CA2468789A1 - Shaped nanocrystal particles and methods for making the same - Google Patents

Shaped nanocrystal particles and methods for making the same Download PDF

Info

Publication number
CA2468789A1
CA2468789A1 CA002468789A CA2468789A CA2468789A1 CA 2468789 A1 CA2468789 A1 CA 2468789A1 CA 002468789 A CA002468789 A CA 002468789A CA 2468789 A CA2468789 A CA 2468789A CA 2468789 A1 CA2468789 A1 CA 2468789A1
Authority
CA
Canada
Prior art keywords
core
arm
crystal structure
group
nanocrystal particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002468789A
Other languages
French (fr)
Other versions
CA2468789C (en
Inventor
A. Paul Alivisatos
Erik C. Scher
Liberato Manna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2468789A1 publication Critical patent/CA2468789A1/en
Application granted granted Critical
Publication of CA2468789C publication Critical patent/CA2468789C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/2203Cd X compounds being one element of the 6th group of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less

Abstract

Shaped nanocrystal particles (10) and methods for making shaped nanocrystal particles (10) are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle (10). It includes (a) forming a core (12) having a first crystal structure in a solution, (b) forming a first arm (14a ) extending from the core having a second crystal structure in the solution, a nd (c) forming a second arm (14b) extending from the core (12) having the secon d crystal structure in the solution.

Claims (84)

1. A process of forming a nanocrystal particle, the process comprising:
(a) providing a core having a first crystal structure in a solution; and (b) forming an arm extending from the core having a second crystal structure in the solution, wherein the nanocrystal particle comprises a Group IV semiconductor, Group III-V semiconductor, a metal, a dielectric material, or a Group II-VI
semiconductor including at least one Group II element and at least one Group VI element selected from the group consisting of O, S, Te, and Po.
2. The process of claim 1 wherein the arm is a first arm, and wherein the process further comprises:
forming at least a second arm extending from the core in the solution, wherein the second arm has the second crystal structure.
3. The process of claim 1 wherein the arm is a first arm, and wherein the process further comprises:
forming at least a second arm extending from the core in the solution, wherein the second arm has the second crystal structure;
forming at least a third arm extending from the core in the solution, wherein the third arm has the second crystal structure; and forming at least a fourth arm extending from the core in the solution, wherein the fourth arm has the second crystal structure.
4. The process of claim 3 wherein the first, second, third, and fourth arms are formed substantially simultaneously.
5. The process of claim 3 wherein the first, second, third, and fourth arms are formed at different times.
6. The process of claim 3 wherein the first, second, third, and fourth arms have substantially the same lengths.
7. The process of claim 3 wherein the first, second, third, and fourth arms have different lengths.
8. The process of claim 1 wherein the nanocrystal particle is a monopod.
9. The process of claim 1 wherein the first crystal structure is a cubic crystal structure, and the second crystal structure is a hexagonal crystal structure.
10. The process of claim 1 further comprising:
forming second, third and fourth arms extending from the core to form a tetrapod shaped nanocrystal particle.
11. The process of claim 1 wherein the arm is a first arm, and wherein the process further comprises:
forming a second arm extending from the core, wherein the second arm has the second crystal structure, and wherein the first and second arms are formed substantially simultaneously.
12. The process of claim 1 wherein the core and the arm comprise a Group III-V semiconductor.
13. The process of claim 1 wherein the core and the arm are formed using a mixture of surfactants.
14. The process of claim 1 wherein the core and the arm are formed using a mixture of surfactants, wherein the mixture of surfactants comprises at least two selected from the group consisting of an alkyl phosphonic acid, an alkyl phosphinic acid, an alkyl phosphine oxide, an alkyl phosphine, an alkyl amine, and a carboxylic acid.
15. The process of claim 1 wherein the core is a first core, and the arm is a first arm that includes a proximate end proximate to the first core and a distal end distal to the first core, and wherein the process further comprises:
(d) forming a second core at the distal end of the first arm; and (e) forming additional arms extending from the second core.
16. The process of claim 1 wherein the core and the first arm are formed in a hot surfactant mixture wherein precursors used for forming the nanocrystal particle are injected sequentially into the hot surfactant mixture.
17. A nanocrystal particle made by the process of claim 1.
18. A photovoltaic device comprising the nanocrystal particle of claim 17.
19. A process for forming semiconductor nanocrystal particles comprising:
introducing semiconductor nanocrystal particle precursors into a mixture of surfactants capable of promoting the growth of tetrapod shaped semiconductor nanocrystal particles; and forming tetrapod shaped semiconductor nanocrystal particles, wherein each of the nanocrystal particles comprises a Group IV
semiconductor, Group III-V semiconductor, a metal, a dielectric material, or a Group II-VI
semiconductor including at least one Group II element and at least one Group VI element selected from the group consisting of O, S, Te, and Po.
20. The process of claim 19 wherein the semiconductor nanocrystal particles have shapes comprising branched tetrapod shapes.
21. The process of claim 19 wherein the precursors are introduced into the mixture at a temperature between about 20 °C to about 360 °C.
22. The process of claim 19 wherein the precursors are introduced into the heated mixture of surfactants by adding different precursors separately into the mixture of surfactants.
23. The process of claim 19 wherein the precursors are introduced into the heated mixture of surfactants by adding different precursors together into the mixture of surfactants.
24. The process of claim 19 wherein the nanocrystal particles comprise a Group III-V or a Group II-VI semiconductor.
25. The process of claim 19 wherein the mixture comprises at least one selected from the group consisting an alkyl phosphonic acid, an alkyl phosphinic acid, an alkyl phosphine oxide, an alkyl phosphine, an alkyl amine, and a carboxylic acid.
26. A nanocrystal particle made by the process of claim 19.
27. A nanocrystal particle comprising:
a core having a first crystal structure; and at least an arm extending from the core having a second crystal structure, wherein the nanocrystal particle comprises a Group IV semiconductor, Group III-V semiconductor, a metal, a dielectric material, or a Group II-VI
semiconductor including at least one Group II element and at least one Group VI element selected from the group consisting of O, S, Te, and Po.
28. The nanocrystal particle of claim 27 wherein the arm is a first arm, and wherein the nanocrystal particle further comprises:
at least a second arm extending from the core, the second arm having the second crystal structure.
29. The nanocrystal particle of claim 27 wherein the arm is a first arm, and wherein the nanocrystal particle further comprises:
at least a second arm extending from the core, the second arm having the second crystal structure; and at least a third arm extending from the core, the third arm having the second crystal structure.
30. The nanocrystal particle of claim 27 wherein the arm is a first arm, and wherein the nanocrystal particle further comprises:
at least a second arm extending from the core, the second arm having the second crystal structure;
at least a third arm extending from the core, the third arm having the second crystal structure; and at least a fourth arm extending from the core, the fourth arm having the second crystal structure.
31. The nanocrystal particle of claim 27 further comprising amphiphilic molecules bound to the surfaces of the arm.
32. The nanocrystal particle of claim 27 further comprising second, third, and fourth arms extending from the core, wherein the nanocrystal particle is a tetrapod shaped nanocrystal particle.
33. The nanocrystal particle of claim 27 wherein the core and the arm comprise a compound semiconductor.
34. The nanocrystal particle of claim 27 wherein the core is a first core, and wherein the arm is a first arm that has a proximate end proximate the first core and a distal end distal to the first core, and wherein the particle further comprises:
a second core at the distal end of the first arm and additional arms extending from the second core.
35. The nanocrystal particle of claim 27 wherein the first crystal structure is a zinc-blende crystal structure, and the second crystal structure is a wurtzite crystal structure.
36. The nanocrystal particle of claim 27 wherein the core has a diameter from about 3 to about 4 nanometers and the arm has a length of from about 4 to about 100 nanometers.
37. The nanocrystal particle of claim 27 wherein the core and the arm comprise CdTe.
38. A photovoltaic device comprising the nanocrystal particle of claim 27.
39. A branched nanocrystal particle comprising:
a core;
at least a first arm extending from the core; and at least a second arm extending from the core, wherein the second arm forms a branch with respect to the first arm, and wherein the nanocrystal particle comprises a Group IV semiconductor, Group III-V semiconductor, a metal, a dielectric material, or a Group II-VI
semiconductor including at least one Group II element and at least one Group VI element selected from the group consisting of O, S, Te, and Po.
40. The branched nanocrystal particle of claim 39 further comprising:
a third arm extending from the core, and a fourth arm extending from the core, wherein the first, second, third, and fourth arms, and the core form a tetrapod.
41. The branched nanocrystal particle of claim 39 wherein the core is a first core, and wherein the first arm includes a proximate end proximate to the first core and a distal end distal to the first core, and wherein the branched nanocrystal particle further comprises:
a second core at the distal end of the first nanocrystal particle; and additional arms extending from the second core.
42. The branched nanocrystal particle of claim 39 further comprising a surfactant molecule attached to the core, the first arm, or the second arm.
43. The branched nanocrystal particle of claim 39 wherein the core has a diameter of about 3 nm to about 4 nm, and wherein each of the first and second arms have a length from about 4 nm to about 100 nm.
44. The branched nanocrystal particle of claim 39 wherein the nanocrystal particle comprises CdTe.
45. The branched nanocrystal particle of claim 39 wherein the core has a first crystal structure and wherein the first and second arms have a second crystal structure.
46. The branched nanocrystal particle of claim 39 wherein the core has a zinc blende crystal structure and wherein the first and second arms have a wurtzite crystal structure.
47. A tetrapod shaped nanocrystal particle comprising:
a core having a first crystal structure;
a first arm extending from the core;
a second arm extending from the core;
a third arm extending from the core; and a fourth arm extending from the core, wherein the first, second, third, and fourth arms have a second crystal structure, wherein the first crystal structure is different than the second crystal structure, and wherein the nanocrystal particle comprises a Group IV semiconductor, Group III-V semiconductor, a metal, a dielectric material, or a Group II-VI
semiconductor including at least one Group II element and at least one Group VI element selected from the Group consisting of O, S, Te, and Po.
48. The tetrapod shaped nanocrystal particle of claim 47 wherein the tetrapod shaped nanocrystal comprises a compound semiconductor.
49. The tetrapod shaped nanocrystal particle of claim 47 wherein the tetrapod shaped nanocrystal comprises CdTe.
50. The tetrapod shaped nanocrystal particle of claim 47 wherein the core has a diameter from about 3 to about 4 nanometers and wherein the first, second, third, and fourth arms each have a length of from about 4 to about 100 nanometers.
51. The tetrapod shaped nanocrystal particle of claim 47 wherein first crystal structure is a cubic crystal structure and the second crystal structure is a hexagonal crystal structure.
52. The tetrapod shaped nanocrystal particle of claim 47 wherein first crystal structure is a zinc blende crystal structure and the second crystal structure is a wurtzite crystal structure.
53. The tetrapod shaped nanocrystal particle of claim 47 wherein first crystal structure is a zinc blende crystal structure and the second crystal structure is a wurtzite crystal structure.
54. The tetrapod shaped nanocrystal particle of claim 47 comprising a metal.
55. The tetrapod shaped nanocrystal particle of claim 47 further comprising a surfactant molecule bound to at least one of the first, second, third, or fourth arms.
56. The tetrapod shaped nanocrystal particle of claim 47 wherein each of the first, second, third, and fourth arms has an aspect ratio greater than about 1Ø
57. The tetrapod shaped nanocrystal particle of claim 47 wherein the first, second, third, and fourth arms each have substantially the same length.
58. A photovoltaic device comprising:
the tetrapod shaped nanocrystal particle of claim 47.
59. A nanocrystal particle in the form a teardrop or an arrow, wherein the nanocrystal particle comprises a Group IV semiconductor, Group III-V
semiconductor, a metal, a dielectric material, or a Group II-VI semiconductor including at least one Group II
element and at least one Group VI element selected from the Group consisting of O, S, Te, and Po.
60. The nanocrystal particle of claim 59 wherein the nanocrystal particle comprises CdTe.
61. The nanocrystal particle of claim 59 wherein the nanocrystal particle comprises a Group III-V or a Group II-VI semiconductor.
62. A process for forming shaped nanocrystal particles comprising:
(a) mixing semiconductor precursors and a mixture of surfactants to form a solution; and (b) forming nanocrystal particles in the solution, wherein the nanocrystal particles are in the form of teardrops or arrows, and wherein the nanocrystal particles comprise a Group IV semiconductor, Group III-V
semiconductor, a metal, a dielectric material, or a Group II-VI semiconductor including at least one Group II element and at least one Group VI element selected from the Group consisting of O, S, Te, and Po.
63. The process of claim 62 wherein the mixture of surfactants comprises a phosphine oxide and an alkylphosphonic acid, wherein the alkylphosphonic acid is greater than about 30 mol %, based on the total amount of surfactant.
64. The process of claim 63 wherein the alkylphosphonic acid is hexylphosphonic acid.
65. The process of claim 62 wherein (a) mixing comprises:
(a) introducing a first amount of the semiconductor precursors into the solution;
(b) waiting for a predetermined amount of time; and then (c) introducing a second amount of the semiconductor precursors into the solution, wherein the nanocrystal particles are in the form of teardrops.
66. The process of claim 62 wherein the nanocrystal particles are in the form of arrows.
67. The process of claim 62 wherein the semiconductor precursors comprise a Group II, Group III, Group IV, Group V, or a Group VI element.
68. The process of claim 62 wherein mixture of surfactants comprises a first surfactant comprising a phosphine oxide and a second surfactant.
69. A photovoltaic device comprising:
a nanocrystal particle comprising a core having a first crystal structure, and at least an arm extending from the core having a second crystal structure.
70. The photovoltaic device of claim 69 wherein the arm is a first arm, and wherein the nanocrystal particle further comprises:
at least a second arm extending from the core, the second arm having the second crystal structure.
71. The photovoltaic device of claim 69 wherein the arm is a first arm, and wherein the nanocrystal particle further comprises:
at least a second arm extending from the core, the second arm having the second crystal structure; and at least a third arm extending from the core, the third arm having the second crystal structure.
72. The photovoltaic device of claim 69 wherein the arm is a first arm, and wherein the nanocrystal particle further comprises:
at least a second arm extending from the core, the second arm having the second crystal structure;
at least a third arm extending from the core, the third arm having the second crystal structure; and at least a fourth arm extending from the core, the fourth arm having the second crystal structure.
73. The photovoltaic device of claim 69 further comprising amphiphilic molecules bound to the surfaces of the arm.
74. The photovoltaic device of claim 69 further comprising second, third, and fourth arms extending from the core, wherein the nanocrystal particle is a tetrapod shaped nanocrystal particle.
75. The photovoltaic device of claim 69 wherein the core and the arm comprise a compound semiconductor.
76. The photovoltaic device of claim 69 wherein the core is a first core, and wherein the arm is a first arm that has a proximate end proximate the first core and a distal end distal to the first core, and wherein the particle further comprises:
a second core at the distal end of the first arm and additional arms extending from the second core.
77. The photovoltaic device of claim 69 wherein the first crystal structure is a zinc-blende crystal structure, and the second crystal structure is a wurtzite crystal structure.
78. The photovoltaic device of claim 69 wherein the core has a diameter from about 3 to about 4 nanometers and the arm has a length of from about 4 to about 100 nanometers.
79. The photovoltaic device of claim 69 wherein the core and the arm comprise CdTe or CdSe.
80. The photovoltaic device of claim 69 further comprising at least a pair of electrodes, and a binder between the pair of electrodes, wherein the nanocrystal particle is in the binder.
81. A photovoltaic device comprising:
a tetrapod shaped nanocrystal particle comprising, a core having a first crystal structure, a first ann extending from the core, a second arm extending from the core, a third arm extending from the core, and a fourth arm extending from the core, wherein the first, second, third, and fourth arms have a second crystal structure, and wherein the first crystal structure is different than the second crystal structure.
82. The photovoltaic device of claim 81 wherein the tetrapod shaped nanocrystal comprises a compound semiconductor.
83. The photovoltaic device of claim 81 wherein the tetrapod shaped nanocrystal comprises CdTe or CdSe.
84. The photovoltaic device of claim 81 further comprising at least a pair of electrodes, and a binder between the pair of electrodes, wherein the nanocrystal particle is in the binder.
CA2468789A 2001-11-30 2002-11-22 Shaped nanocrystal particles and methods for making the same Expired - Lifetime CA2468789C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33543501P 2001-11-30 2001-11-30
US60/335,435 2001-11-30
PCT/US2002/037760 WO2003054953A1 (en) 2001-11-30 2002-11-22 Shaped nanocrystal particles and methods for making the same

Publications (2)

Publication Number Publication Date
CA2468789A1 true CA2468789A1 (en) 2003-07-03
CA2468789C CA2468789C (en) 2011-07-26

Family

ID=23311756

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2468789A Expired - Lifetime CA2468789C (en) 2001-11-30 2002-11-22 Shaped nanocrystal particles and methods for making the same

Country Status (8)

Country Link
US (4) US6855202B2 (en)
EP (1) EP1459372A4 (en)
JP (1) JP4980555B2 (en)
KR (1) KR20040076253A (en)
CN (1) CN100423215C (en)
CA (1) CA2468789C (en)
IL (2) IL162228A0 (en)
WO (1) WO2003054953A1 (en)

Families Citing this family (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855202B2 (en) * 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US6919119B2 (en) * 2000-05-30 2005-07-19 The Penn State Research Foundation Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
US7135054B2 (en) * 2001-09-26 2006-11-14 Northwestern University Nanoprisms and method of making them
US7777303B2 (en) * 2002-03-19 2010-08-17 The Regents Of The University Of California Semiconductor-nanocrystal/conjugated polymer thin films
US7515333B1 (en) 2002-06-13 2009-04-07 Nanosy's, Inc. Nanotechnology-enabled optoelectronics
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US20050126628A1 (en) * 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
EP1540741B1 (en) * 2002-09-05 2014-10-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
WO2004050547A2 (en) * 2002-09-12 2004-06-17 The Trustees Of Boston College Metal oxide nanostructures with hierarchical morphology
WO2005017962A2 (en) * 2003-08-04 2005-02-24 Nanosys, Inc. System and process for producing nanowire composites and electronic substrates therefrom
US7160489B2 (en) * 2003-10-10 2007-01-09 The Board Of Trustees Of The University Of Illinois Controlled chemical aerosol flow synthesis of nanometer-sized particles and other nanometer-sized products
US7662706B2 (en) * 2003-11-26 2010-02-16 Qunano Ab Nanostructures formed of branched nanowhiskers and methods of producing the same
US9040090B2 (en) 2003-12-19 2015-05-26 The University Of North Carolina At Chapel Hill Isolated and fixed micro and nano structures and methods thereof
DK1704585T3 (en) * 2003-12-19 2017-05-22 Univ North Carolina Chapel Hill Methods for preparing isolated micro- and nanostructures using soft lithography or printing lithography
WO2005067524A2 (en) * 2004-01-15 2005-07-28 Nanosys, Inc. Nanocrystal doped matrixes
US7645397B2 (en) 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
US20050167646A1 (en) * 2004-02-04 2005-08-04 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nanosubstrate with conductive zone and method for its selective preparation
US20050214190A1 (en) * 2004-03-25 2005-09-29 Seoul National University Method of synthesizing nanorods by reaction of metal-surfactant complexes injected using a syringe pump
US7862624B2 (en) * 2004-04-06 2011-01-04 Bao Tran Nano-particles on fabric or textile
US20050218397A1 (en) * 2004-04-06 2005-10-06 Availableip.Com NANO-electronics for programmable array IC
US20050218398A1 (en) * 2004-04-06 2005-10-06 Availableip.Com NANO-electronics
US7019391B2 (en) * 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
US7330369B2 (en) * 2004-04-06 2008-02-12 Bao Tran NANO-electronic memory array
CN1232608C (en) * 2004-04-06 2005-12-21 中国科学院长春应用化学研究所 Method for synthesizing nano semiconductor luminescence material on interface bewteen liquid-liquid
US7742322B2 (en) 2005-01-07 2010-06-22 Invisage Technologies, Inc. Electronic and optoelectronic devices with quantum dot films
US7746681B2 (en) 2005-01-07 2010-06-29 Invisage Technologies, Inc. Methods of making quantum dot films
US7773404B2 (en) 2005-01-07 2010-08-10 Invisage Technologies, Inc. Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
US7326908B2 (en) 2004-04-19 2008-02-05 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
CA2567156A1 (en) * 2004-05-17 2006-07-20 Cambrios Technology Corp. Biofabrication of transistors including field effect transistors
US7557028B1 (en) 2004-07-28 2009-07-07 Nanosys, Inc. Process for group III-V semiconductor nanostructure synthesis and compositions made using same
US8093494B2 (en) * 2004-11-10 2012-01-10 The Regents Of The University Of California Methods of making functionalized nanorods
US20060112983A1 (en) * 2004-11-17 2006-06-01 Nanosys, Inc. Photoactive devices and components with enhanced efficiency
US20060148535A1 (en) * 2004-12-30 2006-07-06 Schaefer Bradley R Call setup for a wireless mobile network and supporting method, apparatus, and readable medium
CA2519608A1 (en) 2005-01-07 2006-07-07 Edward Sargent Quantum dot-polymer nanocomposite photodetectors and photovoltaics
US7635518B1 (en) * 2005-02-04 2009-12-22 University Of Louisiana At Lafayette Dendritic magnetic nanostructures and method for making same
US7671398B2 (en) * 2005-02-23 2010-03-02 Tran Bao Q Nano memory, light, energy, antenna and strand-based systems and methods
US7531209B2 (en) * 2005-02-24 2009-05-12 Michael Raymond Ayers Porous films and bodies with enhanced mechanical strength
US20060225162A1 (en) * 2005-03-30 2006-10-05 Sungsoo Yi Method of making a substrate structure with enhanced surface area
WO2006110341A2 (en) * 2005-04-01 2006-10-19 North Carolina State University Nano-structured photovoltaic solar cells and related methods
JP4870383B2 (en) * 2005-05-06 2012-02-08 富士フイルム株式会社 Method for concentrating nanoparticles
JP4993875B2 (en) * 2005-05-06 2012-08-08 富士フイルム株式会社 Method for dispersing aggregated nanoparticles
KR20080018178A (en) * 2005-05-06 2008-02-27 후지필름 가부시키가이샤 Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles
WO2006121016A1 (en) 2005-05-09 2006-11-16 Fujifilm Corporation Method for producing organic particle dispersion liquid
US8845927B2 (en) 2006-06-02 2014-09-30 Qd Vision, Inc. Functionalized nanoparticles and method
US9297092B2 (en) 2005-06-05 2016-03-29 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
EP2251389B8 (en) * 2005-08-12 2012-09-19 Cambrios Technologies Corporation Nanowire ink
US7528060B1 (en) 2005-10-27 2009-05-05 University Of Puerto Rico Branched nanostructures and method of synthesizing the same
US8148276B2 (en) 2005-11-28 2012-04-03 University Of Hawaii Three-dimensionally reinforced multifunctional nanocomposites
US7658870B2 (en) * 2005-12-20 2010-02-09 University Of Hawaii Polymer matrix composites with nano-scale reinforcements
US20070186846A1 (en) * 2005-12-21 2007-08-16 The Research Foundation Of State University Of New York Non-spherical semiconductor nanocrystals and methods of making them
US7394094B2 (en) * 2005-12-29 2008-07-01 Massachusetts Institute Of Technology Semiconductor nanocrystal heterostructures
US20070160763A1 (en) * 2006-01-12 2007-07-12 Stanbery Billy J Methods of making controlled segregated phase domain structures
US8084685B2 (en) * 2006-01-12 2011-12-27 Heliovolt Corporation Apparatus for making controlled segregated phase domain structures
WO2008060309A2 (en) 2006-01-12 2008-05-22 University Of Arkansas Technology Development Foundation Tio2 nanostructures, membranes and films, and applications of same
US7408366B2 (en) * 2006-02-13 2008-08-05 Georgia Tech Research Corporation Probe tips and method of making same
US8849087B2 (en) * 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
WO2007143026A2 (en) 2006-05-31 2007-12-13 Roskilde Semiconductor Llc Linked periodic networks of alternating carbon and inorganic clusters for use as low dielectric constant materials
US7790234B2 (en) 2006-05-31 2010-09-07 Michael Raymond Ayers Low dielectric constant materials prepared from soluble fullerene clusters
US7883742B2 (en) * 2006-05-31 2011-02-08 Roskilde Semiconductor Llc Porous materials derived from polymer composites
WO2007143025A2 (en) * 2006-05-31 2007-12-13 Roskilde Semiconductor Llc Porous inorganic solids for use as low dielectric constant materials
US9212056B2 (en) 2006-06-02 2015-12-15 Qd Vision, Inc. Nanoparticle including multi-functional ligand and method
US7393699B2 (en) 2006-06-12 2008-07-01 Tran Bao Q NANO-electronics
US20080181958A1 (en) * 2006-06-19 2008-07-31 Rothrock Ginger D Nanoparticle fabrication methods, systems, and materials
WO2008027571A2 (en) * 2006-08-30 2008-03-06 Liquidia Technologies, Inc. Nanoparticles having functional additives for self and directed assembly and methods of fabricating same
WO2008033303A2 (en) * 2006-09-11 2008-03-20 President And Fellows Of Harvard College Branched nanoscale wires
US7872318B2 (en) * 2006-09-29 2011-01-18 Hewlett-Packard Development Company, L.P. Sensing devices and methods for forming the same
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
KR101545219B1 (en) * 2006-10-12 2015-08-18 캄브리오스 테크놀로지즈 코포레이션 Nanowire-based transparent conductors and applications thereof
WO2008127378A2 (en) * 2006-10-19 2008-10-23 The Regents Of The University Of California Hybrid solar cells with 3-dimensional hyperbranched nanocrystals
WO2008063657A2 (en) * 2006-11-21 2008-05-29 Qd Vision, Inc. Light emitting devices and displays with improved performance
WO2008063653A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008063658A2 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008063652A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Blue emitting semiconductor nanocrystals and compositions and devices including same
US20080216894A1 (en) * 2007-01-08 2008-09-11 Plextronics, Inc. Quantum dot photovoltaic device
US20100151031A1 (en) * 2007-03-23 2010-06-17 Desimone Joseph M Discrete size and shape specific organic nanoparticles designed to elicit an immune response
WO2009002587A2 (en) * 2007-04-13 2008-12-31 Rice University Synthesis of uniform nanoparticle shapes with high selectivity
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8034317B2 (en) * 2007-06-18 2011-10-11 Heliovolt Corporation Assemblies of anisotropic nanoparticles
JP2011519331A (en) * 2008-03-24 2011-07-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Composite nanorods with different regions
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
KR101995369B1 (en) 2008-04-03 2019-07-02 삼성 리서치 아메리카 인코포레이티드 Light-emitting device including quantum dots
US7960715B2 (en) * 2008-04-24 2011-06-14 University Of Iowa Research Foundation Semiconductor heterostructure nanowire devices
US8364243B2 (en) * 2008-04-30 2013-01-29 Nanosys, Inc. Non-fouling surfaces for reflective spheres
DE102008029782A1 (en) * 2008-06-25 2012-03-01 Siemens Aktiengesellschaft Photodetector and method of manufacture
US8449673B2 (en) * 2008-08-22 2013-05-28 Babak NIKOOBAKHT Method and apparatus for producing nanocrystals
US8840863B2 (en) * 2008-09-04 2014-09-23 The Hong Kong University Of Science And Technology Method for synthesising a nano-product
CN101431148B (en) * 2008-10-13 2010-06-02 同济大学 Method for improving illumination intensity of CdTe nano compound film
US8540889B1 (en) 2008-11-19 2013-09-24 Nanosys, Inc. Methods of generating liquidphobic surfaces
KR101014861B1 (en) * 2008-12-12 2011-02-15 포항공과대학교 산학협력단 Quantum dot dendrimers and synthetic method thereof
GB2467161A (en) 2009-01-26 2010-07-28 Sharp Kk Nitride nanoparticles
GB2467162A (en) 2009-01-26 2010-07-28 Sharp Kk Fabrication of nitride nanoparticles
AU2010211053A1 (en) * 2009-02-04 2010-08-12 Heliovolt Corporation Method of forming an indium-containing transparent conductive oxide film, metal targets used in the method and photovoltaic devices utilizing said films
US8618411B2 (en) * 2009-04-08 2013-12-31 David M. Schwartz Method of making photovoltaic cell
JP6236202B2 (en) 2009-05-01 2017-11-22 ナノシス・インク. Matrix with functional groups for dispersion of nanostructures
US8809672B2 (en) * 2009-05-27 2014-08-19 The Regents Of The University Of California Nanoneedle plasmonic photodetectors and solar cells
KR20130122693A (en) * 2009-06-05 2013-11-07 헬리오볼트 코오퍼레이션 Process for synthesizing a thin film or composition layer via non-contact pressure containment
US20120088072A1 (en) * 2009-06-12 2012-04-12 Pawloski Adam R Microfabricated Particles in Composite Materials and Methods for Producing the Same
US8894891B2 (en) * 2009-08-16 2014-11-25 Massachusetts Institute Of Technology Copolymer-associated nanomaterial
US8256621B2 (en) * 2009-09-11 2012-09-04 Pro-Pak Industries, Inc. Load tray and method for unitizing a palletized load
US9011818B2 (en) * 2009-11-30 2015-04-21 Massachusetts Institute Of Technology Materials and methods for biological imaging
CN102782156A (en) 2009-12-31 2012-11-14 文塔纳医疗系统公司 Methods for producing uniquely specific nucleic acid probes
US8021641B2 (en) * 2010-02-04 2011-09-20 Alliance For Sustainable Energy, Llc Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom
CN102834472B (en) * 2010-02-05 2015-04-22 凯博瑞奥斯技术公司 Photosensitive ink compositions and transparent conductors and method of using the same
EP2539355B1 (en) 2010-02-26 2016-10-05 Ventana Medical Systems, Inc. In-situ hybridization with polytag probes
CA2786853A1 (en) 2010-02-26 2011-09-01 Ventana Medical Systems, Inc. Cytogenic analysis of metaphase chromosomes
WO2011146115A1 (en) 2010-05-21 2011-11-24 Heliovolt Corporation Liquid precursor for deposition of copper selenide and method of preparing the same
CN101969102B (en) * 2010-08-09 2012-05-23 吉林大学 Method for preparing all-water phase nanocrystal/conductive polymer hybrid solar cells
US9142408B2 (en) 2010-08-16 2015-09-22 Alliance For Sustainable Energy, Llc Liquid precursor for deposition of indium selenide and method of preparing the same
US8871175B2 (en) 2010-10-01 2014-10-28 The Boeing Company Nanomaterial having tunable infrared absorption characteristics and associated method of manufacture
FR2969137B1 (en) * 2010-12-17 2015-01-02 Centre Nat Rech Scient PROCESS FOR PREPARING A COMPOSITION OF MIXED PARTICLES CONTAINING ELEMENTS OF COLUMNS 13 AND 15
EP2686438B1 (en) 2011-03-14 2018-04-18 Ventana Medical Systems, Inc. A method of analyzing chromosomal translocations and a system therefor
AU2012251027B2 (en) 2011-05-04 2015-03-26 Htg Molecular Diagnostics, Inc. Quantitative nuclease protection Assay (qNPA) and sequencing (qNPS) improvements
WO2012158832A2 (en) 2011-05-16 2012-11-22 Qd Vision, Inc. Method for preparing semiconductor nanocrystals
GB2494659A (en) 2011-09-14 2013-03-20 Sharp Kk Nitride nanoparticles with high quantum yield and narrow luminescence spectrum.
WO2013057586A1 (en) 2011-10-19 2013-04-25 Oslo Universitetssykehus Hf Compositions and methods for producing soluble t - cell receptors
WO2013078242A1 (en) 2011-11-22 2013-05-30 Qd Vision, Inc. Methods for coating semiconductor nanocrystals
WO2013078247A1 (en) 2011-11-22 2013-05-30 Qd Vision, Inc. Methods of coating semiconductor nanocrystals, semiconductor nanocrystals, and products including same
US10008631B2 (en) 2011-11-22 2018-06-26 Samsung Electronics Co., Ltd. Coated semiconductor nanocrystals and products including same
WO2013078249A1 (en) * 2011-11-22 2013-05-30 Qd Vision Inc. Method of making quantum dots
WO2013078245A1 (en) * 2011-11-22 2013-05-30 Qd Vision, Inc. Method of making quantum dots
WO2013082772A1 (en) * 2011-12-07 2013-06-13 East China University Of Science And Technology Methods of producing cadmium selenide multi-pod nanocrystals
WO2013108126A2 (en) 2012-01-16 2013-07-25 University Of Oslo Methyltransferases and uses thereof
KR101960469B1 (en) 2012-02-05 2019-03-20 삼성전자주식회사 Semiconductor nanocrystals, methods for making same, compositions, and products
WO2013167387A1 (en) 2012-05-10 2013-11-14 Ventana Medical Systems, Inc. Uniquely specific probes for pten, pik3ca, met, top2a, and mdm2
US9105797B2 (en) 2012-05-31 2015-08-11 Alliance For Sustainable Energy, Llc Liquid precursor inks for deposition of In—Se, Ga—Se and In—Ga—Se
US9139770B2 (en) 2012-06-22 2015-09-22 Nanosys, Inc. Silicone ligands for stabilizing quantum dot films
TWI596188B (en) 2012-07-02 2017-08-21 奈米系統股份有限公司 Highly luminescent nanostructures and methods of producing same
PL2872646T3 (en) 2012-07-12 2018-03-30 Institut National De La Santé Et De La Recherche Médicale (Inserm) Methods for predicting the survival time and treatment responsiveness of a patient suffering from a solid cancer with a signature of at least 7 genes
WO2014045333A1 (en) * 2012-09-18 2014-03-27 富士通株式会社 Solar cell, and production method therefor
WO2014048942A1 (en) 2012-09-25 2014-04-03 Ventana Medical Systems, Inc. Probes for pten, pik3ca, met, and top2a, and method for using the probes
GB2507814A (en) 2012-11-13 2014-05-14 Sharp Kk A method of synthesising nitride nanocrystals using organometallics
US10372396B2 (en) * 2013-02-21 2019-08-06 Lenovo ( Singapore) Pte. Ltd. Discovery and connection to wireless displays
JP6250785B2 (en) 2013-03-14 2017-12-20 ナノシス・インク. Solvent-free quantum dot exchange method
US9617472B2 (en) 2013-03-15 2017-04-11 Samsung Electronics Co., Ltd. Semiconductor nanocrystals, a method for coating semiconductor nanocrystals, and products including same
KR101478448B1 (en) * 2013-07-01 2015-01-02 서울대학교산학협력단 Method of manufacturing absorber layer containing semiconductor nanoparticles and method of manufacturing semiconductor device containing the same absorber layer
KR20150018243A (en) * 2013-08-09 2015-02-23 한국전자통신연구원 Method Of Fabricating Metal Oxide Crystal And Method Of Fabricating Substrate For Solar Cell
WO2015036405A1 (en) 2013-09-10 2015-03-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing and treating basal cell carcinoma
EP3066218B1 (en) 2013-11-05 2018-12-26 HTG Molecular Diagnostics, Inc. Methods for detecting nucleic acids
AU2015220784B2 (en) 2014-02-24 2021-02-04 Ventana Medical Systems, Inc. Automated RNA detection using labeled 2'-O-methyl RNA oligonucleotide probes and signal amplification systems
EP3009147A1 (en) 2014-10-16 2016-04-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for treating resistant glioblastoma
WO2016113233A1 (en) 2015-01-12 2016-07-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the diagnosis of pancreatic cancer
US10160906B2 (en) 2015-02-24 2018-12-25 Fondazione Istituto Italiano Di Tecnologia Masked cation exchange lithography
US10087504B2 (en) * 2015-08-13 2018-10-02 Samsung Electronics Co., Ltd. Semiconductor nanocrystals and method of preparation
WO2017029391A1 (en) 2015-08-20 2017-02-23 INSERM (Institut National de la Santé et de la Recherche Médicale) New method for treating cancer
KR20180051606A (en) 2015-09-10 2018-05-16 메르크 파텐트 게엠베하 Photo-conversion material
KR102514116B1 (en) 2015-09-24 2023-03-23 삼성전자주식회사 Semiconductor nanocrystal particles and devices including the same
WO2017055321A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of fibroblasts in a tissue sample
WO2017055324A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of cells of monocytic origin in a tissue sample
WO2017055325A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of nk cells in a tissue sample
WO2017055327A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of endothelial cells in a tissue sample
WO2017055319A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of b cells in a tissue sample
WO2017055320A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of cytotoxic lymphocytes in a tissue sample
WO2017055322A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of neutrophils in a tissue sample
WO2017055326A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of myeloid dendritic cells in a tissue sample
WO2017060397A1 (en) 2015-10-09 2017-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of subjects suffering from melanoma metastases
WO2017067944A1 (en) 2015-10-19 2017-04-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of subjects suffering from triple negative breast cancer
CN108449995B (en) 2015-11-06 2022-02-01 文塔纳医疗系统公司 Representative diagnosis
US10793909B2 (en) 2015-11-10 2020-10-06 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods for predicting the survival time of patients with decompensated alcoholic cirrhosis
US10029972B2 (en) 2015-11-13 2018-07-24 Nanosys, Inc. Use of heteroleptic indium hydroxides as precursors for INP nanocrystals
WO2017122039A1 (en) 2016-01-13 2017-07-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting pancreatic cancer treatment response
WO2017182834A1 (en) 2016-04-19 2017-10-26 INSERM (Institut National de la Santé et de la Recherche Médicale) New method for treating resistant glioblastoma
WO2017202962A1 (en) 2016-05-24 2017-11-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd)
US11060147B2 (en) 2016-06-14 2021-07-13 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods for predicting acute severe colitis treatment response
WO2018011107A1 (en) 2016-07-11 2018-01-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of er-alpha 46 in methods and kits for assessing the status of breast cancer
WO2018011166A2 (en) 2016-07-12 2018-01-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of myeloid dendritic cells in a tissue sample
WO2018046738A1 (en) 2016-09-12 2018-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from cancer
WO2018046736A1 (en) 2016-09-12 2018-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from cancer
WO2018054960A1 (en) 2016-09-21 2018-03-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting and treating resistance to chemotherapy in npm-alk(+) alcl
US20200016177A1 (en) 2016-09-22 2020-01-16 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and pharmaceutical compositions for reprograming immune environment in a subject in need thereof
WO2018122249A1 (en) 2016-12-28 2018-07-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from a microsatellite stable colorectal cancer
WO2018122245A1 (en) 2016-12-28 2018-07-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting the survival time of patients suffering from cms3 colorectal cancer
KR20180077503A (en) * 2016-12-29 2018-07-09 엘지디스플레이 주식회사 Quantum rod, Quantum rod film and Quantum rod display device
WO2018146239A1 (en) 2017-02-10 2018-08-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Biomarker for outcome in aml patients
WO2018162404A1 (en) 2017-03-06 2018-09-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Biomarker for outcome in aml patients
CN107046066A (en) * 2017-03-09 2017-08-15 深圳大学 With suede structure monocrystalline silicon piece and preparation method thereof and silicon solar cell
WO2018172540A1 (en) 2017-03-24 2018-09-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Method to predict the progression of alzheimer's disease
EP3601613B1 (en) 2017-03-29 2021-12-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for assessing pregnancy outcome
WO2018189215A1 (en) 2017-04-12 2018-10-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for predicting the survival time of a patient suffering from hepatocellular carcinoma
WO2019038219A1 (en) 2017-08-21 2019-02-28 INSERM (Institut National de la Santé et de la Recherche Médicale) New prognostic method of pancreatic cancer
WO2019043138A1 (en) 2017-09-01 2019-03-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for predicting the outcome of a cancer
JP7038209B2 (en) 2017-11-13 2022-03-17 エフ.ホフマン-ラ ロシュ アーゲー Equipment for sample analysis using epitaco electrophoresis
CN111566830A (en) 2017-12-18 2020-08-21 默克专利股份有限公司 Light conversion material
CN108470674B (en) * 2018-01-16 2020-07-14 长春理工大学 Preparation method for realizing pure-phase GaAs nanowire by utilizing stress regulation
PL3768800T3 (en) 2018-03-20 2022-08-29 LITEC-Vermögensverwaltungsgesellschaft mbH Mn-activated oxidohalides as conversion luminescent materials for led-based solid state light sources
WO2019207030A1 (en) 2018-04-26 2019-10-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting a response with an immune checkpoint inhibitor in a patient suffering from a lung cancer
WO2019229489A1 (en) 2018-05-31 2019-12-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of mir-146a-5p and mir-186 as biomarkers of osteoarthritis
TW202024305A (en) 2018-09-14 2020-07-01 德商馬克專利公司 Blue-emitting phosphor compounds
WO2020089428A1 (en) 2018-11-02 2020-05-07 INSERM (Institut National de la Santé et de la Recherche Médicale) New prognostic method of pancreatic cancer
WO2020089432A1 (en) 2018-11-02 2020-05-07 INSERM (Institut National de la Santé et de la Recherche Médicale) New prognostic method of pancreatic cancer
AU2020205150A1 (en) 2019-01-03 2021-07-22 Assistance Publique-Hôpitaux De Paris (Aphp) Methods and pharmaceutical compositions for enhancing CD8+ T cell-dependent immune responses in subjects suffering from cancer
EP3911669A1 (en) 2019-01-16 2021-11-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Variants of erythroferrone and their use
EP3924520A1 (en) 2019-02-13 2021-12-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for selecting a cancer treatment in a subject suffering from cancer
WO2020182932A1 (en) 2019-03-13 2020-09-17 INSERM (Institut National de la Santé et de la Recherche Médicale) New gene signatures for predicting survival time in patients suffering from renal cell carcinoma
WO2020193740A1 (en) 2019-03-28 2020-10-01 INSERM (Institut National de la Santé et de la Recherche Médicale) New strategy for treating pancreatic cancer
EP3947737A2 (en) 2019-04-02 2022-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting and preventing cancer in patients having premalignant lesions
WO2020212586A1 (en) 2019-04-18 2020-10-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment and prognosis of cancer
EP3959340A1 (en) 2019-04-24 2022-03-02 Institut National de la Santé et de la Recherche Médicale (INSERM) Method for predicting the response of antipsychotic drugs
WO2020226325A1 (en) * 2019-05-08 2020-11-12 성균관대학교산학협력단 Quantum dot having improved luminescence, and method for manufacturing same
KR102425135B1 (en) * 2019-05-08 2022-07-26 성균관대학교산학협력단 Quantum dots with enhanced luminescence and preparing method thereof
US20220325268A1 (en) 2019-05-14 2022-10-13 Roche Sequencing Solutions, Inc Devices and methods for sample analysis
WO2020229521A1 (en) 2019-05-14 2020-11-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for inhibiting or reducing bacterial biofilms on a surface
WO2021001539A1 (en) 2019-07-04 2021-01-07 INSERM (Institut National de la Santé et de la Recherche Médicale) New strategy to detect and treat eosinophilic fasciitis
WO2021044012A1 (en) 2019-09-05 2021-03-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Method of treatment and pronostic of acute myeloid leukemia
WO2021063968A1 (en) 2019-09-30 2021-04-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and composition for diagnosing chronic obstructive pulmonary disease
EP4045686A1 (en) 2019-10-17 2022-08-24 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods for diagnosing nasal intestinal type adenocarcinomas
CN110638726A (en) * 2019-11-11 2020-01-03 烟台新时代健康产业日化有限公司 Lasting antibacterial no-wash hand washing gel and preparation method thereof
US20230113705A1 (en) 2020-02-28 2023-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing, prognosing and managing treatment of breast cancer
WO2021186014A1 (en) 2020-03-20 2021-09-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for predicting the survival time of a patient suffering from a cancer
EP4165214A1 (en) 2020-06-10 2023-04-19 Institut National de la Santé et de la Recherche Médicale (INSERM) Method for treating and prognosing cancer like glioblastoma
WO2021255204A1 (en) 2020-06-18 2021-12-23 INSERM (Institut National de la Santé et de la Recherche Médicale) New strategy for treating pancreatic cancer
WO2022018163A1 (en) 2020-07-22 2022-01-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for predicting survival time in patients suffering from cancer
WO2022064049A1 (en) 2020-09-28 2022-03-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for diagnosing brucella infection
WO2022084327A1 (en) 2020-10-20 2022-04-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for predicting the response to tnf inhibitors
JP2023548421A (en) 2020-11-06 2023-11-16 インサーム(インスティテュ ナシオナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシェ メディカル) Methods for diagnosing and treating polycystic ovarian syndrome (PCOS)
WO2022136252A1 (en) 2020-12-21 2022-06-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for prognosis the humoral response of a subject prior to vaccination
WO2022135753A1 (en) 2020-12-21 2022-06-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for prognosis the humoral response of a subject prior to vaccination
WO2022152698A1 (en) 2021-01-12 2022-07-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of npdk-d to evaluate cancer prognosis
WO2022171611A1 (en) 2021-02-09 2022-08-18 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to pronostic lung cancer
WO2022194949A1 (en) 2021-03-17 2022-09-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for diagnosing pancreatic cancer
WO2022207566A1 (en) 2021-03-29 2022-10-06 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to evaluate pancreatic cancer prognosis
WO2022223791A1 (en) 2021-04-23 2022-10-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cell senescence accumulation related disease
CN113437159B (en) * 2021-06-07 2022-09-09 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 N-type TOPCon battery with quantum well structure and manufacturing method thereof
WO2023280790A1 (en) 2021-07-05 2023-01-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Gene signatures for predicting survival time in patients suffering from renal cell carcinoma
WO2023089159A1 (en) 2021-11-22 2023-05-25 INSERM (Institut National de la Santé et de la Recherche Médicale) New strategy targeting stroma/tumor cell crosstalk to treat a cancer
WO2023144303A1 (en) 2022-01-31 2023-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd38 as a biomarker and biotarget in t-cell lymphomas
WO2023152133A1 (en) 2022-02-08 2023-08-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for diagnosing colorectal cancer
WO2024061930A1 (en) 2022-09-22 2024-03-28 Institut National de la Santé et de la Recherche Médicale New method to treat and diagnose peripheral t-cell lymphoma (ptcl)

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328280A (en) * 1978-05-15 1982-05-04 Minnesota Mining And Manufacturing Company Suppression of spark discharges from negatively triboelectrically charged surfaces
US4625071A (en) 1984-11-05 1986-11-25 Chronar Corp. Particulate semiconductors and devices
US4642140A (en) 1985-04-30 1987-02-10 The United States Of America As Represented By The United States Department Of Energy Process for producing chalcogenide semiconductors
ES2080313T3 (en) 1990-04-17 1996-02-01 Ecole Polytech PHOTOVOLTAIC CELLS.
US5403814A (en) * 1991-03-25 1995-04-04 Ciba-Geigy Corporation Sulfonylureas
US5262357A (en) 1991-11-22 1993-11-16 The Regents Of The University Of California Low temperature thin films formed from nanocrystal precursors
US5505928A (en) 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
EP0613585A4 (en) 1991-11-22 1995-06-21 Univ California Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers.
DE4207659A1 (en) 1992-03-11 1993-09-16 Abb Patent Gmbh METHOD FOR PRODUCING A PHOTOELECTROCHEMICAL CELL AND A CLEARLY PRODUCED CELL
JPH05308146A (en) 1992-05-01 1993-11-19 Ricoh Co Ltd Organic photovoltaic element
US5331183A (en) 1992-08-17 1994-07-19 The Regents Of The University Of California Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells
US5594263A (en) * 1993-03-26 1997-01-14 Uop Semiconductor device containing a semiconducting crystalline nanoporous material
US5504323A (en) 1993-12-07 1996-04-02 The Regents Of The University Of California Dual function conducting polymer diodes
US5537000A (en) 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
DE4416642B4 (en) 1994-05-11 2006-03-02 Kiekert Ag Door closure system on a motor vehicle with a plurality of motor vehicle doors, of which at least one is designed as a sliding door
US5523555A (en) 1994-09-14 1996-06-04 Cambridge Display Technology Photodetector device having a semiconductive conjugated polymer
GB9423692D0 (en) 1994-11-23 1995-01-11 Philips Electronics Uk Ltd A photoresponsive device
GB2296815B (en) 1994-12-09 1999-03-17 Cambridge Display Tech Ltd Photoresponsive materials
WO1996031909A1 (en) 1995-04-05 1996-10-10 Uniax Corporation Smart polymer image processor
US6126740A (en) 1995-09-29 2000-10-03 Midwest Research Institute Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films
US5847787A (en) 1996-08-05 1998-12-08 Motorola, Inc. Low driving voltage polymer dispersed liquid crystal display device with conductive nanoparticles
CN1231003A (en) 1997-06-27 1999-10-06 日本皮拉工业株式会社 Single crystal SiC and process for preparing the same
US6013871A (en) 1997-07-02 2000-01-11 Curtin; Lawrence F. Method of preparing a photovoltaic device
US6207392B1 (en) 1997-11-25 2001-03-27 The Regents Of The University Of California Semiconductor nanocrystal probes for biological applications and process for making and using such probes
US5990479A (en) 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6277740B1 (en) * 1998-08-14 2001-08-21 Avery N. Goldstein Integrated circuit trenched features and method of producing same
US6261779B1 (en) * 1998-11-10 2001-07-17 Bio-Pixels Ltd. Nanocrystals having polynucleotide strands and their use to form dendrimers in a signal amplification system
US6855202B2 (en) * 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
DE60023559T2 (en) 1999-07-26 2006-09-07 Massachusetts Institute Of Technology, Cambridge NANOCRYSTALLINE TELLUR CONTAINING MATERIALS
US6440213B1 (en) 1999-10-28 2002-08-27 The Regents Of The University Of California Process for making surfactant capped nanocrystals
US6306736B1 (en) 2000-02-04 2001-10-23 The Regents Of The University Of California Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
US6225198B1 (en) 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
AU2001249459A1 (en) * 2000-03-24 2001-10-08 The State Of Oregon, Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Scaffold-organized clusters and electronic devices made using such clusters
JP2001302399A (en) 2000-04-19 2001-10-31 Mitsubishi Chemicals Corp Method of producing semiconductor superfine particle
AU2003298998A1 (en) * 2002-09-05 2004-04-08 Nanosys, Inc. Oriented nanostructures and methods of preparing
US7303628B2 (en) * 2004-03-23 2007-12-04 The Regents Of The University Of California Nanocrystals with linear and branched topology

Also Published As

Publication number Publication date
CN1802734A (en) 2006-07-12
US20080216892A1 (en) 2008-09-11
JP2005530666A (en) 2005-10-13
US8608848B2 (en) 2013-12-17
CN100423215C (en) 2008-10-01
CA2468789C (en) 2011-07-26
EP1459372A1 (en) 2004-09-22
KR20040076253A (en) 2004-08-31
AU2002357013A1 (en) 2003-07-09
US20050109269A1 (en) 2005-05-26
US20030145779A1 (en) 2003-08-07
US7311774B2 (en) 2007-12-25
JP4980555B2 (en) 2012-07-18
IL162228A0 (en) 2005-11-20
IL162228A (en) 2014-09-30
US8062421B2 (en) 2011-11-22
EP1459372A4 (en) 2008-09-17
US6855202B2 (en) 2005-02-15
US20120028451A1 (en) 2012-02-02
WO2003054953A1 (en) 2003-07-03

Similar Documents

Publication Publication Date Title
CA2468789A1 (en) Shaped nanocrystal particles and methods for making the same
JP4931348B2 (en) Semiconductor nanocrystal heterostructure
EP3458545B1 (en) Method to improve the morphology of core/shell quantum dots for highly luminescent nanostructures
US9631141B2 (en) Highly luminescent nanostructures and methods of producing same
US8080437B2 (en) Blue light emitting semiconductor nanocrystal materials
US7190870B2 (en) Semiconductor nanocrystal composite
US6306736B1 (en) Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
DE102007027446B4 (en) Group III-V nitride-based semiconductor substrate and Group III-V nitride-based light emitting device
US9406759B2 (en) Methods for forming nanocrystals with position-controlled dopants
Acharya et al. Material diffusion and doping of Mn in wurtzite ZnSe nanorods
Niu et al. One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells
WO2012109046A1 (en) Indium phosphide colloidal nanocrystals
AU2002326920A1 (en) Semiconductor nanocrystal composite
EP1421155A1 (en) Colloidal nanocrystals with high photoluminescence quantum yields and methods of preparing the same
JP5715056B2 (en) Method for producing colloidal material, colloidal material and use thereof
CN103270200A (en) Preparation of nanocrystals with mixtures of organic ligands
Green Semiconductor quantum dots: organometallic and inorganic synthesis
US20050211154A1 (en) Nanocrystals with linear and branched topology
Chauhan et al. New synthesis of two-dimensional CdSe/CdS core@ shell dot-in-hexagonal platelet nanoheterostructures with interesting optical properties
WO2013028253A1 (en) Semiconductor nanocrystals and methods
KR20180052679A (en) Highly luminous cadmium nanocrystals with blue emission
Li et al. Oriented attachment growth of quantum-sized CdS nanorods by direct thermolysis of single-source precursor
Bera et al. Equilibriums in Formation of Lead Halide Perovskite Nanocrystals
Wang et al. CdSe@ CdS Dot@ platelet nanocrystals: Controlled epitaxy, monoexponential decay of two-dimensional exciton, and nonblinking photoluminescence of single nanocrystal
Xie et al. Zinc chalcogenide seed-mediated synthesis of CdSe nanocrystals: nails, chesses and tetrahedrons

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20221122