CA2441343A1 - Wavelength division multiplexed optical communication system having a reconfigurable optical switch and a tunable backup laser transmitter - Google Patents

Wavelength division multiplexed optical communication system having a reconfigurable optical switch and a tunable backup laser transmitter Download PDF

Info

Publication number
CA2441343A1
CA2441343A1 CA002441343A CA2441343A CA2441343A1 CA 2441343 A1 CA2441343 A1 CA 2441343A1 CA 002441343 A CA002441343 A CA 002441343A CA 2441343 A CA2441343 A CA 2441343A CA 2441343 A1 CA2441343 A1 CA 2441343A1
Authority
CA
Canada
Prior art keywords
optical
wavelength
node
channel
output port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002441343A
Other languages
French (fr)
Inventor
Thomas Andrew Strasser
Paul Bonenfant
Jefferson L. Wagener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photuris Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from PCT/US2002/008089 external-priority patent/WO2002075997A1/en
Publication of CA2441343A1 publication Critical patent/CA2441343A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29382Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM including at least adding or dropping a signal, i.e. passing the majority of signals
    • G02B6/29383Adding and dropping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29391Power equalisation of different channels, e.g. power flattening
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/022For interconnection of WDM optical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0286WDM hierarchical architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/357Electrostatic force
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3578Piezoelectric force
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0206Express channels arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L2012/421Interconnected ring systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0024Construction using space switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)
    • H04Q2011/003Construction using free space propagation (e.g. lenses, mirrors) using switches based on microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0092Ring

Abstract

In a WDM system (10) that includes a plurality of nodes interconnected by communication links, a node includes a reconfigurable optical switch (2) having a plurality of input ports (24), at least one output port (26) and a plurality of transmitters (2) that are each coupled to the input ports. Each of the transmitters generate an optical signal at a channel wavelength different form the others. The switch is adaptable to receive at any of the input ports any of the chennel wavelengths and directs them to the output port. At least one backup transmitter, which includes a tunable laser tunable to any of the channel wavelengths, is coupled to one of the input ports. The switch includes at least one wavelength selective element, which selects at least one wavelength among the wavelengths received at the input ports, and a plurality of optical elements associated with the wavelength selective elements.

Description

WAVELENGTH DIVISION MULTIPLEXED OPTICAL COMMUNICATION
SYSTEM HAVING A RECONFIGURABLE OPTICAL SWITCH AND A
TUNABLE BACKUP LASER TRANSMITTER
STATEMENT OF RELATED APPLICATION
[OOOI] This application claims the benefit of priority to U.S. Provisional Patent Application number 60/276,310, filed March 16, 2001, entitled "Reconfigurable Optical System."
FIELD OF THE INVENTION
[0002] The invention relates generally to wavelength division multiplexed optical communication systems, and more particularly, to wavelength division multiplexed optical communication systems which include reconfigurable optical switches coupled to backup transmitters that incorporate tunable lasers.
BACKGROUND OF THE INVENTION
[0003] Wavelength division multiplexing (WDM) has been explored as an approach for increasing the capacity of fiber optic networks to support the rapid growth in data and voice traffic applications. A WDM system employs plural optical signal channels, each channel being assigned a particular channel wavelength. In a WDM system, signal channels are generated, multiplexed, and transmitted over a single waveguide, and demultiplexed to individually route each channel wavelength to a designated receiver.
Through the use of optical amplifiers, such as doped fiber amplifiers, plural optical channels are directly amplified simultaneously, facilitating the use of WDM
systems in long-distance optical systems.
[0004] Proposed wavelength division multiplexed optical communication systems typically include multiplexer and demultiplexer switching elements which permit only a fixed number of optical channels to be used in the optical system. In one optical system configuration, for instance, the multiplexed signal is broken down into its constituent optical signals through the use of an integrated frequency muter demultiplexer. The frequency muter uses silicon optical bench technology in which plural phosphorus-doped silica waveguides are disposed on a silicon substrate. An optical star outputs to an array of N waveguides having adjacent optical path lengths which differ by q wavelengths; this array in turn feeds an output NxN star. Such a frequency muter design for an optical communication system is described in Alexander et al., J. Lightwave Tech., Vol. 11, No.
5/6, May/June 1993, p. 714. Using a 1xN configuration at the input, a multiplexed optical signal containing light of different frequencies is separated into its component frequencies at each waveguide extending from the output NxN star. Although this configuration adequately separates light of different frequencies, the integrated optical design fixes both the number and the respective wavelengths of the optical channels.
Consequently, adding or decreasing the number of optical channels or changing the channel wavelength or spacing is not possible without providing a completely new demultiplexing switching element to the optical network. In other words, the scalability of such networks is limited because of the switching element's lack of flexibility.
[0005] One area where this lack of flexibility manifests itself is in connection with the provisioning of a backup path through the network in the event of equipment failure.
For example, in the aforementioned VVDM transmission system, since each channel wavelength is assigned its own path through the switching element, it is not possible to reroute a given channel wavelength along a different path should a failure occur in the transmitter that generates the given wavelength. In particular, it is not possible to substitute for the failed transmitter a backup transmitter that resides on another of the switching element's input ports unless the backup transmitter operates on its own channel wavelength that is different from the wavelength at which the failed transmitter operates.
As a result, when it becomes necessary to use the backup transmitter a new path must be established through the entire network to accommodate the change in channel wavelength. Unfortunately, the provisioning of a backup path can be a slow process requiring inter-node communication and processing, which not only slows down the restoration process, but which may also disturb other traffic in the system.
[0006] Accordingly, it would be desirable to provide an optical communication system in which a backup path can be provisioned through the system in the event of a transmitter or receiver failure that allows restoration to be accomplished in a more rapid and less disruptive manner than in the aforementioned system.
SUMMARY OF THE INVENTION
[0007] In a WDM optical communication system that includes a plurality of nodes interconnected by communication links, the present invention provides a node that includes a reconfigurable optical switch having a plurality of input ports and at least one output port. The node also includes a pluxality of transmitters that are each coupled to one of the input ports of the optical switch. Each of the transmitters generates an information-bearing optical signal at a different channel wavelength from one another. The reconfigurable optical switch is adaptable to receive at any of the input ports any of the channel wavelengths at which the plurality of transmitters operate and direct the channel wavelengths to the output port. At least one backup transmitter is coupled to one of the input ports of the optical switch. The backup transmitter includes a tunable laser tunable to any of the channel wavelengths at which the plurality of transmitters operates. The reconfigurable optical switch includes at least one wavelength selective element that selects at least one channel wavelength from among any of the channel wavelengths received at any of the input ports. The switch also includes a plurality of optical elements associated with the wavelength selective elements, Each of the optical elements direct one of the selected channel wavelengths selected by the associated wavelength selective element to the output port independently from every other channel wavelength.
The selected channel wavelengths directed to the output port are combined on the output port.
[0008] In accordance with one aspect of the invention, the wavelength selective element includes a plurality of thin film filters each transmitting therethrough a different one of the channel wavelengths and reflecting the remaining channel wavelengths.
[0009] In accordance with another aspect of the invention, the optical elements are reflective mirrors that are selectively tiltable in a plurality of positions such that in each of the positions the mirrors reflect the channel wavelength incident thereon to the output port.
[0010] In accordance with yet another aspect of the invention, a free space region is located between the input ports and the wavelength selective elements.
[0011] In accordance with another aspect of the invention, a node, which is situated in a WDM optical communication system that includes a plurality of nodes interconnected by communication links, includes a reconfigurable optical switch. The reconfigurable optical switch has (i) N input ports for receiving a WDM
optical signal having up to (N-1) channel wavelengths (ii) at least one output port, where N
is greater than or equal to 2 and (iii) a switching fabric that includes at least (N-1) optical elements each directing a selected one of the channel wavelengths between the input ports and the output port. The node also includes N transmitters respectively coupled to the N input ports of the optical switch. The transmitters each include a tunable laser tunable to any of the (N-1) channel wavelengths. The reconfigurable optical switch is adaptable to receive at any of the input ports any of the channel wavelengths at which the plurality of transmitters operate and direct each of the channel wavelengths to the output port by reconfiguration of the optical element respectively directing the channel wavelength. A
similar reconfigurable switch arrangement is present at the receiving end of the optical signal to direct the received signal to the backup transponder, BRIEF DESCRIPTION OF THE DRAWINGS
[0012] FIGS. 1 and 2 are schematic representations of a wavelength division multiplexed optical communication system in accordance with the present invention.
[0013j FIG. 3 shows an exemplary reconfigurable optical switch that may be employed in the present invention.
DETAILED DESCRIPTION
[0014] In accordance with the present invention, a WDM optical transmission system is provided which employs reconfigurable switching elements that can dynamically change the path along which a given wavelength is routed. By employing such switching elements, the present invention provides a restoration arrangement for a failed transmitter that is more responsive and less disruptive to other traffic than the conventional arrangement that employs a backup transmitter operating at a different channel wavelength from that of the failed transmitter.
[0015] Recently, switching elements that provide a degree of reconfigurability have become available. These reconfigurable optical elements can dynamically change the path along which a given wavelength is routed to effectively reconstruct the topology of the network as necessary to accommodate a change in demand or to restore services around a network failure. Examples of reconfigurable optical elements include optical Add/Drop Multiplexers (OADM) and Optical Cross-Connects (OXC). OADMs are used to separate or drop one or more wavelength components from a WDM signal, which is then directed onto a different path. In some cases the dropped wavelengths are directed onto a common fiber path and in other cases each dropped wavelength is directed onto its own fiber path.
OXCs are more flexible devices than OADMs, which can redistribute in virtually any arrangement the components of multiple WDM input signals onto any number of output paths. Unfortunately, current OXC's generally employ a digital cross-connect at their cores, thus requiring optical-to-electrical interfaces into and out of the cross-connect.
Such an arrangement gives rise to a number of limitations, including a relatively high insertion loss because the optical signals must pass through three discrete components. In addition, the components are relatively expensive while still not providing a completely flexible switch that can transfer light between any two subsets of the ports.
Finally, because of their high loss as well as the need to provide channels with equal power, such OXC's typically employ optoelectronic regenerators on at least their output side, and in many instances on their input side as well. While these regenerators overcome the problem of insertion loss and effectively allow wavelength conversion of the signal as it traverses the switch fabric, they substantially add to the cost of an already expensive switch fabric because a regenerator is required for each and every wavelength that is used in the network.
[0016] More flexible still are all-optical reconfigurable switches which have much lower insertion losses and are less expensive than the aforementioned OXC's.
Various examples of alI-optical reconfigurable optical switches are disclosed in U.S.
Patent Application Serial No. [PH-Ol-00-O1], which is hereby incorporated by reference in its entirety, and in particular FIGS. 2-4 of that reference. The switching elements disclosed therein can selectively direct any wavelength component from any input port to any output port, independent of the routing of the other wavelengths without the need for any electrical-to-optical conversion. Another all-optical reconfigurable optical switch that provides additional functionality is disclosed in U.S. Patent Application Serial No. [PH-O1-00-02], which is hereby incorporated by reference in its entirety. This reference discloses an optical switching element in which each and every wavelength component can be directed from any given port to any other port without constraint. More specifically, unlike most optical switches, this switch is not limited to providing connections between a subset of input ports and a subset of output ports, or vice versa.

Rather, this switch can also provide a connection between two ports within the same subset (either input or output). While the present invention may employ any of the aforementioned reconfigurable optical switches, the optical switch disclosed in U.S.
Patent Application Serial No. [PHO1-00-02] will serve as an exemplary reconfigurable optical switch, and accordingly, additional details concerning this switch will be presented below.
[0017] Turning now to the drawings in detail in which like numerals indicate the same or similar elements, FIG. 1 schematically depicts a wavelength division multiplexed (WDM) optical communication system 10 according to one embodiment of the present invention. Optical communication system 10 includes a plurality of optical transmitters 20, each optical transmitter emitting an information-bearing optical signal at an optical channel wavelength that differs from transmitter to transmitter. The expression "information-bearing optical signal," as used herein, refers to an optical signal which has been coded with information, including, but not limited to, audio signals, video signals, and computer data. The WDM optical communication systems of the present invention include N channels, where N is a whole number greater than or equal to 2.
Exemplary values for N are 4, 8, and 16 optical channels. In the optical system of FIG.
1, N is depicted as 4 for ease of illustration.
[0018] It should be noted at the outset that the present invention is not limited to WDM systems such as shown in FIG. 1, which have a point-to-point configuration consisting of end terminals or nodes spaced from each other by one or more segments of optical fiber. For example, in metropolitan areas, WDM systems having a ring or loop configuration are currently being developed. Such systems typically include a plurality of nodes located along the ring. At least one optical add/drop element, associated with each node, is typically connected to the ring with optical connectors. The optical add/drop element permits both addition and extraction of channels to and from the ring.
One of the nodes, referred to as a hub or central office node, typically has a plurality of associated add/drop elements for transmitting and receiving a corresponding plurality of channels to/from other nodes along the ring. Of course, the present invention is equally applicable to other network topologies in addition to rings such as a mesh topology.
[0019] Returning to FIG. 1, each optical transmitter 20 generally includes a laser, such as a DFB semiconductor laser, a laser controller, and a modulator for creation of an information-bearing optical signal. In an exemplary embodiment, the transmitter laser is a DFB semiconductor diode laser, generally comprising one or more III-V
semiconductor materials, commercially available from a wide variety of suppliers. The laser outputs an optical carrier signal at a particular wavelength assigned to its channel. The laser controller provides the required laser bias current as well as thermal control of the laser.
Using thermal control, the precise operating wavelength of the laser is maintained, typically to within a one-angstrom bandwidth or less.
[0020] The optical transmitter typically includes a modulator for imparting information to the optical carrier signal. An exemplary modulator is an external modulator, such as a Mach-Zehnder modulator, employing a waveguiding medium whose refractive index changes according to the applied electrical field, i.e., a material exhibiting an electro-optic effect. In the Mach-Zehnder configuration, two optical interferometer paths are provided. An incoming optical carrier signal is split between the two optical paths. At least one path of the interferometer is phase modulated.
When the signal is recombined at the output, the light from the paths either constructively or destructively interferes, depending upon the electrical field applied to the surrounding electrodes during the travel time of the carrier. This recombination creates an amplitude-modulated output optical signal. The optical carrier signal can alternatively be directly modulated for some system applications. It is noted that while the above-described transmitters are exemplary, any transmitting elements capable of producing optical signals for use in an optical communication system can be employed in the WDM
systems of the present invention.
[0021] Typically, the wavelengths emitted by optical transmitters 20 are selected to be within the 1500 nanometer range, the range in which the minimum signal attenuation occurs for silica-based fibers. More particularly, the wavelengths emitted by the optical transmitters are selected to be in the range from 1540 to1560 nanometers.
However, other wavelengths, such as those in the 1300-1500 nm range and the 1600 nm range, can also be employed in the WDM systems of the present invention.
[0022] Each information-bearing optical signal produced by an optical transmitter constitutes a channel in optical system 10. In a WDM system, each channel is generally associated with a unique wavelength. As depicted in FIG. 1, four optical transmitters 201, 20z, 203, and 204 are provided to create a four-channel wavelength division multiplexed optical communication system. The optical transmitters 201, 20z, 203, and 204 operate at channel wavelengths of 201, OO z, ~3, and ~4, respectively. These optical signal channels are output from transmitters 20 and are brought together in optical switch 30 for conveyance to optical waveguide 40 via output port 26.
[0023] Optical switch 30 combines plural optical channels from transmitters 20 onto a single output to create a multiplexed optical signal. Optical switch 30 has four input ports that are optically coupled to the four transmitters 20 through optical waveguides 22.
The combination of channels forms a multiplexed optical signal which is output to optical transmission path 40 through output port 36. Optical transmission path 40 is typically an optical waveguide and is the principal transmission medium for the optical communication system. While the optical waveguide is generally selected from single-mode optical, any optical waveguiding medium which is capable of transporting multiple optical wavelengths can be employed as waveguide 40 in optical system 10.
[0024] Optionally, one or more optical amplifiers 50 are interposed along optical transmission path 40. Optical amplifiers 50 are selected from any device which directly increases the strength of plural optical signals without the need for optical-to-electrical conversion. In general, optical amplifiers 50 are selected from optical waveguides doped with a material which can produce laser action in the waveguide. Such materials include rare earth dopants such as erbium, neodymium, praseodymium, ytterbium, or mixtures thereof. Pumping of the doped waveguide at a specific pump wavelength causes population inversion among the electron energy levels of the dopant, producing optical amplification of the wavelength division multiplexed optical signals. For doped fiber amplifiers employing erbium as the dopant, a wavelength band between approximately 1500 nm and approximately 1590 nm provides gain to optical signals when the doped fiber is pumped.
[0025] Following transmission and amplification of the multiplexed optical signals along waveguide 40, each channel must be demultiplexed and routed to the receiver designated for the particular optical signal channel. The multiplexed signal is input to optical switch 80. In a preferred embodiment of the invention, optical switch 80 is also a reconfigurable optical switch. Optical switch 80 receives the multiplexed optical signal through input port 96 and provides the individual channels on output ports 92.
Output _g_ ports 92 are each coupled to receivers 120 over optical waveguides 122.
Receivers 120 generally detect the optical signal and converts it to an electrical signal, typically through the use of a photodiode device.
[0026] As previously mentioned, in a conventional WDM optical communication system optical switches 30 and 80 are generally based on multiplexers and demultiplexers that are fixed wavelength-dependent elements in which a given wavelength is always routed along the same path. However, in the present invention, instead of fixed-wavelength dependent elements, more flexible optical switches are employed.
Such optical switches are reconfigurable elements that can dynamically change the path along which a given wavelength is routed. As discussed below, the use of reconfigurable optical switches that allow the path along which a given wavelength is routed to be dynamically changed, effectively reconstructing the topology of the network, is particularly advantageous in the event of a failure in one or more transmitters or receivers.
[0027] As previously mentioned, for purposes of illustration only the present invention will be depicted in connection with the reconfigurable optical switch disclosed in the aforementioned U.S. Apple. Serial No. [PHO1-00-O1], which is shown in FIG. 3. Of course, those of ordinary skill in the art will recognize that the invention is equally applicable to a communication system that employs any reconfigurable optical switch in which any wavelength component received on any input port can be selectively directed to any output port, independent of the routing of the other wavelengths. In FIG. 5, the optical switch 300 comprises an optically transparent substrate 308, a plurality of dielectric thin film filters 301, 302, 303, and 304, a plurality of collimating lens pairs 3211 and 3212, 3221 and 3222, 3231 and 3232, 3241 and 3242, a plurality of tiltable mirrors 315, 316, 317, and 318 and a plurality of output ports 3401, 3402, . . . 340". A
first filter array is composed of thin film Elters 301 and 303 and a second filter array is composed of thin film rilters 302 and 304. Individual ones of the collimating lens pairs 321-324 and tiltable mirrors 315-318 are associated with each of the thin film filters. Each thin 'film filter, along with its associated collimating lens pair and tiltable mirror effectively forms a narrow band, free space switch, i.e. a switch that routes individual wavelength components along different paths. The tiltable mirrors are micro mirrors such as the MEMS (microelectromechanical systems) mirrors. Alternatively, other mechanisms may be employed to control the position of the mirrors, such as piezoelectric actuators, for example.
[0028] In operation, a WDM optical signal composed of different wavelengths ~,1, ~,z, ~,3 and ~,4 is directed from the optical input port 312 to a collimator lens 314. The WDM
signal traverses substrate 308 and is received by thin film filter 301.
According to the characteristics of the thin film filter 301, the optical component with wavelength ~,1 is transmitted through the thin film filter 301, while the other wavelength components are reflected and directed to thin film filter 302 via substrate 308. The wavelength component ~,1, which is transmitted through the thin film filter 301, is converged by the collimating lens 3211 onto the tiltable mirror 315. Tiltable mirror 315 is positioned so that wavelength component ~,1 is reflected from the mirror to a selected one of the output ports 3401-340"
via thin film filters 302-304, which all reflect wavelength component ~,I. The particular output port that is selected to receive the wavelength component will determine the particular orientation of the mirror 315.
[0029] As mentioned, the remaining wavelength components ~,z, ~.3, and 7~4 are reflected by thin film filter 301 through lens 3212 back into substrate 308 and directed to thin filin filter 302. Wavelength component ~,z is transmitted through thin film filter 302 and lens 3221 and directed to a selected output port by tiltable mirror 316 via thin film filters 303-304, which all reflect wavelength component ~,2. Similarly, all other wavelength components are separated in sequence by the thin film filters 303-304 and subsequently directed by tiltable mirrors 317-318 to selected output ports. By appropriate actuation of the tiltable mirrors, each wavelength component can be directed to an output port that is selected independently of all other wavelength components.
[0030] Returning to FIC'r. 1, as previously noted, optical transmitters 201, 20z, 203, and 204 operate at channel wavelengths of z01, Oz z, ~s, and OO 4, respectively. To ensure system reliability in the event that one of the transmitters should fail, an additional transmitter is sometimes reserved as a spare transmitter that can serve as a backup until the failed transmitter can be repaired or replaced. In a conventional communication system employing fixed-wavelength dependent switching elements, the backup transmitter operates at a different channel wavelength from the failed transmitter, requiring that an end-to-end backup path be established through the system.
For example, if a backup transmitter were to be employed in the network shown in FIG. 1, it could operate at a channel wavelength of ~5. Consequently, the original data path must be reconfigured for a backup path operating at a different channel wavelength. As previously mentioned, one problem with this approach is that path reconfiguration can be a slow process because it often requires inter-node communication and processing.
Moreover, in some cases path reconftguration may disturb other traffic in the system.
[0031] The present inventors have recognized that rather than reconfigure the path for a backup channel in the event of a transmitter failure, it will often be preferable to maintain the original path while only reconfiguring equipment at the switch associated with the failed transmitter. While such a reconftguration procedure is not possible with fixed-wavelength dependent optical switches, it can be readily accomplished with any of the aforementioned reconfigurable optical switches that allow any wavelength to be selectively routed between any two ports.
[0032] FIG. 2 shows a WDM system that includes a backup transmitter 205 having a tunable laser that can be tuned to any of the channel wavelengths at which transmitters 20t-204 operate. In this way backup transmitter 205 can be readily substituted for any of the primary transmitters. Since optical switch 30 can receive any wavelength at any input port, optical switch 30 can be reconfigured so that any of the wavelengths O ~-OO 4 can be received at the input port 245 to which backup transmitter 205 is coupled. For example, assume transmitter 202 fails. In response to the failure, backup transmitter 205 is tuned to channel wavelength 02. In turn, optical switch 30 is internally reconfigured so that it can accept wavelength z02 from input port 245 and direct it to output port 26. In this way the transmitter failure is transparent to the remainder of the network so that no reconfiguration of the path through the network is required. While FIG. 2 shows only a single backup transmitter, those of ordinary skill in the art will recognize that additional backup transmitters may be employed in the relatively unlikely event that two or more transmitters fail at the same time.
[0033] In the event of a failure in one of the receivers 120, the same reconfiguration problems arise as with a failed transmitter. Accordingly, the present invention may also be advantageously used to redirect a channel wavelength from the failed receiver to a backup receiver if the receivers are in communication with a reconftgurable optical switch. That is, assuming, for example, that receiver 1203 fails, switch i~0 can be internally reconfigured so that channel wavelength OO 3 is redirected from output port 923 to the port 925, which is coupled to the backup receiver 1205. Unlike the backup transmitter, however, a tunable receiver will generally not be necessary because the receivers can typically detect all the channel wavelengths that are available to the network.

Claims (23)

Claims
1. In a WDM optical communication system that includes a plurality of nodes interconnected by communication links, a node comprising:
a reconfigurable optical switch having a plurality of input ports and at least one output port;
a plurality of transmitters each coupled to one of the input ports of the optical switch, each of said transmitters generating an information-bearing optical signal at a different channel wavelength from one another, said reconfigurable optical switch being adaptable to receive at any of the input ports any of the channel wavelengths at which the plurality of transmitters operate and direct said channel wavelengths to said at least one output port;
at least one backup transmitter coupled to one of the input ports of the optical switch, said backup transmitter including a tunable laser tunable to any of the channel wavelengths at which the plurality of transmitters operate;
wherein said reconfigurable optical switch includes;
at least one wavelength selective element that selects at least one channel wavelength from among any of the channel wavelengths received at any of the input ports; and a plurality of optical elements associated with said at least one wavelength selective element, each of said optical elements directing one of the selected channel wavelengths selected by the associated at least one wavelength selective element to said output port independently from every other channel wavelength, wherein said selected channel wavelengths directed to said output port are combined on said output port.
2. The node of claim 1 wherein said at least one wavelength selective element comprises a plurality thin film filters each transmitting therethrough a different one of the channel wavelengths and reflecting the remaining channel wavelengths.
3. The node of claim 1 wherein said optical elements are reflective mirrors that are selectively tiltable in a plurality of positions such that in each of the positions the mirrors reflect the channel wavelength incident thereon to the output port.
4. The node of claim 2 wherein said optical elements are reflective mirrors that are selectively tiltable in a plurality of positions such that in each of the positions the mirrors reflect the channel wavelength incident thereon to the output port.
5. The node of claim 3 wherein said reflective mirrors are part of a micro-electromechanical (MEM) mirror assembly.
6. The node of claim 1 wherein said at least one wavelength selective element comprises a bulls diffraction grating.
7. The node of claim 2 further comprising a free space region disposed between the input ports and the wavelength selective elements.
8. The node of claim 7 wherein said free space region comprises an optically transparent substrate having first and second parallel surfaces, said wavelength selective element includes a plurality of wavelength selective elements arranged in first and second arrays extending along the first and second parallel surfaces, respectively.
9. The node of claim 8 wherein said first and second arrays are laterally offset with respect to one another.
10. The node of claim 9 wherein each of said wavelength selective elements arranged in the first array direct the selected wavelength component to another of said wavelength selective elements arranged in the second array.
11. In a WDM optical communication system that includes a plurality of nodes interconnected by communication links, a node comprising:

a reconfigurable optical switch having (i) N input ports for receiving a WDM optical signal having up to (N-1) channel wavelengths (ii) at least one output port, where N is greater than or equal to 2 and (iii) a switching fabric that includes at least (N-1) optical elements each directing a selected one of the channel wavelengths between the input ports and the at least one output port N transmitters respectively coupled to the N input ports of the optical switch, said transmitters each including a tunable laser tunable to any of the (N-1) channel wavelengths, said reconfigurable optical switch being adaptable to receive at any of the input ports any of the channel wavelengths at which the plurality of transmitters operate and direct each of the channel wavelengths to said at least one output port by reconfiguration of the optical element respectively directing the channel wavelength.
12. The node of claim 11 further comprising at least (N-1) wavelength selective elements that each select at least one channel wavelength from among any of the channel wavelengths received at any of the input ports and wherein the (N-1) optical elements are respectively associated with said (N-1) wavelength selective elements, each of said optical elements directing one of the selected channel wavelengths selected by the associated at least one wavelength selective element to said output port independently from every other channel wavelength, wherein said selected channel wavelengths directed to said output port are combined on said output port.
13. The node of claim 12 wherein said wavelength selective elements each comprise a plurality of thin film filters each transmitting therethrough a different one of the channel wavelengths and reflecting the remaining channel wavelengths.
14. The node of claim 11 wherein said optical elements are reflective mirrors that are selectively tiltable in a plurality of positions such that in each of the positions the mirrors reflect the channel wavelength incident thereon to the output port.
15. The node of claim 12 wherein said optical elements are reflective mirrors that are selectively tiltable in a plurality of positions such that in each of the positions the mirrors reflect the channel wavelength incident thereon to the output port.
16. The node of claim 14 wherein said reflective mirrors are part of a micro-electromechanical (MEM) mirror assembly.
17. The node of claim 12 wherein at least one of said wavelength selective elements comprises a bulk diffraction grating.
18. The node of claim 12 further comprising a free space region disposed between the input ports and the wavelength selective elements.
19. The node of claim 18 wherein said free space region comprises an optically transparent substrate having first and second parallel surfaces, said wavelength selective element includes a plurality of wavelength selective elements arranged in first and second arrays extending along the first and second parallel surfaces, respectively.
20. The node of claim 19 wherein said first and second arrays are laterally offset with respect to one another.
21. The node of claim 20 wherein each of said wavelength selective elements arranged in the first array direct the selected wavelength component to another of said wavelength selective elements arranged in the second array.
22. The node of claim 1 further comprising:
a second reconfigurable optical switch having a plurality of output ports and at least one input port;
a plurality of receivers each coupled to one of the output ports of the optical switch, each of said receivers receiving an information-bearing optical signal at a different channel wavelength from one another, said second reconfigurable optical switch being adaptable to receive at any of the output ports any of the channel wavelengths at which the plurality of transmitters operate and direct said channel wavelengths to said output port; and at least one backup receiver coupled to one of the output ports of the second optical switch.
23. The node of claim 11 further comprising a second reconfigurable optical switch having (i) N output ports for transmitting a WDM optical signal having up to (N-1) channel wavelengths (ii) at least one input port, where N is greater than or equal to 2 and (iii) a switching fabric that includes at least (N-1) optical elements each directing a selected one of the channel wavelengths between the input port and an one output port N receivers respectively coupled to the N output ports of the second optical switch, said second reconfigurable optical switch being adaptable to receive at any of the output ports any of the channel wavelengths at which the plurality of transmitters operate and direct each of the channel wavelengths to said output port by reconfiguration of the optical element respectively directing the channel wavelength.
CA002441343A 2001-03-16 2002-03-15 Wavelength division multiplexed optical communication system having a reconfigurable optical switch and a tunable backup laser transmitter Abandoned CA2441343A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US27631001P 2001-03-16 2001-03-16
US60/276,310 2001-03-16
PCT/US2002/008089 WO2002075997A1 (en) 2001-03-16 2002-03-15 Wavelength division multiplexed optical communication system having a reconfigurable optical switch and a tunable backup laser transmitter

Publications (1)

Publication Number Publication Date
CA2441343A1 true CA2441343A1 (en) 2002-09-26

Family

ID=23056135

Family Applications (4)

Application Number Title Priority Date Filing Date
CA002441059A Abandoned CA2441059A1 (en) 2001-03-16 2002-03-15 Method and apparatus for interconnecting a plurality of optical transducers with a wavelength division multiplexed optical switch
CA002441343A Abandoned CA2441343A1 (en) 2001-03-16 2002-03-15 Wavelength division multiplexed optical communication system having a reconfigurable optical switch and a tunable backup laser transmitter
CA002441303A Abandoned CA2441303A1 (en) 2001-03-16 2002-03-15 Modular all-optical cross-connect
CA002441045A Abandoned CA2441045A1 (en) 2001-03-16 2002-03-15 Method and apparatus for transferring wdm signals between different wdm communications systems in optically transparent manner

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA002441059A Abandoned CA2441059A1 (en) 2001-03-16 2002-03-15 Method and apparatus for interconnecting a plurality of optical transducers with a wavelength division multiplexed optical switch

Family Applications After (2)

Application Number Title Priority Date Filing Date
CA002441303A Abandoned CA2441303A1 (en) 2001-03-16 2002-03-15 Modular all-optical cross-connect
CA002441045A Abandoned CA2441045A1 (en) 2001-03-16 2002-03-15 Method and apparatus for transferring wdm signals between different wdm communications systems in optically transparent manner

Country Status (8)

Country Link
US (9) US7620323B2 (en)
EP (3) EP1368924A4 (en)
JP (3) JP2004536485A (en)
KR (5) KR100993182B1 (en)
CN (4) CN1596517A (en)
AU (2) AU2002255763A1 (en)
CA (4) CA2441059A1 (en)
WO (4) WO2002075403A1 (en)

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721508B1 (en) 1998-12-14 2004-04-13 Tellabs Operations Inc. Optical line terminal arrangement, apparatus and methods
US6618520B2 (en) * 1999-11-09 2003-09-09 Texas Instruments Incorporated Micromirror optical switch
US6922530B1 (en) 2000-04-06 2005-07-26 Fujitsu Limited Method and apparatus for optical channel switching in an optical add/drop multiplexer
US6633694B2 (en) * 2000-09-29 2003-10-14 Texas Instruments Incorporated Micromirror optical switch
AU2002255763A1 (en) * 2001-03-16 2002-10-03 Photuris, Inc. Modular all-optical cross-connect
US6941071B2 (en) * 2001-05-25 2005-09-06 International Business Machines Corporation Test method and apparatus for parallel optical transceivers using serial equipment
GB0121308D0 (en) 2001-09-03 2001-10-24 Thomas Swan & Company Ltd Optical processing
JP3693020B2 (en) * 2002-01-22 2005-09-07 日本電気株式会社 Wavelength division multiplexing optical transmission apparatus and communication system using the apparatus
GB0203037D0 (en) * 2002-02-08 2002-03-27 Marconi Comm Ltd Telecommunications networks
US20030174935A1 (en) * 2002-03-14 2003-09-18 Miller Samuel Lee Channel balancer for WDM optical units
US7085242B2 (en) * 2002-03-22 2006-08-01 Telcordia Technologies, Inc. Virtual IP topology reconfiguration migration
US7076163B2 (en) * 2002-03-27 2006-07-11 Fujitsu Limited Method and system for testing during operation of an open ring optical network
US7231148B2 (en) * 2002-03-28 2007-06-12 Fujitsu Limited Flexible open ring optical network and method
US7116905B2 (en) * 2002-03-27 2006-10-03 Fujitsu Limited Method and system for control signaling in an open ring optical network
US7072584B1 (en) * 2002-04-22 2006-07-04 Atrica Israel Ltd. Network hub employing 1:N optical protection
US7184663B2 (en) 2002-05-29 2007-02-27 Fujitsu Limited Optical ring network with hub node and method
US7283740B2 (en) * 2002-05-29 2007-10-16 Fujitsu Limited Optical ring network with optical subnets and method
US7283739B2 (en) * 2002-05-29 2007-10-16 Fujitsu Limited Multiple subnets in an optical ring network and method
US7075712B2 (en) 2002-05-30 2006-07-11 Fujitsu Limited Combining and distributing amplifiers for optical network and method
US6842562B2 (en) * 2002-05-30 2005-01-11 Fujitsu Network Communications, Inc. Optical add/drop node and method
US7085496B2 (en) 2002-05-30 2006-08-01 Fujitsu Limited Passive add/drop amplifier for optical networks and method
US7813601B2 (en) * 2002-09-06 2010-10-12 Texas Instruments Incorporated Reconfigurable optical add/drop multiplexer
US20040052530A1 (en) * 2002-09-17 2004-03-18 Cechan Tian Optical network with distributed sub-band rejections
JP4183681B2 (en) * 2002-09-23 2008-11-19 ビーエーエスエフ ソシエタス・ヨーロピア Thin film of oxide material with high dielectric constant
US7715713B1 (en) * 2002-09-30 2010-05-11 Meriton Networks Us Inc. Method and apparatus for providing multiple optical channel protection switching mechanisms in optical rings
US7321729B2 (en) * 2003-05-29 2008-01-22 Fujitsu Limited Optical ring network with selective signal regeneration and wavelength conversion
US20050019034A1 (en) * 2003-07-25 2005-01-27 Fujitsu Network Communications, Inc. System and method for communicating optical traffic between ring networks
US7483636B2 (en) * 2003-07-28 2009-01-27 Fujitsu Limited Optical network with sub-band rejection and bypass
US6885798B2 (en) 2003-09-08 2005-04-26 Adc Telecommunications, Inc. Fiber optic cable and furcation module
DE10343615A1 (en) * 2003-09-20 2005-04-14 Marconi Communications Gmbh Network node for an optical communications network
US20050095001A1 (en) * 2003-10-29 2005-05-05 Fujitsu Limited Method and system for increasing network capacity in an optical network
US7483637B2 (en) 2003-11-26 2009-01-27 Fujitsu Limited Optical ring network with optical subnets and method
US7570672B2 (en) * 2004-02-02 2009-08-04 Simplexgrinnell Lp Fiber optic multiplex modem
US20050175346A1 (en) * 2004-02-10 2005-08-11 Fujitsu Limited Upgraded flexible open ring optical network and method
US7369765B2 (en) * 2004-02-26 2008-05-06 Fujitsu Limited Optical network with selective mode switching
US20050196169A1 (en) * 2004-03-03 2005-09-08 Fujitsu Limited System and method for communicating traffic between optical rings
US20050232565A1 (en) * 2004-04-16 2005-10-20 Ross Heggestad Normal through optical panel
US7257288B1 (en) * 2004-04-23 2007-08-14 Nistica, Inc. Tunable optical routing systems
US7408639B1 (en) 2004-04-23 2008-08-05 Nistica, Inc. Tunable optical routing systems
US20050286896A1 (en) * 2004-06-29 2005-12-29 Fujitsu Limited Hybrid optical ring network
US7450851B2 (en) * 2004-08-27 2008-11-11 Fujitsu Limited System and method for modularly scalable architecture for optical networks
US7639677B2 (en) * 2004-11-02 2009-12-29 Electronics And Telecommunications Research Institute Optical transponder having switching function
US7376322B2 (en) 2004-11-03 2008-05-20 Adc Telecommunications, Inc. Fiber optic module and system including rear connectors
US7826743B2 (en) * 2004-11-22 2010-11-02 Fujitsu Limited Optical ring network for extended broadcasting
JP4593267B2 (en) * 2004-12-28 2010-12-08 富士通株式会社 Optical node and optical add / drop multiplexer
US7120360B2 (en) * 2005-01-06 2006-10-10 Fujitsu Limited System and method for protecting traffic in a hubbed optical ring network
US7570844B2 (en) * 2005-01-18 2009-08-04 Doron Handelman Photonic integrated circuit device and elements thereof
US7412147B2 (en) * 2005-03-15 2008-08-12 Adc Telecommunications, Inc. Normal through optical panel
US7376323B2 (en) 2005-05-25 2008-05-20 Adc Telecommunications, Inc. Fiber optic adapter module
US7400813B2 (en) * 2005-05-25 2008-07-15 Adc Telecommunications, Inc. Fiber optic splitter module
US7636507B2 (en) * 2005-06-17 2009-12-22 Adc Telecommunications, Inc. Compact blind mateable optical splitter
US8428461B2 (en) * 2005-06-22 2013-04-23 Tellabs Operations, Inc. Apparatus for managing an optical signal
US7346254B2 (en) * 2005-08-29 2008-03-18 Adc Telecommunications, Inc. Fiber optic splitter module with connector access
JP4673712B2 (en) * 2005-09-28 2011-04-20 富士通株式会社 Network configuration apparatus and network configuration method
US7526198B1 (en) * 2005-11-30 2009-04-28 At&T Corp. Methods of restoration in an ultra-long haul optical network
US7639946B2 (en) * 2006-01-06 2009-12-29 Fujitsu Limited Distribution node for an optical network
US7418181B2 (en) 2006-02-13 2008-08-26 Adc Telecommunications, Inc. Fiber optic splitter module
KR100819035B1 (en) 2006-09-29 2008-04-03 한국전자통신연구원 Photonic cross-connector system, wdm system using the same photonic cross-connector system and optical communication network based in the same wdm system
KR100833501B1 (en) * 2006-11-17 2008-05-29 한국전자통신연구원 Multi-degree cross-connector system, operating method and optical communication network using the same
US7391954B1 (en) 2007-05-30 2008-06-24 Corning Cable Systems Llc Attenuated optical splitter module
US20080298743A1 (en) * 2007-05-31 2008-12-04 Konstantinos Saravanos Microsplitter module for optical connectivity
US20080298748A1 (en) * 2007-05-31 2008-12-04 Terry Dean Cox Direct-connect optical splitter module
CN101355430B (en) * 2007-07-27 2012-02-29 华为技术有限公司 Exchange frame, cluster router
US8798427B2 (en) 2007-09-05 2014-08-05 Corning Cable Systems Llc Fiber optic terminal assembly
US7536075B2 (en) 2007-10-22 2009-05-19 Adc Telecommunications, Inc. Wavelength division multiplexing module
US7885505B2 (en) 2007-10-22 2011-02-08 Adc Telecommunications, Inc. Wavelength division multiplexing module
EP2071377B1 (en) * 2007-12-12 2012-04-18 JDS Uniphase Corporation Packaging a reconfigurable optical add-drop module
US8107816B2 (en) 2008-01-29 2012-01-31 Adc Telecommunications, Inc. Wavelength division multiplexing module
US8045854B2 (en) * 2008-02-07 2011-10-25 Jds Uniphase Corporation M×N wavelength selective optical switch
US8213794B2 (en) * 2008-02-12 2012-07-03 Nec Laboratories America, Inc. Programmable optical network architecture
EP2255542B1 (en) * 2008-03-05 2016-12-07 Tellabs Operations, Inc. Constructing large wavelength selective switches using parallelism
US8943509B2 (en) * 2008-03-21 2015-01-27 International Business Machines Corporation Method, apparatus, and computer program product for scheduling work in a stream-oriented computer system with configurable networks
US8125984B2 (en) * 2008-03-21 2012-02-28 International Business Machines Corporation Method, system, and computer program product for implementing stream processing using a reconfigurable optical switch
CN102177668A (en) * 2008-08-08 2011-09-07 惠普开发有限公司 Methods and systems for implementing high-radix switch topologies on relatively lower-radix switch physical networks
US8031703B2 (en) 2008-08-14 2011-10-04 Dell Products, Lp System and method for dynamic maintenance of fabric subsets in a network
CA2734782A1 (en) * 2008-08-20 2010-02-25 Telefonaktiebolaget L M Ericsson (Publ) Switch node
EP2344915A4 (en) 2008-10-09 2015-01-21 Corning Cable Sys Llc Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter
US8879882B2 (en) 2008-10-27 2014-11-04 Corning Cable Systems Llc Variably configurable and modular local convergence point
US8396366B2 (en) * 2008-11-10 2013-03-12 Cisco Technology, Inc. Optical safety implementation in protection switching modules
US8494329B2 (en) * 2009-01-15 2013-07-23 Adc Telecommunications, Inc. Fiber optic module and chassis
US8218969B2 (en) * 2009-03-18 2012-07-10 Cisco Technology, Inc. OFDM transponder interface with variable bit transfer rate in optical communications systems
EP2237091A1 (en) 2009-03-31 2010-10-06 Corning Cable Systems LLC Removably mountable fiber optic terminal
US8467651B2 (en) 2009-09-30 2013-06-18 Ccs Technology Inc. Fiber optic terminals configured to dispose a fiber optic connection panel(s) within an optical fiber perimeter and related methods
US9547144B2 (en) 2010-03-16 2017-01-17 Corning Optical Communications LLC Fiber optic distribution network for multiple dwelling units
US8792767B2 (en) 2010-04-16 2014-07-29 Ccs Technology, Inc. Distribution device
US8412042B2 (en) * 2010-04-21 2013-04-02 Cisco Technology, Inc. Innovative architecture for fully non blocking service aggregation without O-E-O conversion in a DWDM multiring interconnection node
US20110262143A1 (en) * 2010-04-21 2011-10-27 Nec Laboratories America, Inc. Roadm systems and methods of operation
CN102971653B (en) 2010-04-27 2015-04-22 爱德龙通讯系统(上海)有限公司 Fiber optic module and chassis
US8300995B2 (en) 2010-06-30 2012-10-30 Jds Uniphase Corporation M X N WSS with reduced optics size
US8553531B2 (en) * 2010-08-03 2013-10-08 Fujitsu Limited Method and system for implementing network element-level redundancy
US8547828B2 (en) * 2010-08-03 2013-10-01 Fujitsu Limited Method and system for implementing network element-level redundancy
JP5609463B2 (en) * 2010-09-14 2014-10-22 富士通株式会社 Transmission device, control device, and signal line misconnection detection method
JP5617503B2 (en) * 2010-09-30 2014-11-05 富士通株式会社 Optical network repeater
CN103430072B (en) 2010-10-19 2018-08-10 康宁光缆系统有限责任公司 For the transformation box in the fiber distribution network of multitenant unit
US9182563B2 (en) 2011-03-31 2015-11-10 Adc Telecommunications, Inc. Adapter plate for fiber optic module
US8768167B2 (en) 2011-04-29 2014-07-01 Telcordia Technologies, Inc. System and method for automated provisioning of services using single step routing and wavelength assignment algorithm in DWDM networks
US8842947B2 (en) * 2011-06-03 2014-09-23 Futurewei Technologies, Inc. Method and apparatus for colorless add
WO2013033890A1 (en) 2011-09-06 2013-03-14 Adc Telecommunications, Inc. Adapter for fiber optic module
EP2582152B1 (en) * 2011-10-12 2018-08-29 ADVA Optical Networking SE Remote node and network architecture and data transmission method for a fiber-optic network, especially for low bit-rate data transmission
US9219546B2 (en) 2011-12-12 2015-12-22 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
CN102572621A (en) * 2012-02-02 2012-07-11 中兴通讯股份有限公司 Optical module and wavelength division multiplexing system
US10110307B2 (en) 2012-03-02 2018-10-23 Corning Optical Communications LLC Optical network units (ONUs) for high bandwidth connectivity, and related components and methods
US8995832B2 (en) * 2012-04-02 2015-03-31 Nec Laboratories America, Inc. Transponder Aggregator-based optical loopback in a MD-ROADM
US10162116B2 (en) 2012-04-26 2018-12-25 Hewlett Packard Enterprise Development Lp Optical slab
US9882643B2 (en) 2012-05-04 2018-01-30 Deutsche Telekom Ag Method and device for setting up and operating a modular, highly scalable, very simple, cost-efficient and enduring transparent optically routed network for network capacities of greater than 1 Petabit/s
US9004778B2 (en) 2012-06-29 2015-04-14 Corning Cable Systems Llc Indexable optical fiber connectors and optical fiber connector arrays
JP6007983B2 (en) * 2012-07-02 2016-10-19 日本電気株式会社 Optical branching device and optical branching method
GB2504970A (en) 2012-08-15 2014-02-19 Swan Thomas & Co Ltd Optical device and methods to reduce cross-talk
US9274299B2 (en) 2012-08-29 2016-03-01 International Business Machines Corporation Modular optical backplane and enclosure
US9049500B2 (en) 2012-08-31 2015-06-02 Corning Cable Systems Llc Fiber optic terminals, systems, and methods for network service management
US8768116B2 (en) * 2012-09-28 2014-07-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical cross-connect assembly and method
US8909019B2 (en) 2012-10-11 2014-12-09 Ccs Technology, Inc. System comprising a plurality of distribution devices and distribution device
WO2014078940A1 (en) * 2012-11-26 2014-05-30 Viscore Technologies Inc. Methods and systems for passive optical switching
BR122016029886A2 (en) 2012-12-19 2019-08-27 Tyco Electronics Raychem Bvba distribution device with additional distributors in increments
US9054955B2 (en) 2012-12-30 2015-06-09 Doron Handelman Apparatus and methods for enabling recovery from failures in optical networks
FR3002394B1 (en) 2013-02-15 2015-03-27 Thales Sa ARCHITECTURE FOR TRANSMITTING INFORMATION WITH A BRIDGE, IN PARTICULAR FOR APPLICATION TO THE AIRCRAFT
FR3002393B1 (en) * 2013-02-15 2016-06-24 Thales Sa INFORMATION TRANSMISSION ARCHITECTURE, IN PARTICULAR FOR APPLICATION TO AIRCRAFT AVIONICS
US10036396B2 (en) 2013-03-08 2018-07-31 Coriant Operations, Inc. Field configurable fan operational profiles
US9497519B2 (en) * 2013-03-18 2016-11-15 Oplink Communications, Inc. Twin multicast switch
CN104238025B (en) * 2013-06-21 2017-12-29 华为技术有限公司 light path processing method and device
US10185691B2 (en) * 2013-07-30 2019-01-22 Hewlett Packard Enterprise Development Lp Two-dimensional torus topology
US9819436B2 (en) 2013-08-26 2017-11-14 Coriant Operations, Inc. Intranodal ROADM fiber management apparatuses, systems, and methods
US9344187B2 (en) 2013-09-17 2016-05-17 Doron Handelman Apparatus and methods for enabling recovery in optical networks
US9301030B2 (en) 2013-11-11 2016-03-29 Commscope Technologies Llc Telecommunications module
EP3079274B1 (en) 2013-12-31 2018-08-01 Huawei Technologies Co., Ltd. Optical transmitter, transmission method, optical receiver and reception method
US20160327746A1 (en) * 2014-01-25 2016-11-10 Hewlett-Packard Development Company, L.P. Bidirectional optical multiplexing employing a high contrast grating
US9699074B2 (en) * 2014-04-10 2017-07-04 Fujitsu Limited Efficient utilization of transceivers for shared restoration in flexible grid optical networks
CN106687841B (en) 2014-06-17 2020-08-14 康普连通比利时私人有限公司 Cable distribution system
US9395509B2 (en) 2014-06-23 2016-07-19 Commscope Technologies Llc Fiber cable fan-out assembly and method
US9429712B2 (en) 2014-07-23 2016-08-30 Ii-Vi Incorporated Dual-ganged optical switch
WO2016024991A1 (en) 2014-08-15 2016-02-18 Hewlett-Packard Development Company, Lp Optical mode matching
WO2016037262A1 (en) * 2014-09-09 2016-03-17 Viscore Technologies Inc. Low latency optically distributed dynamic optical interconnection networks
US10054753B2 (en) 2014-10-27 2018-08-21 Commscope Technologies Llc Fiber optic cable with flexible conduit
WO2016099531A1 (en) * 2014-12-19 2016-06-23 Hewlett Packard Enterprise Development Lp Bonded filter substrates
JP2016161802A (en) * 2015-03-03 2016-09-05 富士通株式会社 Variable optical attenuator and optical module
AU2015207954C1 (en) 2015-07-31 2022-05-05 Adc Communications (Australia) Pty Limited Cable breakout assembly
EP3338125A4 (en) 2015-08-21 2019-04-17 Commscope Technologies LLC Telecommunications module
US10606009B2 (en) 2015-12-01 2020-03-31 CommScope Connectivity Belgium BVBA Cable distribution system with fan out devices
CN105572818B (en) * 2015-12-29 2018-09-14 江苏奥雷光电有限公司 Multi-channel parallel light emitting devices and multimode distance transmission system
US10637220B2 (en) 2016-01-28 2020-04-28 CommScope Connectivity Belgium BVBA Modular hybrid closure
WO2017131125A1 (en) * 2016-01-29 2017-08-03 国立大学法人名古屋大学 Optical switch device
CN108780200B (en) 2016-03-18 2021-05-07 康普技术有限责任公司 Fiber optic cable fanout duct structures, components and methods
US10222571B2 (en) 2016-04-07 2019-03-05 Commscope Technologies Llc Telecommunications module and frame
WO2018044729A1 (en) 2016-08-31 2018-03-08 Commscope Technologies Llc Fiber optic cable clamp and clamp assembly
CN107797181B (en) * 2016-08-31 2020-04-28 华为技术有限公司 Optical switch matrix and control method thereof
WO2018071481A1 (en) 2016-10-13 2018-04-19 Commscope Technologies Llc Fiber optic breakout transition assembly incorporating epoxy plug and cable strain relief
US10417364B2 (en) 2017-01-04 2019-09-17 Stmicroelectronics International N.V. Tool to create a reconfigurable interconnect framework
CN207517054U (en) 2017-01-04 2018-06-19 意法半导体股份有限公司 Crossfire switchs
EP3622336A4 (en) 2017-05-08 2021-01-20 Commscope Technologies LLC Fiber-optic breakout transition assembly
CN109212680B (en) * 2017-06-30 2021-09-24 住友电气工业株式会社 Receiver optical assembly employing optical attenuator
CN108828720B (en) * 2018-05-30 2020-09-15 中国科学院半导体研究所 Full-switching multimode signal optical switch architecture
CN108761652B (en) * 2018-05-30 2020-09-15 中国科学院半导体研究所 Multimode optical switch architecture for intra-link mode switching and link switching
CN110582034B (en) * 2018-06-11 2022-04-26 台达电子工业股份有限公司 Intelligent defined light tunnel network system controller and control method thereof
KR102041589B1 (en) * 2018-07-26 2019-11-27 (주)코셋 Apparatus for transmitting and receiving wavelength multiplexing optical signal bidirectionally
US10862706B2 (en) * 2019-02-26 2020-12-08 Ciena Corporation Detection of node isolation in subtended ethernet ring topologies
CN109991582B (en) * 2019-03-13 2023-11-03 上海交通大学 Silicon-based hybrid integrated laser radar chip system
US11139898B2 (en) 2019-07-12 2021-10-05 Hewlett Packard Enterprise Development Lp Node-division multiplexing with sub-WDM node ports for pseudo-all-to-all connected optical links
US11593609B2 (en) 2020-02-18 2023-02-28 Stmicroelectronics S.R.L. Vector quantization decoding hardware unit for real-time dynamic decompression for parameters of neural networks
US11381891B2 (en) * 2020-04-30 2022-07-05 Hewlett Packard Enterprise Development Lp Virtual fiber adapter for wavelength-as-a-service communications
US11531873B2 (en) 2020-06-23 2022-12-20 Stmicroelectronics S.R.L. Convolution acceleration with embedded vector decompression
CN113872697B (en) * 2020-06-30 2023-09-12 华为技术有限公司 Optical transmitter and optical modulation method
EP4009554A1 (en) * 2020-12-01 2022-06-08 Deutsche Telekom AG System and method providing failure protection based on a faulty port in an aggregation network being an optical transport network

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US615157A (en) * 1898-11-29 Traction-wheel
US5429803A (en) * 1991-04-18 1995-07-04 Lamina, Inc. Liquid specimen container and attachable testing modules
US5267309A (en) * 1990-11-20 1993-11-30 Alcatel Network Systems, Inc. Telephone line unit having programmable read-only memory
US5555477A (en) * 1992-04-08 1996-09-10 Hitachi, Ltd. Optical transmission system constructing method and system
JP3072047B2 (en) * 1995-03-22 2000-07-31 株式会社東芝 WDM optical transmission device and optical repeater
JPH08278523A (en) * 1995-04-05 1996-10-22 Hitachi Ltd Light amplifier
US5504609A (en) * 1995-05-11 1996-04-02 Ciena Corporation WDM optical communication system with remodulators
US5583683A (en) 1995-06-15 1996-12-10 Optical Corporation Of America Optical multiplexing device
US5557439A (en) * 1995-07-25 1996-09-17 Ciena Corporation Expandable wavelength division multiplexed optical communications systems
US5712932A (en) * 1995-08-08 1998-01-27 Ciena Corporation Dynamically reconfigurable WDM optical communication systems with optical routing systems
US5870216A (en) * 1995-10-26 1999-02-09 Trw Inc. Splitterless optical broadcast switch
US6005694A (en) * 1995-12-28 1999-12-21 Mci Worldcom, Inc. Method and system for detecting optical faults within the optical domain of a fiber communication network
US6108113A (en) * 1995-12-29 2000-08-22 Mci Communications Corporation Method and system for transporting ancillary network data
US5608825A (en) * 1996-02-01 1997-03-04 Jds Fitel Inc. Multi-wavelength filtering device using optical fiber Bragg grating
US5774245A (en) * 1996-07-08 1998-06-30 Worldcom Network Services, Inc. Optical cross-connect module
US6005697A (en) * 1996-07-23 1999-12-21 Macro-Vision Communications, L.L.C. Multi-wavelength cross-connect optical network
IT1283372B1 (en) * 1996-07-31 1998-04-17 Pirelli Cavi S P A Ora Pirelli DEVICE FOR THE INSERTION AND EXTRACTION OF OPTICAL SIGNALS
US5793909A (en) * 1996-09-09 1998-08-11 Lucent Technologies Inc. Optical monitoring and test access module
US5953141A (en) * 1996-10-03 1999-09-14 International Business Machines Corporation Dynamic optical add-drop multiplexers and wavelength-routing networks with improved survivability and minimized spectral filtering
US6201909B1 (en) * 1996-10-25 2001-03-13 Arroyo Optics, Inc. Wavelength selective optical routers
US5909295A (en) * 1996-11-06 1999-06-01 Li; Jinghui Hybrid bi-directional wavelength division multiplexing device
US5881199A (en) * 1996-12-02 1999-03-09 Lucent Technologies Inc. Optical branching device integrated with tunable attenuators for system gain/loss equalization
JP3068018B2 (en) * 1996-12-04 2000-07-24 日本電気株式会社 Optical wavelength division multiplex ring system
US6295149B1 (en) * 1997-01-15 2001-09-25 Pirelli Cavi E Sistemi S.P.A. System and method of telecommunication with wavelength division multiplexing comprising a demultiplexer
US6028689A (en) 1997-01-24 2000-02-22 The United States Of America As Represented By The Secretary Of The Air Force Multi-motion micromirror
JP3013799B2 (en) * 1997-01-28 2000-02-28 日本電気株式会社 Transmitter and receiver for WDM optical transmission
US6046833A (en) * 1997-02-10 2000-04-04 Optical Networks, Inc. Method and apparatus for operation, protection, and restoration of heterogeneous optical communication networks
US6097859A (en) * 1998-02-12 2000-08-01 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6154587A (en) * 1997-03-21 2000-11-28 Oki Electric Industry Co., Ltd. Optical cross connector apparatus
JP3102379B2 (en) * 1997-04-30 2000-10-23 日本電気株式会社 Monitoring and control method for WDM optical transmission system
US6101011A (en) * 1997-05-29 2000-08-08 Ciena Corporation Modulation format adjusting optical transponders
KR100265865B1 (en) 1997-06-16 2000-09-15 윤덕용 All-fiber acousto-optic tunable filter
US6151157A (en) 1997-06-30 2000-11-21 Uniphase Telecommunications Products, Inc. Dynamic optical amplifier
US6631018B1 (en) * 1997-08-27 2003-10-07 Nortel Networks Limited WDM optical network with passive pass-through at each node
US5995256A (en) * 1997-09-30 1999-11-30 Mci Communications Corporation Method and system for managing optical subcarrier reception
BR9813239A (en) * 1998-01-05 2000-10-10 Corning Inc Optical add / drop multiplexing device
JP3085274B2 (en) 1998-01-19 2000-09-04 日本電気株式会社 Optical transmitter
US5999288A (en) * 1998-02-02 1999-12-07 Telcordia Technologies, Inc. Connection set-up and path assignment in wavelength division multiplexed ring networks
US6351581B1 (en) * 1998-03-17 2002-02-26 Agere Systems Optoelectronics Guardian Corp. Optical add-drop multiplexer having an interferometer structure
US6169994B1 (en) * 1998-04-02 2001-01-02 Lucent Technologies, Inc. Method for creating and modifying similar and dissimilar databases for use in hardware equipment configurations for telecommunication systems
US20010054080A1 (en) * 1998-04-10 2001-12-20 William B. May Extensible storage of network device identification information
US6154728A (en) * 1998-04-27 2000-11-28 Lucent Technologies Inc. Apparatus, method and system for distributed and automatic inventory, status and database creation and control for remote communication sites
SE512226C2 (en) * 1998-06-25 2000-02-14 Ericsson Telefon Ab L M Wavelength selective switch and method for switching wavelength channels in an optical network
US6195187B1 (en) * 1998-07-07 2001-02-27 The United States Of America As Represented By The Secretary Of The Air Force Wavelength-division multiplexed M×N×M cross-connect switch using active microring resonators
US6212315B1 (en) 1998-07-07 2001-04-03 Lucent Technologies Inc. Channel power equalizer for a wavelength division multiplexed system
US6449073B1 (en) * 1998-07-21 2002-09-10 Corvis Corporation Optical communication system
US6067389A (en) * 1998-07-27 2000-05-23 Lucent Technologies Inc. Wavelength-selective optical cross-connect
US6466341B1 (en) * 1998-08-03 2002-10-15 Agere Systems Guardian Corp. Add/drop filter for a multi-wavelength lightwave system
GB2346280A (en) * 1998-10-22 2000-08-02 Hewlett Packard Co Optical switching interface using transponders
US6272154B1 (en) * 1998-10-30 2001-08-07 Tellium Inc. Reconfigurable multiwavelength network elements
US6256430B1 (en) * 1998-11-23 2001-07-03 Agere Systems Inc. Optical crossconnect system comprising reconfigurable light-reflecting devices
US6192782B1 (en) * 1998-12-31 2001-02-27 John W. Rogers Torque control means for hydraulic motor
US6263123B1 (en) 1999-03-12 2001-07-17 Lucent Technologies Pixellated WDM optical components
US6587470B1 (en) * 1999-03-22 2003-07-01 Cisco Technology, Inc. Flexible cross-connect with data plane
WO2000075788A1 (en) * 1999-05-26 2000-12-14 Fujitsu Network Communications, Inc. Network element management system
US6947670B1 (en) * 1999-06-30 2005-09-20 Lucent Technologies Inc. Optical add/drop arrangement for ring networks employing wavelength division multiplexing
US6192172B1 (en) * 1999-08-09 2001-02-20 Lucent Technologies Inc. Optical wavelength-space cross-connect switch architecture
JP2001053753A (en) * 1999-08-09 2001-02-23 Fujitsu Ltd Method for switching active/reserve line and atm exchange using the same
CA2285128C (en) * 1999-10-06 2008-02-26 Nortel Networks Corporation Switch for optical signals
US6501877B1 (en) * 1999-11-16 2002-12-31 Network Photonics, Inc. Wavelength router
US6192174B1 (en) * 1999-12-21 2001-02-20 Dicon Fiberoptics, Inc. Wavelength selection switches for optical application
EP1126650A3 (en) * 2000-02-18 2007-01-03 Ericsson AB Optical communication system
AU2001252889A1 (en) * 2000-03-07 2001-09-17 Corning Inc. A protection switch in a single two-fiber optical channel shared protection ring
JP2001268011A (en) * 2000-03-21 2001-09-28 Fujitsu Ltd Optical node system, and connection method for switch
US6631222B1 (en) * 2000-05-16 2003-10-07 Photuris, Inc. Reconfigurable optical switch
EP1162855B1 (en) * 2000-06-05 2005-12-07 PIRELLI CAVI E SISTEMI S.p.A. Optical WDM network having combined wavelength routing and fiber routing
US6754174B1 (en) * 2000-09-15 2004-06-22 Ciena Corporation Interface for communications among network elements
US6516105B1 (en) * 2000-10-10 2003-02-04 Teradyne, Inc. Optical backplane assembly and method of making same
US6288811B1 (en) * 2000-10-17 2001-09-11 Seneca Networks WDM optical communication system with channels supporting multiple data formats
US6678445B2 (en) * 2000-12-04 2004-01-13 Jds Uniphase Corporation Dynamic gain flattening filter
US6721509B2 (en) * 2000-12-05 2004-04-13 Avanex Corporation Self-adjusting optical add-drop multiplexer and optical networks using same
US6411412B1 (en) * 2000-12-08 2002-06-25 Seneca Networks WDM optical communication network with data bridging plural optical channels between optical waveguides
US7013084B2 (en) * 2001-02-28 2006-03-14 Lambda Opticalsystems Corporation Multi-tiered control architecture for adaptive optical networks, and methods and apparatus therefor
AU2002255763A1 (en) * 2001-03-16 2002-10-03 Photuris, Inc. Modular all-optical cross-connect
JP3798642B2 (en) * 2001-03-26 2006-07-19 富士通株式会社 WDM network management device

Also Published As

Publication number Publication date
KR20090106622A (en) 2009-10-09
CA2441045A1 (en) 2002-09-26
US20020159679A1 (en) 2002-10-31
JP2005502222A (en) 2005-01-20
US20100098406A1 (en) 2010-04-22
WO2002075369A2 (en) 2002-09-26
EP1371162A4 (en) 2010-01-06
CA2441303A1 (en) 2002-09-26
US20020145782A1 (en) 2002-10-10
KR20040000408A (en) 2004-01-03
KR20030083742A (en) 2003-10-30
CN1502183A (en) 2004-06-02
EP1368923A2 (en) 2003-12-10
KR100993182B1 (en) 2010-11-10
US20080166087A1 (en) 2008-07-10
US20090196549A1 (en) 2009-08-06
JP2004536485A (en) 2004-12-02
WO2002075369A3 (en) 2003-05-01
US7620323B2 (en) 2009-11-17
JP2004536484A (en) 2004-12-02
EP1368924A4 (en) 2010-01-06
CA2441059A1 (en) 2002-09-26
EP1371162A2 (en) 2003-12-17
AU2002255763A1 (en) 2002-10-03
CN1993915B (en) 2010-10-06
US20090142060A1 (en) 2009-06-04
US7738748B2 (en) 2010-06-15
AU2002254262A1 (en) 2002-10-03
US20020145779A1 (en) 2002-10-10
US20160142172A1 (en) 2016-05-19
KR20040052492A (en) 2004-06-23
EP1368923A4 (en) 2010-01-06
US7676157B2 (en) 2010-03-09
WO2002075999A2 (en) 2002-09-26
WO2002075999A3 (en) 2002-11-21
CN1993915A (en) 2007-07-04
EP1368924A1 (en) 2003-12-10
KR100993500B1 (en) 2010-11-11
WO2002075403A1 (en) 2002-09-26
US6614953B2 (en) 2003-09-02
US9258628B2 (en) 2016-02-09
CN1672351A (en) 2005-09-21
KR20090107549A (en) 2009-10-13
EP1368923B1 (en) 2013-04-24
WO2002075998A1 (en) 2002-09-26
US7469080B2 (en) 2008-12-23
US20020146198A1 (en) 2002-10-10
CN1596517A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
CA2441343A1 (en) Wavelength division multiplexed optical communication system having a reconfigurable optical switch and a tunable backup laser transmitter
US20100021162A1 (en) Wavelength division multiplexed optical communication system having a reconfigurable optical switch and a tunable backup laser transmitter
US5712932A (en) Dynamically reconfigurable WDM optical communication systems with optical routing systems
US5557439A (en) Expandable wavelength division multiplexed optical communications systems
US6631222B1 (en) Reconfigurable optical switch
US20090297097A1 (en) Reconfigurable optical switch
US7231147B1 (en) System and method of wavelength add/drop multiplexing having client configurability
US6956987B2 (en) Planar lightwave wavelength blocker devices using micromachines
US7801446B2 (en) Wavelength division multiplexed optical communication system with rapidly-tunable optical filters

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead