CA2446068C - Portable device comprising an acceleration sensor and method of generating instructions or advice - Google Patents

Portable device comprising an acceleration sensor and method of generating instructions or advice Download PDF

Info

Publication number
CA2446068C
CA2446068C CA2446068A CA2446068A CA2446068C CA 2446068 C CA2446068 C CA 2446068C CA 2446068 A CA2446068 A CA 2446068A CA 2446068 A CA2446068 A CA 2446068A CA 2446068 C CA2446068 C CA 2446068C
Authority
CA
Canada
Prior art keywords
portable device
acceleration sensor
pai
parameter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2446068A
Other languages
French (fr)
Other versions
CA2446068A1 (en
Inventor
Erik Petrus Nicolaas Damen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Move2Health Holding BV
Original Assignee
Move2Health Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Move2Health Holding BV filed Critical Move2Health Holding BV
Publication of CA2446068A1 publication Critical patent/CA2446068A1/en
Application granted granted Critical
Publication of CA2446068C publication Critical patent/CA2446068C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0686Timers, rhythm indicators or pacing apparatus using electric or electronic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • A61B5/221Ergometry, e.g. by using bicycle type apparatus
    • A61B5/222Ergometry, e.g. by using bicycle type apparatus combined with detection or measurement of physiological parameters, e.g. heart rate
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0028Training appliances or apparatus for special sports for running, jogging or speed-walking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/20Miscellaneous features of sport apparatus, devices or equipment with means for remote communication, e.g. internet or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities

Abstract

The invention pertains to a portable device comprising a housing, a display, a storage medium, at least one acceleration sensor, means for calculating an activity parameter based on the signal generated by the acceleration sensor, storing the calculated parameter in the storage medium, and showing the same in the display. The said parameter is the Physical Activity Index (PAI) or a derivative thereof.

Description

}

1906.2003 WO 4721-Aa/aa Portable device comprising an acceleration sensor and method of generating instructions or advice The invention pertains to a portable device comprising a housing, a display, a storage medium, at least one acceleration sensor, means for calculating an activity parameter based on the signal generated by the acceleration' sensor, storing the calculated parameter in the storage medium, and showing the same in the display. The invention further pertains to a method of generating instructions or advice on how to increase physical activity as well as to a computer program comprising program code means for performing all the steps of the said method.
An example of a device as described above is known.
from e.g. US patent 5,788,655, which relates to an exercise amount measuring device. This particular device calculates and displays total consumed calories, a remaining target calorie value, and 'a life activity, index, which is classified into e.g. one of three ranks (I `light', II
`medium', and III `a little heavy'). To calculate these parameters, gender, age, height, and weight should be inputted by means of switches on the device.
Similar devices are disclosed in US patent 5,989,200 en European patent application EP 0 797 169 Al.
US 6,135,951 and US 5,976,083 disclose a pedometer comprising a accelerometer subsystem. This subsystem and a heart beat subsystem are sampled and a moving average of acceleration is computed at each sample time. This moving average serves as a baseline for describing the acceleration waveform of a locomotor step.
Nowadays, many people are aware of the importance of healthy nutrition and sufficient exercise, yet appear unable to accomplish the same.

AMENDED SHEET
It is an object of the present invention to provide a device which stimulates (daily) physical activity through relatively uncomplicated and user-friendly means.
In accordance with an aspect of the present invention, there is a portable device comprising a housing, a display, a storage medium, at least one acceleration sensor, means for calculating an activity parameter based on a signal generated by the acceleration sensor, storing the calculated parameter in the storage medium, and showing the same in the display, wherein the said parameter is a Physical Activity Index (PAI) or a derivative thereof, which is calculated by multiplying an average of absolute values of the signal or samples of the signal of the acceleration sensor with at least one constant.
In another aspect, the present invention provides a method of generating instructions or advice on how to increase physical activity and tailored to objective needs and/or preferences of an individual, which method involves electronically obtaining a parameter concerning that individual and selecting, based on the parameter, one or more instructions or advice components from a database, wherein the parameter is the Physical Activity Index (PAI) or a derivative thereof.
In a further aspect, the present invention provides a computer program comprising program code means for performing all the steps of the method described above, when the program is run on a computer.
In a further aspect, the present invention provides a computer program product code means stored in a computer readable medium for performing the method described above, when the program is run on a computer.
It was surprisingly found that the PAI can be established readily, because the relation between the PAI and a processed signal or samples of a signal of the acceleration sensor is substantially linear.
For instance, PAI can be established by substracting an offset from the processed signals or sample and multiplying the result with a constant. Such a constant is preferably determined by measuring the oxygen consumption of several subjects. Personal data of a user, such as gender, age, height, and weight, need not be inputted thus further enabling straightforward construction 2a and enhancing ease of use. Also, the PAI is universal in that e.g. a PAI of 1.5 indicates a sedentary lifestyle independent of personal data, i.e. for a woman in her early twenties and a middleaged man alike. Thus, suitable instructions or advice on how to increase physical activity can be readily selected based on the measured PAI and competition between e.g. colleagues or family members is being provoked.
It is preferred that the device comprises an input/output connector which enables the transfer of at least some of the stored information to a computer that contains or is connected or connectable to an electronic database and/or an electronic algorithm.
The method of generating instructions or advice according to the invention involves electronically obtaining, from an individual, the Physical Activity Index (PAI) or a derivative thereof and selecting, based on this parameter, one or more instructions or advice components from a database. It is preferred that the said parameter is downloaded by a remote server system, which selects, based components from a database and wherein the selected items or a processed version thereof are subsequently uploaded.
The invention further pertains to a computer program comprising program code means for performing all the steps of this method. The computer program product may of course comprise both modules intended for implementation on a remote service system, e.g. located at a service provider, and modules intended for implementation on a local processing unit, such as a personal computer and/or portable computer device of some sort.
The Physical Activity Index (PAI), sometimes also referred to as Physical Activity Level (PAL), can be established by dividing the Total Energy Expenditure (TEE), i.e. the amount of energy that is consumed by a person during a selected period of time, e.g. a day, by the Basal Metabolic Rate (BMR), i.e. the amount of energy that is consumed by a person lying still on a bed for the same period of time. Typically, the PAI has the value of 1.0 when the person is lying on a bed, 1.5 when the person leads a sedentary life and 2.0 when the person has an active lifestyle.
It is noted that the TEE is roughly equal to the sum of the Activity Induced Energy Expenditure (AEE), the BMR, and the Diet Induced Energy Expenditure (DIE). The latter is usually equal to approximately 10% of the TEE.
Both AEE and BMR are proportional to the body weight of an individual. When compared to a relatively heavyweight person, a relatively lightweight person will consumes less energy both when in rest (BMR) and while performing a certain physical activity (AEE). In other words, the ratio of TEE to BMR, i.e. the PAI, is substantially independent of body weight. In this respect, the PAI and its derivatives differ from indices derived directly from AEE, such as joule or calorie consumption or an index proportional to such consumption. The latter indices require individual data (gender, age, height, and weight), whereas the device according to the present invention does not require such data.
An example of a preferred derivative of the PAI is the ratio of AEE to BMR, preferably multiplied by 100.
The invention will now be explained with reference to the drawings in which a preferred device and method according to the present invention are schematically depicted.
Figures 1A to 1C show respectively a front, rear and side view of a portable device according to the present invention.
Figures 2A and 2B show a cradle for receiving the device according to figure 1B.
Figure 3 is a block diagram of electrical circuitry for use in the device according the invention.
Figure 4 is a block diagram of preferred electrical circuitry for use in the device according the invention.
Figure 5 is a flowchart of a website where the method according to the invention has been implemented.
Figures lA to 1C show a preferred embodiment of the device according to the present invention, which embodiment will be referred to as activity monitor 1. The activity monitor 1 comprises a injection moulded housing 2 of a thermoplastic material such as PBT, a Liquid Crystal Display (LCD) 3, and four buttons 4 to 7. The rear side of the monitor comprises a bayonet catch 8 engaging a clip 9 for attaching the monitor 1 to an item of clothing and a cavity for accommodating a battery, which cavity is closed by means of a cover 10. It further comprises three I/O connectors, in this case butt contacts 11, 11', 11'' which, upon placing the monitor in a complementary cradle, e.g. a docking station 12 shown in Figures 2A and 23, contact three connectors 13, 13', 13'' in the docking station 12 and enable the transfer of information, e.g. by means of an RS-232 protocol, between the monitor 1 and a computer to which the docking station 12 is connected.
The LCD 3 features the time, the numerical value of the Physical Activity Index (PAI) averaged over one or more 5 selectable periods of time, and a segmented bar to graphically display the PAI within a specific range, e.g.
from 1.0 to 3.0, in a number of discrete steps, e.g. of 0.1.
Instead of PAI, derivatives of PAI, such as (PAI -1) x 100 or, if the Diet Induced Energy Expenditure (DIE) is to be excluded, (0,9 x PAI - 1) x 100, can be employed. When using these particular derivatives, a value of 0 means that the user has been at rest (at least for the selected period of time for establishing PAI), whereas a value of e.g. 100 respectively 90 indicates an active lifestyle.
Buttons 4 to 7 serve to display and adjust time (respectively button 4 and buttons 5/6) and switch between displaying the PAI over e.g. the last day and the last week (button 7).
Figure 3 shows a block diagram of an electrical circuitry for use in the activity monitor 1. The circuitry in this example comprises a single one-dimensional accelerometer 14, e.g. a so-called uniaxial piezo-electric accelerometer, which registers body movement of a wearer of the monitor 1 in the longitudinal direction or the antero-posterior and longitudinal directions. To achieve the latter, the accelerometer 14 is positioned at an angle of approximately 45 degrees to a horizontal position (as shown in figures lA and 13) of the monitor 1. The aforementioned clip 9 in figure 1C facilitates attachment of the monitor 1 to e.g. the belt of a wearer in such a way as to ensure a substantially horizontal position during most of the time, especially when the wearer is standing upright. As a matter of course, it is also possible to employ e.g. three sensors 14 (as depicted by dotted lines).
The accelerometer 14 generates, dependent on the movements of a wearer, which typically occur in a frequency range from 0.5 to 16 Hz and with an amplitude of less than 5G, an analogous signal, e.g. a voltage fluctuating in a range from OmV to 10mV. This signal is subsequently amplified by means of amplification circuitry 15 and converted to a digital sequence of numbers by means of an A/D converter 16 with a sample frequency of e.g. 32 Hz. A
dedicated microprocessor 17 calculates the average of the absolute value of the acceleration data over e.g. the last day and the last week. To obtain the PAI the average is multiplied by a metabolic factor reflecting the average oxygen consumption of relatively large number of experimental subjects and a sensor calibration factor.
Thus, to calculate the average value of the PAI
over a certain period of time, e.g. a day, the signal can be processed e.g. as follows. The absolute value of the signal, which fluctuates within the said range of from OmV to 10mV, is amplified by an amplification factor and sampled by the A/D converter 16, which then generates a sample value e.g.
an integer in a range from 0 to 255. Subsequently, the average of the sample values is calculated and multiplied by a metabolic factor, which can be established by comparing the said running average with true PAI values obtained by measuring oxygen consumption in one or more subjects in a manner which is known in itself. It is further preferred to employ a calibration factor to compensate for variations specific to the sensor in hand. For piezo-electric sensors variations were found to be 20% and, accordingly, the calibration factor is preferably in a range from 0.8 to 1.2.
The microprocessor 17 stores the calculated PAIs in a memory 18, such as a random access memory chip, and shows the information, selected by the wearer by means of the appropriate button 4, in the display 3.
Figure 4 comprises an advantageous embodiment, wherein the circuitry comprises a rectifier 19 which comprises four diodes and an operational amplifier and is connected to the output of the amplifier 15. An integrator 20, which comprises a capacitor circuit, is connected to the output of the rectifier 19 and accumulates the analogous signal from the same. Instead of sampling the acceleration at a relatively high rate of e.g. 32 Hz, one can now reduce this rate to e.g. 1 Hz and, accordingly, significantly lower the power consumption of the activity monitor 1 and extend battery-life. A further advantage resides in that the PAI
can be established with a high accuracy even when an low accuracy A/D converter (e.g. 8 bits) is being used.
Although the activity monitor 1 can be used as a stand-alone entity, which provides its user with accurate information of his or her activity, either relative to past activity of the user himself or relative to that of other people e.g. by means of the table or chart reflecting typical PAIs for specific persons (in terms of e.g.
profession, sport, age, gender etc.), it is preferably used in conjunction with a personal computer (PC) and/or a remote computer, e.g. a server system. In that case, the user can compare his or her PAI with that of numerous other users and automatically select instructions or advice components from a database or calculate a new PAI goal by means of an algorithm.
To this end, the docking station 12 is connected to a PC or a remote server system in which software has been installed which preferably recognises the presence of the activity monitor in a known manner and performs a number of actions, e.g. download a 32-bit unique identification code, download last docking date, download PAI values of e.g. the last months, synchronise the clock of the activity monitor 1 and that of the PC or server system, and upload the present docking date.
A flowchart of a preferred website, which is installed on the said server system and which can be accessed via the Internet by the user with a web browser, TM TM
such as Microsoft Explorer or Netscape Navigator or similar (future) means, is depicted in figure 5 and comprises a home page 0Ø This home page 0.0 shows several menus, which provide access to subpages of the website concerning, inter alia, the host, products of the host, health issues, registration, and login. The remainder of the home page 0.0 may comprise news items, advertisements, pictures, and the like-A personal coach page 1.0 forms the kernel of the website. This page 1.0 can be accessed via a registration page 1.1 or login pages 1.8 and 1.9. The former page 1.1 comprises an electronic form for gathering information from users of the activity monitor 1 who visit the website for the first time. Such information may comprise the name, address, city, country, weight, height, age, gender, and weight goal, and will be used by the personal coach page 1.0 to generate instructions and personalised advice. The registration page 1.1 further provides a username and password, which enables users to by-pass registration page 1.1 and enter the personal coach page 1.0 directly through login pages 1.8 and 1.9, and links the username information to the aforementioned unique address code. During login, the system compares the downloaded ID to the ID in the server so as to provided automatic login. The last docking date and most recent PAI values are used to update the database.
The personal goals of a user of the activity monitor 1 in terms of a desired activity level and a desired weight are calculated on a personal goals page 1.7. Such calculations can be based on the personal data of the customer, e.g., weight, height, age, and gender, as well as on other personal parameters that can be changed and/or updated on a preferences page 1.4 and/or on the average PAI
of the first week and/or a numerical parameter representing the motivation of the customer and determined by means if a questionnaire page 1.6. Upon approval of the user, the calculated goals are set to be reached at the end of a coacing period of e.g. six months. During this period, the personal coach page 1.0 provides information concerning the personal history of the user in terms of activity and body weight and advice comprising suggestions on a preferred PAI
selected on selector page 1.5 and activities required to reach the set personal goals, e.g. half an hour of walking every day or 5 km running every day.
Finally, the website comprises a links page 2.0 containing links to interesting pages that can help reach the personal goals, such a as a link to go to a page containing recipes which support a healthy lifestyle, a link to a service providing direct access to an instructor or dietician, and a link containing information on regional activities. If a goal is reached, the personal coach page 1.0 may start another page, which shows a message congratulating the user or sends an actual congratulations post card to the users' address. A special printer on the system could do this automatically.
The invention is not restricted to the above described embodiments which can be varied in a number of ways within the scope of the claims. For instance, the display device can be equipped with a rechargeable battery or even means for generating energy, such as a (piezo)electric generator which converts movement into electrical energy.

Claims (7)

1. A portable device comprising a housing, a display, a storage medium, at least one acceleration sensor, means for calculating an activity parameter based on a signal generated by the acceleration sensor, storing the calculated parameter in the storage medium, and showing the same in the display, wherein the said parameter is a Physical Activity Index (PAI) or a derivative thereof, which is calculated by multiplying an average of absolute values of the signal or samples of the signal of the acceleration sensor with at least one constant.
2. The portable device according to claim 1, wherein the said average is at least multiplied by a metabolic factor.
3. The portable device according to claim 1 or 2, wherein the said average is at least multiplied by a calibration factor which depends on the sensor.
4. The portable device according to any one of claims 1 to 3, wherein the device further comprises a rectifier for rectifying the signal generated by the acceleration sensor and a capacitor which is charged by the rectified signal.
5. The portable device according to any one of claims 1 to 4, wherein the device further comprises an input/output connector to enable the transfer of at least some of the stored information to a computer that contains or is connected or connectable to an electronic database or an electronic algorithm.
6. The portable device according to any one of claims 1 to 5, wherein the device further comprises a clip for attaching the device to an item of clothing of a wearer such that rotation of the device with respect to the wearer is substantially avoided and wherein the sensor is positioned at an angle in the range from 30 to 60 to the horizon when the wearer is standing upright.
7. The portable device according to claim 6, wherein said item of clothing is a belt.
CA2446068A 2001-05-07 2002-05-06 Portable device comprising an acceleration sensor and method of generating instructions or advice Expired - Fee Related CA2446068C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP01201653A EP1256316A1 (en) 2001-05-07 2001-05-07 Portable device comprising an acceleration sensor and method of generating instructions or advice
EP01201653.1 2001-05-07
PCT/EP2002/004968 WO2002091923A1 (en) 2001-05-07 2002-05-06 Portable device comprising an acceleration sensor and method of generating instructions or advice

Publications (2)

Publication Number Publication Date
CA2446068A1 CA2446068A1 (en) 2002-11-21
CA2446068C true CA2446068C (en) 2011-08-16

Family

ID=8180259

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2446068A Expired - Fee Related CA2446068C (en) 2001-05-07 2002-05-06 Portable device comprising an acceleration sensor and method of generating instructions or advice

Country Status (7)

Country Link
US (2) US7717866B2 (en)
EP (2) EP1256316A1 (en)
AT (1) ATE390083T1 (en)
CA (1) CA2446068C (en)
DE (1) DE60225794T2 (en)
ES (1) ES2301657T3 (en)
WO (1) WO2002091923A1 (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002255568B8 (en) * 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
EP1256316A1 (en) 2001-05-07 2002-11-13 Move2Health B.V. Portable device comprising an acceleration sensor and method of generating instructions or advice
AU2003201616A1 (en) * 2002-02-07 2003-09-02 Ecole Polytechnique Federale De Lausanne (Epfl) Body movement monitoring device
JP2006519378A (en) * 2003-02-07 2006-08-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and ergometer for determining a value representing acceleration
CN100409809C (en) * 2004-07-21 2008-08-13 松下电工株式会社 Physical activity measuring system
EP1618844B1 (en) * 2004-07-21 2011-04-27 Panasonic Electric Works Co., Ltd. Physical activity measuring system
KR20060008835A (en) * 2004-07-24 2006-01-27 삼성전자주식회사 Device and method for measuring physical exercise using acceleration sensor
KR100786703B1 (en) * 2004-07-24 2007-12-21 삼성전자주식회사 Device and method for measuring physical exercise using acceleration sensor
WO2006052765A2 (en) * 2004-11-04 2006-05-18 Smith & Nephew, Inc. Cycle and load measurement device
US7373820B1 (en) 2004-11-23 2008-05-20 James Terry L Accelerometer for data collection and communication
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
AU2006282828B2 (en) 2005-08-23 2013-01-31 Smith & Nephew, Inc Telemetric orthopaedic implant
DE102005043647A1 (en) * 2005-09-13 2007-03-29 Actimon Gmbh & Co. Kg Organism obesity monitoring system has motion sensors with data processing unit and comparator comparing motion acceleration and speed patterns with preset data bank
EP1813916B1 (en) * 2006-01-30 2014-04-30 STMicroelectronics Srl Inertial device with pedometer function and portable electronic appliance incorporating said inertial device
WO2008103181A1 (en) 2007-02-23 2008-08-28 Smith & Nephew, Inc. Processing sensed accelerometer data for determination of bone healing
AU2008296209B2 (en) 2007-09-06 2014-05-29 Smith & Nephew, Inc. System and method for communicating with a telemetric implant
ITBO20070701A1 (en) * 2007-10-19 2009-04-20 Technogym Spa DEVICE FOR ANALYSIS AND MONITORING OF THE PHYSICAL ACTIVITY OF A USER.
US7676332B2 (en) 2007-12-27 2010-03-09 Kersh Risk Management, Inc. System and method for processing raw activity energy expenditure data
US20090216629A1 (en) * 2008-02-21 2009-08-27 James Terry L System and Method for Incentivizing a Healthcare Individual Through Music Distribution
CN101738201B (en) * 2008-11-27 2012-04-18 英业达股份有限公司 System and method for editing walking program
US8253586B1 (en) 2009-04-24 2012-08-28 Mayfonk Art, Inc. Athletic-wear having integral measuring sensors
ITBO20100310A1 (en) 2010-05-17 2011-11-18 Technogym Spa SYSTEM FOR MONITORING THE PHYSICAL ACTIVITY OF A USER, PORTABLE MONITORING SUPPORT AND MONITORING METHOD.
US9310909B2 (en) 2010-09-30 2016-04-12 Fitbit, Inc. Methods, systems and devices for physical contact activated display and navigation
DE102010048763A1 (en) 2010-10-16 2012-04-19 Georg Geiser Method for evaluating moving sport activity by measuring and storing acceleration signals by sensors, involves examining moment of body, e.g. wrist electronically
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
US20120316458A1 (en) * 2011-06-11 2012-12-13 Aliphcom, Inc. Data-capable band for medical diagnosis, monitoring, and treatment
US10108783B2 (en) 2011-07-05 2018-10-23 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring health of employees using mobile devices
US9492120B2 (en) * 2011-07-05 2016-11-15 Saudi Arabian Oil Company Workstation for monitoring and improving health and productivity of employees
US9615746B2 (en) 2011-07-05 2017-04-11 Saudi Arabian Oil Company Floor mat system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
CN103781408B (en) * 2011-07-05 2017-02-08 沙特阿拉伯石油公司 Floor mat system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US10307104B2 (en) 2011-07-05 2019-06-04 Saudi Arabian Oil Company Chair pad system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
USD665679S1 (en) * 2011-07-27 2012-08-21 Omron Healthcare Co., Ltd. Activity monitor
USD665680S1 (en) * 2011-07-27 2012-08-21 Omron Healthcare Co., Ltd. Activity monitor
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
US9042596B2 (en) 2012-06-14 2015-05-26 Medibotics Llc Willpower watch (TM)—a wearable food consumption monitor
US9536449B2 (en) 2013-05-23 2017-01-03 Medibotics Llc Smart watch and food utensil for monitoring food consumption
US10314492B2 (en) 2013-05-23 2019-06-11 Medibotics Llc Wearable spectroscopic sensor to measure food consumption based on interaction between light and the human body
US9442100B2 (en) 2013-12-18 2016-09-13 Medibotics Llc Caloric intake measuring system using spectroscopic and 3D imaging analysis
US9254099B2 (en) 2013-05-23 2016-02-09 Medibotics Llc Smart watch and food-imaging member for monitoring food consumption
US20140180595A1 (en) * 2012-12-26 2014-06-26 Fitbit, Inc. Device state dependent user interface management
US9098991B2 (en) 2013-01-15 2015-08-04 Fitbit, Inc. Portable monitoring devices and methods of operating the same
EP2969058B1 (en) 2013-03-14 2020-05-13 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US9529385B2 (en) 2013-05-23 2016-12-27 Medibotics Llc Smart watch and human-to-computer interface for monitoring food consumption
US20150084282A1 (en) * 2013-09-25 2015-03-26 Hogsback Designs, Inc Systems and methods for pneumatically actuated displays for colored powder
EP3974036A1 (en) 2013-12-26 2022-03-30 iFIT Inc. Magnetic resistance mechanism in a cable machine
US9031812B2 (en) 2014-02-27 2015-05-12 Fitbit, Inc. Notifications on a user device based on activity detected by an activity monitoring device
WO2015138339A1 (en) 2014-03-10 2015-09-17 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US9449409B2 (en) * 2014-04-11 2016-09-20 Fitbit, Inc. Graphical indicators in analog clock format
US9449365B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Personalized scaling of graphical indicators
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US10568549B2 (en) 2014-07-11 2020-02-25 Amer Sports Digital Services Oy Wearable activity monitoring device and related method
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
KR102430941B1 (en) * 2015-08-11 2022-08-10 삼성전자주식회사 Method for providing physiological state information and electronic device for supporting the same
US10642955B2 (en) 2015-12-04 2020-05-05 Saudi Arabian Oil Company Devices, methods, and computer medium to provide real time 3D visualization bio-feedback
US9889311B2 (en) 2015-12-04 2018-02-13 Saudi Arabian Oil Company Systems, protective casings for smartphones, and associated methods to enhance use of an automated external defibrillator (AED) device
US10475351B2 (en) 2015-12-04 2019-11-12 Saudi Arabian Oil Company Systems, computer medium and methods for management training systems
US10628770B2 (en) 2015-12-14 2020-04-21 Saudi Arabian Oil Company Systems and methods for acquiring and employing resiliency data for leadership development
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10314514B2 (en) * 2016-05-29 2019-06-11 Ankon Medical Technologies (Shanghai) Co., Ltd. System and method for using a capsule device
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
US10824132B2 (en) 2017-12-07 2020-11-03 Saudi Arabian Oil Company Intelligent personal protective equipment
US10867321B1 (en) * 2018-07-16 2020-12-15 James D MacDonald-Korth Automatic login link for targeted users without previous account creation
CN112472052A (en) * 2020-12-21 2021-03-12 安徽华米智能科技有限公司 Weight prediction method, device and equipment based on personal motor function index (PAI)

Family Cites Families (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ131399A0 (en) 1999-06-30 1999-07-22 Silverbrook Research Pty Ltd A method and apparatus (NPAGE02)
US4101074A (en) * 1976-06-17 1978-07-18 The Bendix Corporation Fuel inlet assembly for a fuel injection valve
US4101071A (en) * 1977-04-04 1978-07-18 Carl Brejnik Electronic calorie counter
US4911427A (en) * 1984-03-16 1990-03-27 Sharp Kabushiki Kaisha Exercise and training machine with microcomputer-assisted training guide
US4951197A (en) 1986-05-19 1990-08-21 Amc Of America Weight loss management system
US4855942A (en) * 1987-10-28 1989-08-08 Elexis Corporation Pedometer and/or calorie measuring device and method
US4962469A (en) 1988-04-18 1990-10-09 Casio Computer Co., Ltd. Exercise measuring instrument
WO1990008361A1 (en) 1989-01-13 1990-07-26 The Scott Fetzer Company Apparatus and method for controlling and monitoring the exercise session for remotely located patients
US5410472A (en) 1989-03-06 1995-04-25 Ergometrx Corporation Method for conditioning or rehabilitating using a prescribed exercise program
US5108989A (en) 1990-04-04 1992-04-28 Genentech, Inc. Method of predisposing mammals to accelerated tissue repair
US5117444A (en) * 1990-07-30 1992-05-26 W. Ron Sutton High accuracy pedometer and calibration method
US5436228A (en) 1990-12-12 1995-07-25 Postlethwaite; Arnold E. Chemotactic wound healing peptides
US5197489A (en) * 1991-06-17 1993-03-30 Precision Control Design, Inc. Activity monitoring apparatus with configurable filters
WO1994002904A1 (en) 1992-07-21 1994-02-03 Hayle Brainpower Pty Ltd. Interactive exercise monitoring system
US6240393B1 (en) * 1998-06-05 2001-05-29 Health Pro Network, Inc. Aggregating and pooling weight loss information in a communication system with feedback
US6101478A (en) 1997-04-30 2000-08-08 Health Hero Network Multi-user remote health monitoring system
US5466200A (en) 1993-02-02 1995-11-14 Cybergear, Inc. Interactive exercise apparatus
US5527239A (en) 1993-02-04 1996-06-18 Abbondanza; James M. Pulse rate controlled exercise system
US6206829B1 (en) 1996-07-12 2001-03-27 First Opinion Corporation Computerized medical diagnostic and treatment advice system including network access
US5925001A (en) 1994-04-11 1999-07-20 Hoyt; Reed W. Foot contact sensor system
US6032530A (en) 1994-04-29 2000-03-07 Advantedge Systems Inc. Biofeedback system for sensing body motion and flexure
CA2149836C (en) 1994-05-23 1999-07-06 Sang Bae Choi Perforating device for dermal administration
DE19518932C2 (en) 1994-05-23 1999-03-18 Samsung Electro Mech Device for perforating the skin for the preparation of a transdermal medication
US5890997A (en) 1994-08-03 1999-04-06 Roth; Eric S. Computerized system for the design, execution, and tracking of exercise programs
EP0700661B1 (en) * 1994-09-07 2004-12-01 Omron Healthcare Co., Ltd. Exercise amount measuring device capable of displaying the amount of exercise to be performed further
IT1274053B (en) 1994-10-07 1997-07-14 Technogym Srl SYSTEM FOR THE PROGRAMMING OF TRAINING ON TOOLS AND GYMNASICS MACHINES.
JPH10508856A (en) 1994-11-15 1998-09-02 オスモティクス コーポレーション Skin care composition and method of applying the same
US5749372A (en) 1995-03-02 1998-05-12 Allen; Richard P. Method for monitoring activity and providing feedback
GB9505635D0 (en) * 1995-03-21 1995-05-10 Walker David J Activity recording device
US5593431A (en) * 1995-03-30 1997-01-14 Medtronic, Inc. Medical service employing multiple DC accelerometers for patient activity and posture sensing and method
US5702323A (en) 1995-07-26 1997-12-30 Poulton; Craig K. Electronic exercise enhancer
WO1997010567A1 (en) * 1995-09-12 1997-03-20 Omron Corporation Pedometer
US5931763A (en) 1995-10-05 1999-08-03 Technogym S.R.L. System for programming training on exercise apparatus or machines and related method
US5649968A (en) 1995-11-14 1997-07-22 Intermedics, Inc. Accelerometer-based rate-adaptive cardiac pacing with second generation signal processing
US5899963A (en) 1995-12-12 1999-05-04 Acceleron Technologies, Llc System and method for measuring movement of objects
US6122960A (en) * 1995-12-12 2000-09-26 Acceleron Technologies, Llc. System and method for measuring movement of objects
US5919149A (en) 1996-03-19 1999-07-06 Allum; John H. Method and apparatus for angular position and velocity based determination of body sway for the diagnosis and rehabilitation of balance and gait disorders
US6065138A (en) 1996-03-29 2000-05-16 Magnitude Llc Computer activity monitoring system
US5801755A (en) 1996-04-09 1998-09-01 Echerer; Scott J. Interactive communciation system for medical treatment of remotely located patients
US5813863A (en) 1996-05-01 1998-09-29 Sloane; Sharon R. Interactive behavior modification system
US5810747A (en) 1996-08-21 1998-09-22 Interactive Remote Site Technology, Inc. Remote site medical intervention system
US5973618A (en) 1996-09-25 1999-10-26 Ellis; Christ G. Intelligent walking stick
FI100924B (en) 1996-10-11 1998-03-13 Polar Electro Oy Telemetric measurement method and measurement system
CA2218242C (en) 1996-10-11 2005-12-06 Kenneth R. Fyfe Motion analysis system
US6039688A (en) 1996-11-01 2000-03-21 Salus Media Inc. Therapeutic behavior modification program, compliance monitoring and feedback system
US6145389A (en) 1996-11-12 2000-11-14 Ebeling; W. H. Carl Pedometer effective for both walking and running
US6151586A (en) 1996-12-23 2000-11-21 Health Hero Network, Inc. Computerized reward system for encouraging participation in a health management program
US5885231A (en) 1997-01-07 1999-03-23 The General Hospital Corporation Digital motor event recording system
US5807283A (en) 1997-01-27 1998-09-15 Ng; Kim Kwee Activity monitor
US5959529A (en) 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
US6063046A (en) 1997-04-11 2000-05-16 Allum; John H. Method and apparatus for the diagnosis and rehabilitation of balance disorders
US6050924A (en) 1997-04-28 2000-04-18 Shea; Michael J. Exercise system
US5976083A (en) * 1997-07-30 1999-11-02 Living Systems, Inc. Portable aerobic fitness monitor for walking and running
US6030404A (en) 1997-09-06 2000-02-29 Lawson; Alexis A. Skin penetration apparatus including multiple needle configuration
US6018705A (en) 1997-10-02 2000-01-25 Personal Electronic Devices, Inc. Measuring foot contact time and foot loft time of a person in locomotion
US6122340A (en) 1998-10-01 2000-09-19 Personal Electronic Devices, Inc. Detachable foot mount for electronic device
US6080106A (en) 1997-10-28 2000-06-27 Alere Incorporated Patient interface system with a scale
US20020002039A1 (en) * 1998-06-12 2002-01-03 Safi Qureshey Network-enabled audio device
DE69921040T2 (en) 1998-02-25 2006-03-09 Koninklijke Philips Electronics N.V. METHOD AND SYSTEM FOR MEASUREMENT OF PERFORMANCE DURING EXERCISE ACTIVITY
US6021351A (en) * 1998-05-11 2000-02-01 Cardiac Pacemakers, Inc. Method and apparatus for assessing patient well-being
US6045513A (en) * 1998-05-13 2000-04-04 Medtronic, Inc. Implantable medical device for tracking patient functional status
US6095991A (en) 1998-07-23 2000-08-01 Individual Monitoring Systems, Inc. Ambulatory body position monitor
US5967789A (en) 1998-07-30 1999-10-19 Smoke Stoppers International, Inc. Method and system for stopping or modifying undesirable health-related behavior habits or maintaining desirable health-related behavior habits
US6160478A (en) 1998-10-27 2000-12-12 Sarcos Lc Wireless health monitoring system
US6473483B2 (en) * 1998-10-28 2002-10-29 Nathan Pyles Pedometer
US6168569B1 (en) 1998-12-22 2001-01-02 Mcewen James Allen Apparatus and method for relating pain and activity of a patient
WO2000052604A1 (en) * 1999-03-05 2000-09-08 Stayhealty. Com System and method for on-line health monitoring and education
US6290646B1 (en) 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US7178718B2 (en) 1999-05-25 2007-02-20 Silverbrook Research Pty Ltd Methods and systems for object identification and interaction
US6743211B1 (en) 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6516749B1 (en) 1999-06-18 2003-02-11 Salasoft, Inc. Apparatus for the delivery to an animal of a beneficial agent
US6312363B1 (en) 1999-07-08 2001-11-06 Icon Health & Fitness, Inc. Systems and methods for providing an improved exercise device with motivational programming
US6997852B2 (en) 1999-07-08 2006-02-14 Icon Ip, Inc. Methods and systems for controlling an exercise apparatus using a portable remote device
US6918858B2 (en) 1999-07-08 2005-07-19 Icon Ip, Inc. Systems and methods for providing an improved exercise device with access to motivational programming over telephone communication connection lines
US6703939B2 (en) 1999-09-15 2004-03-09 Ilife Solutions, Inc. System and method for detecting motion of a body
US6454705B1 (en) 1999-09-21 2002-09-24 Cardiocom Medical wellness parameters management system, apparatus and method
US6835184B1 (en) 1999-09-24 2004-12-28 Becton, Dickinson And Company Method and device for abrading skin
EP1217942A1 (en) 1999-09-24 2002-07-03 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6571200B1 (en) * 1999-10-08 2003-05-27 Healthetech, Inc. Monitoring caloric expenditure resulting from body activity
WO2001028495A2 (en) * 1999-10-08 2001-04-26 Healthetech, Inc. Indirect calorimeter for weight control
US6273856B1 (en) 1999-10-19 2001-08-14 Cardiac Pacemakers, Inc. Apparatus and methods for METS measurement by accelerometer and minute ventilation sensors
US6714133B2 (en) 1999-12-15 2004-03-30 Koninklijke Philips Electronics N.V. Short range communication system
US6602191B2 (en) 1999-12-17 2003-08-05 Q-Tec Systems Llp Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US6513532B2 (en) * 2000-01-19 2003-02-04 Healthetech, Inc. Diet and activity-monitoring device
AU2001231117A1 (en) 2000-01-24 2001-07-31 Ambulatory Monitoring, Inc. System and method of monitoring and modifying human activity-based behavior
US20010048364A1 (en) 2000-02-23 2001-12-06 Kalthoff Robert Michael Remote-to-remote position locating system
US6322504B1 (en) 2000-03-27 2001-11-27 R And T, Llc Computerized interactive method and system for determining a risk of developing a disease and the consequences of developing the disease
US6692436B1 (en) 2000-04-14 2004-02-17 Computerized Screening, Inc. Health care information system
US6825777B2 (en) 2000-05-03 2004-11-30 Phatrat Technology, Inc. Sensor and event system, and associated methods
US6506152B1 (en) 2000-05-09 2003-01-14 Robert P. Lackey Caloric energy balance monitor
EP1159989A1 (en) 2000-05-24 2001-12-05 In2Sports B.V. A method of generating and/or adjusting a training schedule
EP1284642A4 (en) 2000-05-25 2005-03-09 Healthetech Inc Physiological monitoring using wrist-mounted device
US6578291B2 (en) 2000-06-06 2003-06-17 John Hirsch Shoe wear indicator
US6605038B1 (en) * 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US6699188B2 (en) 2000-06-22 2004-03-02 Guidance Interactive Technologies Interactive reward devices and methods
US6519495B1 (en) * 2000-08-15 2003-02-11 Cardiac Pacemakers, Inc. Rate-adaptive therapy with sensor cross-checking
US6377179B1 (en) 2000-08-17 2002-04-23 John G. Fulton Personal recovery system
US6590536B1 (en) 2000-08-18 2003-07-08 Charles A. Walton Body motion detecting system with correction for tilt of accelerometers and remote measurement of body position
US7108681B2 (en) 2000-10-16 2006-09-19 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
AU2002243370A1 (en) 2000-10-26 2002-06-24 Healthetech, Inc. Body supported activity and condition monitor
US6604419B2 (en) * 2000-12-07 2003-08-12 Bbc International, Ltd. Apparatus and method for measuring the maximum speed of a runner over a prescribed distance
US6805006B2 (en) 2000-12-07 2004-10-19 Bbc International, Ltd. Method and apparatus for measuring the maximum speed of a runner over a prescribed distance including a transmitter and receiver
KR20020050135A (en) 2000-12-20 2002-06-26 조명재 Compositions for prevention and alleviation of skin wrinkles
US20020013717A1 (en) 2000-12-28 2002-01-31 Masahiro Ando Exercise body monitor with functions to verify individual policy holder and wear of the same, and a business model for a discounted insurance premium for policy holder wearing the same
US6669600B2 (en) 2000-12-29 2003-12-30 Richard D. Warner Computerized repetitive-motion exercise logger and guide system
US20020099356A1 (en) 2001-01-19 2002-07-25 Unger Evan C. Transmembrane transport apparatus and method
US20030017848A1 (en) 2001-07-17 2003-01-23 Engstrom G. Eric Personalizing electronic devices and smart covering
US6819247B2 (en) 2001-02-16 2004-11-16 Locast Corporation Apparatus, method, and system for remote monitoring of need for assistance based on change in velocity
CN1287733C (en) 2001-03-06 2006-12-06 微石有限公司 Body motion detector
EP1256316A1 (en) 2001-05-07 2002-11-13 Move2Health B.V. Portable device comprising an acceleration sensor and method of generating instructions or advice
US6731213B1 (en) 2001-05-31 2004-05-04 Gateway, Inc. Method and apparatus for providing oral health data
US6605044B2 (en) 2001-06-28 2003-08-12 Polar Electro Oy Caloric exercise monitor
US20040260210A1 (en) 2003-06-23 2004-12-23 Engii (2001) Ltd. System and method for face and body treatment
US20040087992A1 (en) 2002-08-09 2004-05-06 Vladimir Gartstein Microstructures for delivering a composition cutaneously to skin using rotatable structures
DE10247459A1 (en) 2001-10-31 2003-07-03 Caterpillar Inc Health information analysis method and system
GB0128528D0 (en) 2001-11-29 2002-01-23 Koninkl Philips Electronics Nv Shoe based force sensor and equipment for use with the same
US6997882B1 (en) 2001-12-21 2006-02-14 Barron Associates, Inc. 6-DOF subject-monitoring device and method
US6928324B2 (en) * 2002-02-14 2005-08-09 Pacesetter, Inc. Stimulation device for sleep apnea prevention, detection and treatment
US7184962B2 (en) 2002-02-14 2007-02-27 Kcrs, Inc. System and method for managing employee absences
AUPS175402A0 (en) 2002-04-17 2002-05-23 Kinetic Performance Technology Pty Limited A method and apparatus for recording, monitoring and analysing a person's performance in the gym
US7442192B2 (en) 2002-07-14 2008-10-28 Knowlton Edward W Method and apparatus for surgical dissection
US7618345B2 (en) 2002-07-26 2009-11-17 Unisen, Inc. Exercise equipment with universal PDA cradle
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7156289B2 (en) 2002-10-25 2007-01-02 Silverbrook Research Pty Ltd Methods and systems for object identification and interaction
US6878121B2 (en) 2002-11-01 2005-04-12 David T. Krausman Sleep scoring apparatus and method
US20030126593A1 (en) 2002-11-04 2003-07-03 Mault James R. Interactive physiological monitoring system
US7110777B2 (en) 2002-11-06 2006-09-19 Charles Duncan Apparatus and method for tracking the location and position of an individual using an accelerometer
JP2004179274A (en) 2002-11-26 2004-06-24 Hitachi Ltd Optical semiconductor device
US7711577B2 (en) 2002-12-06 2010-05-04 Dust Larry R Method of optimizing healthcare services consumption
US20040133455A1 (en) 2002-12-19 2004-07-08 Mcmahon Kevin Lee System and method for glucose monitoring
US7154398B2 (en) 2003-01-06 2006-12-26 Chen Thomas C H Wireless communication and global location enabled intelligent health monitoring system
US20050107723A1 (en) 2003-02-15 2005-05-19 Wehman Thomas C. Methods and apparatus for determining work performed by an individual from measured physiological parameters
US7815549B2 (en) 2003-02-28 2010-10-19 Nautilus, Inc. Control system and method for an exercise apparatus
EP1680758A4 (en) 2003-04-07 2008-03-26 Silverbrook Res Pty Ltd Obtaining product item assistance
US7725842B2 (en) 2003-04-24 2010-05-25 Bronkema Valentina G Self-attainable analytic tool and method for adaptive behavior modification
US20050010439A1 (en) 2003-07-11 2005-01-13 Short Douglas J. Method of promoting employee wellness and health insurance strategy for same
GB0326387D0 (en) 2003-11-12 2003-12-17 Nokia Corp Fitness coach
US7278966B2 (en) 2004-01-31 2007-10-09 Nokia Corporation System, method and computer program product for managing physiological information relating to a terminal user
WO2005086866A2 (en) 2004-03-09 2005-09-22 Heartrate Games, Inc. User interactive exercise system
US20050228692A1 (en) 2004-04-08 2005-10-13 Hodgdon Darren W Incentive based health care insurance program
US20050234742A1 (en) 2004-04-08 2005-10-20 Hodgdon Darren W Incentive based health care insurance program
US7185983B2 (en) 2004-04-13 2007-03-06 Andrew Nelson System and method for displaying information on athletic eyewear
US20050245793A1 (en) 2004-04-14 2005-11-03 Hilton Theodore C Personal wellness monitor system and process
US8109858B2 (en) 2004-07-28 2012-02-07 William G Redmann Device and method for exercise prescription, detection of successful performance, and provision of reward therefore
US7373820B1 (en) 2004-11-23 2008-05-20 James Terry L Accelerometer for data collection and communication
US7254516B2 (en) 2004-12-17 2007-08-07 Nike, Inc. Multi-sensor monitoring of athletic performance
KR100653315B1 (en) 2005-01-04 2006-12-01 주식회사 헬스피아 Method for measuring exercise quantity using portable terminal
US7559877B2 (en) 2005-03-24 2009-07-14 Walkstyles, Inc. Interactive exercise device and system
US8376984B2 (en) 2005-07-14 2013-02-19 Terry L. James Apparatus, system, and method to deliver optimal elements in order to enhance the aesthetic appearance of the skin
US20070080446A1 (en) * 2005-10-07 2007-04-12 Maxita International Corp. Protective enclosure for handheld electronic device
US20070135690A1 (en) 2005-12-08 2007-06-14 Nicholl Richard V Mobile communication device that provides health feedback
US20070135264A1 (en) 2005-12-09 2007-06-14 Outland Research, Llc Portable exercise scripting and monitoring device
US20070219059A1 (en) 2006-03-17 2007-09-20 Schwartz Mark H Method and system for continuous monitoring and training of exercise
US20070260483A1 (en) 2006-05-08 2007-11-08 Marja-Leena Nurmela Mobile communication terminal and method
US7771320B2 (en) 2006-09-07 2010-08-10 Nike, Inc. Athletic performance sensing and/or tracking systems and methods
US20080086325A1 (en) 2006-10-04 2008-04-10 James Terry L System and method for managing health risks
US20080090703A1 (en) 2006-10-14 2008-04-17 Outland Research, Llc Automated Personal Exercise Regimen Tracking Apparatus
US20080155077A1 (en) 2006-12-20 2008-06-26 James Terry L Activity Monitor for Collecting, Converting, Displaying, and Communicating Data
US20080176655A1 (en) 2007-01-19 2008-07-24 James Terry L System and Method for Implementing an Interactive Online Community Utilizing an Activity Monitor
US7841966B2 (en) 2007-01-29 2010-11-30 At&T Intellectual Property I, L.P. Methods, systems, and products for monitoring athletic performance
US7502255B2 (en) 2007-03-07 2009-03-10 Sandisk Corporation Method for cache page copy in a non-volatile memory
US9028430B2 (en) 2007-04-19 2015-05-12 Nike, Inc. Footwork training system and method
US20080306763A1 (en) 2007-06-08 2008-12-11 James Terry L System and Method for Modifying Risk Factors by a Healthcare Individual at a Remote Location
US20080306762A1 (en) 2007-06-08 2008-12-11 James Terry L System and Method for Managing Absenteeism in an Employee Environment
US20090048493A1 (en) 2007-08-17 2009-02-19 James Terry L Health and Entertainment Device for Collecting, Converting, Displaying and Communicating Data
US20090093341A1 (en) 2007-10-03 2009-04-09 James Terry L Music and Accelerometer Combination Device for Collecting, Converting, Displaying and Communicating Data
US7676332B2 (en) 2007-12-27 2010-03-09 Kersh Risk Management, Inc. System and method for processing raw activity energy expenditure data
US20090204422A1 (en) 2008-02-12 2009-08-13 James Terry L System and Method for Remotely Updating a Health Station
US20090216629A1 (en) 2008-02-21 2009-08-27 James Terry L System and Method for Incentivizing a Healthcare Individual Through Music Distribution
US20100016742A1 (en) * 2008-07-19 2010-01-21 James Terry L System and Method for Monitoring, Measuring, and Addressing Stress

Also Published As

Publication number Publication date
WO2002091923A1 (en) 2002-11-21
CA2446068A1 (en) 2002-11-21
ES2301657T3 (en) 2008-07-01
EP1385428B1 (en) 2008-03-26
US20100185125A1 (en) 2010-07-22
EP1385428A1 (en) 2004-02-04
EP1256316A1 (en) 2002-11-13
DE60225794T2 (en) 2009-04-09
US7717866B2 (en) 2010-05-18
US20040249315A1 (en) 2004-12-09
DE60225794D1 (en) 2008-05-08
ATE390083T1 (en) 2008-04-15

Similar Documents

Publication Publication Date Title
CA2446068C (en) Portable device comprising an acceleration sensor and method of generating instructions or advice
JP5923857B2 (en) Activity meter
Dishman et al. Measurement of physical activity
US6675041B2 (en) Electronic apparatus and method for monitoring net calorie intake
JP2004227522A (en) Health management system
JP2004509652A (en) Diet and activity monitoring device
WO2009152608A1 (en) Mobile fitness and personal caloric management system
WO2001039089A1 (en) Health management system with connection to remote computer system
WO2010036488A1 (en) Personalized activity monitor and weight management system
WO2012124232A1 (en) Activity meter
GB2454705A (en) Wearable personal activity monitor and computer based coaching system for assisting in exercise
KR20100025300A (en) Healthcare service providing system managing body information and customized prescription information through network
JP3821744B2 (en) Life support system
JP4068965B2 (en) Exercise support apparatus and method
US20080004161A1 (en) Exercise monitoring device and motivational lottery system employing same
US8808146B2 (en) Activity meter
KR100466966B1 (en) Wrist watch for diet and health management and health management method using the wrist watch
WO2003060651A2 (en) Health improvement systems and methods
KR100562025B1 (en) System and method of managing body weight for an expert
JP2004121530A (en) Health care system
JP4024101B2 (en) Exercise guidance support system
JP6049424B2 (en) Health management system using activity measurement terminal
KR100552449B1 (en) A Digital Scale for Computer
AU2002316893A1 (en) Portable device comprising an acceleration sensor and method of generating instructions or advice
JP2003325491A (en) Exercise evaluating system

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20190506