CA2461852A1 - Radially expandable endoprosthesis device with two-stage deployment - Google Patents

Radially expandable endoprosthesis device with two-stage deployment Download PDF

Info

Publication number
CA2461852A1
CA2461852A1 CA002461852A CA2461852A CA2461852A1 CA 2461852 A1 CA2461852 A1 CA 2461852A1 CA 002461852 A CA002461852 A CA 002461852A CA 2461852 A CA2461852 A CA 2461852A CA 2461852 A1 CA2461852 A1 CA 2461852A1
Authority
CA
Canada
Prior art keywords
radially expandable
expandable endoprosthesis
endoprosthesis
deploying
annulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002461852A
Other languages
French (fr)
Inventor
Kevin S. Weadock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Inc
Original Assignee
Ethicon, Inc.
Kevin S. Weadock
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon, Inc., Kevin S. Weadock filed Critical Ethicon, Inc.
Publication of CA2461852A1 publication Critical patent/CA2461852A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0082Additional features; Implant or prostheses properties not otherwise provided for specially designed for children, e.g. having means for adjusting to their growth

Abstract

A radially expandable endoprosthesis device with a valve prosthesis (40) having a two-stage deployment capability. The valve prosthesis (40) includes a ring construction or annulus (42) made of a superelastic alloy with a bioresorbable material coating (44) thereon. The superelastic alloy and bioresorbable material (44) can be used to adjust the size of the valve prosthesis (40) in response to the growth of a pediatric patient.

Description

2 PCT/US02/30828 RADIALLY EXPANDABLE ENDOPROSTHESIS DEVICE
WITH TWO-STAGE DEPLOYMENT

BACKGROUND OF THE INVENTION
1. Field of the Invention The present invention relates to a radially expandable endoprosthesis device with an at least two stage deployment capability and, more particularly, pertains to an annularly expandable heart valve prosthesis which is adapted for the long-term treatment of valvular diseases in infants, children and adolescents.
Basically, radially expandable endoprosthesis devices are employed in connection with the insertion and positioning of stents or stent-grafts into corporeal vessels, such as arteries or the like, and generally are constituted of stainless steel or nitinol (nickel-titanium alloy) or similar alloys. In the instance in which an endoprothesis employed as a stem, it is adapted to counteract acute vessel spasms which are frequently encountered in the emplacement of nitinol (nickel-titanium alloy) stents in arteries or body vessels.
In coronary arteries, any secondary enlargement of the stem would be adapted to serve for offsetting contractile forces which may result from intimal hyperplasia;
however, the prior art pursuant to the state of the technology, does not address itself to this aspect.
When employed in connection with abdominal aortic aneurysms (AAA), current stent-graft devices merely concern themselves with anchoring devices the stent-graft in its location of emplacement.

Heretofore, in the prior art, the problems encountered the use of such endoprosthesis devices have been addressed by various methods and physical and biological means.
Thus, in intimal hyperplasia of coronary arteries, additional angioplasty, or in the use of chemicals and pharmaceutical preparates, such as various drugs or radio-isotopes, these may be readily employed in order to attempt to reduce the hyperplasia.
Furthermore, the emplacement of external bands around abdominal aortic aneurysms (AAA) which are treated with stent-grafts has also been employed in order to account for any aneurysmal progression which may occur at a site which has been thought to be free of disease. When employed in pediatric heart valve disease cases, secondary surgeries are frequently needed in order to replace the smaller-sized valve prosthesis as the infant or child grows, as a result of an increase in the heart valve sizes requiring larger-sized prosthesis, this being at times the cause of severe discomfort, and even morbidity and increased morbidity rates for such tender patients.
2. Discussion of the Prior Art As disclosed in Duerig et al. U.S. Patent No. 6,179,878, a composite self expanding stent device incorporates a restraining element, in which a restraint sleeve is generally formed of a shape memory alloy, such as binary nickel titanium alloy, referred to generally as nitinol, and wherein restraint can be provided in the form of either sleeve, covering a mesh or perforated sheet. In that instance, the restraining element can be formed of a polymeric material which, in any event is not considered to be possessed of a property to enable the stmt device to undergo multiple dimensionally changing configurations at predetermined intervals in time so as provided a device with an at least two-stage deployment in a patient.
Lenker et al. U.S. Patent No. 6,176,875 discloses an endoluminal prosthesis and methods in the use thereof, which provides for limited radial expansion in controlled mode. However, the stent-graft construction illustrated and described therein is primarily equipped with a belt which may frangible or expansible in order to allow for further or subsequent expansion of the implanted or emplaced stem-graft device. This device also fails to provide for a combination of super-elastic shape memory alloys such as nitinol, and bioresorbable medical materials which enable the devices to undergo at least a two-stage or multiple deplacement stages at predetermined intervals in time.
Finally, Lock et al. U.S. Patent No. 5,383,926 discloses an expandable endoprosthesis device which is constituted of the combination of a memory alloy, possibly such as nitinol, with an expansion limiting structure which is selectively removable in order two subsequently allow for further radial expansion of the emplaced device, whereby the expansion limiting structure can be constituted of a dissolvable or severable band-like material. Although this endoprosthesis device may generally incorporate bioresorbable materials, the device described in this patent is not adapted for heart valve prostheses, particularly such as are intended for pediatric applications, which will enable the treatment of valvular diseases in children, whereby the annulus of the heart valve prosthesis can be caused over periods of time to expand as the child grows, thereby
3 obviating the need for further surgical procedures normally required in order to substitute larger-sized heart valve prosthesis structures or devices in the growing patients.
SUMMARY OF THE INVENTION
Accordingly, in order to provide an endoprosthesis device which is adapted to essentially provide for a mufti-stage deployment and which facilitates a radially and annular expansion which may be required during continual use thereof, the inventive device, such as a stent, stent-graft, or pursuant to a prefer ed embodiment, a heart valve prosthesis particularly for pediatric case is drawn to a novel combination of super-elastic or shape memory alloys and bioresorbable materials, which enables the devices to undergo multiple or at least two-stage configurations at predetermined time intervals depending upon the type of material employed in conformance with the needs of patients in which the devices are deployed. The bioresorbable materials may also serve as reservoirs for therapeutic agents, such as antibiotics, anticoagulants, and cytostatic drugs.
In one aspect, the device may comprise a coronary stmt which is capable of having at least one deployment stage, and that is constituted of a superelastic material with a bioresorbable coating or constraint structure operatively combined therewith.
This type of stent may be suitable for counteracting or addressing problems relative to initmal hyperplasmia when utilized in coronary vessels, and can also be employed for the
4 stenting of other body vessels subjected to abdominal aortic aneurysms (AAA) when there is encountered the need to maintain contact with a dynamic vessel wall of a body vessel or lumen. In those last-mentioned instances, a stent for the counteracting the effects~of the aneurysms, when constituted of the combination of superelastic alloys and bioresorabable materials can offset post-deployment aneurismal dilatation.
In a particularly preferred embodiment of the invention, the endoprosthesis device, which is constituted of a combination of a superelastic alloy and bioresorabable material, is in the configuration of a heart valve prosthesis especially adapted for pediatric medical uses, and which can be made to expand in at least two-steps of its deployment as the infant or child grows, over an extended period of time. In that connection, the endoprosthesis device may be constructed so as to incorporate various types of polymer systems in order to afford multiple stage deployments, wherein particular types of polymers may degrade at time intervals of, for example, ranging 1 S from about 6 months to about 200 months after the implanting of the device in the pediatric patient. In particular, such a system is useful in long-term heart valve prostheses, whereas contrastingly another system may utilize a polymer which absorbs in 15 minutes and which is useful in implanting anastomotic devices.
Accordingly, it is a primary object of the present invention to provide an endoprosthesis device which is constituted of a combination of superelastic alloys and bioresorbable
5 materials which facilitates the devices to undergo multistage deployments at predetermined intervals while emplaced in the body vessels or lumens of patients.
Another object of the present invention is to provide an endoprosthesis device as described herein, wherein the device may undergo at least two-stage deployment so as to assume different or expanded annular or radial dimensions at predetermined time intervals responsive to degradation of bioresorbable components of the device which have been combined with a superelastic alloy.
A more specific object of the present invention is to provide an endoprosthesis device which is constituted of a heart valve prosthesis for pediatric medical applications, wherein the annulus of the valve prosthesis can be constructed so as to expand in at least two stages of deployment over periods of time during the growth of an infant or child, and wherein the device is constituted of a novel combination of superelastic alloy-materials and bioresorbable materials preferably selected from polymer systems.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
Reference may now be made to the following detailed description of embodiments of the invention, taken in conjunction with the accompanying drawings; in which:
Figures 1 a - 1 d disclose, generally diagrammically, cross-sectional transverse views in the stages of deployment of a coronary stent constituted of a superelastic alloy
6 combined with a bioresorabable restraining polymer which addresses itself to counteracting the effects of stenosis due to intimal hyperplasia;
Figures 2a - 2d illustrate; diagrammatically in longitudinal sectional views, various stages as to the manner in which a stent comprised of a superelastic alloy and S bioresorabable material can offset post-deployment residual aneurysmal dilation encountered which may be at the neck of a stmt-graft used for abdominal aortic aneurysms (AAA); and Figures 3a and 3b illustrate, respectively, the two-stage deployment offered by the construction of the endoprosthesis device as a heart valve possessing an expandable annular ring or neck portion, and which is especially adapted for use in long-term pediatric medical applications.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE
INVENTION
Reverting more specifically to Figures 1 a through 1 d of the drawings; Figure 1 a illustrates a transverse cross-sectional view through a coronary artery 10 in the pre-stenting stage; showing the interior buildup of plaque 12 along the artery wall 14.
Figure 1b illustrates the artery 10 shown in a post-stenting stage wherein there is illustrated a stent 16 forming a wall interiorly of the plaque 12 and vessel or coronary artery wall 14; whereby as shown in Figure 1 c there may be encountered in-stent restenosis caused by intimal hyperplasia tending to occlude the artery.

In contrast with the foregoing, Figure 1 d illustrates a stent 20 pursuant to the inventive construction incorporates the combination of a suitable bioresorabable restraining polymer 22 with a superelastic alloy 24 on which it may be coated, such as nitinol (nickel-titanium alloy) or the like which may address the effects of intimal hyperplasia.
In particular, the secondary radially expanded deployment of the stmt 20 as a result of the gradual absorption or degradation of the bioresorbable restraining polymer 22 which allows the superelastic alloy the freedom to expand, provides for an effective lumen or blood flow increase; whereby the body vessel diameter itself may increase only slightly.
The bioresorbable restraining polymers which may be employed in this connection may be PLA-PGA copolymer systems, polytyrosine systems, or other suitable polymer systems which can be modified to afford different absorption rates and degrading stages. It is also possible to use two different bioresorbable polymer systems in combination with each other (and with the superelastic alloy) which afford further secondary and tertiary deployment stages to the implanted device.
Referring to Figures 2a through 2d of the drawings, in Figure 2a there is illustrated a bifurcated blood vessel comprising aortic portion 24 extending between the heart and a pair of iliac branches 26a, 26b showing an abdominal aortic aneurysm 28 prior to stenting. As illustrated in Figure 2b, a suitable abdominal aortic aneurysm (AAA) stent or bifurcated aorto-iliac vascular prosthesis 30 which is constituted of the combination of the superelastic alloy material and bioresorbable polymers system or systems, which may be in the form of a stmt-graft construction possesses suitable anastomosis devices (not shown) adapted to exclude the aneurysm, is deployed in the body vessel or lumen.
As illustrated in Figure 2c of the drawings, in the event that the stent-graft structure does not include the bioresorbable materials, the device fails to exclude the aneurysm as a result of encountered post-deployment dilatation of the proximal neck 30a of the device; whereas contrastingly by utilizing the combined materials, such as the superelastic alloy and bioresorbable polymers of the invention, as shown in Figure 2d of the drawings, the resorption and degradation over time of the polymer material allows the stmt-graft to enter a second stage of an additional expansion, thereby forming a protection against the aneurysm and any potential failure of the implanted stent-graft structure or device.
Reverting to the preferred embodiment of the invention, as illustrated in Figures 3a and 3b of the drawings, this diagrammatically discloses a heart valve prosthetic device 40 which is particularly adapted for pediatric applications with infants, children or adolescents who are still subject to growth in heart and heart valve dimensions over protracted periods of time.
As shown in Figure 3a, the valve prosthesis 40 includes a ring construction or annulus 42 constituted in combination of a superelastic alloy, such as nitinol or the like, and a bioresorbable material 44 coated thereon which is adjusted for the growth of a pediatric patient. As implemented, the system of the material 44 utilizes a bioresorbable restraining polymer in combination with the superelastic alloy material 42, such as a PLA-PGA copolymer system, polytyrosine system, or other suitable polymer system or combinations thereof, which can be suitably modified for different absorption rates, such as by degrading, for example, at time intervals ranging from between about 6 months to 200 months, so as to allow for the second-stage in expansion of the prosthesis. As indicated, combinations of two different polymer systems can be employed to afford secondary and tertiary deployment stages at specified time intervals.
Thus, as shown in Figure 3a of the drawings, the annulus of the device as initially implanted in a child, for example of 2 years in age, may possesses a ring or neck diameter Do constituted of a prosthesis of a nitinol ring 42 coated with the polymer system 44.
The secondary expansion, as shown in Figure 3b, which is permitted by the present system, shows the heart valve prosthesis with a diameter of at least 1.1 Do expanded as a result of the polymer absorption, thereby enabling the valve device to be deployed in the body vessel or heart valve of the pediatric patient for extended periods of time during the growth of the patient, without necessitating further surgery for removal of the initial smaller device and substitution of a larger-sized heart valve device.
This clearly lowers the risk of possible morbidity or complications due to any second surgical procedure which have been required for the installation of a larger valve pursuant to the current state in the medical technology.
From the foregoing, it becomes clearly apparent that the invention, wherein in particular S a pediatric heart valve prosthesis is constituted of the combination of superelastic alloy, such as nitinol or the like, and bioresorbable materials comprising various polymers or polymer systems, counteracts deleterious or natural phenomena which may otherwise compromise the performance and efficacy of a two-stage deployable endoprosthetic device which is merely constituted of a superelastic alloy material without resorbable biological materials forming restraining elements degradable over specified periods of time.
While the invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.

Claims (32)

WHAT IS CLAIMED IS:
1. A radially expandable endoprosthesis having an at least two-stage deployment capability, said endoprosthesis comprising an annulus which subsequent to deployment in a patient is expandable from a first diameter to at least a second larger diameter within a specified interval of time.
2. A radially expandable endoprosthesis as claimed in Claim 1, wherein said annulus comprises a valve prosthesis.
3. A radially expandable endoprosthesis as claimed in Claim 2, wherein said valve prothesis comprises a heart valve prosthesis including a valve.
4. A radially expandable endoprosthesis as claimed in any one of the preceding claims, wherein said endoprosthesis is constituted of a combination of a superelastic alloy and a bioresorbable material.
5. A radially expandable endoprosthesis as claimed in Claim 4, wherein said superelastic alloy comprises nitinol.
6. A radially expandable endoprosthesis as claimed in Claim 4, wherein said bioresorbable material comprises a coating on said superelastic alloy.
7. A radially expandable endoprosthesis as claimed in Claim 4, wherein said bioresorbable material comprises a restraint means on said superelastic alloy.
8. A radially expandable endoprosthesis as claimed in Claim 4, wherein said bioresorbable material is constituted of a polymer system possessing specified rates of resorption so as to enable said annulus to enter said at least second stage of additional radial expansion.
9. A radially expandable endoprosthesis as claimed in Claim 4, wherein the specified interval of time for a resorption of the resorbable material is selected to be in the range of about 6 months to about 200 months at which said annulus expands to the at least second larger diameter.
10. A radially expandable endoprosthesic as claimed in Claim 9, wherein said at least second larger diameter is at least 1.1 times the size of said first diameter.
11. A radially expandable endoprosthesis as claimed in Claim 4, wherein said endoprosthesic comprises a coronary stent for the counteracting of restenosis.
12. A radially expandable endoprosthesis as claimed in Claim 4, wherein said endoprothesis comprises a stent for the stenting of aortic aneurysms.
13. A radially expandable endoprosthesis as claimed in Claim 4, wherein said bioresorbable material is selected to enable said annulus to undergo secondary and tertiary stages of expansion.
14. A radially expandable endoprosthesis as claimed in Claim 8, wherein said polymer system is selected from the group of materials consisting of PLA-PGA copolymer systems, polytyrosine systems, and combinations of differing polymer systems for controllably varying the resorption rates thereof.
15. A radially expandable endoprosthesis as claimed in Claim 8, wherein, said polymer system contains a therapeutic agent.
16. A radially expandable endoprosthesis as claimed in Claim 15, wherein said therapeutic agent selectively comprises an antibiotic, cytostatic or anticoagulant.
17. A method of deploying a radially expandable endoprosthesis having an at least two-stage deployment capability, said endoprosthesis comprising an annulus which subsequent to deployment in a patient is expandable from a first diameter to at least a second larger diameter within a specified interval of time.
18. A method of deploying a radially expandable endoprosthesis as claimed in Claim 17, wherein said annulus comprises a valve prosthesis.
19. A method of deploying a radially expandable endoprosthesis as claimed in Claim 18, wherein said valve prosthesis comprises a heart valve prosthesis including a valve.
20. A method of deploying a radially expandable endoprosthesis as claimed in any one of the preceding Claims 17 through 19, wherein said endoprosthesis is constituted of a combination of a superelastic alloy and a bioresorbable material.
21. A method of deploying radially expandable endoprosthesis as claimed in Claim 20, wherein said superelastic alloy comprises nitinol.
22. A method of deploying a radially expandable endoprosthesis as claimed in Claim 20, wherein said bioresorbable material comprises a coating on said superelastic alloy.
23. A method of deploying a radially expandable endoprosthesis as claimed in Claim 20, wherein said bioresorbable material comprises a restraint means on said superelastic alloy.
24. A method of deploying a radially expandable endoprosthesis as claimed in Claim 20, wherein said bioresorbable material is constituted of a polymer system possessing specified rates of resorption so as to enable said annulus to enter said at least second stage of additional radial expansion.
25. A method of deploying a radially expandable endoprosthesis as claimed in Claim 20, wherein the specified interval of time for a resorption of the resorbable material is selected to be in the range from about 6 months to about 200 months at which said annulus expands to the at least second larger diameter.
26. A method of deploying a radially expandable endoprosthesic as claimed in Claim 25, wherein said at least second larger diameter is at least 1.1 times the size of said first diameter.
27. A method of deploying a radially expandable endoprosthesis as claimed in Claim 20, wherein said endoprosthesic comprises a coronary stent for the counteracting of restenosis.
28. A method of deploying a radially expandable endoprosthesis as claimed in Claim 20, wherein said endoprothesis comprises a stent for the stenting of aortic aneurysms.
29. A method of deploying a radially expandable endoprosthesis as claimed in Claim 20, wherein said bioresorbable material is selected to enable said annulus to undergo secondary and tertiary stages of expansion.
30. A method of deploying a radially expandable endoprosthesis as claimed in Claim 24, wherein said polymer system is selected from the group of materials consisting of PLA-PGA copolymer systems, polytyrosine systems, and combinations of differing polymer systems for controllably varying the resorption rates thereof.
31. A method of deploying a radially expandable endoprosthesis as claimed in Claim 24, wherein said polymer system contains a therapeutic agent.
32. A method of deploying a radially expandable endoprosthesis as claimed in Claim 31, wherein said therapeutic agent selectively comprises an antibiotic, cytostatic or anticoagulant.
CA002461852A 2001-09-28 2002-09-27 Radially expandable endoprosthesis device with two-stage deployment Abandoned CA2461852A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/968,481 US20030065386A1 (en) 2001-09-28 2001-09-28 Radially expandable endoprosthesis device with two-stage deployment
US09/968,481 2001-09-28
PCT/US2002/030828 WO2003028592A1 (en) 2001-09-28 2002-09-27 Radially expandable endoprosthesis device with two-stage deployment

Publications (1)

Publication Number Publication Date
CA2461852A1 true CA2461852A1 (en) 2003-04-10

Family

ID=25514327

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002461852A Abandoned CA2461852A1 (en) 2001-09-28 2002-09-27 Radially expandable endoprosthesis device with two-stage deployment

Country Status (5)

Country Link
US (1) US20030065386A1 (en)
EP (1) EP1435879A4 (en)
JP (1) JP2005504585A (en)
CA (1) CA2461852A1 (en)
WO (1) WO2003028592A1 (en)

Families Citing this family (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006134A (en) 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US6692513B2 (en) 2000-06-30 2004-02-17 Viacor, Inc. Intravascular filter with debris entrapment mechanism
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
DE10010073B4 (en) * 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
FR2828263B1 (en) * 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US7137184B2 (en) * 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US9579194B2 (en) 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
CN101947146B (en) 2003-12-23 2014-08-06 萨德拉医学公司 Relocatable heart valve
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
US8349001B2 (en) * 2004-04-07 2013-01-08 Medtronic, Inc. Pharmacological delivery implement for use with cardiac repair devices
US20060025857A1 (en) 2004-04-23 2006-02-02 Bjarne Bergheim Implantable prosthetic valve
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
CA2583591C (en) 2004-10-02 2018-10-30 Christoph Hans Huber Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
US7186149B2 (en) 2004-12-06 2007-03-06 Commscope Solutions Properties, Llc Communications connector for imparting enhanced crosstalk compensation between conductors
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US7780723B2 (en) * 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
AU2006275788B2 (en) 2005-07-29 2012-07-26 Cvdevices, Llc. Devices and methods for controlling blood perfusion pressure using a retrograde cannula
US8128691B2 (en) * 2005-09-07 2012-03-06 Medtentia International Ltd. Oy Device and method for improving the function of a heart valve
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US20070078510A1 (en) 2005-09-26 2007-04-05 Ryan Timothy R Prosthetic cardiac and venous valves
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
DE102005052628B4 (en) * 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9078781B2 (en) 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
CN101415379B (en) 2006-02-14 2012-06-20 萨德拉医学公司 Systems for delivering a medical implant
WO2007123658A1 (en) 2006-03-28 2007-11-01 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US7867283B2 (en) * 2006-05-30 2011-01-11 Boston Scientific Scimed, Inc. Anti-obesity diverter structure
US8876894B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Leaflet-sensitive valve fixation member
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
WO2008047354A2 (en) 2006-10-16 2008-04-24 Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
JP5593545B2 (en) 2006-12-06 2014-09-24 メドトロニック シーブイ ルクセンブルク エス.アー.エール.エル. System and method for transapical delivery of a self-expanding valve secured to an annulus
WO2008103280A2 (en) 2007-02-16 2008-08-28 Medtronic, Inc. Delivery systems and methods of implantation for replacement prosthetic heart valves
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
AU2008250552B2 (en) * 2007-05-15 2012-03-08 Jenavalve Technology Inc. Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US8628566B2 (en) 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
US7972378B2 (en) 2008-01-24 2011-07-05 Medtronic, Inc. Stents for prosthetic heart valves
US8157852B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
EP2254512B1 (en) 2008-01-24 2016-01-06 Medtronic, Inc. Markers for prosthetic heart valves
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
US8317858B2 (en) * 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
WO2011104269A1 (en) 2008-02-26 2011-09-01 Jenavalve Technology Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
EP3915525A1 (en) 2008-02-28 2021-12-01 Medtronic, Inc. Prosthetic heart valve systems
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8696743B2 (en) 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
EP2520320B1 (en) 2008-07-01 2016-11-02 Endologix, Inc. Catheter system
WO2010031060A1 (en) 2008-09-15 2010-03-18 Medtronic Ventor Technologies Ltd. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
JP5607639B2 (en) 2008-10-10 2014-10-15 サドラ メディカル インコーポレイテッド Medical devices and systems
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
ES2551694T3 (en) 2008-12-23 2015-11-23 Sorin Group Italia S.R.L. Expandable prosthetic valve with anchoring appendages
EP2628465A1 (en) 2009-04-27 2013-08-21 Sorin Group Italia S.r.l. Prosthetic vascular conduit
US20100292779A1 (en) * 2009-05-15 2010-11-18 Helmut Straubinger Device for compressing a stent and a system as well as a method for loading a stent into a medical delivery system
EP3434225B1 (en) 2009-06-23 2023-11-01 Endospan Ltd. Vascular prosthesis for treating aneurysms
WO2011004374A1 (en) 2009-07-09 2011-01-13 Endospan Ltd. Apparatus for closure of a lumen and methods of using the same
US8808369B2 (en) 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US10856978B2 (en) 2010-05-20 2020-12-08 Jenavalve Technology, Inc. Catheter system
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
CN103002833B (en) 2010-05-25 2016-05-11 耶拿阀门科技公司 Artificial heart valve and comprise artificial heart valve and support through conduit carry interior prosthese
EP2611388B1 (en) 2010-09-01 2022-04-27 Medtronic Vascular Galway Prosthetic valve support structure
CA2808673C (en) 2010-09-10 2019-07-02 Symetis Sa Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US9579193B2 (en) 2010-09-23 2017-02-28 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
WO2012061809A2 (en) * 2010-11-06 2012-05-10 Mehr Medical Llc Methods and systems for delivering prostheses using rail techniques
US10321998B2 (en) 2010-09-23 2019-06-18 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
EP2486893B1 (en) 2011-02-14 2017-07-05 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
EP2680915B1 (en) 2011-03-01 2021-12-22 Endologix LLC Catheter system
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
WO2013009975A1 (en) 2011-07-12 2013-01-17 Boston Scientific Scimed, Inc. Coupling system for medical devices
WO2013030818A2 (en) 2011-08-28 2013-03-07 Endospan Ltd. Stent-grafts with post-deployment variable axial and radial displacement
US9549817B2 (en) 2011-09-22 2017-01-24 Transmural Systems Llc Devices, systems and methods for repairing lumenal systems
US9510947B2 (en) 2011-10-21 2016-12-06 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient
US9427339B2 (en) 2011-10-30 2016-08-30 Endospan Ltd. Triple-collar stent-graft
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
WO2013084235A2 (en) 2011-12-04 2013-06-13 Endospan Ltd. Branched stent-graft system
EP2842517A1 (en) 2011-12-29 2015-03-04 Sorin Group Italia S.r.l. A kit for implanting prosthetic vascular conduits
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US9770350B2 (en) 2012-05-15 2017-09-26 Endospan Ltd. Stent-graft with fixation elements that are radially confined for delivery
DE202013011734U1 (en) 2012-05-16 2014-04-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A catheter delivery system for inserting an expandable heart valve prosthesis and a medical device for treating a valvular defect
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
EP2991586A1 (en) 2013-05-03 2016-03-09 Medtronic Inc. Valve delivery tool
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
EP2853237A1 (en) 2013-09-25 2015-04-01 Universität Zürich Biological heart valve replacement, particularly for pediatric patients, and manufacturing method
US10603197B2 (en) 2013-11-19 2020-03-31 Endospan Ltd. Stent system with radial-expansion locking
US20170014115A1 (en) 2014-03-27 2017-01-19 Transmural Systems Llc Devices and methods for closure of transvascular or transcameral access ports
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
CA2967904C (en) 2014-12-18 2023-01-10 Endospan Ltd. Endovascular stent-graft with fatigue-resistant lateral tube
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
CN107530168B (en) 2015-05-01 2020-06-09 耶拿阀门科技股份有限公司 Device and method with reduced pacemaker ratio in heart valve replacement
CN107624056B (en) 2015-06-30 2020-06-09 恩朵罗杰克斯股份有限公司 Locking assembly and related system and method
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
WO2017004377A1 (en) 2015-07-02 2017-01-05 Boston Scientific Scimed, Inc. Adjustable nosecone
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
EP3349687B1 (en) 2015-09-15 2020-09-09 THE UNITED STATES OF AMERICA, represented by the S Devices for effectuating percutaneous glenn and fontan procedures
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
EP4183371A1 (en) 2016-05-13 2023-05-24 JenaValve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
WO2018226915A1 (en) 2017-06-08 2018-12-13 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
CN111163729B (en) 2017-08-01 2022-03-29 波士顿科学国际有限公司 Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11076954B2 (en) 2017-09-21 2021-08-03 The Cleveland Clinic Foundation Gradually-expandable stent apparatus and method
US11246625B2 (en) 2018-01-19 2022-02-15 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
JP7055882B2 (en) 2018-01-19 2022-04-18 ボストン サイエンティフィック サイムド,インコーポレイテッド Guidance mode indwelling sensor for transcatheter valve system
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
WO2019165394A1 (en) 2018-02-26 2019-08-29 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
CN112399836A (en) 2018-05-15 2021-02-23 波士顿科学国际有限公司 Replacement heart valve commissure assemblies
WO2019224577A1 (en) 2018-05-23 2019-11-28 Sorin Group Italia S.R.L. A cardiac valve prosthesis
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US10702407B1 (en) 2019-02-28 2020-07-07 Renata Medical, Inc. Growth stent for congenital narrowings
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
US11937823B2 (en) 2019-07-09 2024-03-26 Venacore Inc. Gradually restricting vascular blood flow

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3839741A (en) * 1972-11-17 1974-10-08 J Haller Heart valve and retaining means therefor
DE3230858C2 (en) * 1982-08-19 1985-01-24 Ahmadi, Ali, Dr. med., 7809 Denzlingen Ring prosthesis
US5411552A (en) * 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
DK124690D0 (en) * 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
SK41493A3 (en) * 1990-10-29 1993-08-11 Procter & Gamble Sanitary napkin having components capable of separation in use
US5234457A (en) * 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5383926A (en) * 1992-11-23 1995-01-24 Children's Medical Center Corporation Re-expandable endoprosthesis
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5824044A (en) * 1994-05-12 1998-10-20 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system
US6217610B1 (en) * 1994-07-29 2001-04-17 Edwards Lifesciences Corporation Expandable annuloplasty ring
AU719980B2 (en) * 1995-02-22 2000-05-18 Menlo Care, Inc. Covered expanding mesh stent
US6818014B2 (en) * 1995-03-01 2004-11-16 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US5843158A (en) * 1996-01-05 1998-12-01 Medtronic, Inc. Limited expansion endoluminal prostheses and methods for their use
EP0955954B1 (en) * 1996-01-05 2005-03-16 Medtronic, Inc. Expansible endoluminal prostheses
DE19624948A1 (en) * 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prosthetic heart valve
US5830217A (en) * 1996-08-09 1998-11-03 Thomas J. Fogarty Soluble fixation device and method for stent delivery catheters
US6086610A (en) * 1996-10-22 2000-07-11 Nitinol Devices & Components Composite self expanding stent device having a restraining element
US6152956A (en) * 1997-01-28 2000-11-28 Pierce; George E. Prosthesis for endovascular repair of abdominal aortic aneurysms
US5855597A (en) * 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US5972029A (en) * 1997-05-13 1999-10-26 Fuisz Technologies Ltd. Remotely operable stent
US5899935A (en) * 1997-08-04 1999-05-04 Schneider (Usa) Inc. Balloon expandable braided stent with restraint
US5957975A (en) * 1997-12-15 1999-09-28 The Cleveland Clinic Foundation Stent having a programmed pattern of in vivo degradation
US6336937B1 (en) * 1998-12-09 2002-01-08 Gore Enterprise Holdings, Inc. Multi-stage expandable stent-graft
US6350277B1 (en) * 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6458153B1 (en) * 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6406493B1 (en) * 2000-06-02 2002-06-18 Hosheng Tu Expandable annuloplasty ring and methods of use
US7510572B2 (en) * 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US20020103526A1 (en) * 2000-12-15 2002-08-01 Tom Steinke Protective coating for stent
US6613077B2 (en) * 2001-03-27 2003-09-02 Scimed Life Systems, Inc. Stent with controlled expansion

Also Published As

Publication number Publication date
EP1435879A4 (en) 2006-08-23
US20030065386A1 (en) 2003-04-03
JP2005504585A (en) 2005-02-17
EP1435879A1 (en) 2004-07-14
WO2003028592A1 (en) 2003-04-10

Similar Documents

Publication Publication Date Title
US20030065386A1 (en) Radially expandable endoprosthesis device with two-stage deployment
EP1933761B1 (en) Inflatable bifurcation stent
US5578075A (en) Minimally invasive bioactivated endoprosthesis for vessel repair
US5449382A (en) Minimally invasive bioactivated endoprosthesis for vessel repair
EP1372530B1 (en) Stent with controlled expansion
US7637940B2 (en) Stent with bioabsorbable membrane
US6969401B1 (en) Endovascular prosthesis
US8002816B2 (en) Prosthesis for implantation in aorta and method of using same
JP5458324B2 (en) Thin medical device
US20020165601A1 (en) Bioabsorbable stent-graft and covered stent
US20020133221A1 (en) Expandable intraluminal graft
US20050222671A1 (en) Partially biodegradable stent
US20030045923A1 (en) Hybrid balloon expandable/self expanding stent
JPH10328216A (en) Stent for treating bifurcate vessel and stent graft
WO2009120458A2 (en) Stent prosthesis having select flared crowns
JP2008541840A (en) Selective treatment of side branch petals of stent
CA2618215A1 (en) Stent with expanding side branch geometry
US7556643B2 (en) Graft inside stent
JP2007508900A (en) Natural tissue stent
CN110868960B (en) Endovascular prosthesis
US20090259299A1 (en) Side Branch Stent Having a Proximal Flexible Material Section
AU2002228982A1 (en) Stent with controlled expansion

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead