CA2463588C - Supported polymerization catalysts comprising a polyvalent lewis base ligand - Google Patents

Supported polymerization catalysts comprising a polyvalent lewis base ligand Download PDF

Info

Publication number
CA2463588C
CA2463588C CA2463588A CA2463588A CA2463588C CA 2463588 C CA2463588 C CA 2463588C CA 2463588 A CA2463588 A CA 2463588A CA 2463588 A CA2463588 A CA 2463588A CA 2463588 C CA2463588 C CA 2463588C
Authority
CA
Canada
Prior art keywords
process according
group
alkyl
metal complex
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2463588A
Other languages
French (fr)
Other versions
CA2463588A1 (en
Inventor
Joseph N. Coalter Iii
Jan W. Van Egmond
Lewis J. Fouts, Jr.
Roger B. Painter
Paul C. Vosejpka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CA2463588A1 publication Critical patent/CA2463588A1/en
Application granted granted Critical
Publication of CA2463588C publication Critical patent/CA2463588C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/147Copolymers of propene with monomers containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/30Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising olefins as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes
    • C09K2200/062Polyethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Abstract

A supported catalyst composition and process for preparing high molecular weight polymers of one or more addition polymerizable monomers, especially propylene, said composition comprising: 1) a substrate comprising the reaction product of a solid, particulated, high surface area, metal oxide, metalloid oxide, or a mixture thereof and an organoaluminum compound, 2) a Group 4 metal complex of a polyvalent, Lewis base ligand; and optionally, 3) an activating cocatalyst for the metal complex.

Description

SUPPORTED POLYMERIZATION CATALYSTS COMPRISING
A POLYVALENT LEWIS BASE LIGAND

Background of the Invention The present invention relates to supported olefin polymerization catalysts and to a process for preparing polypropylene and other olefin polymers therefrom. The resulting polymers are well known commercially and may be usefully employed in the preparation of solid articles such as moldings, films, sheets and foamed objects by molding, extruding or other processes. The resulting products include components for automobiles, such as bumpers; packaging materials; and other applications.

In USP's 6,320,005 and 6,103,657 certain transition metal amine donor complexes for use as components of olefin polymerization catalysts were disclosed. In WO
02/38628 additional description of such Group 4 metal complexes containing "spectator ligands"
such as amino-substituted cyclic amine compounds were disclosed. In the latter publication the use of supports such as silica or alumina for preparing heterogeneous versions of such metal complexes was taught.
Summary of the Invention According to the present invention there are now provided a supported, heterogeneous catalyst composition for use in polymerization of addition polymerizable monomers, especially propylene, to form high molecular weight polymers, comprising:
1) a substrate comprising the reaction product of a solid, particulated, high surface area, metal oxide, metalloid oxide, or a mixture thereof and an organoaluminum compound, 2) a Group 4 metal complex of a polyvalent, Lewis base ligand; and optionally, 3) an activating cocatalyst for the metal complex.

In a further embodiment of the present invention there is provided a process for preparing high molecular weight polymers of one or more addition polymerizable monomers, especially propylene or mixtures of ethylene and propylene, comprising contacting one or more addition polymerizable monomers under addition polymerization conditions with a catalyst composition comprising:
1) a substrate comprising the reaction product of a solid, particulated, high surface area, metal oxide, metalloid oxide, or a mixture thereof and an organoaluminum compound, 2) a Group 4 metal complex of a polyvalent, Lewis base ligand; and optionally, 3) an activating cocatalyst for the metal complex.

In an embodiment of the invention, there is provided a process for preparing high molecular weight propylene homopolymers or copolymers of propylene and ethylene, said process comprising contacting propylene and optionally from 0.001 to 10 percent of the total monomer weight of ethylene under addition polymerization conditions with a supported, heterogeneous catalyst composition comprising: 1) a substrate comprising the reaction product of a solid, particulated, high surface area, metal oxide, metalloid oxide, or a miture thereof and an organoaluminum compound, 2) a Group 4 metal complex of a polyvalent, Lewis base ligand; and optionally, 3) an activating cocatalyst for the metal complex.

Detailed Description of the Invention All references to the Periodic Table of the Elements herein shall refer to the Periodic Table of the Elements, published and copyrighted by CRC Press, Inc., 1999. Also, any references to a Group or Groups shall be to the Groups or Groups reflected in this Periodic Table of the Elements using the ILrPAC system for numbering groups.

The term "comprising" and derivatives thereof is not intended to exclude the presence of any additional component, step or procedure, whether or not the same is disclosed herein. In order to avoid any doubt, all compositions claimed herein through use of the term "comprising" may include any additional additive, adjuvant, or compound whether polymeric or otherwise, unless stated to the contrary. In contrast, the term, "consisting essentially of"
excludes from the scope of any succeeding recitation any other component, step or procedure, excepting those that are not essential to operability. The term "consisting of excludes any component, step or procedure not specifically delineated or listed. The term "or", unless stated otherwise, refers to the listed members individually as well as in any combination.

The term "polymer", includes both homopolymers, that is, polymers prepared from a single reactive compound, and copolymers, meaning polymers prepared by reaction of at least two polymer forming, reactive, monomeric compounds. More specifically, the term "polypropylene"
includes homopolymers of propylene and copolymers of propylene and one or more olefins, with the proviso that if the comonomer comprises ethylene, at least 60 percent of the polymer units must be derived from propylene, that is, a methyl- substituted ethylene group. The term "crystalline" if employed, refers to a polymer that exhibits an X-ray diffraction pattern at 25 C and possesses a first order transition or crystalline melting point (Tm). The term may be used interchangeably with the term "semicrystalline".

Suitable solid, particulated, high surface area, metal oxide, metalloid oxide, or mixtures thereof (interchangeably referred to herein as an inorganic oxide) for use in the preparation of component 1) include: talc, silica, alumina, magnesia, titania, zirconia, Sn203, aluminosilicates, borosilicates, clays, and mixtures thereof. Inorganic oxides suitable for the present invention preferably have a surface area as determined by nitrogen porosimetry using the B.E.T. method from 10 to 1000 m2/g, and preferably from 100 to 600 m2/g. The pore volume of the inorganic oxide as well as the resulting catalyst composition, as determined by nitrogen adsorption, is typically up to 5 -2a-cm3/g, advantageously between 0.1 and 3 cm3/g, preferably from 0.2 to 2 cm3/g.
The average particle size is chosen to fit the desired application, as explained here-in-after, and typically is from 0.1 to 500 m, preferably from 1 to 200 m, more preferably 10 to 100 m.

Preferred inorganic oxides for use in the present invention include highly porous silicas, aluminas, aluminosilicates, and mixtures thereof. The most preferred support material is silica.
The support material may be in granular, agglomerated, pelletized, or any other physical form.
Suitable materials include, but are not limited to, silicas available from Grace Davison (division of W.R. Grace & Co.) under the designations SD 3216.30, Davison Syloid TM245, Davison 948 and Davison 952, and from Crossfield Corporation under the designation ES70, and from Degussa AG
under the designation Aerosil TM812; and aluminas available from Akzo Chemicals Inc. under the designation KetzenTM.

The inorganic oxide is preferably first dehydrated or dried, by heating at temperatures up to 800 C, as is well known in the art, to remove physi-sorbed water, oxygen, carbon dioxide, or other molecules. Alternatively however, in one embodiment the inorganic oxide may initially contain small quantities of water, up to 20 weight percent, which are carefully reacted with a trialkylaluminum compound, especially trimethylaluminum, to prepare alumoxane in situ on the surface of the inorganic oxide. Suitable thermal treatments, if employed, are heating at 100 C to 1000 C, preferably at 200 C to 850 C in an inert atmosphere or under reduced pressure. Typically, this treatment is carried out for 10 minutes to 72 hours, preferably from 0.5 hours to 24 hours.

The solid inorganic oxide is thereafter treated with the organoaluminum compound according to known techniques. Suitable organoaluminum compounds include the well known trihydrocarbyl aluminum compounds, such as trialkylaluminums, especially trimethylaluminum, triethylaluminum, and triisbutylaluminum; trihalohydrocarbyl aluminum compounds, such as tris(pentaflurorphenyl)aluminum; and oxygen containing aluminum compounds, such as alumoxanes.

Suitable alumoxanes for treatment of the inorganic oxide supports herein include polymeric or oligomeric alumoxanes, especially methylalumoxane, and neutral Lewis acid modified polymeric or oligomeric alumoxanes, such as alkylalumoxanes modified by addition of a C1_30 hydrocarbyl substituted Group 13 compound, especially a tri(hydrocarbyl)aluminum- or tri(hydrocarbyl)boron compound, or a halogenated (including perhalogenated) derivative thereof, having from 1 to 10 carbons in each hydrocarbyl or halogenated hydrocarbyl group, more especially a trialkylaluminum compound, a perfluorinated tri(aryl)boron compound, or a perfluorinated tri(aryl)aluminum compound. Examples include triisobutyl aluminum- or tri-n-butyl aluminum-modified methylalumoxane, sometimes referred to as modified methalumoxane, or MMAO. The most preferred alumoxane for treatment of the inorganic oxide support is methalumoxane.

The inorganic oxide is treated with the organoaluminum compound by contacting a solution or dispersion thereof with the solid inorganic oxide, optionally at an elevated temperature, in the substantial absence of interfering substances such as oxygen, water or carbon dioxide. The organoaluminum compound is desirably dissolved or dispersed in an inert liquid, such as a hydrocarbon, and the inorganic oxide material immersed, coated, sprayed, or otherwise brought into contact with the solution or dispersion for an appropriate contact period from one minute to several days. The resulting solid may be recovered and devolatilized or rinsed with an inert diluent, especially an aliphatic hydrocarbon to remove excess organoaluminum compound, if desired, prior to use. Typically the quantity of organoaluminum compound used with respect to inorganic oxide is sufficient to provide a concentration of from 0.1 to 50 mol per g of inorganic oxide, preferably from 1 to 10 gmol/g. The quantity of organoaluminum compound employed is desirably sufficient to saturate the available surface of the support without depositing a significant quantity of material that is capable of being removed by contact with an aliphatic hydrocarbon liquid. Desirably no more than 10 percent, preferably no more than 5 percent, and most preferably no more than 1 percent of the treated support is removed by contacting with hexane at 25 C
for 15 minutes.
Suitable metal complexes of polyvalent Lewis base ligands for use in the present invention include Group 4 metal derivatives, especially hafnium derivatives of hydrocarbylamine substituted heteroaryl compounds of the formula R'HN-T-R2 (I), said complexes corresponding to the formula:

NI., TNI R2 Rl (IA) MXx wherein:

Rl is selected from alkyl, cycloalkyl, heteroalkyl, cycloheteroalkyl, aryl, and inertly substituted derivatives thereof containing from 1 to 30 atoms not counting hydrogen;

T is a divalent bridging group of from 1 to 20 atoms other than hydrogen, preferably a mono- or di- C1_20 hydrocarbyl substituted methylene or silane group, and R2 is a C6_20 heteroaryl group containing Lewis base functionality, especially a pyridin-2-yl-or substituted pyridin-2-yl group, and in the metal complex, M is the Group 4 metal, preferably hafnium, X is an anionic, neutral or dianionic ligand group, x is a number from 0 to 5 indicating the number of such X groups, and bonds, optional bonds and electron donative interactions are represented by lines, dotted lines and arrows respectively.

Preferred complexes are those wherein ligand formation results from hydrogen elimination from the amine group and optionally from the loss of one or more additional groups, especially from R2. In addition, electron donation from the Lewis base functionality, preferably an electron pair, provides additional stability to the metal center. Preferred examples of the foregoing polyfunctional Lewis base compounds and the resulting metal complexes correspond to the formulas:

(IIA) OT RS RS
R1-Ng N R1N N
(II) R M---------R6 (X)X , wherein M, X, x, R1 and T are as previously defined, R3, R4, R5 and R6 are hydrogen, halo, or an alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, aryl, or silyl group of up to 20 atoms not counting hydrogen, or adjacent R3, R4, R5 or R6 groups may be joined together thereby forming fused ring derivatives, and bonds, optional bonds and electron pair donative interactions are represented by lines, dotted lines and arrows respectively.

More preferred examples of the foregoing difunctional Lewis base compounds and metal complexes correspond to the formula:
7 R8 R3 R4 7 R~ R3 R4 R\ R\

Q-NH N N N
(R R6 (R a aj 6 M-------------R
(nI) and (-K)X (IRA) wherein M, X, x, R' and T are as previously defined, R3, R4, R5 and R6 are as previously defined, preferably R3, R4, and R5 are hydrogen, or C14 alkyl, and R6 is C6-2o aryl, most preferably naphthalenyl;

Ra independently each occurrence is C1 alkyl, and a is 1-5, most preferably Ra in two ortho- positions is isopropyl or t-butyl;

RR and R8 independently each occurrence are hydrogen, halogen, or a C1_20 alkyl or aryl group, most preferably one of R7 and R8 is hydrogen and the other is a C6_20 aryl group, especially a fused polycyclic aryl group, most preferably an anthracenyl group, and bonds, optional bonds and electron pair donative interactions are represented by lines, dotted lines and arrows respectively.

Highly preferred polyfunctional Lewis base compounds and metal complexes for use herein correspond to the formula:

(IV) (IVA) IR (Rb)b (Rb)b H '\N (R )c (H3C)2HC H 2\N/ (Rc)c (H3C)2HC H
CH(CH3)2 (H3C)2HC
and 2 wherein X each occurrence is halide, N,N-dimethylamido, or C14 alkyl, and preferably each occurrence X is methyl;

Rb independently each occurrence is hydrogen, halogen, C1_20 alkyl, or C6_20 aryl, or two adjacent Rb groups are joined together thereby forming a ring, and b is 1-5;
and R independently each occurrence is hydrogen, halogen, C1_20 alkyl, or C6_20 aryl, or two adjacent R groups are joined together thereby forming a ring, and c is 1-5.

Most highly preferred examples of metal complexes for use according to the present invention are complexes of the following formulas:

o CH3 (H3C)2H H (H3C)2HC H N/ O
HIS
Hf O O o (H3C)2HC and (H3C)2HC

wherein X each occurrence is halide, N,N-dimethylamido, or C,14 alkyl, and preferably each occurrence X is methyl.

Examples of metal complexes usefully employed according to the present invention include:

[N-(2,6-di(1-methylethyl)phenyl)amido)(o-tolyl)(a-naphthalen-2-diyl(6-pyridin-diyl)methane)]hafnium dimethyl;

[N-(2,6-di(1-methylethyl)phenyl)amido)( o-tolyl)(a-naphthalen-2-diyl(6-pyridin-diyl)methane)]hafnium di(N,N-dimethylamido);

[N-(2,6-di(1-methylethyl)phenyl)amido)( o-tolyl)(a-naphthalen-2-diyl(6-pyridin-diyl)methane)]hafnium dichloride;

[N-(2,6-di(1-methyl ethyl)phenyl)amido)(phenanthren-5-yl)(a-naphthalen-2-diyl(6-pyridin-2-diyl)methane)]hafnium dimethyl;

[N-(2,6-di(1-methylethyl)phenyl)amido)((henanthren-5-yl)(a-naphthalen-2-diyl(6-pyridin-2-diyl)methane)]hafnium di(N,N-dimethylamido); and [N-(2,6-di(1-methylethyl)phenyl)amido)(phenanthren-5 -yl)(a-naphthalen-2-diyl(6-pyridin-2-diyl)methane)]hafnium dichloride.

Under the reaction conditions used to prepare the metal complexes used in the present invention, it has been discovered that the hydrogen of the 2-position of the a-naphthalene group substituted at the 6-position of the pyridin-2-yl group is subject to elimination, thereby uniquely forming metal complexes wherein the metal is covalently bonded to both the resulting amide group and to the 2-position of the a-naphthalenyl group, as well as stabilized by coordination to the pyridinyl nitrogen atom through the electron pair of the nitrogen atom.

The foregoing metal complexes are conveniently prepared by standard metallation and ligand exchange procedures involving a source of the Group 4 metal and the neutral polyfunctional ligand source. The complexes may also be prepared by means of an amide elimination and hydrocarbylation process starting from the corresponding Group 4 metal tetraamide and a hydrocarbylating agent, such as trimethylaluminum, as disclosed in WO
02/38628. Other techniques may be used as well.

The Group 4 metal complexes may be activated to form the actual catalyst composition by combination with a cocatalyst, preferably an aluminoxane, a cation forming cocatalyst, or a combination thereof. Preferably, the sole activating cocatalyst is an alumoxane which is a portion of the alumoxane used to treat the surface of the metal- or metalloid- oxide support, or generated in situ, on the surface of the support by reaction of an aluminum trialkyl compound, especially trimethylaluminum, with water present on the surface of the metal oxide. In this event, additional activating cocatalyst is not required to be separately combined with the metal complex before supporting the metal complex, and for this reason component 3) is stated as being optionally added to the composition.

Suitable alumoxanes for activation of the metal complexes herein include the same compounds used for treatment of the inorganic oxide supports, namely polymeric or oligomeric alumoxanes, especially methylalumoxane, and neutral Lewis acid modified polymeric or oligomeric alumoxanes, such as alkylalumoxanes modified by addition of a C,-30 hydrocarbyl substituted Group 13 compound, especially a tri(hydrocarbyl)aluminum- or tri(hydrocarbyl)boron compound, or a halogenated (including perhalogenated) derivative thereof, having from 1 to 10 carbons in each hydrocarbyl or halogenated hydrocarbyl group, more especially a trialkylaluminum compound, a perfluorinated tri(aryl)boron compound, or a perfluorinated tri(aryl)aluminum compound.
Examples include triisobutyl aluminum- or tri-n-butyl aluminum- modified methylalumoxane, sometimes referred to as modified methalumoxane, or MMAO.

The Group 4 metal complexes may also be rendered catalytically active by combination with a cation forming cocatalyst, such as those previously known in the art for use with Group 4 metal olefin polymerization complexes. Suitable cation forming cocatalysts for use herein include neutral Lewis acids, such as C1-3o hydrocarbyl substituted Group 13 compounds, especially tri(hydrocarbyl)aluminum- or tri(hydrocarbyl)boron compounds and halogenated (including perhalogenated) derivatives thereof, having from 1 to 10 carbons in each hydrocarbyl or halogenated hydrocarbyl group, more especially perfluorinated tri(aryl)boron compounds, and most especially tris(pentafluoro-phenyl)borane; nonpolymeric, compatible, noncoordinating, ion forming compounds (including the use of such compounds under oxidizing conditions), especially the use of ammonium-, phosphonium-, oxonium-, carbonium-, silylium- or sulfonium- salts of compatible, noncoordinating anions, or ferrocenium-, lead- or silver salts of compatible, noncoordinating anions; and combinations of the foregoing cation forming cocatalysts and techniques. The foregoing activating cocatalysts and activating techniques have been previously taught with respect to different metal complexes for olefin polymerizations in the following references: EP-A-277,003, US-A-5,153,157, US-A-5,064,802, US-A-5,321,106, US-A-5,721,185, US-A-5,350,723, US-A-5,425,872, US-A-5,625,087, US-A-5,883,204, US-A-5,919,983, US-A-5,783,512, WO
99/15534, and W099/42467.

It should be noted that the foregoing activating cocatalysts other than an alumoxane, are not preferably included in the invented composition, in as much as the best results have generally been obtained by the use of inorganic oxide supports that have been treated with methalumoxane, and optionally, additional methalumoxane cocatalyst.

During the polymerization, a mixture of monomers is contacted with the supported, activated catalyst composition according to any suitable polymerization conditions. The process is characterized by use of elevated temperatures and pressures. Hydrogen may be employed as a chain transfer agent for molecular weight control according to known techniques if desired. As in other similar polymerizations, it is highly desirable that the monomers and solvents employed be of sufficiently high purity that catalyst deactivation does not occur. Any suitable technique for monomer purification such as devolatilization at reduced pressures, contacting with molecular sieves or high surface area alumina, or a combination of the foregoing processes may be employed.

In a preferred embodiment of the invention the supported catalysts are employed in either a solution, slurry or gas phase polymerization. It has been discovered that if a minor proportion of ethylene is present or is first present in a polymerization of propylene using the catalysts of the present invention, polymers having very high molecular weights can be prepared. Moreover, the process for preparing such interpolymers is more efficient, compared to processes in which ethylene is completely absent. The quantity of ethylene added to the reactor is a minor amount compared to the quantity of propylene, and may be extremely small, preferably greater than 0.001 mole percent, based on total monomer content, more preferably from 0.01 to 10 mole percent.
Desirably the resulting copolymer possesses in polymerized form from 0.1 to 25 mole percent ethylene. Further desirably such copolymers also possess a molecular weight distribution, Mw/Mn, greater than 4.0, preferably greater than 5Ø Additionally the polymers desirably possess very rapid crystallization rates, as evidenced by an isothermal crystallization half time (ICHT) of less than about 1 minute at 120 C. Additionally, they are characterized by unique 13C NMR spectrum, showing peaks corresponding to such regio-error at about 14.6 and about 15.7 ppm, with the peaks being of equal or approximately equal intensity (that is, the integrated areas of the two peaks differ by less than 10 percent).
The polymerization is desirably carried out as a continuous polymerization, in which catalyst components, monomers, and optionally solvent, adjuvants, scavengers, and polymerization aids are continuously supplied to the reaction zone and polymer product continuously removed therefrom. Within the scope of the terms "continuous" and "continuously" as used in this context are those processes in which there are intermittent additions of reactants and removal of products at small regular intervals, so that, over time, the overall process is continuous.

The catalyst compositions can be advantageously employed in a high pressure, solution, slurry, or gas phase polymerization process. For a solution polymerization process it is desirable to employ homogeneous dispersions of the catalyst components in liquid diluent in which the polymer is soluble under the polymerization conditions employed. One such process utilizing an extremely fine silica or similar dispersing agent to produce such a homogeneous catalyst dispersion is disclosed in US-A-5,783,512. A high pressure process is usually carried out at temperatures from 100 C to 400 C and at pressures above 500 bar (50 MPa). A slurry process typically uses an inert hydrocarbon diluent and temperatures of from 0 C up to a temperature just below the temperature at which the resulting polymer becomes substantially soluble in the inert polymerization medium.
Preferred temperatures in a slurry polymerization are from 30 C, preferably from 60 C up to 115 C, preferably up to 100 C. Pressures typically range from atmospheric (100 kPa) to 500 psi (3.4 MPa).

Preferably for use in gas phase polymerization processes, the support material and resulting catalyst has a median particle diameter from 20 to 200 gm, more preferably from 30 gm to 150 gm, and most preferably from 50 gm to 100 gm. Preferably for use in slurry polymerization processes, the support has a median particle diameter from 1 pun to 200 gm, more preferably from 5 gm to 100 gm, and most preferably from 10 gm to 80 gm. Preferably for use in solution or high pressure polymerization processes, the support has a median particle diameter from 0.1 gm to 40 gm, more preferably from 1 gm to 30 gm, and most preferably from 2 gm to 20 gm.

The supported catalyst composition of the present invention can also be employed to advantage in a gas phase polymerization process. Such processes are used commercially on a large scale for the manufacture of polypropylene, ethylene/propylene copolymers, and other olefin polymerizaitons. The gas phase process employed can be, for example, of the type which employs a mechanically stirred bed or a gas fluidized bed as the polymerization reaction zone. Preferred is the process wherein the polymerization reaction is carried out in a vertical cylindrical polymerization reactor containing a fluidized bed of polymer particles supported or suspended above a perforated plate, the fluidization grid, by a flow of fluidization gas.

The gas employed to fluidize the bed comprises the monomer or monomers to be polymerized, and also serves as a heat exchange medium to remove the heat of reaction from the bed. The hot gases emerge from the top of the reactor, normally via a tranquilization zone, also known as a velocity reduction zone, having a wider diameter than the fluidized bed and wherein fine particles entrained in the gas stream have an opportunity to gravitate back into the bed. It can also be advantageous to use a cyclone to remove ultra-fine particles from the hot gas stream. The gas is then normally recycled to the bed by means of a blower or compressor and one or more heat exchangers to strip the gas of the heat of polymerization.

A preferred method of cooling of the bed, in addition to the cooling provided by the cooled recycle gas, is to feed a volatile liquid to the bed to provide an evaporative cooling effect, often referred to as operation in the condensing mode. The volatile liquid employed in this case can be, for example, a volatile inert liquid, for example, a saturated hydrocarbon having 3 to 8, preferably 4 to 6, carbon atoms. In the case that the monomer or comonomer itself is a volatile liquid, or can be condensed to provide such a liquid, this can suitably be fed to the bed to provide an evaporative cooling effect. The volatile liquid evaporates in the hot fluidized bed to form gas which mixes with the fluidizing gas. If the volatile liquid is a monomer or comonomer, it will undergo some polymerization in the bed. The evaporated liquid then emerges from the reactor as part of the hot recycle gas, and enters the compression/heat exchange part of the recycle loop. The recycle gas is cooled in the heat exchanger and, if the temperature to which the gas is cooled is below the dew point, liquid will precipitate from the gas. This liquid is desirably recycled continuously to the fluidized bed. It is possible to recycle the precipitated liquid to the bed as liquid droplets carried in the recycle gas stream. This type of process is described, for example in EP-89691; U.S. 4,543,399;
WO-94/25495 and U.S. 5,352,749. A particularly preferred method of recycling the liquid to the bed is to separate the liquid from the recycle gas stream and to reinject this liquid directly into the bed, preferably using a method which generates fine droplets of the liquid within the bed. This type of process is described in WO-94/28032.

The polymerization reaction occurring in the gas fluidized bed is catalyzed by the continuous or semi-continuous addition of catalyst composition. The catalyst composition may be subjected to a prepolymerization step, for example, by polymerizing a small quantity of olefin monomer in a liquid inert diluent, to provide a catalyst composite comprising supported catalyst particles embedded in olefin polymer particles if desired as well.

The polymer is produced directly in the fluidized bed by polymerization of the monomer or mixture of monomers on the fluidized particles of catalyst composition, supported catalyst composition or prepolymerized catalyst composition within the bed. Start-up of the polymerization reaction is achieved using a bed of preformed polymer particles, which are preferably similar to the desired polymer, and conditioning the bed by drying with inert gas or nitrogen prior to introducing the catalyst composition, the monomers and any other gases which it is desired to have in the recycle gas stream, such as a diluent gas, hydrogen chain transfer agent, or an inert condensable gas when operating in gas phase condensing mode. The produced polymer is discharged continuously or semi-continuously from the fluidized bed as desired.

The gas phase processes most suitable for the practice of this invention are continuous processes which provide for the continuous supply of reactants to the reaction zone of the reactor and the removal of products from the reaction zone of the reactor, thereby providing a steady-state environment on the macro scale in the reaction zone of the reactor. Products are readily recovered by exposure to reduced pressure and optionally elevated temperatures (devolatilization) according to known techniques. Typically, the fluidized bed of the gas phase process is operated at temperatures greater than 50 C, preferably from 60 C to 110 C, more preferably from 70 C to 110 C.

Suitable gas phase processes which are adaptable for use in the process of this invention are disclosed in US-A's: 4,588,790; 4,543,399; 5,352,749; 5,436,304; 5,405,922;
5,462,999; 5,461,123;
5,453,471; 5,032,562; 5,028,670; 5,473,028; 5,106,804; 5,556,238; 5,541,270;
5,608,019; and 5,616,661.

The skilled artisan will appreciate that the invention disclosed herein may be practiced in the absence of any component which has not been specifically disclosed.

The following examples are provided as further illustration of the invention and are not to be construed as limiting. Unless stated to the contrary all parts and percentages are expressed on a weight basis. The term "overnight", if used, refers to a time of approximately 16-18 hours, the term "room temperature", refers to a temperature of 20-25 C, and the term "mixed alkanes" refers to a commercially obtained mixture of C6_9 aliphatic hydrocarbons available under the trade designation Isopar E , from Exxon Chemicals Inc. In the event the name of a compound herein does not conform to the structural representation thereof, the structural representation shall control. The synthesis of all metal complexes and the preparation of all screening experiments were carried out in a dry nitrogen atmosphere using dry box techniques. All solvents used were HPLC grade and were dried before their use.

Examples 1-6 and Comparatives 1 and 2 Component 1) Preparation 1A) Davison 948TM silica (949 g, available from Grace Davison Company) which had been heated at 600 C for 3 hours under a nitrogen purge was added to toluene (2400 g) containing methylalumoxane (MAO, Akzo Nobel, Inc. 1314 mL of a 13.7 percent toluene solution). The mixture was stirred for 30 minutes, and the temperature of the mixture was increased to 70 C and the volatiles were removed in vacuo. The resulting dry powder was heated an additional 1 hour under vacuum. The resulting alumoxane modified silica, was a free flowing solid having an aluminum content of 4.5 mmol/g. Contacting with hexane at 25 C resulted in less than 1 percent weight loss.

1B) Davison 948TM silica (370 g) which had been heated at 500 C for 3 hours under a nitrogen purge was slurried in enough isopentane to obtain a easily stirred mixture. 549 ml of a 12.9 percent (4.14 M Al) toluene solution of a tri(n-octyl)aluminum modified methylalumoxane (MMAO-12, Akzo-Noble, Inc.) was added at room temperature. The mixture was stirred for 1 hour, the supernatant was removed via cannula, and the treated silica was washed with isopentane (1000 ml) and dried under high vacuum. The resulting free flowing, powder had an aluminum content of 4.5 mmol/g. Contacting with hexane at 25 C resulted in less than 1 percent weight loss.

1C) Davison 948TM silica (6.00 g) which had been heated at 500 C for 3 hours under a nitrogen purge was slurried in hexane (24 g) and then treated with 8.00 ml of a 21 percent triethylaluminum/hexane solution at room temperature. The mixture was stirred for 30 minutes, collected on a filter, and the treated silica was washed with hexane (2x10 ml) and dried under high vacuum. The resulting free flowing, powder had an aluminum content of approximately 1.1 mmol/g. Contacting with hexane at 25 C resulted in less than 1 percent weight loss.

1D) Davison 948TM silica (6.00 g) was heated at 500 C for 3 hours under a nitrogen purge prior to use.

Component 2) Preparation 2A) To a flask containing toluene and (2,6-di(1-methylethyl)phenylamino)(o-tolyl)(((X-naphthalenyl(6-pyridin-2-diyl))methane, one equivalent of n-butyllithium is added. After deprotonation is complete, one equivalent of hafnium tetrachloride is added and the mixture is heated to reflux for at least 1 hour. After cooling, a minimum of 3 equivalents of methyl , magnesium bromide is added. After methylation is complete, the crude product is separated from the inorganic salts by filtration, washed with hexane, and isolated by removal of the volatiles in vacuo.

2B) [N-(2,6-di(1-methylethyl)phenylamido)(o-tolyl)((a-naphthalen-2-diyl(6-pyridin-2-diyl))methane)]hafnium dichloride, is obtained by treatment of a toluene solution of 2A with 2 equivalents of anhydrous triethylammonium chloride. After protonolysis is complete, the product is filtered to remove insolubles, isolated by removing volatiles in vacuo, and washing the product with hexane before final drying in vacuo.

Component 3) Preparation 3A) In a glass ampoule, 16.5 pL of a 19.6 percent toluene solution of triethylaluminum were combined with 260 mg of a 10.4 percent toluene solution of the methylbis-(C18_22a1ky1)ammonium salt of p-hydroxyphenyltris(pentafluorophenyl)borate:
[(p-HOC6H4)B(C6F5)3][NHMe(C18-22H32-45)2] (0.024 pmol) and stirred for 15 minutes.
Prior to use the product was diluted with 400 mg toluene.

3B) Methylbis(C18-22alky1)ammonium tetrakis(pentafluorophenyl)borate:
[N Me(C18.22H37-45)2]+[B(C6F5)4]" was prepared according to US-A-5,919,983.
Supported Catalyst Preparation Example 1 (No separately added cocatalyst) In a glass flask containing 40 mL
hexane, 10.13 g of the treated support lA (45.6 mmol Al) was added and stirred to form a slurry.
Component 2A (70.0 mg, 0.101 mmol Hf) was added and the resulting mixture stirred for 3 hours.
The solids were allowed to settle, the supernatant was removed by decantation, and the solids were dried under high vacuum, leaving the catalyst composition as a free flowing powder, in quantitative yield. Hf content = 1 Opmol Hf/g. Al/Hf (molar ratio) = 450:1.

Example 2 (No separately added cocatalyst; supported catalyst generated in situ and used without isolation) In a vial, 0.2 mL of a 0.005 M hexane solution of component 2A was added to a slurry of 0.26 g of support lA in 2 mL of hexane. After stirring for 1 h, the mixture was injected directly into the polymerization vessel. Hf content = 3.85 gmol/g. Al/Hf (molar ratio) = 1170:1 Example 3 (No separately added cocatalyst; supported catalyst generated in situ and used without isolation) In a vial, 0.2 mL of a 0.005 M hexane solution of component 2A was added to a slurry of 0.222 g of support lB in 2 mL of hexane. After stirring for 60 minutes, the mixture was injected directly into the polymerization vessel. Hf content = 4.50 pmol/g.
Al/Hf (molar ratio) _ 1000:1 Example 4 (with ammonium borate cocatalyst 3A) To 1.00 g of the triethylaluminum treated support component 1C (1.1 mmol Al) in a flask, component 3A (680 mg) was added dropwise with stirring. Additional toluene (200 mg) was added and stirring continued for 1 h.
Component 2A (13.8 mg, 20 mol Hf) in 500 mg toluene was added and the resulting mixture stirred for one hour. Hexane (25 ml) was added and stirring continued for 2 h.
The solids were collected by filtration, washed with 20 mL hexane and dried, leaving the catalyst composition as a free flowing powder, in quantitative yield. Hf content = 20 gmol Hf/g. Al/Hf (molar ratio) = 55:1.
B:Hf (molar ratio) = 1.2:1.

Example 5 (with ammonium borate cocatalyst 3B) To a mixture of 1.00 g of the triethylaluminum treated support component 1 C (1.1 mmol Al) and 4.0 mL of hexane in a flask, a mixture of 2.50 g of a 1.06 percent methylcyclohexane solution of component 3B
and 13.9 mg of component 2A which was premixed for 30 minutes, was added dropwise with stirring. The combined mixtures were stirred for 30 minutes and the volatiles were removed in vacuo, leaving the catalyst composition as a free flowing powder, in quantitative yield. Hf content = 20 pmol Hf/g.
Al/Hf (molar ratio) = 55:1. B:Hf (molar ratio) = 1.1:1.

Example 6 (No separately added cocatalyst) In a glass vial containing 4.0 mL
hexane, 0.44 g of the treated support 1A was added and stirred to form a slurry. Component 2B (0.4 mL of a 0.005 M toluene solution) was added and the mixture stirred for 1 h. The resulting mixture was injected directly into the reactor without isolation of the supported catalyst. Hf content = 4.5 mol Hf/g. Al/Hf (molar ratio) = 1000:1.

Comparative 1 (Untreated silica, not an example of the invention) In a glass flask containing 5 mL hexane, 1.00 g of Davison 948TM silica which had been heated at 500 C for 3 hours under a nitrogen purge, was added and stirred to form a slurry. A
premixed hexane solution of Component 2A (4.15 mg, 6.0 mmol Hf, 1.0 mL hexane) and the MMAO-12 methalumoxane cocatalyst as a 12.9 percent aluminum/toluene solution (1.09 mL, 4500 mol Al, Akzo-Noble) was added and the resulting mixture stirred overnight. The volatiles were removed under high vacuum leaving the catalyst composition as a free flowing powder, in quantitative yield. Hf content = 3.53 gmol Hf/g. Al:Hf (molar ratio) = 750:1.

Comparative 2 (Untreated silica, not an example of the invention) In a glass flask containing 5 mL hexane, 1.00 g.of Davison 948TM silica which had been heated at 500 C for 3 hours under a nitrogen purge, was added and stirred to form a slurry. A
premixed toluene solution of Component 2A (4.15 mg, 6.0 mmol Hf, 1.0 mL toluene) and methalumoxane cocatalyst as a 13.7 percent aluminum/toluene solution (0.96 mL, 4500 mol Al, MAO-3, Albemarle) was added and the resulting mixture stirred overnight. The volatiles were removed under high vacuum leaving the catalyst composition as a free flowing powder, in quantitative yield. Hf content = 4.72 mol Hf/g.
Al:Hf (molar ratio) = 750:1.

Polymerization A 1 liter stirred, jacketed, polymerization reactor was charged with 400 g propylene and heated to 60 C, resulting in an internal pressure of 375 psi (2.8 MPa).
Triisobutylaluminum (0.4 g, 2 mmol) in 10 ml hexane solvent was added to the reactor contents and circulated for 10 minutes to scavenge impurities. Next, the desired quantity of catalyst slurry followed by an additional 10 ml hexane to purge the line was added via a transfer line. The reaction temperature was maintained at 60 C. After 30 minutes polymerization time, the reactor was vented and cooled and the resulting polymer removed from the reactor. Results are contained in Table 1.
Table 1 run Catalyst Com lex Su ort Activator** Efficiency k / Hf) 1 Ex.l 2A 1A - 254 2 Ex.2 1A - 969 3 Ex.3 1B - 214 4 Ex. 4 14 1 C 3A 117 Ex. 5 1 C 3B 171 6 Ex.6 2B lA - 168 7* Com . 1 2A 1D MMAO-12 62 8* Com .2 1D MAO 2 * comparative not an example of the invention, support not pretreated with organoaluminum compound prior to contacting with metal complex ** activator combined with metal complex prior to contact with support As may be seen by reference to the results contained in table 1, the use of silica that has been modified by treatment with an aluminum compound, especially an alumoxane, gives the best results, particularly when used immediately following preparation without isolation of the supported solid catalyst; and use of unmodified silica support, even in combination with use of an alumoxane cocatalyst gave extremely poor results.
Polymer Characterization The following analytical studies were performed on the polymers prepared according to the invention. Results are reported for the polymer of Run 3 in Tables 2 and 3.

GPC, xylene solubles (XS), and NMR measurements were performed according to standard procedures.
Morphology (polymer particle integrity and lack of lumping or friability) was determined qualitatively by observation.
Melt flow rate (MFR) (g/10 minutes) was determined in accordance with ASTM D-condition L.
Differential Scanning Calorimetry (DSC) heat-cool-heat experiments were performed using a Perkin-Elmer DSC7 instrument. The first heating was done at 10 C/minute, then cooling at 10 C/min to crystallize the polymer, then second heating was done at 10 C/minute.
Percent crystallinity was determined from DSC data using the equation:
Xc = 100 AHf / AHfo where AHf is the measured heat of fusion of the sample, and OHfo is the heat of fusion of 100 percent crystalline polymer, namely 39.4 calories/gm.
For measuring ICHT (isothermal crystallization half time) by differential scanning calorimeter (Perkin Elmer DSC7) the following procedure was used. The polymer was melted at 250 C (for 3 minutes), then cooled rapidly (200 C/minute) to 120 C
(crystallization temperature), then held isothermally in time mode at 120 C until it crystallized. The time to the peak of the crystallization exotherm was taken as the ICHT. Lower ICHT indicates faster crystallization rate.
Table 2. General Characteristics - Run 3 Mn Mw Mz Mw/Mn Morphology MFR XS (percent) 249,500 1,275,000 3,825,000 5.11 Good to excellent 0.04 0.64 Table 3. Melting and crystallization data - Run 3 Tm, C Tc, C Heat of fusion Percent ICHT 120 C
(J/gm) Crystallinity (min) 146 112 89.6 54.1 <1 As can be seen from the Tables, the polypropylene resin from run 3 has a broad molecular weight distribution (MWD) and a rapid crystallization rate. The broad MWD is a particularly surprising feature of this polypropylene and is believed to result from the interaction of the active catalyst components of the invention. While only homopolymer polypropylenes were made, it is believed that propylene/ethylene copolymers made with the present supported catalyst composition will exhibit a similar broad MWD.

The polypropylene of runs 1 through 4 also had regio-errors as determined by spectroscopy. In particular, the regio-error frequency was 8 to 14 per 1000 propylene units. The regio-error shows up as a twin peaks at about 14.6 and about 15.7 ppm in the 13C NMR spectrum, with the peaks having about equal intensity. Polypropylene homopolymers made from the active catalyst of the invention typically have at least 50 percent more of this regio-error than a comparable polypropylene homopolymer prepared with a Ziegler-Natta catalyst.
Propylene/
ethylene copolymers made with the present catalyst composition also are characterized by 13C NMR
spectra exhibiting a similar regio-error.

Isothermal crystallization half time (ICHT) at 120 C for the polypropylene resins made in runs 1-4 were surprisingly fast (1 min or less). This indicates the polymers possess a crystallization rate faster than commercially available polypropylenes made using zirconium based metallocene catalysts.

Claims (14)

CLAIMS:
1. A process for preparing high molecular weight propylene homopolymers or copolymers of propylene and ethylene, said process comprising contacting propylene and optionally from 0.00 t to 10 percent of the total monomer weight of ethylene under addition polymerization conditions with a supported, heterogeneous catalyst composition comprising:
1) a substrate comprising the reaction product of a-solid, particulated, high surface area, metal oxide, metalloid oxide, or a mixture thereof and an organoaluminum compound, 2) a Group 4 metal complex of a polyvalent, Lewis base ligand; and optionally, 3) an activating cocatalyst for the metal complex.
2. A process according to claim 1 wherein propylene is homopolymerized.
3. A process according to claim 1, wherein ethylene in an amount from 0.001 to 10 percent of the total monomer weight is copolymerized with propylene.
4. A process according to any one of claims 1 to 3 wherein the metal complex corresponds to the formula IA:

wherein R1 is alkyl ; cycloalkyl, heteroalkyl, cycloheteroalkyl or aryl, or an inertly substituted derivative thereof containing from 1 to 30 atoms not counting hydrogen;
T is a divalent bridging group of from 1 to 20 atoms other than hydrogen, and R2 is a C6-20 heteroaryl group containing Lewis base functionality, M is the Group 4 metal, X is an anionic, neutral or dianionic ligand group, x is a number from 0 to 5 indicating the number of such X groups, and bonds, optional bonds and electron donative interactions are represented bylines, dotted lines and arrows respectively.
5. A process according to claim 4 wherein T is a mono- or di- C1-19 hydrocarbyl substituted methylene or silane group.
6. A process according to claim 4 or 5 wherein M is hafnium.
7. A process according to any one of claims 4 to 6 wherein R2 is a pyridin-2-yl- or substituted pyridin-2-yl group.
8. A process according claim 7 wherein the metal complex corresponds to the formula IIA:

wherein M, X, x, R1 and T are as defined with reference to claim 7, aqd R3, R4, R5 and R6 are hydrogen, halo, or an optionally substituted alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, aryl, or silyl group of up to 15 atoms not counting hydrogen, or adjacent R5 or R6 groups may be joined together thereby forming fused ring derivatives.
9. A process according claim 8 wherein the metal complex corresponds to the formula IIIA:

wherein M, X and x are defined with reference to claim 7;
R3, R4, and R5 are hydrogea or C1-4 alkyl, and R6 is optionally substituted C6-15 aryl, R a independently each occurrence is C1-4 alkyl, and a is 1-5; and one of R7 and R8 is hydrogen and the other is a C6-19 aryl group.
10. A process according claim 9 wherein the metal complex corresponds to the formula IVA:

wherein X each occurrence is halide, N,N-dimethylamido, or C1-4 alkyl;

R b independently each occurrence is hydrogen, halogen, C1-13 alkyl, or C6-13 aryl, or two adjacent R b groups are joined together thereby forming a ring, and b is 1-5;
and R c independently each occurrence is hydrogen, halogen, C1-9 alkyl, or C6-9 aryl, or two adjacent R c groups are joined together thereby forming a ring, and c is 1-5.
11. A process according to claim 10 wherein the metal complex is:
wherein X each occurrence is halide, N,N-dimethylamido, or C1-4 alkyl.
12. A process according to Claim 11 wherein X each occurrence is halide or methyl.
13. A process according to any one of claims 1 to 12 wherein the substrate is the reaction product of silica and an organoaluminum compound.
14. A process according to any one of claims 1 to 13 wherein the organoaluminum compound is an alumoxane.
CA2463588A 2001-11-06 2002-11-05 Supported polymerization catalysts comprising a polyvalent lewis base ligand Expired - Fee Related CA2463588C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US33888101P 2001-11-06 2001-11-06
US60/338,881 2001-11-06
US10/139,786 US6960635B2 (en) 2001-11-06 2002-05-05 Isotactic propylene copolymers, their preparation and use
US10/139,786 2002-05-05
PCT/US2002/035617 WO2003040195A1 (en) 2001-11-06 2002-11-05 Supported catalysts for manufacture of polymers

Publications (2)

Publication Number Publication Date
CA2463588A1 CA2463588A1 (en) 2003-05-15
CA2463588C true CA2463588C (en) 2012-04-10

Family

ID=26837536

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2463588A Expired - Fee Related CA2463588C (en) 2001-11-06 2002-11-05 Supported polymerization catalysts comprising a polyvalent lewis base ligand

Country Status (7)

Country Link
US (3) US6960635B2 (en)
EP (2) EP1448630A2 (en)
JP (4) JP5027378B2 (en)
CN (1) CN100467501C (en)
CA (1) CA2463588C (en)
DE (1) DE60229426D1 (en)
WO (2) WO2003040195A1 (en)

Families Citing this family (449)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576583B1 (en) 2000-02-11 2003-06-10 Phillips Petroleum Company Organometal catalyst composition
US6843595B2 (en) * 2001-01-26 2005-01-18 Waters Investment Limited Differential scanning calorimeter accounting for heat leakage
US6960635B2 (en) * 2001-11-06 2005-11-01 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use
JP2003176321A (en) * 2001-12-12 2003-06-24 Sumitomo Chem Co Ltd Polypropylene-based oriented film
WO2004003874A2 (en) 2002-06-26 2004-01-08 Avery Dennison Corporation Oriented films comprising polypropylene / olefin elastomer blends
CA2492839C (en) 2002-08-12 2011-02-01 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US7662885B2 (en) * 2002-08-12 2010-02-16 Exxonmobil Chemical Patents Inc. Method to make an article comprising polymer concentrate
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7476441B2 (en) * 2002-08-30 2009-01-13 Ishida Co., Ltd. Display strip and display strip and product assembly
EP1394043B1 (en) * 2002-08-30 2006-04-26 Ishida Co., Ltd. Display strip
DE60301234T2 (en) 2002-08-30 2006-05-24 Ishida Co., Ltd. display strip
WO2004026925A1 (en) * 2002-09-17 2004-04-01 Dow Global Technologies Inc. Improved process for manufacture of polymers
ES2394304T3 (en) 2002-10-15 2013-01-30 Exxonmobil Chemical Patents, Inc. Multiple catalyst system for the polymerization of olefins and polymers produced from them
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US8653169B2 (en) 2002-10-15 2014-02-18 Exxonmobil Chemical Patents Inc. Propylene copolymers for adhesive applications
US8618219B2 (en) 2002-10-15 2013-12-31 Exxonmobil Chemical Patents Inc. Propylene copolymers for adhesive applications
US7459500B2 (en) * 2002-11-05 2008-12-02 Dow Global Technologies Inc. Thermoplastic elastomer compositions
MXPA05006083A (en) * 2002-12-17 2005-09-30 Ishida Seisakusho Display strip.
US20060062980A1 (en) 2003-01-08 2006-03-23 Exxonmobil Chemical Patents Inc. Elastic articles and processes for their manufacture
EP1597305B1 (en) * 2003-02-26 2012-10-10 Omlidon Technologies LLC Polymer gel-processing techniques and high modulus products
EP1620504A1 (en) * 2003-05-05 2006-02-01 Dow Global Technologies Inc. Filled thermoplastic olefin composition
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US7803865B2 (en) * 2003-08-25 2010-09-28 Dow Global Technologies Inc. Aqueous dispersion, its production method, and its use
US9169406B2 (en) 2003-08-25 2015-10-27 Dow Global Technologies Llc Coating compositions
US8158711B2 (en) 2003-08-25 2012-04-17 Dow Global Technologies Llc Aqueous dispersion, its production method, and its use
US7763676B2 (en) 2003-08-25 2010-07-27 Dow Global Technologies Inc. Aqueous polymer dispersions and products from those dispersions
US8779053B2 (en) 2003-08-25 2014-07-15 Dow Global Technologies Llc Coating compositions
US8722787B2 (en) 2003-08-25 2014-05-13 Dow Global Technologies Llc Coating composition and articles made therefrom
US8349929B2 (en) 2003-08-25 2013-01-08 Dow Global Technologies Llc Coating composition and articles made therefrom
US8946329B2 (en) 2003-08-25 2015-02-03 Dow Global Technologies Llc Coating compositions
US8357749B2 (en) 2003-08-25 2013-01-22 Dow Global Technologies Llc Coating composition and articles made therefrom
EP1514893A1 (en) * 2003-09-12 2005-03-16 Borealis Technology OY Polypropylene blown film
WO2005049671A1 (en) * 2003-11-14 2005-06-02 Exxonmobil Chemical Patents Inc. High strength propylene-based elastomers and uses thereof
US20050106978A1 (en) 2003-11-18 2005-05-19 Cheng Chia Y. Elastic nonwoven fabrics made from blends of polyolefins and processes for making the same
EP1942152A1 (en) 2003-12-24 2008-07-09 Dow Gloval Technologies Inc. Polymeric composition
AR048817A1 (en) 2004-03-17 2006-05-31 Dow Global Technologies Inc CATALYST COMPOSITION THAT INCLUDES LINK AGENT FOR THE FORMATION OF COPOLYMERS OF MULTIPLE ETHYLENE BLOCKS
SG151302A1 (en) 2004-03-17 2009-04-30 Dow Global Technologies Inc Catalyst composition comprising shuttling agent for higher olefin multi- block copolymer formation
US8273826B2 (en) 2006-03-15 2012-09-25 Dow Global Technologies Llc Impact modification of thermoplastics with ethylene/α-olefin interpolymers
US8273838B2 (en) * 2004-03-17 2012-09-25 Dow Global Technologies Llc Propylene/α-olefins block interpolymers
ES2342895T3 (en) * 2004-03-17 2010-07-16 Dow Global Technologies Inc. CATALYTIC COMPOSITION THAT INCLUDES TRANSFER AGENT FOR THE FORMATION OF COPOLYMER OF MULTIPLE ETHYLENE BLOCKS.
US7101623B2 (en) * 2004-03-19 2006-09-05 Dow Global Technologies Inc. Extensible and elastic conjugate fibers and webs having a nontacky feel
US8182456B2 (en) 2004-03-29 2012-05-22 The Procter & Gamble Company Disposable absorbent articles with components having both plastic and elastic properties
US7820875B2 (en) 2004-03-29 2010-10-26 The Procter & Gamble Company Disposable absorbent articles being adaptable to wearer's anatomy
US20050215972A1 (en) 2004-03-29 2005-09-29 Roe Donald C Disposable absorbent articles with zones comprising elastomeric components
US7598328B2 (en) 2004-04-07 2009-10-06 Dow Global Technologies, Inc. Supported catalysts for manufacture of polymers
US7645829B2 (en) 2004-04-15 2010-01-12 Exxonmobil Chemical Patents Inc. Plasticized functionalized propylene copolymer adhesive composition
JP4980889B2 (en) * 2004-04-19 2012-07-18 ダウ グローバル テクノロジーズ エルエルシー Composition suitable for single-sided, low-noise stretched adhesive film and film produced therefrom
DE602005026514D1 (en) * 2004-04-30 2011-04-07 Dow Global Technologies Inc IMPROVED NONWOVEN AND IMPROVED FIBERS
US20090255882A1 (en) * 2004-06-11 2009-10-15 Ishida Co., Ltd. Display Strip and Package Assembly
CN102321201B (en) 2004-06-16 2013-06-26 陶氏环球技术有限责任公司 Method for selecting polymerization modifiers
JP4695596B2 (en) * 2004-07-08 2011-06-08 株式会社イシダ Display strip and product display
KR101195320B1 (en) * 2004-08-09 2012-10-29 다우 글로벌 테크놀로지스 엘엘씨 Supported bishydroxyarylaryloxy catalysts for manufacture of polymers
ES2681705T3 (en) * 2004-08-09 2018-09-14 Dow Global Technologies Llc Functionalized poly (4-methyl-1-pentene)
JP5060952B2 (en) * 2004-08-13 2012-10-31 エクソンモービル・ケミカル・パテンツ・インク POLYMER COMPOSITION, USE THEREOF, AND PRODUCTION METHOD THEREOF
JP2008510056A (en) * 2004-08-18 2008-04-03 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Stretch blow molded container from Ziegler-Natta propylene polymer composition
SG156639A1 (en) * 2004-10-13 2009-11-26 Exxonmobil Chem Patents Inc Elastomeric reactor blend compositions
BRPI0516391A (en) * 2004-10-22 2008-09-02 Dow Global Technologies Inc method to produce a conformed composite article, article and use of an article
JP4043471B2 (en) 2004-10-26 2008-02-06 株式会社イシダ Display strip and product display
US7745526B2 (en) 2004-11-05 2010-06-29 Exxonmobil Chemical Patents Inc. Transparent polyolefin compositions
US7829623B2 (en) * 2004-11-05 2010-11-09 Exxonmobil Chemical Patents Inc. Thermoplastic vulcanizates having improved fabricability
US7473750B2 (en) * 2004-12-07 2009-01-06 Fina Technology, Inc. Random copolymers and formulations useful for thermoforming and blow molding applications
WO2006063905A1 (en) * 2004-12-13 2006-06-22 Basell Poliolefine Italia S.R.L. Polyolefin composition, fibres and nonwoven fabrics
US20070202285A1 (en) * 2004-12-15 2007-08-30 Fina Technology, Inc. Articles having improved clarity, prepared from propylene-ethylene copolymers
WO2006065300A1 (en) * 2004-12-16 2006-06-22 Exxonmobil Chemical Patents Inc. Polymeric compositions including their uses and methods of production
WO2006065649A1 (en) 2004-12-17 2006-06-22 Exxonmobil Chemical Patents Inc. Heterogeneous polymer blends and molded articles therefrom
CA2588770C (en) 2004-12-17 2010-03-23 Exxonmobil Chemical Patents Inc. Homogeneous polymer blend and articles therefrom
CN101111555B (en) 2004-12-17 2012-04-11 埃克森美孚化学专利公司 Heterogeneous polymer blends and molded articles therefrom
JP2008524391A (en) 2004-12-17 2008-07-10 エクソンモービル・ケミカル・パテンツ・インク Films produced from polymer blends
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
KR20070087670A (en) * 2004-12-21 2007-08-28 다우 글로벌 테크놀로지스 인크. Polypropylene-based adhesive compositions
US7803876B2 (en) * 2005-01-31 2010-09-28 Exxonmobil Chemical Patent Inc. Processes for producing polymer blends and polymer blend pellets
EP1846498B1 (en) * 2005-01-31 2013-08-14 ExxonMobil Chemical Patents Inc. Polymer blends and pellets and methods of producing same
WO2006082176A1 (en) * 2005-02-03 2006-08-10 Basell Polyolefine Gmbh Process for producing thermoformed articles
EP1856010B1 (en) * 2005-03-09 2010-07-28 ExxonMobil Chemical Patents Inc. Methods for oligomerizing olefins
US7414006B2 (en) * 2005-03-09 2008-08-19 Exxonmobil Chemical Patents Inc. Methods for oligomerizing olefins
EP1871817B1 (en) 2005-03-17 2016-12-28 Dow Global Technologies LLC IMPACT MODIFICATION OF THERMOPLASTICS WITH ETHYLENE/alpha-OLEFIN INTERPOLYMERS
US7910658B2 (en) 2005-03-17 2011-03-22 Dow Global Technologies Llc Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates
WO2006101595A1 (en) 2005-03-17 2006-09-28 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation
JP2008533276A (en) 2005-03-17 2008-08-21 ダウ グローバル テクノロジーズ インコーポレイティド Catalyst composition comprising a reversible transfer agent for forming a tactic / atactic multi-block copolymer
BRPI0609828A2 (en) 2005-03-17 2010-04-27 Dow Global Technologies Inc film and composition suitable for films
US9410009B2 (en) 2005-03-17 2016-08-09 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
US20060210741A1 (en) * 2005-03-17 2006-09-21 Cryovac, Inc. Retortable packaging film with having seal/product-contact layer containing blend of polyethylenes and skin layer containing propylene-based polymer blended with polyethylene
ZA200707885B (en) 2005-03-17 2009-09-30 Dow Global Technologies Inc Fuctionalized ethylene/alpha-olefin interpolymer compositions
JP5253152B2 (en) * 2005-04-19 2013-07-31 ダウ グローバル テクノロジーズ エルエルシー Compositions suitable for high gloss blown films and films produced therefrom
US7517569B2 (en) 2005-06-06 2009-04-14 Cryovac, Inc. Shrink packaging barrier film
KR20080031734A (en) 2005-06-24 2008-04-10 엑손모빌 케미칼 패턴츠 인코포레이티드 Functionalized propylene copolymer adhesive composition
US8287949B2 (en) * 2005-07-07 2012-10-16 Dow Global Technologies Inc. Aqueous dispersions
WO2007011530A2 (en) 2005-07-15 2007-01-25 Exxonmobil Chemical Patents, Inc. Elastomeric compositions
US7935301B2 (en) 2005-08-01 2011-05-03 Cryovac, Inc. Method of thermoforming
TW200713336A (en) * 2005-08-05 2007-04-01 Dow Global Technologies Inc Polypropylene-based wire and cable insulation or jacket
ES2526056T3 (en) 2005-09-15 2015-01-05 Dow Global Technologies Llc Block copolymers of catalytic olefins by means of polymerizable transport agent
BRPI0617041B1 (en) 2005-09-15 2018-01-30 Dow Global Technologies Inc. PROCESS TO PREPARE A DIFFICTIONAL POLYMER IN a,? "
JP5346582B2 (en) * 2005-09-28 2013-11-20 ダウ グローバル テクノロジーズ エルエルシー High activity, low molecular weight olefin polymerization process
TWI386310B (en) * 2005-10-07 2013-02-21 Dow Global Technologies Llc Multilayer elastic film structures
KR20080060289A (en) 2005-10-26 2008-07-01 다우 글로벌 테크놀로지스 인크. Multi-layer, elastic articles
RU2426650C2 (en) * 2005-10-26 2011-08-20 Дау Глобал Текнолоджиз Инк. Multilayer pre-stretched elastic articles
RU2008121721A (en) * 2005-10-31 2009-12-10 Дау Глобал Текнолоджиз Инк. (Us) PROPYLENE ELASTOMERIC COMPOSITION
US7737206B2 (en) 2005-11-18 2010-06-15 Exxonmobil Chemical Patents Inc. Polyolefin composition with high filler loading capacity
AR058852A1 (en) * 2005-12-09 2008-02-27 Dow Global Technologies Inc PROCESSES TO CONTROL THE DISTRIBUTION OF THE MOLECULAR WEIGHT IN THE ETHYLENE / ALFA OLEFINE COMPOSITIONS
US8153243B2 (en) 2005-12-09 2012-04-10 Dow Global Technologies Llc Interpolymers suitable for multilayer films
US8282776B2 (en) 2005-12-15 2012-10-09 Kimberly-Clark Worldwide, Inc. Wiping product having enhanced oil absorbency
US7879191B2 (en) 2005-12-15 2011-02-01 Kimberly-Clark Worldwide, Inc. Wiping products having enhanced cleaning abilities
JP5108784B2 (en) * 2005-12-22 2012-12-26 ダウ グローバル テクノロジーズ エルエルシー Blend of styrene block copolymer and propylene-alpha olefin copolymer
US7982085B2 (en) * 2006-02-03 2011-07-19 Exxonmobil Chemical Patents Inc. In-line process for generating comonomer
US8003839B2 (en) * 2006-02-03 2011-08-23 Exxonmobil Chemical Patents Inc. Process for generating linear apha olefin comonomers
WO2007092136A2 (en) * 2006-02-03 2007-08-16 Exxonmobil Chemical Patents, Inc. Process for generating alpha olefin comonomers
SG170126A1 (en) * 2006-03-15 2011-04-29 Dow Global Technologies Inc PROPYLENE/a-OLEFINS BLOCK INTERPOLYMERS
EP1840164A1 (en) 2006-03-30 2007-10-03 SOLVAY INDUSTRIAL FOILS MANAGEMENT AND RESEARCH (Société Anonyme) Retortable composition
EP2012996A2 (en) * 2006-04-19 2009-01-14 Dow Global Technologies Inc. Method for blending materials in an extruder, the manufactured article and material pre-mix
US9163141B2 (en) * 2006-04-27 2015-10-20 Cryovac, Inc. Polymeric blend comprising polylactic acid
US8206796B2 (en) * 2006-04-27 2012-06-26 Cryovac, Inc. Multilayer film comprising polylactic acid
WO2007130242A2 (en) * 2006-05-05 2007-11-15 Dow Global Technologies Inc. Hafnium complexes of heterocyclic organic ligands
WO2007130306A2 (en) * 2006-05-05 2007-11-15 Dow Global Technologies Inc. Ortho-metallated hafnium complexes of imidazole ligands
CN101460510A (en) * 2006-05-05 2009-06-17 陶氏环球技术公司 Hafnium complexes of carbazolyl substituted imidazole ligands
US20080003332A1 (en) * 2006-05-12 2008-01-03 Dimitrios Ginossatis Multilayer heat shrinkable cook-in film
CN102786619B (en) 2006-05-17 2015-01-07 陶氏环球技术有限责任公司 Ethylene/ alpha-olefin/ diene solution polymerization process
CN101466543B (en) 2006-06-14 2014-03-19 艾利丹尼森公司 Conformable and die-cuttable machine direction oriented labelstocks and labels, and process for preparing
AU2007261011B2 (en) * 2006-06-20 2012-04-05 Avery Dennison Corporation Multilayered polymeric film for hot melt adhesive labeling and label stock and label thereof
JP5562029B2 (en) * 2006-06-29 2014-07-30 ダウ グローバル テクノロジーズ エルエルシー Thermoplastic articles and their preparation using an improved masterbatch
US8785531B2 (en) * 2006-07-06 2014-07-22 Dow Global Technologies Llc Dispersions of olefin block copolymers
US8202467B2 (en) 2006-08-02 2012-06-19 Exxonmobil Chemical Patents Inc. Propylene-based polymer article
US8404915B2 (en) * 2006-08-30 2013-03-26 Exxonmobil Chemical Patents Inc. Phosphine ligand-metal compositions, complexes, and catalysts for ethylene trimerizations
US8476326B2 (en) * 2006-09-22 2013-07-02 Dow Global Technologies Llc Fibrillated polyolefin foam
EP2079813B1 (en) 2006-10-30 2012-09-26 Dow Global Technologies LLC Adhesive films
US8124234B2 (en) 2006-11-01 2012-02-28 Dow Global Technologies Llc Polyurethane compositions and articles prepared therefrom, and methods for making the same
JP5061842B2 (en) * 2006-11-01 2012-10-31 王子製紙株式会社 Biaxially stretched polypropylene film
BRPI0717718A2 (en) * 2006-11-30 2013-10-22 Dow Global Technologies Inc "FABRIC TO BE SUBMITTED TO ANTI-RUG TREATMENT AND CLOTHING PART"
EP2084313A1 (en) 2006-11-30 2009-08-05 Dow Global Technologies Inc. Olefin block compositions for heavy weight stretch fabrics
AU2007325015A1 (en) * 2006-11-30 2008-06-05 Dow Global Technologies Inc. Fabric comprising elastic fibres of cross-linked ethylene polymer
US20100093937A1 (en) * 2006-12-05 2010-04-15 Pham Hoang T Polar group functionalized co-polymers
US7785443B2 (en) * 2006-12-07 2010-08-31 Kimberly-Clark Worldwide, Inc. Process for producing tissue products
CA2664910A1 (en) * 2006-12-15 2008-07-03 Fina Technology, Inc. Polypropylene blown film
US8242237B2 (en) 2006-12-20 2012-08-14 Exxonmobil Chemical Patents Inc. Phase separator and monomer recycle for supercritical polymerization process
WO2008080111A1 (en) 2006-12-21 2008-07-03 Dow Global Technologies Inc. Polyolefin compositions and articles prepared therefrom, and methods for making the same
JP5007116B2 (en) * 2006-12-27 2012-08-22 日本ポリプロ株式会社 Process for producing olefin copolymer
WO2008082975A1 (en) * 2006-12-29 2008-07-10 Dow Global Technologies Inc. Compositions
DE602008002736D1 (en) * 2007-01-12 2010-11-04 Dow Global Technologies Inc COMPOSITION SUITABLE FOR THIN-WALLED INJECTION MOLDED ARTICLES
US20080184498A1 (en) * 2007-01-16 2008-08-07 Dow Global Technologies Inc. Colorfast fabrics and garments of olefin block compositions
BRPI0806194A2 (en) 2007-01-16 2011-08-30 Dow Global Technologies Inc cone dyed yarn
US8728960B2 (en) * 2007-01-19 2014-05-20 Exxonmobil Chemical Patents Inc. Spunbond fibers and fabrics from polyolefin blends
US7951732B2 (en) 2007-01-26 2011-05-31 Exxonmobil Chemical Patents Inc. Elastomeric laminates for consumer products
US8247512B2 (en) * 2007-03-05 2012-08-21 Fina Technology, Inc. Metallocene random copolymers with cool temperature impact properties
JP2010520366A (en) * 2007-03-06 2010-06-10 エクソンモービル・ケミカル・パテンツ・インク Polymer produced under supersolution conditions
JP5507263B2 (en) 2007-03-07 2014-05-28 ダウ グローバル テクノロジーズ エルエルシー Immobilized supported transition metal complexes
CN101679697B (en) * 2007-04-24 2014-05-21 陶氏环球技术有限责任公司 Thermoforming, scratch-resistant, low gloss compositions comprising interpolymers of ethylene/alpha-olefins
ES2380973T3 (en) * 2007-04-26 2012-05-22 Flexopack S.A. Plastics Industry Overlay sealable shrink film
WO2008134173A1 (en) * 2007-05-01 2008-11-06 Advanced Elastomer Systems, L.P. Method for preparing thermoplastic vulcanizates
ITMI20070877A1 (en) 2007-05-02 2008-11-03 Dow Global Technologies Inc PROCESS FOR THE PRODUCTION OF MULTI-BLOCKED COPOLYMERS WITH THE USE OF POLAR SOLVENTS
ITMI20070878A1 (en) 2007-05-02 2008-11-03 Dow Global Technologies Inc PROCESS FOR POLYMERIZZAINE OF TACTICAL POLYMERS USING CHIRAL CATALYSTS
US8241753B2 (en) 2007-06-04 2012-08-14 Exxonmobil Chemical Patents Inc. Composite thermoplastic elastomer structures with high adhesion performance and uses for the same
WO2009012073A2 (en) * 2007-07-09 2009-01-22 Dow Global Technologies Inc. Olefin block interpolymer composition suitable for fibers
JP5996162B2 (en) 2007-07-13 2016-09-21 ダウ グローバル テクノロジーズ エルエルシー Catalytic olefin block copolymer having controlled block sequence distribution and at least one low crystalline hard block
EP2179012A4 (en) * 2007-07-13 2011-08-17 Dow Global Technologies Llc Viscosity index improver for lubricant compositions
CN104212538A (en) * 2007-07-13 2014-12-17 陶氏环球技术有限责任公司 Viscosity index improver for lubricant compositions
US8476393B2 (en) * 2007-07-13 2013-07-02 Dow Global Technologies, Llc Ethylene/α-olefin interpolymers containing low crystallinity hard blocks
EP2025507B1 (en) 2007-08-13 2010-12-22 Tesa Se Separating agent based on ethyl-multi-block copolymers
DE502008001691D1 (en) 2007-08-13 2010-12-16 Tesa Se Adhesive tape with a carrier of at least one foam layer
GB0717376D0 (en) 2007-09-07 2007-10-17 Exxonmobil Chem Patents Inc Composition and manufacture thereof
JP5201923B2 (en) * 2007-09-19 2013-06-05 日本ポリプロ株式会社 Propylene polymer production method
EP2042552A1 (en) * 2007-09-27 2009-04-01 Borealis Technology Oy Polyolefin compositions having improved optical and mechanical properties
CN101878265A (en) * 2007-09-28 2010-11-03 陶氏环球技术公司 Thermoplastic olefin composition with improved heat distortion temperature
JP5357169B2 (en) 2007-10-22 2013-12-04 ダウ グローバル テクノロジーズ エルエルシー Polymer compositions and methods for molding articles
US8609772B2 (en) 2007-10-23 2013-12-17 Exxonmobil Chemical Patents Inc. Elastic films having improved mechanical and elastic properties and methods for making the same
WO2009067337A1 (en) * 2007-11-19 2009-05-28 Dow Global Technologies Inc. Long chain branched propylene-alpha-olefin copolymers
WO2009073685A1 (en) * 2007-12-05 2009-06-11 Dow Global Technologies Inc. Polypropylene melt-blown sealant films for retort packaging
CN103254513B (en) 2007-12-20 2015-08-26 埃克森美孚研究工程公司 The blend of isotactic polyprophlene and ethylene-propylene copolymer
ATE552304T1 (en) * 2008-01-02 2012-04-15 Flexopack Sa PVDC FORMULATION AND HEAT SHRINKABLE FILM
AU2008264215A1 (en) * 2008-01-03 2009-07-23 Flexopack S.A. Thermoforming film
EP2085216B1 (en) * 2008-01-29 2016-04-20 Flexopack S A Thin film for waste packing cassettes
EP2238203B1 (en) * 2008-01-30 2018-12-26 Dow Global Technologies LLC Propylene/ alpha-olefin block interpolymers
US20110039082A1 (en) 2008-02-29 2011-02-17 Yun Xiaobing B Oriented Films Comprising Ethylene/a-Olefin Block Interpolymer
US7858817B2 (en) 2008-03-10 2010-12-28 Exxonmobil Chemical Patents Inc. Metallocene-substituted pyridyl amines, their metal complexes, and processes for production and use thereof
BRPI0906178B1 (en) * 2008-03-14 2021-07-20 Dow Global Technologies Inc. PROCESS FOR MANUFACTURING A MOLDED ARTICLE
EP2111979B1 (en) * 2008-04-21 2012-01-18 Flexopack S.A. Plastics Industry Stack sealable heat shrinkable film
US8669329B2 (en) 2008-04-24 2014-03-11 Sumitomo Chemical Company, Limited Thermoplastic elastomer composition, a method for producing a molded body, and a molded body
US8765832B2 (en) 2011-10-14 2014-07-01 Exxonmobil Chemical Patents Inc. Polyolefin-based crosslinked compositions and methods of making them
US7867433B2 (en) 2008-05-30 2011-01-11 Exxonmobil Chemical Patents Inc. Polyolefin-based crosslinked articles
US8283400B2 (en) * 2008-06-09 2012-10-09 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions
US8431642B2 (en) * 2008-06-09 2013-04-30 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US8242198B2 (en) 2008-06-09 2012-08-14 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions
SG191685A1 (en) 2008-06-18 2013-07-31 Dow Global Technologies Inc Processes to control fouling and improve compositions
US8202941B2 (en) 2008-06-27 2012-06-19 Exxonmobil Chemical Patents Inc. High shrinkage propylene-based films
WO2010003047A1 (en) * 2008-07-02 2010-01-07 Dow Global Technologies Inc. Films and articles with good taste and/or odor performance
PL2147783T3 (en) * 2008-07-23 2018-10-31 Flexopack S.A. Stack sealable heat shrinkable film
EP2328996A1 (en) 2008-08-08 2011-06-08 ExxonMobil Chemical Patents Inc. Improved olefinic copolymer compositions for viscosity modification of motor oil
CN102131837B (en) * 2008-08-21 2014-10-15 陶氏环球技术有限责任公司 Metal-ligand complexes and catalysts
US9168718B2 (en) 2009-04-21 2015-10-27 Exxonmobil Chemical Patents Inc. Method for producing temperature resistant nonwovens
US9498932B2 (en) 2008-09-30 2016-11-22 Exxonmobil Chemical Patents Inc. Multi-layered meltblown composite and methods for making same
US10161063B2 (en) 2008-09-30 2018-12-25 Exxonmobil Chemical Patents Inc. Polyolefin-based elastic meltblown fabrics
US8664129B2 (en) 2008-11-14 2014-03-04 Exxonmobil Chemical Patents Inc. Extensible nonwoven facing layer for elastic multilayer fabrics
KR20110091676A (en) 2008-10-17 2011-08-12 시간 펭 Process and device for simultaneously desulfurizing and denitrating the flue gas with the seawater
US20100119855A1 (en) * 2008-11-10 2010-05-13 Trazollah Ouhadi Thermoplastic Elastomer with Excellent Adhesion to EPDM Thermoset Rubber and Low Coefficient of Friction
US8088872B2 (en) * 2008-11-25 2012-01-03 Dow Global Technologies Llc Procatalyst composition including silyl ester internal donor and method
CN102307916B (en) 2008-12-12 2014-04-09 陶氏环球技术有限责任公司 Coating composition, process of producing coating composition, coated article, and method of forming such articles
CA2746239A1 (en) 2008-12-16 2010-07-01 Richard A. Lundgard A coating composition comprising polymer encapsulated metal oxide opacifying pigments and a process of producing the same
CN104438026B (en) 2008-12-22 2018-05-15 陶氏环球技术有限责任公司 Woven carpet coating compound, relevant application method and the product as made from the mixture
TW201035411A (en) * 2008-12-25 2010-10-01 Mitsui Chemicals Inc Aqueous dispersion for treatment of fibers
SG172448A1 (en) 2008-12-31 2011-08-29 Dow Global Technologies Llc Propylene impact copolymer and method
US8288585B2 (en) 2008-12-31 2012-10-16 Dow Global Technologies Llc Procatalyst composition with substitute 1,2-phenylene aromatic diester internal donor and method
CN102300922B (en) 2009-01-30 2013-07-31 陶氏环球技术有限责任公司 Polymeric compositions and filled tpo articles having improved aesthetics
CN102388092B (en) 2009-02-25 2014-03-12 陶氏环球技术有限责任公司 Phylon processes of making foam articles comprising ethylene/alpha-olefins block interpolymers
MX2011009060A (en) 2009-02-27 2011-11-18 Exxonmobil Chem Patents Inc Multi-layer nonwoven in situ laminates and method of producing the same.
EP2408848B1 (en) 2009-03-16 2014-06-25 Dow Global Technologies LLC A dispersion, and a process for producing the same
US8105463B2 (en) 2009-03-20 2012-01-31 Kimberly-Clark Worldwide, Inc. Creped tissue sheets treated with an additive composition according to a pattern
EP2995449A1 (en) 2009-03-20 2016-03-16 Dow Global Technologies LLC Multilayer structure and method of making the same
JP2012522103A (en) 2009-03-30 2012-09-20 ダウ グローバル テクノロジーズ エルエルシー Hybrid dispersion and method for producing the same
EP2435526A4 (en) * 2009-05-29 2012-10-31 Exxonmobil Chem Patents Inc Polyolefin adhesive compositions and method of making thereof
US8318874B2 (en) 2009-06-26 2012-11-27 Dow Global Technologies Llc Process of selectively polymerizing ethylene and catalyst therefor
JP5635088B2 (en) * 2009-07-16 2014-12-03 ダウ グローバル テクノロジーズ エルエルシー Polyolefin artificial leather
US8153544B2 (en) * 2009-07-22 2012-04-10 Equistar Chemicals, Lp Method for preparing non-metallocene catalysts
US7858718B1 (en) 2009-07-22 2010-12-28 Equistar Chemicals, Lp Catalysts based on 2-aryl-8-anilinoquinoline ligands
US8158733B2 (en) * 2009-07-22 2012-04-17 Equistar Chemicals, Lp Catalysts based on 2-(2-aryloxy)quinoline or 2-(2-aryloxy)dihydroquinoline ligands
US8975334B2 (en) 2009-07-23 2015-03-10 Exxonmobil Chemical Patents Inc. Crosslinkable propylene-based copolymers, methods for preparing the same, and articles made therefrom
EP3202681B1 (en) 2009-07-24 2021-04-21 Dow Global Technologies LLC Method of making a coated container device
KR101716916B1 (en) 2009-07-24 2017-03-15 다우 글로벌 테크놀로지스 엘엘씨 A coated container device, method of making the same
BR112012001948B1 (en) 2009-07-29 2019-08-20 Dow Global Technologies Llc Chain transfer agent, process for polymerizing at least one addition polymerizable monomer, multi-block copolymer and catalyst composition
BR112012001942B1 (en) 2009-07-29 2019-10-22 Dow Global Technologies Llc multifunctional chain exchange agent, process for preparing a multifunctional chain exchange agent, process for preparing a multifunctional composition, multifunctional composition, process for preparing a multifunctional chain exchange agent containing poly radical polyolefin, telequel polyolefin, process for preparing a terminal functionality polyolefin with battery separator
WO2011017477A1 (en) 2009-08-06 2011-02-10 Dow Global Technologies Inc. Radio frequency sealable film, sealed film structure and method of making the same
US20110054117A1 (en) * 2009-08-27 2011-03-03 Hall Gregory K Polyolefin Adhesive Compositions and Method of Making Thereof
US20110054122A1 (en) * 2009-08-31 2011-03-03 Jerzy Klosin Catalyst and process for polymerizing an olefin and polyolefin prepared thereby
US8394892B2 (en) * 2009-09-14 2013-03-12 Sumitomo Chemical Company, Ltd. High performance thermoplastic elastomer composition
EP2477601B1 (en) 2009-09-15 2017-09-13 Union Carbide Chemicals & Plastics Technology LLC Personal care compositions with ethylene acrylic acid copolymer aqueous dispersions
WO2011034878A2 (en) 2009-09-15 2011-03-24 Union Carbide Chemicals & Plastics Technology Llc Silicone replacements for personal care compositions
US8686087B2 (en) 2009-10-02 2014-04-01 Dow Global Technologies Llc Block composites in soft compounds
CN102712795B (en) 2009-10-02 2015-10-21 陶氏环球技术有限责任公司 Block matrix material and impact modified composition
CN102549064B (en) * 2009-10-02 2014-04-30 埃克森美孚化学专利公司 Crosslinked polyolefin polymer blends
KR101794361B1 (en) 2009-10-02 2017-11-06 다우 글로벌 테크놀로지스 엘엘씨 Block copolymers in soft compounds
BR112012007275B1 (en) 2009-10-02 2021-08-10 Dow Global Technologies Llc THERMOPLASTIC VULCANIZED AND ARTICLE
US9458310B2 (en) 2009-10-16 2016-10-04 Exxonmobil Chemical Patents Inc. Modified polyethylene film compositions
CN102686638B (en) * 2009-10-30 2015-04-01 陶氏环球技术有限责任公司 Alkyd dispersion, and a process for producing the same
CN102712797B (en) 2009-11-20 2016-10-12 陶氏环球技术有限责任公司 For the cold and thermoplastic elastomer (TPE) of wet applications
US8668975B2 (en) 2009-11-24 2014-03-11 Exxonmobil Chemical Patents Inc. Fabric with discrete elastic and plastic regions and method for making same
GB2475961B (en) * 2009-12-02 2015-07-08 Flexopack Sa Thin film for waste packing cassettes
WO2011068525A1 (en) 2009-12-04 2011-06-09 Dow Global Technologies Inc. Extruder screw
EP2515814B1 (en) 2009-12-23 2018-03-14 Invista Technologies S.à.r.l. Stretch articles including polyolefin elastic fiber
CN104894666A (en) 2009-12-23 2015-09-09 英威达技术有限公司 Elastic fiber containing antisticking additive
EP2516708B1 (en) 2009-12-23 2016-02-17 Invista Technologies S.à.r.l. Polyolefin elastic fiber
WO2011087694A2 (en) 2009-12-23 2011-07-21 Invista Technologies S.A.R.L Fabric including polylefin elastic fiber
KR20120114326A (en) 2009-12-31 2012-10-16 다우 글로벌 테크놀로지스 엘엘씨 Halogen-free, flame retardant thermoplastic compositions for wire and cable applications
WO2011092092A2 (en) * 2010-01-28 2011-08-04 Borealis Ag Melt blown fiber
CN102781981B (en) 2010-02-19 2015-09-16 陶氏环球技术有限责任公司 Olefin monomer polymerizing process and catalyzer thereof
ES2691727T3 (en) 2010-02-19 2018-11-28 Dow Global Technologies Llc Metal-ligand complexes and catalysts
KR101167172B1 (en) 2010-02-26 2012-07-24 현대제철 주식회사 Method for calculating length and width in rolling process
US20110218283A1 (en) * 2010-03-02 2011-09-08 Nadeem Akhtar Bokhari Reactor thermoplastic polyolefin elastomer composition
CN103189045B (en) * 2010-03-26 2015-08-26 联合碳化化学品及塑料技术公司 For the personal care composition of having hair dyed
CA2798688A1 (en) 2010-05-10 2011-11-17 Dow Global Technologies Llc Adhesion promoter system, and method of producing the same
CN107033808B (en) 2010-05-10 2020-01-17 陶氏环球技术有限责任公司 Adhesion promoter and preparation method thereof
US20130059164A1 (en) 2010-05-10 2013-03-07 Dow Global Technologies Llc Adhesion promoter system, and method of producing the same
CA2798687C (en) 2010-05-10 2017-12-05 Dow Global Technologies Llc Adhesion promoter system, and method of producing the same
EP2571689B1 (en) 2010-05-18 2016-11-16 Dow Global Technologies LLC A multilayer sheet, a thermoformed article, and a method for making the same
WO2011156579A2 (en) 2010-06-10 2011-12-15 Union Carbide Chemicals & Plastics Technology Llc Personal care compositions with ethylene acrylic acid copolymer aqueous dispersions
EP2582742B1 (en) 2010-06-18 2021-07-21 Dow Global Technologies LLC Coated polymeric particulates
US8785554B2 (en) 2010-06-21 2014-07-22 Dow Global Technologies Llc Crystalline block composites as compatibilizers
EP2582747B1 (en) 2010-06-21 2019-05-29 Dow Global Technologies LLC Crystalline block composites as compatibilizers
KR101826210B1 (en) 2010-06-21 2018-02-06 다우 글로벌 테크놀로지스 엘엘씨 Crystalline block composites as compatibilizers
CN103097453B (en) 2010-06-21 2015-08-05 陶氏环球技术有限责任公司 As the crystalline blocks matrix material of expanding material
CN103068894A (en) 2010-06-23 2013-04-24 陶氏环球技术有限责任公司 Masterbatch composition
US20120016092A1 (en) 2010-07-14 2012-01-19 Sandor Nagy Catalysts based on quinoline precursors
MX2013001063A (en) 2010-07-27 2013-02-21 Dow Global Technologies Llc Low-density web and method of applying an additive composition thereto.
US8445393B2 (en) 2010-07-27 2013-05-21 Kimberly-Clark Worldwide, Inc. Low-density web and method of applying an additive composition thereto
EP2609123B1 (en) 2010-08-25 2017-12-13 Dow Global Technologies LLC Process for polymerizing a polymerizable olefin and catalyst therefor
US8883870B2 (en) 2010-09-15 2014-11-11 Dow Global Technologies Llc Propylene-alpha-olefin copolymer compositions with improved foaming window
WO2012037180A1 (en) 2010-09-16 2012-03-22 Dow Global Technologies Llc Coextruded multilayer film structure
US8907034B2 (en) 2010-09-30 2014-12-09 Dow Global Technologies Llc Comb architecture olefin block copolymers
WO2012054278A2 (en) 2010-10-20 2012-04-26 Union Carbide Chemicals & Plastics Technology Llc Hair fixatives
WO2012061168A1 (en) 2010-11-02 2012-05-10 Dow Global Technologies Llc A sealant composition, method of producing the same
WO2012061195A2 (en) 2010-11-04 2012-05-10 Union Carbide Chemicals & Plastics Technology Llc Skin care compositions
WO2012061706A1 (en) 2010-11-04 2012-05-10 Dow Global Technologies Llc Double shuttling of polyolefin polymeryl chains
US20120116034A1 (en) * 2010-11-08 2012-05-10 Dow Global Technologies, Inc. Solution polymerization process and procatalyst carrier systems useful therein
BR112013012819B1 (en) 2010-11-24 2021-09-14 Dow Global Technologies Llc TOP LAYER OF AN ARTIFICIAL LEATHER MULTILAYER STRUCTURE, ARTIFICIAL LEATHER MULTILAYER STRUCTURE, ARTICLE AND PROCESS TO PREPARE A COMPOSITION
CN103261388B (en) 2010-12-17 2015-12-16 陶氏环球技术有限责任公司 For the ethylene acrylic acid co polymer water dispersion of perfume releasing in cloth-washing detergent
KR20130127493A (en) 2010-12-17 2013-11-22 다우 글로벌 테크놀로지스 엘엘씨 Halogen-free, flame retardant composition for wire and cable applications
EP2658919B1 (en) 2010-12-30 2018-07-25 Dow Global Technologies LLC Thermoplastic vulcanizate composition, method of producing the same, and articles made therefrom
CN103384698B (en) 2011-01-03 2017-01-18 陶氏环球技术有限责任公司 Reinforced microcapillary films and foams
BR112013017149A2 (en) 2011-01-03 2016-09-20 Dow Global Technologies Llc microcapillary film or foam, structure and multilayer and article
WO2012103080A1 (en) 2011-01-26 2012-08-02 Dow Global Technologies Llc Process for making a polyolefin-polysiloxane block copolymer
EP2694606B2 (en) 2011-04-08 2019-06-05 Dow Global Technologies LLC Process for producing a coating compositon
DE202011110798U1 (en) 2011-05-03 2016-08-09 Flexopack S.A. Waste packaging system and foil
US9296836B2 (en) 2011-05-12 2016-03-29 Dow Global Technologies Llc Non-cyclopentadienyl-based chromium catalysts for olefin polymerization
DE202011110797U1 (en) 2011-06-16 2016-08-10 Flexopack S.A. Waste packaging system and foil
US9056973B2 (en) 2011-06-21 2015-06-16 Dow Global Technologies Llc Halogen-free flame-retardant polymer composition comprising piperazine based intumescent flame retardant
BR112013033143A2 (en) 2011-06-27 2017-01-24 Fuller H B Co free radical initiator modified hot melt adhesive composition including functionalized polyethylene and propylene alpha olefin polymer
WO2013003196A1 (en) 2011-06-27 2013-01-03 H.B. Fuller Company Propylene-alpha-olefin polymers, hot melt adhesive compositions that include propylene-alpha-olefin polymers and articles that include the same
US9156195B2 (en) 2011-06-30 2015-10-13 Dow Global Techologies LLC Clear graphic cling films
EP2729479B1 (en) * 2011-07-08 2017-09-06 Borealis AG Catalysts
BR112014000748B1 (en) 2011-07-28 2020-03-31 Dow Global Technologies Llc POLYMERIC MIXTURE FORMULATION, MULTILAYER STRUCTURE AND METHOD FOR CONFIGURING A MULTILAYER STRUCTURE
WO2013043796A2 (en) * 2011-09-23 2013-03-28 Exxonmobil Chemical Patents Inc. Modified polyethylene compositions
US20160272798A1 (en) 2011-09-23 2016-09-22 Exxonmobil Chemical Patents Inc. Modified Polyethylene Compositions with Enhanced Melt Strength
KR101903659B1 (en) 2011-09-30 2018-10-04 다우 글로벌 테크놀로지스 엘엘씨 Flame retardant thermoplastic composition of polycarbonate and polypropylene
KR101858787B1 (en) 2011-10-24 2018-05-16 미쯔비시 케미컬 주식회사 Thermoplastic elastomer composition and method for producing same
US8629217B2 (en) 2011-11-22 2014-01-14 Exxonmobil Chemical Patents Inc. Modified polyethylene blown film compositions having excellent bubble stability
EP2602367B1 (en) * 2011-12-06 2015-05-13 Borealis AG PP copolymers for melt blown/pulp fibrous nonwoven structures with improved mechanical properties and lower hot air consumption
SG10201509914VA (en) 2011-12-14 2016-01-28 Dow Global Technologies Llc Functionalized block composite and crystalline block composite compositions
IN2014CN04286A (en) 2011-12-14 2015-09-04 Dow Global Technologies Llc
BR112014014859A2 (en) 2011-12-20 2017-06-13 Dow Global Technologies Llc rotomolding composition
BR112014015134A2 (en) 2011-12-21 2017-06-13 Dow Global Technologies Llc method for improving the formation of a polyolefin-based article and polyolefin article
BR112014015382B1 (en) 2011-12-21 2020-12-01 Dow Global Technologies Llc formulation of dielectrically weldable polyolefin, improvement in a method to form a polyolefin-based article and high-frequency welded polyolefin article
US20130165354A1 (en) 2011-12-22 2013-06-27 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9701798B2 (en) 2011-12-22 2017-07-11 Dow Global Technologies Llc Microcapillary films and foams suitable for capillary action fluid transport
US9604430B2 (en) 2012-02-08 2017-03-28 Flexopack S.A. Thin film for waste packing cassettes
EP2822995B1 (en) 2012-03-07 2018-01-31 Dow Global Technologies LLC Polyolefin based formulations for membranes and fabrics
KR102044767B1 (en) 2012-04-12 2019-11-15 다우 글로벌 테크놀로지스 엘엘씨 Polyolefin blend composition and articles made therefrom
US8691916B2 (en) 2012-05-07 2014-04-08 Dow Global Technologies Llc Retortable easy opening seals for film extrusion
BR112014029685B1 (en) 2012-06-19 2021-01-19 Dow Global Technologies Llc water based mix composition, process for producing a water based mix composition, film, multilayer film and container device
KR102080361B1 (en) 2012-06-19 2020-02-21 다우 글로벌 테크놀로지스 엘엘씨 Aqueous based blend composition and method of producing the same
US9713894B2 (en) 2012-06-28 2017-07-25 Dow Global Technologies Llc System, method and apparatus for producing a multi-layer, microcapillary film
CN104718060B (en) 2012-06-28 2019-03-08 陶氏环球技术有限责任公司 Microcapillary film and preparation method thereof
US9676532B2 (en) 2012-08-15 2017-06-13 Avery Dennison Corporation Packaging reclosure label for high alcohol content products
US11292234B2 (en) 2012-09-13 2022-04-05 Dow Global Technologies Llc Polyolefin based films suitable for thermoforming
JP6408470B2 (en) 2012-09-24 2018-10-17 ローム アンド ハース カンパニーRohm And Haas Company Personal care sensation
JP6211088B2 (en) 2012-10-09 2017-10-11 ダウ グローバル テクノロジーズ エルエルシー Sealant composition
EP2732963A1 (en) 2012-11-15 2014-05-21 Dow Global Technologies LLC Extrusion coated textile laminate with improved peel strength
JP2015536378A (en) 2012-11-21 2015-12-21 ダウ グローバル テクノロジーズ エルエルシー Film composition, film made from the film composition, multilayer film containing the film, and article made therefrom
WO2014081516A1 (en) 2012-11-21 2014-05-30 Dow Global Technologies Llc A film composition, film made from the film composition and a multi-layer film including the film and articles made therefrom
BR112015011611B1 (en) 2012-11-21 2022-04-19 Rohm And Haas Company Coating composition and coated article
US9840613B1 (en) 2012-11-29 2017-12-12 K. Jabat, Inc. Elastomeric composition having high impact strength
CN104812782B (en) * 2012-11-30 2018-10-12 陶氏环球技术有限责任公司 Ethylene/alpha-olefin/nonconjugated polyene base composition and the foaming body formed by it
PL2931518T3 (en) 2012-12-17 2019-08-30 Dow Global Technologies Llc A multi-layered structure and a method of sealing or shaping using a multi-layered structure
WO2014099305A1 (en) 2012-12-19 2014-06-26 Dow Global Technologies Llc Flexible film composition forheat seals and container with same
WO2014105809A1 (en) 2012-12-27 2014-07-03 Dow Global Technologies Llc Production of tpo roofing membrane via counter-rotating extrusion
KR102177644B1 (en) 2012-12-28 2020-11-11 다우 글로벌 테크놀로지스 엘엘씨 A coating composition and articles made therefrom
KR102146702B1 (en) 2012-12-28 2020-08-21 다우 글로벌 테크놀로지스 엘엘씨 Coating compositions
US20140187114A1 (en) 2012-12-28 2014-07-03 Dow Brasil S.A. Elastic nonwovens with improved haptics and mechanical properties
JP6188817B2 (en) 2012-12-31 2017-08-30 ダウ グローバル テクノロジーズ エルエルシー Thermoplastic vulcanizates having crosslinked olefin block copolymers
US9593235B2 (en) 2013-02-15 2017-03-14 H.B. Fuller Company Reaction product of propylene polymer and wax, graft copolymers derived from polypropylene polymer and wax, hot melt adhesive compositions including the same, and methods of using and making the same
US9267060B2 (en) 2013-02-15 2016-02-23 H.B. Fuller Company Reaction product of propylene polymer and wax, graft copolymers derived from polypropylene polymer and wax, hot melt adhesive compositions including the same, and methods of using and making the same
US20140235127A1 (en) * 2013-02-21 2014-08-21 Henkel Corporation Elastic attachment adhesive and use thereof
BR112015019579B1 (en) 2013-02-28 2020-10-13 Dow Global Technologies Llc mixing composition, process for making an injection molded article, molded article and article
US9034477B2 (en) 2013-03-05 2015-05-19 Dow Global Technologies Llc Coating composition, a film containing the same, and a method for forming a sealable film
TWI617489B (en) 2013-04-09 2018-03-11 陶氏全球科技有限責任公司 Process for producing ultrasonic seal, and film structures and flexible containers with same
CN105209687B (en) 2013-05-22 2018-04-17 陶氏环球技术有限责任公司 Paper composition and its manufacture method
EP2813362B1 (en) 2013-06-14 2019-05-22 Flexopack S.A. Heat shrinkable film
US20160102429A1 (en) * 2013-07-02 2016-04-14 Exxonmobil Chemical Patents Inc. Carpet Backing Compositions and Carpet Backing Comprising the Same
US9469753B2 (en) 2013-07-22 2016-10-18 Exxonmobil Chemical Patents Inc. Propylene copolymers in elastomeric compositions
WO2015021201A1 (en) 2013-08-08 2015-02-12 Dow Global Technologies Llc A composite material, articles made therefrom
WO2015042820A1 (en) 2013-09-26 2015-04-02 Dow Global Technologies Llc A polymeric blend composition
BR112016007421B1 (en) 2013-10-15 2021-09-14 Dow Global Technologies Llc COMPOSITION, ARTICLE AND ROTOMOLDED ARTICLE
EP2862712A1 (en) 2013-10-16 2015-04-22 Dow Global Technologies LLC Flexible film composition for heat seals and container thereof
WO2015061440A1 (en) 2013-10-25 2015-04-30 Dow Global Technologies Llc Polyethylene and polypropylene composition suitable for the use as retortable easy opening seals
BR112016009343B1 (en) 2013-11-08 2022-01-04 Dow Global Technologies Llc INK COMPOSITION WITHOUT STARTER, ARTICLE AND METHOD
US9908952B2 (en) 2013-11-15 2018-03-06 W.R. Grace & Co.-Conn. Propylene-based polymer with reduced high-molecular weight portion
CN106414521B (en) 2013-11-21 2019-07-30 格雷斯公司 Produce the polymer based on propylene of high comonomer content
US10066102B2 (en) 2013-11-22 2018-09-04 Trinseo Europe Gmbh Polycarbonate containing compositions
US9708488B2 (en) 2013-11-22 2017-07-18 Trinseo Europe Gmbh Polycarbonate containing compositions
BR112016012907A2 (en) 2013-12-16 2017-08-08 Dow Global Technologies Llc PROCESS FOR PREPARING STORAGE STABLE POLYMER FORMULATIONS
CN105848878B (en) 2013-12-31 2018-06-08 陶氏环球技术有限责任公司 Plural layers, its manufacturing method and include its product
US10647795B2 (en) 2014-02-07 2020-05-12 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US10308740B2 (en) 2014-02-07 2019-06-04 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US10723824B2 (en) 2014-02-07 2020-07-28 Eastman Chemical Company Adhesives comprising amorphous propylene-ethylene copolymers
US10696765B2 (en) 2014-02-07 2020-06-30 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and propylene polymer
US9593179B2 (en) 2014-02-07 2017-03-14 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US11267916B2 (en) 2014-02-07 2022-03-08 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
WO2015123827A1 (en) 2014-02-19 2015-08-27 Dow Global Technologies Llc High performance sealable co-extruded oriented film, methods of manufacture thereof and articles comprising the same
US20150231862A1 (en) 2014-02-19 2015-08-20 Dow Global Technologies Llc Multilayered polyolefin films, methods of manufacture thereof and articles comprising the same
WO2015123829A1 (en) 2014-02-19 2015-08-27 Dow Global Technologies Llc Multilayer film, methods of manufacture thereof and articles comprising the same
US20150231861A1 (en) 2014-02-19 2015-08-20 Dow Global Technologies Llc Multilayered polyolefin films, methods of manufacture thereof and articles comprising the same
CN106061460B (en) 2014-03-10 2019-11-15 陶氏环球技术有限责任公司 Hair nursing sensory agent
EP2921519A1 (en) 2014-03-17 2015-09-23 Dow Global Technologies LLC A multilayer structure
WO2015153794A1 (en) 2014-04-01 2015-10-08 Dow Global Technologies Llc Multi-layer films and articles made therefrom
US9694564B2 (en) 2014-05-30 2017-07-04 Inteplast Group Corporation Peelable puncture-resistant film for packaging
KR102299068B1 (en) 2014-06-02 2021-09-08 애버리 데니슨 코포레이션 Films with enhanced scuff resistance, clarity, and conformability
WO2015188358A1 (en) 2014-06-12 2015-12-17 Dow Global Technologies Llc Coated substrates and articles made therefrom
WO2016003657A1 (en) 2014-07-03 2016-01-07 Dow Global Technologies Llc A composition, injection molded article made therefrom and process to make injection molded article
US10421258B2 (en) 2014-08-13 2019-09-24 Performance Materials Na, Inc. Multilayer structure comprising polypropylene
JP2017534485A (en) 2014-09-26 2017-11-24 ダウ グローバル テクノロジーズ エルエルシー Multilayer structure
WO2016052606A1 (en) * 2014-09-30 2016-04-07 積水化学工業株式会社 Interlayer film for laminated glass, and laminated glass
US10428210B2 (en) 2014-10-29 2019-10-01 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions for elastic applications
AU2015258191B2 (en) 2014-11-19 2020-02-27 Flexopack S.A. Oven skin packaging process
US10358545B2 (en) 2014-12-02 2019-07-23 Dow Global Technologies Llc Dynamic vulcanization of a blend composition, methods of manufacture thereof and articles comprising the same
JP6734278B2 (en) 2014-12-23 2020-08-05 ダウ グローバル テクノロジーズ エルエルシー Thermoplastic vulcanizate containing rubber block interpolymer
KR102545963B1 (en) 2014-12-23 2023-06-22 다우 글로벌 테크놀로지스 엘엘씨 Thermoplastic vulcanizate including a block composite
EP3070134B1 (en) 2015-03-18 2021-03-03 Dow Global Technologies LLC Protective films, blends, and methods of making thereof
KR101953799B1 (en) 2015-05-08 2019-03-04 주식회사 엘지화학 Ligand compound and transition metal compound
EP3317341B1 (en) 2015-06-30 2023-03-22 Dow Global Technologies LLC Polypropylene/inorganic particle blend composition for pvc-free wear layer in resilient flooring
BR112017027368B1 (en) 2015-06-30 2022-04-19 Dow Global Technologies Llc Foam composition, article and method of making a foam composition
AR105371A1 (en) 2015-07-27 2017-09-27 Dow Global Technologies Llc ELASTIC COMPOSITIONS BASED ON POLYOLEFINE, METHODS FOR THEIR MANUFACTURING AND ARTICLES THAT INCLUDE THEM
WO2017049064A1 (en) 2015-09-17 2017-03-23 Dow Global Technologies Llc Polymer coatings compositions with reduced ignition sensitivity
JP6832348B2 (en) 2015-09-30 2021-02-24 ダウ グローバル テクノロジーズ エルエルシー Multi-headed or bi-headed compositions useful for chain shuttling, and the process for preparing them
JP6936795B2 (en) 2015-10-29 2021-09-22 ダウ グローバル テクノロジーズ エルエルシー Crosslinkable polymer compositions for flexible crosslinked cable insulators, and methods for making flexible crosslinked cable insulators.
WO2017088168A1 (en) 2015-11-27 2017-06-01 Dow Global Technologies Llc Adhesive formulations for fabric/poe adhesion
BR112018010314B1 (en) 2015-12-10 2022-01-25 Dow Global Technologies Llc Composition, manufacturing process of a tube, tube and cable
EP3386468B1 (en) 2015-12-11 2019-11-13 Rohm and Haas Company Concentrated polyolefin emulsions and personal care compositions containing them
EP3386464A1 (en) 2015-12-11 2018-10-17 Rohm and Haas Company Concentrated polyolefin emulsions and hair care compositions containing them
US20200270432A1 (en) 2015-12-15 2020-08-27 Dow Global Technologies Llc Cross-linked foams made from interpolymers of ethylene/alpha-olefins
TW201723001A (en) 2015-12-16 2017-07-01 陶氏全球科技有限責任公司 Package with peelable and non-peelable heat seals
BR112018011444B1 (en) 2015-12-18 2022-03-22 Dow Global Technologies Llc Multi-layer film and article
KR101910232B1 (en) 2015-12-24 2018-12-19 주식회사 엘지화학 Catalyst composition comprising novel transition metal compound
BR112018013633B1 (en) 2016-01-05 2022-03-15 Dow Global Technologies Llc Thermoformed microcapillary covering, multi-layer structure and article
CA3018594C (en) 2016-03-25 2023-06-27 Dow Global Technologies Llc Buffer tubes for fiber optic cables
US11279780B2 (en) 2016-05-27 2022-03-22 Cornell University Polyethylene and polypropylene block copolymers
BR112018074627A2 (en) 2016-06-15 2019-03-06 Dow Brasil Sudeste Ind Ltda cationic emulsion for hair treatment, and method for manufacturing a hair treatment composition.
JP2019518015A (en) 2016-06-15 2019-06-27 ローム アンド ハース カンパニーRohm And Haas Company Synergistic hair care formulations
EP3260295A1 (en) 2016-06-22 2017-12-27 Dow Global Technologies LLC Multilayer films and packages formed from same
US11098188B2 (en) 2016-09-29 2021-08-24 Dow Global Technologies Llc Blends for foams, foams manufactured therefrom and articles comprising the same
KR102444560B1 (en) 2016-09-30 2022-09-20 다우 글로벌 테크놀로지스 엘엘씨 Multi- or dual-head components useful for chain shuttling and the process of preparing them
US11359035B2 (en) 2016-09-30 2022-06-14 Dow Global Technologies Llc Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same
BR112019006150B1 (en) 2016-09-30 2023-02-28 Dow Global Technologies Llc COMPOSITION AND PROCESS FOR PREPARING THE COMPOSITION
BR112019007278B1 (en) 2016-10-12 2022-09-06 Dow Global Technologies Llc MULTI-LAYER STRUCTURE AND METHOD TO PREPARE THE MULTI-LAYER STRUCTURE
AR110303A1 (en) 2016-12-01 2019-03-13 Dow Global Technologies Llc MULTI-PATH FILMS
US10584297B2 (en) 2016-12-13 2020-03-10 Afton Chemical Corporation Polyolefin-derived dispersants
US10221267B2 (en) 2016-12-13 2019-03-05 Afton Chemical Corporation Microstructure-controlled copolymers of ethylene and C3-C10 alpha-olefins
BR112019019130B1 (en) 2017-03-15 2023-03-28 Dow Global Technologies Llc OLEFIN POLYMERIZATION CATALYST SYSTEM AND PROCESS FOR PREPARING A MULTI-BLOCK COPOLYMER
ES2946762T3 (en) 2017-03-15 2023-07-25 Dow Global Technologies Llc Catalyst system for multiblock copolymer formation
KR20190123340A (en) 2017-03-15 2019-10-31 다우 글로벌 테크놀로지스 엘엘씨 Catalyst System for Multi-Block Copolymer Formation
EP3596142B1 (en) 2017-03-15 2023-05-24 Dow Global Technologies LLC Catalyst system for multi-block copolymer formation
US20200247936A1 (en) 2017-03-15 2020-08-06 Dow Global Technologies Llc Catalyst system for multi-block copolymer formation
CN111032301A (en) 2017-08-31 2020-04-17 埃克森美孚化学专利公司 Process for preparing thermoplastic vulcanizate (TPV)
ES2927634T3 (en) 2017-12-20 2022-11-08 Dow Global Technologies Llc Multilayer cast films and manufacturing methods thereof
EP3501822A1 (en) 2017-12-22 2019-06-26 Flexopack S.A. Fibc liner film
EP3732211A1 (en) 2017-12-29 2020-11-04 Dow Global Technologies Llc Capped dual-headed organoaluminum compositions
EP4039472A1 (en) * 2018-01-05 2022-08-10 Baxter International Inc. Multi-layer articles and methods for producing the same
EP3752538A1 (en) 2018-02-12 2020-12-23 ExxonMobil Chemical Patents Inc. Metallocene catalyst feed system for solution polymerization process
US20210002308A1 (en) 2018-03-19 2021-01-07 Dow Global Technologies Llc Silicon-terminated organo-metal compounds and processes for preparing the same
BR112020019174A2 (en) 2018-03-19 2021-01-05 Dow Global Technologies Llc TELEQUELIC POLYOLEFINE COMPOSITIONS FINISHED WITH SILICON AND PROCESSES FOR THE PREPARATION OF THE SAME
KR20200135419A (en) 2018-03-19 2020-12-02 다우 글로벌 테크놀로지스 엘엘씨 Method for functionalizing an organo-metal compound with a silyl-based functionalizing agent, and a silyl-based functionalizing agent compound prepared thereby
BR112020019193A2 (en) 2018-03-19 2021-01-05 Dow Global Technologies Llc ORGANOMETAL COMPOUNDS FINISHED IN SILICON AND PROCESSES TO PREPARE THE SAME
EP3814434B1 (en) 2018-06-29 2022-07-27 Dow Global Technologies Llc Shelf stable aqueous dispersions suitable for use in food contact applications
JP7419357B2 (en) 2018-10-17 2024-01-22 ダウ グローバル テクノロジーズ エルエルシー Coating compositions, coated fabrics, methods of making coated fabrics, and articles made from coated fabrics
US20220002564A1 (en) 2018-10-17 2022-01-06 Dow Global Technologies Llc A coating composition, a coated fabric, a method of making a coated fabric, and an article made from the coated fabric
EP3867105A1 (en) 2018-10-17 2021-08-25 Dow Global Technologies, LLC A coating composition, a coated fabric, a method of making a coated fabric, and an article made from the coated fabric
US20220098034A1 (en) * 2018-12-17 2022-03-31 King Abdullah University Of Science And Technology Heterogeneous catalysts for hydrogen generation from formic acid
WO2020140067A1 (en) 2018-12-28 2020-07-02 Dow Global Technologies Llc Curable compositions comprising unsaturated polyolefins
WO2020135681A1 (en) 2018-12-28 2020-07-02 Dow Global Technologies Llc Curable compositions comprising unsaturated polyolefins
CN113498414A (en) 2018-12-28 2021-10-12 陶氏环球技术有限责任公司 Curable compositions comprising telechelic polyolefins
KR20210121028A (en) 2018-12-28 2021-10-07 다우 글로벌 테크놀로지스 엘엘씨 organometallic chain transfer agent
US20220073658A1 (en) 2018-12-28 2022-03-10 Dow Global Technologies Llc Telechelic polyolefins and processes for preparing the same
WO2020242912A1 (en) 2019-05-24 2020-12-03 Eastman Chemical Company Blend small amounts of pyoil into a liquid stream processed into a gas cracker
WO2021034400A1 (en) 2019-08-20 2021-02-25 Exxonmobil Chemical Patents Inc. Films and methods of making the same
US11939457B2 (en) 2019-08-29 2024-03-26 Dow Global Technologies Llc Polymer blends having improved thermal properties
CN110575758B (en) * 2019-09-26 2024-01-26 中海石油气电集团有限责任公司 Novel detection tube permeable membrane and preparation method and application thereof
EP3797988A1 (en) * 2019-09-30 2021-03-31 Dow Global Technologies Llc Plastomer toughened/stiffened polyolefin multilayer films and laminates comprising same
US11945998B2 (en) 2019-10-31 2024-04-02 Eastman Chemical Company Processes and systems for making recycle content hydrocarbons
CN114650981A (en) 2019-11-07 2022-06-21 伊士曼化工公司 Recovery of the components alpha-olefin and fatty alcohol
US11518154B2 (en) 2020-01-27 2022-12-06 Exxonmobil Chemical Patents Inc. Barrier films for packaging
US20230148197A1 (en) * 2020-03-30 2023-05-11 Toyobo Co., Ltd. Polyolefin-based resin film and laminated body using same
AR121793A1 (en) 2020-04-14 2022-07-13 Dow Global Technologies Llc ABSORBENT LAYERS SUITABLE FOR USE IN ABSORBENT ARTICLES AND METHODS OF MAKING THEM
US20230183463A1 (en) 2020-05-12 2023-06-15 Celanese International Corporation Thermoplastic Elastomer Compositions for Use in Pharmaceutical Articles
KR20230038535A (en) 2020-07-16 2023-03-20 다우 글로벌 테크놀로지스 엘엘씨 Reusable outer cover formed from non-woven fabric
JP2023534663A (en) 2020-07-17 2023-08-10 ダウ グローバル テクノロジーズ エルエルシー Hydrocarbyl-modified methylaluminoxane cocatalysts for bis-phenylphenoxy metal-ligand complexes
CN116194492A (en) 2020-07-17 2023-05-30 陶氏环球技术有限责任公司 Hydrocarbon-modified methylaluminoxane cocatalyst for limiting geometry procatalyst
US20240010770A1 (en) 2020-07-17 2024-01-11 Dow Global Technologies Llc Hydrocarbyl-modified methylaluminoxane cocatalysts for bis-phenylphenoxy metal-ligand complexes
JPWO2022075350A1 (en) * 2020-10-06 2022-04-14
JP2024506482A (en) 2021-01-25 2024-02-14 ダウ グローバル テクノロジーズ エルエルシー Hydrocarbyl-modified methylaluminoxane cocatalysts for bis-phenylphenoxy metal-ligand complexes
EP4337716A1 (en) 2021-05-12 2024-03-20 Dow Global Technologies LLC Rheology modified olefin-based polymer composition and method for making it
CN117659239A (en) * 2022-09-08 2024-03-08 中国石油天然气股份有限公司 Main catalyst for preparing poly (4-methyl-1-pentene) and application thereof
CN115710326A (en) * 2022-10-27 2023-02-24 万华化学集团股份有限公司 Dibenzofuran bridged aryloxy metal complex catalyst, and method and application thereof

Family Cites Families (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076698A (en) 1956-03-01 1978-02-28 E. I. Du Pont De Nemours And Company Hydrocarbon interpolymer compositions
US3485706A (en) 1968-01-18 1969-12-23 Du Pont Textile-like patterned nonwoven fabrics and their production
US3520861A (en) 1968-12-26 1970-07-21 Dow Chemical Co Copolymers of ethylene
US4330646A (en) 1979-08-13 1982-05-18 Asahi Kasei Kogyo Kabushiki Kaisha Polymerization of an α-olefin
US4322027A (en) 1980-10-02 1982-03-30 Crown Zellerbach Corporation Filament draw nozzle
US4413110A (en) 1981-04-30 1983-11-01 Allied Corporation High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore
DE3127133A1 (en) 1981-07-09 1983-01-27 Hoechst Ag, 6000 Frankfurt METHOD FOR PRODUCING POLYOLEFINS AND THEIR COPOLYMERISATS
US4430563A (en) 1982-04-30 1984-02-07 Minnesota Mining And Manufacturing Company Data processing form
DE3240383A1 (en) 1982-11-02 1984-05-03 Hoechst Ag, 6230 Frankfurt METHOD FOR PRODUCING OLIGOMER ALUMINOXANES
CA1216700A (en) 1983-01-25 1987-01-13 Masaki Kohyama Film-forming propylene copolymer, film thereof and process for production of the film
US5324800A (en) 1983-06-06 1994-06-28 Exxon Chemical Patents Inc. Process and catalyst for polyolefin density and molecular weight control
US4599392A (en) 1983-06-13 1986-07-08 The Dow Chemical Company Interpolymers of ethylene and unsaturated carboxylic acids
US4612300A (en) 1985-06-06 1986-09-16 The Dow Chemical Company Novel catalyst for producing relatively narrow molecular weight distribution olefin polymers
US4663220A (en) 1985-07-30 1987-05-05 Kimberly-Clark Corporation Polyolefin-containing extrudable compositions and methods for their formation into elastomeric products including microfibers
US4668566A (en) 1985-10-07 1987-05-26 Kimberly-Clark Corporation Multilayer nonwoven fabric made with poly-propylene and polyethylene
US5096867A (en) 1990-06-04 1992-03-17 Exxon Chemical Patents Inc. Monocyclopentadienyl transition metal olefin polymerization catalysts
US5198401A (en) 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US5408017A (en) 1987-01-30 1995-04-18 Exxon Chemical Patents Inc. High temperature polymerization process using ionic catalysts to produce polyolefins
US5384299A (en) 1987-01-30 1995-01-24 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US5153157A (en) 1987-01-30 1992-10-06 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US4874880A (en) 1987-03-10 1989-10-17 Chisso Corporation Bis(di-, tri- or tetra-substituted-cyclopentadienyl)-zirconium dihalides
US4988781A (en) 1989-02-27 1991-01-29 The Dow Chemical Company Process for producing homogeneous modified copolymers of ethylene/alpha-olefin carboxylic acids or esters
US5093415A (en) 1987-05-19 1992-03-03 Union Carbide Chemicals & Plastics Technology Corporation Process for producing stereoregular polymers having a narrow molecular weight distribution
US5015749A (en) 1987-08-31 1991-05-14 The Dow Chemical Company Preparation of polyhydrocarbyl-aluminoxanes
IT1221653B (en) 1987-11-27 1990-07-12 Ausimonti Spa PROPYLENE CRYSTALLINE COPOLYMERS
US5229478A (en) 1988-06-16 1993-07-20 Exxon Chemical Patents Inc. Process for production of high molecular weight EPDM elastomers using a metallocene-alumoxane catalyst system
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
US5218071A (en) 1988-12-26 1993-06-08 Mitsui Petrochemical Industries, Ltd. Ethylene random copolymers
DE69132371T2 (en) 1989-02-27 2001-04-26 Dow Chemical Co METHOD FOR PRODUCING HOMOGENIC, MODIFIED COPOLYMERS FROM ETHYLENE AND ALPHA-OLEFINE CARBONIC ACIDS OR ESTERS
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
US5057475A (en) 1989-09-13 1991-10-15 Exxon Chemical Patents Inc. Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
US6156846A (en) 1989-11-28 2000-12-05 Idemitsu Petrochemical Co., Ltd. Flexible polypropylene resins, propylene bases elastomer compositions and process for production of olefin polymers
US6001933A (en) 1989-11-28 1999-12-14 Idemitsupetrochemical Co., Ltd. Flexible polypropylene resins, propylene based elastomer compositions and process for production of olefin polymers
US5044438A (en) 1990-03-16 1991-09-03 Young Joe A Wellhead bowl protector and retrieving tool
US5041585A (en) 1990-06-08 1991-08-20 Texas Alkyls, Inc. Preparation of aluminoxanes
US5041583A (en) 1990-06-28 1991-08-20 Ethyl Corporation Preparation of aluminoxanes
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
ZA918223B (en) * 1990-11-01 1992-07-29 Himont Inc Propylene polymers films and laminates
US5134209A (en) 1990-12-26 1992-07-28 Shell Oil Company Process of producing ethylene-propylene rubbery copolymer
MX9200724A (en) 1991-02-22 1993-05-01 Exxon Chemical Patents Inc HEAT SEALABLE MIX OF POLYETHYLENE OR PLASTOMER OF VERY LOW DENSITY WITH POLYMERS BASED ON POLYPROPYLENE AND THERMAL SEALABLE FILM AS WELL AS ARTICLES MADE WITH THOSE.
US5721185A (en) 1991-06-24 1998-02-24 The Dow Chemical Company Homogeneous olefin polymerization catalyst by abstraction with lewis acids
US5710224A (en) 1991-07-23 1998-01-20 Phillips Petroleum Company Method for producing polymer of ethylene
US6448355B1 (en) 1991-10-15 2002-09-10 The Dow Chemical Company Elastic fibers, fabrics and articles fabricated therefrom
US5278272A (en) 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
US5525695A (en) 1991-10-15 1996-06-11 The Dow Chemical Company Elastic linear interpolymers
BE1006840A5 (en) 1992-05-04 1995-01-03 Solvay Catalyst system for olefin polymerisation; method for the polymerization and polymers therefrom.
CA2124187C (en) 1991-11-25 2001-08-07 Howard William Turner Polyonic transition metal catalyst composition
WO1993018106A1 (en) * 1992-03-03 1993-09-16 Exxon Chemical Patents, Inc. Sterilizable heat-sealed containers of high ethylene random copolymer films and processes
US5296433A (en) 1992-04-14 1994-03-22 Minnesota Mining And Manufacturing Company Tris(pentafluorophenyl)borane complexes and catalysts derived therefrom
US5350723A (en) 1992-05-15 1994-09-27 The Dow Chemical Company Process for preparation of monocyclopentadienyl metal complex compounds and method of use
EP0648230B1 (en) 1992-07-01 1999-09-15 Exxon Chemical Patents Inc. Transition metal olefin polymerization catalysts
CA2102542A1 (en) * 1992-11-12 1994-05-13 Thaddeus W. Klimek Gas-phase process for producing copolymer of propylene and ethylene and polyolefin films made therefrom
US5322728A (en) 1992-11-24 1994-06-21 Exxon Chemical Patents, Inc. Fibers of polyolefin polymers
JP3417023B2 (en) * 1992-12-22 2003-06-16 住友化学工業株式会社 Polyolefin composition and film comprising the composition
IT1256260B (en) 1992-12-30 1995-11-29 Montecatini Tecnologie Srl ATACTIC POLYPROPYLENE
US5883188A (en) 1993-04-28 1999-03-16 The Dow Chemical Company Paintable olefinic interpolymer compositions
DE4317655A1 (en) 1993-05-27 1994-12-01 Basf Ag Multi-phase block copolymers of propylene
EP0629631B1 (en) * 1993-06-07 2002-08-28 Mitsui Chemicals, Inc. Novel transition metal compound, and polymerization catalyst containing it
ATE147748T1 (en) * 1993-06-24 1997-02-15 Dow Chemical Co TITANIUM AND ZIRCONIUM COMPLEXES AND POLYMERIZATION CATALYSTS CONTAINING SAME
US6005049A (en) 1993-07-19 1999-12-21 Union Carbide Chemicals & Plastics Technology Corporation Process for the production of polypropylene
CA2128920C (en) 1993-07-28 1999-06-01 Akihiko Yamamoto Propylene polymer compositions
US5472775A (en) 1993-08-17 1995-12-05 The Dow Chemical Company Elastic materials and articles therefrom
US5504223A (en) 1994-01-25 1996-04-02 The Dow Chemical Company Synthesis of cyclopentadienyl metal coordination complexes from metal hydrocarbyloxides
WO1996020225A2 (en) 1994-12-20 1996-07-04 Montell Technology Company B.V. Reactor blend polypropylene, process for the preparation thereof and process for preparing metallocene ligands
DE4416876A1 (en) 1994-05-13 1995-11-16 Basf Ag Process for the production of bridged half-sandwich complexes
IT1270256B (en) 1994-06-20 1997-04-29 Himont Inc POLYOLEFINIC COMPOSITIONS FOR SHEETS AND FILM WELDABLE WITH RADIOFREQUENCES
EP0696616A3 (en) 1994-07-11 1999-01-13 Tonen Chemical Corporation Polypropylene resin composition
US5972822A (en) * 1994-08-02 1999-10-26 The Dow Chemical Company Biscyclopentadienyldiene complex containing addition polymerization catalysts
US5625087A (en) 1994-09-12 1997-04-29 The Dow Chemical Company Silylium cationic polymerization activators for metallocene complexes
CA2164461C (en) * 1994-12-06 2000-08-08 Tatsuya Tanizaki Polypropylene composition and uses thereof
US5645542A (en) 1994-12-29 1997-07-08 Kimberly-Clark Worldwide, Inc. Elastomeric absorbent structure
IT1275857B1 (en) 1995-03-03 1997-10-24 Spherilene Srl ATACTIC PROPYLENE COPOLYMERS WITH ETHYLENE
US5637660A (en) 1995-04-17 1997-06-10 Lyondell Petrochemical Company Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety
EP0745638A1 (en) * 1995-05-31 1996-12-04 Hoechst Aktiengesellschaft Biaxially oriented film of polypropylene with improved tear-through resistance
EP0751160B1 (en) 1995-06-26 1998-12-09 Japan Polyolefins Co., Ltd. Propylene block copolymer, process for preparation thereof and propylene resin composition comprising same
US5731253A (en) 1995-07-27 1998-03-24 Albemarle Corporation Hydrocarbylsilloxy - aluminoxane compositions
US5869575A (en) 1995-08-02 1999-02-09 The Dow Chemical Company Ethylene interpolymerizations
US5962714A (en) 1995-10-02 1999-10-05 Mccullough; Laughlin Gerard Monocyclopentadienyl transition metal catalyst and olefin polymerization process
AT405286B (en) 1995-10-16 1999-06-25 Danubia Petrochem Polymere POLYPROPYLENE WITH REDUCED WHITE BREAKAGE
US5728855A (en) 1995-10-19 1998-03-17 Akzo Nobel Nv Modified polyalkylaluminoxane composition formed using reagent containing carbon-oxygen double bond
US5767208A (en) 1995-10-20 1998-06-16 Exxon Chemical Patents Inc. High temperature olefin polymerization process
AU1685597A (en) 1996-01-26 1997-08-20 Dow Chemical Company, The Improved olefin addition polymerization catalyst composition
DE19606510A1 (en) * 1996-02-22 1997-08-28 Hoechst Ag High molecular weight polypropylene with a broad molecular weight distribution
RU2178422C2 (en) 1996-03-27 2002-01-20 Дзе Дау Кемикал Компани Olefin polymerization catalyst activator, catalytic system, and polymerization process
DE69719961T2 (en) 1996-03-27 2004-01-08 Dow Global Technologies, Inc., Midland SOLUTION POLYMERIZATION PROCESS WITH DISPERSED CATALYST ACTIVATOR
US5929147A (en) 1996-06-18 1999-07-27 Montell North America Inc. Embrittlement-resistant polyolefin composition and flexible articles therefrom
CA2260985A1 (en) 1996-07-22 1998-01-29 Richard D. Ernst Metal complexes containing bridged, non-aromatic, anionic, dienyl groups and addition polymerization catalysts therefrom
EP0854155A4 (en) 1996-07-31 2002-01-02 Japan Polyolefins Co Ltd Highly crystalline polypropylene
US6015868A (en) 1996-10-03 2000-01-18 The Dow Chemical Company Substituted indenyl containing metal complexes and olefin polymerization process
US5910224A (en) 1996-10-11 1999-06-08 Kimberly-Clark Worldwide, Inc. Method for forming an elastic necked-bonded material
TW442528B (en) 1996-12-02 2001-06-23 Chisso Corp Polypropylene composition
US6245856B1 (en) * 1996-12-17 2001-06-12 Exxon Chemical Patents, Inc. Thermoplastic olefin compositions
EP0946640B1 (en) * 1996-12-17 2002-02-27 Advanced Elastomer Systems, L.P. Thermoplastic olefin compositions
US5783512A (en) * 1996-12-18 1998-07-21 The Dow Chemical Company Catalyst component dispersion comprising an ionic compound and solid addition polymerization catalysts containing the same
US5965756A (en) 1996-12-19 1999-10-12 The Dow Chemical Company Fused ring substituted indenyl metal complexes and polymerization process
JPH10202720A (en) * 1997-01-22 1998-08-04 Mitsui Chem Inc Extruded polypropylene film
US5994482A (en) 1997-03-04 1999-11-30 Exxon Chemical Patents, Inc. Polypropylene copolymer alloys and process for making
US5922822A (en) 1997-04-09 1999-07-13 Eastman Kodak Company (2-(sulfonamidomethylene)-2-cyanoacetamido)phenyl acrylate polymers
TW420693B (en) * 1997-04-25 2001-02-01 Mitsui Chemicals Inc Olefin polymerization catalysts, transition metal compounds, and <alpha>-olefin/conjugated diene copolymers
US6103657A (en) * 1997-07-02 2000-08-15 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers
CA2210131C (en) 1997-07-09 2005-08-02 Douglas W. Stephan Supported phosphinimine-cp catalysts
US6921794B2 (en) * 1997-08-12 2005-07-26 Exxonmobil Chemical Patents Inc. Blends made from propylene ethylene polymers
US6635715B1 (en) * 1997-08-12 2003-10-21 Sudhin Datta Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers
US6525157B2 (en) * 1997-08-12 2003-02-25 Exxonmobile Chemical Patents Inc. Propylene ethylene polymers
US6153702A (en) 1997-09-12 2000-11-28 Eastman Chemical Company Polymers, and novel compositions and films therefrom
US6150297A (en) 1997-09-15 2000-11-21 The Dow Chemical Company Cyclopentaphenanthrenyl metal complexes and polymerization process
US6117962A (en) 1997-12-10 2000-09-12 Exxon Chemical Patents Inc. Vinyl-containing stereospecific polypropylene macromers
JPH11255825A (en) * 1997-12-26 1999-09-21 Tokuyama Corp Non-stretched film polypropylene based resin and non-stretched film
US6034240A (en) 1998-03-09 2000-03-07 Symyx Technologies, Inc. Substituted aminomethylphosphines, coordination complexes of aminomethylphosphines and their synthesis
KR100581789B1 (en) * 1998-07-01 2006-05-23 엑손모빌 케미칼 패턴츠 인코포레이티드 Elastic blends comprising crystalline polymer and crystallizable polymers of propylene
US6288171B2 (en) * 1998-07-01 2001-09-11 Advanced Elastomer Systems, L.P. Modification of thermoplastic vulcanizates using random propylene copolymers
JP2000044003A (en) * 1998-07-27 2000-02-15 Monteru J P O Kk Container bag for waste transport equipment
US6037417A (en) 1998-08-18 2000-03-14 Montell Technology Company Bv Polypropylene composition useful for making solid state oriented film
US6258903B1 (en) * 1998-12-18 2001-07-10 Univation Technologies Mixed catalyst system
WO2000059961A1 (en) 1999-04-01 2000-10-12 Symyx Technologies, Inc. Polymerization catalyst ligands, catalytic metal complexes and compositions and processes using and methods of making same
US6500563B1 (en) * 1999-05-13 2002-12-31 Exxonmobil Chemical Patents Inc. Elastic films including crystalline polymer and crystallizable polymers of propylene
US6750284B1 (en) * 1999-05-13 2004-06-15 Exxonmobil Chemical Patents Inc. Thermoplastic filled membranes of propylene copolymers
AU5007500A (en) * 1999-05-13 2000-12-05 Exxon Chemical Patents Inc. Elastic fibers and articles made therefrom, including crystalline and crystallizable polymers of propylene
ES2191623T3 (en) * 1999-05-19 2003-09-16 Exxonmobil Chem Patents Inc MIXTURES OF ELASTOMEROS BASED ON ISOBUTILENE THAT HAVE IMPROVED RESISTANCE AND ELASTICITY AND REDUCED PERMEABILITY.
JP2001048911A (en) * 1999-08-13 2001-02-20 Mitsui Chemicals Inc PRODUCTION OF alpha-OLEFIN RANDOM COPOLYMER
KR100674761B1 (en) * 1999-09-01 2007-01-25 엑손모빌 케미칼 패턴츠 인코포레이티드 Breathable films and method for making
JP2003511427A (en) * 1999-10-12 2003-03-25 ダウ グローバル テクノロジーズ インコーポレーテッド Dicationic non-metallocene group 4 metal complexes
TR200201083T2 (en) * 1999-10-22 2002-10-21 Univation Technologies,Llc Catalyst systems and their use in a polymerization process.
US6399722B1 (en) * 1999-12-01 2002-06-04 Univation Technologies, Llc Solution feed of multiple catalysts
US6340730B1 (en) * 1999-12-06 2002-01-22 Univation Technologies, Llc Multiple catalyst system
WO2001046201A1 (en) * 1999-12-21 2001-06-28 The Dow Chemical Company Gallium or indium-bridged group 4 metal complexes
ES2282158T3 (en) * 1999-12-21 2007-10-16 Exxonmobil Chemical Patents Inc. ADHESIVE ALPHA-OLEFINE INTERPOLIMEROS.
US20020049288A1 (en) 2000-04-04 2002-04-25 Christopher Goh Ether-amine based polymerization catalysts, compositions and processes using same
US6458738B1 (en) * 2000-09-22 2002-10-01 Union Carbide Chemicals & Plastics Technology Corporation Spray-drying compositions and methods of spray-drying
US6900321B2 (en) 2000-11-07 2005-05-31 Symyx Technologies, Inc. Substituted pyridyl amine complexes, and catalysts
AU2002239587A1 (en) 2000-12-22 2002-07-08 Exxonmobil Chemical Patents Inc. Composites comprising semicrystalline random ethylene / propylenecopolymers
KR20030064415A (en) 2000-12-22 2003-07-31 엑손모빌 케미칼 패턴츠 인코포레이티드 Multicomponent thermoset structures
US6653417B2 (en) * 2001-10-12 2003-11-25 Univation Technologies, Llc Catalyst precursor and olefin polymerization processes
US6960635B2 (en) * 2001-11-06 2005-11-01 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use
WO2004035681A2 (en) 2002-10-17 2004-04-29 Exxonmobil Chemical Patents Inc. Hetero phase polymer compositions
AU2003297134A1 (en) 2002-12-17 2004-07-29 Exxonmobil Chemical Patents Inc. Elastic blends comprising elastic crystalline polymer and crystallizable polymers for ethylene
US20060062980A1 (en) 2003-01-08 2006-03-23 Exxonmobil Chemical Patents Inc. Elastic articles and processes for their manufacture

Also Published As

Publication number Publication date
US7115689B2 (en) 2006-10-03
EP1448630A2 (en) 2004-08-25
WO2003040202A2 (en) 2003-05-15
JP5118286B2 (en) 2013-01-16
JP2009173936A (en) 2009-08-06
JP5027378B2 (en) 2012-09-19
JP5179395B2 (en) 2013-04-10
WO2003040202A3 (en) 2003-08-28
DE60229426D1 (en) 2008-11-27
CA2463588A1 (en) 2003-05-15
WO2003040195B1 (en) 2003-08-28
EP1448615B1 (en) 2008-10-15
US20040220051A1 (en) 2004-11-04
US6960635B2 (en) 2005-11-01
US7238759B2 (en) 2007-07-03
US20050113524A1 (en) 2005-05-26
EP1448615A1 (en) 2004-08-25
WO2003040195A1 (en) 2003-05-15
JP2005508413A (en) 2005-03-31
US20030204017A1 (en) 2003-10-30
CN100467501C (en) 2009-03-11
JP2005508416A (en) 2005-03-31
CN1612902A (en) 2005-05-04
JP2009138205A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
CA2463588C (en) Supported polymerization catalysts comprising a polyvalent lewis base ligand
EP0507876B1 (en) Supported ionic metallocene catalysts for olefin polymerization
JP2994746B2 (en) Monocyclopentadienyl transition metal olefin polymerization catalyst
US5547675A (en) Modified monocyclopentadienyl transition metal/alumoxane catalyst system for polymerization of olefins
EP1091968B1 (en) Production of half-sandwich substituted catalyst precursors
JP2003515628A (en) Multi-component catalyst system
WO2000004058A1 (en) Aluminum-based lewis acid cocatalysts for olefin polymerization
EP0618931B1 (en) A modified monocyclopentadienyl transition metal/alumoxane catalyst system for polymerization of olefins
EP0705283B1 (en) PROCESS FOR PRODUCING AMORPHOUS POLY-$g(a)-OLEFINS WITH A MONOCYCLOPENTADIENYL TRANSITION METAL CATALYST SYSTEM
EP1543049B1 (en) Improved process for manufacture of polymers
CA2338472C (en) Functionalized catalyst supports and supported catalyst systems
JP2004504420A (en) Catalyst systems and their use in polymerization processes
JP2002519359A (en) Metal complexes containing one or more silsesquioxane ligands
CA2356261C (en) Process for preparing a supported polymerization catalyst using reduced amounts of solvent and polymerization process
AU784134B2 (en) Chemically-modified supports and supported catalyst systems prepared therefrom
TW200523312A (en) Polymerization process and control of polymer composition properties
JP3872757B2 (en) Method for producing catalyst system and use thereof in polymerization method
JP2004528276A (en) Catalyst composition and polymerization method
US7598328B2 (en) Supported catalysts for manufacture of polymers
JP2004531618A (en) Catalyst system and its use in polymerization processes
US6852811B1 (en) Process for preparing a supported polymerization catalyst using reduced amounts of solvent and polymerization process
JP2004523603A (en) Process for producing catalyst composition and its use in polymerization process
JP3302415B2 (en) Internal olefin polymerization catalyst and method for producing internal olefin polymer
US20110251362A1 (en) Olefin polymerization catalysts
WO2001053361A1 (en) Siloxy-substituted monocyclopentadienyl ligated constrained geometry olefin polymerisation catalysts

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20191105