data stream comprises output data of the first encoder, output data of the second encoder for a directly preceding section, output data of the second encoder for a current section, a header data block and buffer information, comprising:
means for buffering the scalable data stream;

means for reading the block of output data of the first encoder for the current section of the first encoder;
means for reading the header data block and the buffer information from the buffered data stream;

means for determining the beginning of the block of output data of the second encoder for the current section of the second encoder using the buffer information; and means for decoding the block of output data of the first encoder and the block of output data of the second encoder the means for decoding being operative to consider the adjustable period of time by which the current section of the first encoder and the current section of the second encoder are time-shifted to each other.
9. Method for decoding a scalable data stream from at least one block of output data of a first encoder and at least one block of output data of a second encoder, wherein the second encoder includes a bit savings bank which is defined by a maximum size and a current lever of a buffer of bits, wherein the at least one block of output data of the first encoder represents a number of samples of the input signal into the first encoder, wherein the number of samples define a current section of the input signal for the first decoder and wherein the at least one block of output data of the second encoder represents a number of samples of the input signal into the second encoder, wherein the number of samples represents a current section of the input signal for the second encoder, wherein the number of samples for the first encoder and the number of samples for the second encoder are equal, and wherein the current sections for the first and the second encoder have the same portion of the input signal or relate to portions of the input signal, which are shifted in time in relation to each other by an adjustable period of time, wherein the scalable data stream comprises output data of the first encoder, output data of the second encoder for a directly preceding section, output data of the second encoder for the current section, a header data block and buffer information, comprising:

buffering the scalable data stream;

reading the block of output data of the first encoder for the current section of the first encoder;

reading the header data block and the buffer information from the buffered data stream; and determining the beginning of the block of output data of the second encoder for the current section of the second encoder using the buffer information in order to obtain extracted blocks for a first decoder for decoding the block of output data of the first encoder and a second decoder for decoding the block of output data of the second encoder from the scaled data stream.
10. Device for decoding a scalable data strewn from at least one block of output data of a first encoder and at least one block of output data of a second encoder, wherein the second encoder includes a bit savings bank which is defined by a maximum size and a current level of a buffer of bits, wherein the at least one block of output data of the first encoder represents a number of samples of the input signal into the first encoder, wherein the number of samples define a current section of the input signal for the first encoder and wherein the at least one block of output data of the second encoder represents a number of samples of the input signal into the second encoder, wherein the number of samples represent a current section of the input signal for the second encoder, wherein the number of samples for the first encoder and the number of samples for the second encoder are equal and wherein the current sections for the first and the second encoder have the same portion of the input signal or relate to portions of the input signal, which are shifted in time in relation to each other by an adjustable period of time, wherein the scalable data stream comprises output data of the first encoder, output data of the second encoder for a directly preceding section, output data of the second encoder for a current section, a header data block and buffer information, comprising;

means for buffering the scalable data stream;

means for reading the block of output data of the first encoder for the current section of the first encoder;
means for reading the header data block and the buffer information from the buffered data stream; and means for determining the beginning of the block of output data of the second encoder for the current section of the second encoder using the buffer information in order to obtain extracted blocks for a first decoder for decoding the block of output data of the first encoder and a second decoder for decoding the block of output data of the second encoder from the scaled data stream.
CA002434882A 2001-01-18 2002-01-14 Method and device for generating and/or decoding a scalable data stream with provision for a bit savings bank, encoder and scalable encoder Expired - Lifetime CA2434882C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10102159.3 2001-01-18
DE10102159A DE10102159C2 (en) 2001-01-18 2001-01-18 Method and device for generating or decoding a scalable data stream taking into account a bit savings bank, encoder and scalable encoder
PCT/EP2002/000294 WO2002063611A1 (en) 2001-01-18 2002-01-14 Method and device for the generation or decoding of a scalable data stream with provision for a bit-store, encoder and scalable encoder

Publications (2)

Publication Number Publication Date
CA2434882A1 CA2434882A1 (en) 2002-08-15
CA2434882C true CA2434882C (en) 2008-04-15

Family

ID=7670988

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002434882A Expired - Lifetime CA2434882C (en) 2001-01-18 2002-01-14 Method and device for generating and/or decoding a scalable data stream with provision for a bit savings bank, encoder and scalable encoder

Country Status (10)

Country Link
US (1) US7516230B2 (en)
EP (1) EP1338004B8 (en)
JP (1) JP3890300B2 (en)
KR (1) KR100576034B1 (en)
AT (1) ATE275751T1 (en)
AU (1) AU2002249122B2 (en)
CA (1) CA2434882C (en)
DE (2) DE10102159C2 (en)
HK (1) HK1056641A1 (en)
WO (1) WO2002063611A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881943B2 (en) * 2002-09-06 2007-02-14 松下電器産業株式会社 Acoustic encoding apparatus and acoustic encoding method
DE10328777A1 (en) * 2003-06-25 2005-01-27 Coding Technologies Ab Apparatus and method for encoding an audio signal and apparatus and method for decoding an encoded audio signal
GB2403634B (en) * 2003-06-30 2006-11-29 Nokia Corp An audio encoder
DE10353793B4 (en) * 2003-11-13 2012-12-06 Deutsche Telekom Ag Method for improving the reproduction quality in the case of packet-oriented transmission of audio / video data
US7756594B2 (en) * 2004-06-14 2010-07-13 Microsoft Corporation Systems and methods for parsing flexible audio codec topologies
US20060041895A1 (en) * 2004-08-04 2006-02-23 Microsoft Corporation Systems and methods for interfacing with codecs across an architecture optimized for audio
US7590065B2 (en) * 2004-08-04 2009-09-15 Microsoft Corporation Equal-opportunity bandwidth regulation
US7706901B2 (en) * 2004-10-01 2010-04-27 Microsoft Corporation Low latency real-time audio streaming
WO2006041055A1 (en) * 2004-10-13 2006-04-20 Matsushita Electric Industrial Co., Ltd. Scalable encoder, scalable decoder, and scalable encoding method
KR20070092240A (en) * 2004-12-27 2007-09-12 마츠시타 덴끼 산교 가부시키가이샤 Sound coding device and sound coding method
US8826093B2 (en) * 2005-01-19 2014-09-02 Qualcomm Incorporated Power saving method for coded transmission
US7809018B2 (en) * 2005-12-16 2010-10-05 Coding Technologies Ab Apparatus for generating and interpreting a data stream with segments having specified entry points
WO2007068296A1 (en) * 2005-12-16 2007-06-21 Dolby Sweden Ab Apparatuses, methods and computer program for generating and interpreting a data stream with a series of segments having specified entry points
US7590523B2 (en) * 2006-03-20 2009-09-15 Mindspeed Technologies, Inc. Speech post-processing using MDCT coefficients
EP1841072B1 (en) * 2006-03-30 2016-06-01 Unify GmbH & Co. KG Method and apparatus for decoding layer encoded data
US8190441B2 (en) * 2006-09-11 2012-05-29 Apple Inc. Playback of compressed media files without quantization gaps
JP4358215B2 (en) * 2006-09-27 2009-11-04 株式会社東芝 Video encoding apparatus and method
ES2671711T3 (en) * 2008-09-18 2018-06-08 Electronics And Telecommunications Research Institute Coding apparatus and decoding apparatus for transforming between encoder based on modified discrete cosine transform and hetero encoder
CN101771417B (en) * 2008-12-30 2012-04-18 华为技术有限公司 Methods, devices and systems for coding and decoding signals
BR112012026326B1 (en) * 2010-04-13 2021-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V method and encoder and decoder for accurate sampling representation of an audio signal
US8532804B2 (en) * 2010-06-18 2013-09-10 Microsoft Corporation Predictive resampler scheduler algorithm
US8433823B2 (en) * 2010-09-03 2013-04-30 Tibco Software Inc. Random access data compression
KR20120084234A (en) 2011-01-19 2012-07-27 삼성전자주식회사 Method for delivering mmt access unit for mpeg media transport
TWI476761B (en) * 2011-04-08 2015-03-11 Dolby Lab Licensing Corp Audio encoding method and system for generating a unified bitstream decodable by decoders implementing different decoding protocols
US9905236B2 (en) 2012-03-23 2018-02-27 Dolby Laboratories Licensing Corporation Enabling sampling rate diversity in a voice communication system
TWI505262B (en) 2012-05-15 2015-10-21 Dolby Int Ab Efficient encoding and decoding of multi-channel audio signal with multiple substreams
US10199043B2 (en) * 2012-09-07 2019-02-05 Dts, Inc. Scalable code excited linear prediction bitstream repacked from a higher to a lower bitrate by discarding insignificant frame data
US9564136B2 (en) * 2014-03-06 2017-02-07 Dts, Inc. Post-encoding bitrate reduction of multiple object audio
US10283091B2 (en) * 2014-10-13 2019-05-07 Microsoft Technology Licensing, Llc Buffer optimization

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3943880B4 (en) * 1989-04-17 2008-07-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Digital coding method
DE4218695A1 (en) * 1992-06-09 1993-12-16 Thomson Brandt Gmbh Methods, encoders and decoders for data transmission and / or storage
US5365552A (en) * 1992-11-16 1994-11-15 Intel Corporation Buffer fullness indicator
US5835033A (en) * 1994-11-08 1998-11-10 Canon Kabushiki Kaisha Decoding apparatus and method for coded data
US5896099A (en) * 1995-06-30 1999-04-20 Sanyo Electric Co., Ltd. Audio decoder with buffer fullness control
DE19549621B4 (en) * 1995-10-06 2004-07-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for encoding audio signals
US5758092A (en) * 1995-11-14 1998-05-26 Intel Corporation Interleaved bitrate control for heterogeneous data streams
US5768537A (en) 1996-02-22 1998-06-16 International Business Machines Corporation Scalable MPEG2 compliant video encoder
JP3344944B2 (en) * 1997-05-15 2002-11-18 松下電器産業株式会社 Audio signal encoding device, audio signal decoding device, audio signal encoding method, and audio signal decoding method
JP3246715B2 (en) 1996-07-01 2002-01-15 松下電器産業株式会社 Audio signal compression method and audio signal compression device
US6092041A (en) * 1996-08-22 2000-07-18 Motorola, Inc. System and method of encoding and decoding a layered bitstream by re-applying psychoacoustic analysis in the decoder
KR100261253B1 (en) * 1997-04-02 2000-07-01 윤종용 Scalable audio encoder/decoder and audio encoding/decoding method
KR100335609B1 (en) * 1997-11-20 2002-10-04 삼성전자 주식회사 Scalable audio encoding/decoding method and apparatus
AU1928999A (en) * 1997-12-19 1999-07-12 Kenneth Rose Scalable predictive coding method and apparatus
US6487693B1 (en) * 1998-08-06 2002-11-26 Samsung Electronics, Co., Ltd. Channel encoding/decoding in communication system
US6553086B1 (en) * 1998-10-02 2003-04-22 Lg Electronics, Inc. Method and apparatus for recording time information for digital data streams
JP2000307661A (en) 1999-04-22 2000-11-02 Matsushita Electric Ind Co Ltd Encoding device and decoding device
US6904089B1 (en) 1998-12-28 2005-06-07 Matsushita Electric Industrial Co., Ltd. Encoding device and decoding device
FR2791167B1 (en) * 1999-03-17 2003-01-10 Matra Nortel Communications AUDIO ENCODING, DECODING AND TRANSCODING METHODS
US6195989B1 (en) 1999-05-04 2001-03-06 Caterpillar Inc. Power control system for a machine
KR100349329B1 (en) * 1999-06-23 2002-08-21 한국전자통신연구원 Method of processing of MPEG-2 AAC algorithm
DE19959156C2 (en) * 1999-12-08 2002-01-31 Fraunhofer Ges Forschung Method and device for processing a stereo audio signal to be encoded
US6369722B1 (en) * 2000-03-17 2002-04-09 Matra Nortel Communications Coding, decoding and transcoding methods
US6675148B2 (en) * 2001-01-05 2004-01-06 Digital Voice Systems, Inc. Lossless audio coder
US6926526B2 (en) * 2002-05-24 2005-08-09 Kenneth G. Hudak Endodontic adapter for a sonic scaler

Also Published As

Publication number Publication date
DE10102159C2 (en) 2002-12-12
CA2434882A1 (en) 2002-08-15
WO2002063611A1 (en) 2002-08-15
DE50200953D1 (en) 2004-10-14
EP1338004A1 (en) 2003-08-27
DE10102159A1 (en) 2002-08-08
AU2002249122B2 (en) 2005-06-23
EP1338004B8 (en) 2005-08-31
ATE275751T1 (en) 2004-09-15
JP3890300B2 (en) 2007-03-07
US7516230B2 (en) 2009-04-07
JP2004523790A (en) 2004-08-05
US20040162911A1 (en) 2004-08-19
HK1056641A1 (en) 2004-02-20
EP1338004B1 (en) 2004-09-08
KR20030076611A (en) 2003-09-26
KR100576034B1 (en) 2006-05-02

Similar Documents

Publication Publication Date Title
CA2434882C (en) Method and device for generating and/or decoding a scalable data stream with provision for a bit savings bank, encoder and scalable encoder
EP2119078B1 (en) Device and method for generating a signal for transmission or a decoded signal
KR101450940B1 (en) Joint enhancement of multi-channel audio
EP2249336B1 (en) Method and receiver for high frequency reconstruction of a stereo audio signal
CN1090409C (en) Transmission system utilizng different coding principles
US5845251A (en) Method, system and product for modifying the bandwidth of subband encoded audio data
CA2428477C (en) Method and device for the generation of a scalable data stream and method and device for decoding a scalable data stream
JP2005202262A (en) Audio signal encoding method, audio signal decoding method, transmitter, receiver, and wireless microphone system
US8930197B2 (en) Apparatus and method for encoding and reproduction of speech and audio signals
US7496517B2 (en) Method and device for generating a scalable data stream and method and device for decoding a scalable data stream with provision for a bit saving bank function
CN101946281B (en) Method and means for decoding background noise information

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20220114