CA2474622A1 - Apparatus and method for closed-loop control of laser welder for welding polymeric catheter components - Google Patents

Apparatus and method for closed-loop control of laser welder for welding polymeric catheter components Download PDF

Info

Publication number
CA2474622A1
CA2474622A1 CA002474622A CA2474622A CA2474622A1 CA 2474622 A1 CA2474622 A1 CA 2474622A1 CA 002474622 A CA002474622 A CA 002474622A CA 2474622 A CA2474622 A CA 2474622A CA 2474622 A1 CA2474622 A1 CA 2474622A1
Authority
CA
Canada
Prior art keywords
bond site
laser beam
laser
directing
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002474622A
Other languages
French (fr)
Other versions
CA2474622C (en
Inventor
Aiden Flanagan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Barbados
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2474622A1 publication Critical patent/CA2474622A1/en
Application granted granted Critical
Publication of CA2474622C publication Critical patent/CA2474622C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5324Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length
    • B29C66/53241Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1619Mid infrared radiation [MIR], e.g. by CO or CO2 lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/962Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process using proportional controllers, e.g. PID controllers [proportional–integral–derivative controllers]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/965Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process using artificial neural networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/966Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process using fuzzy logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters
    • B29L2031/7543Balloon catheters

Abstract

A detector (30) detects thermal radiation (28) being emitted from a fusion bond site (26) while a laser beam (14) impinges on and heats at least a portion of the bond site. The detector (30) can provide an electrical signal to a signal processor for controllably adjusting the laser beam power. The electrical signal may be substantially correlated to the temperature of at least a region of the bond site. A workpiece support preferably positions a first (20) and second (22) polymeric body so that a fusion bond site is formed. The laser impinges on at least a portion of the fusion bond site such that it emits thermal radiation. The detector (30) senses the thermal radiation and preferably provides a signal to the signal processor. In an aspect of the present invention, the signal processor controllably adjusts the power of the laser beam based on the signal provide by the detector.

Claims (61)

1. A method for forming a fusion bond between polymeric materials comprising the steps of:
forming a bond site by positioning a portion of a first polymeric body with respect to a portion of a second body so that a fusion bond site is formed;
directing laser energy onto at least a portion of the first polymeric body within the bond site so that a fusion zone having an increased temperature is formed, the laser energy being directed to the bond site to provide a controllable emissive power spectrum of the fusion zone;
detecting the emissive power spectrum of infrared radiation being emitted from the fusion zone while directing the laser energy onto the bond site;
converting the detected emissive power spectrum of infrared radiation into an electrical signal; and controllably adjusting the laser energy that is directed onto the bond site based on the electrical signal to controllably obtain an emissive power spectrum of infrared radiation emitted from the fusion zone.
2. The method of claim 1, wherein the second body is a polymeric body.
3. The method of claim 1, wherein the second body is a stainless steel body.
4. The method of claim 1, wherein the first polymeric body of the forming step is a tubular catheter and the second body of the forming step is a polymeric dilatation balloon.
5. The method of claim 1, wherein the directing step comprises directing laser energy provided by a laser beam from CO2 laser, the laser energy having a wavelength of about 10.6 microns.
6. The method of claim 1, wherein the directing step comprises directing laser energy as a laser beam such that the laser beam impinges on the bond site at an angle between about 45 degrees and about 90 degrees.
7. The method of claim 1, wherein the directing step comprises directing laser energy as a laser beam such that the laser beam impinges on the bond site at a substantially normal angle of incidence.
8. The method of claim 1, wherein the detecting step comprises detecting the emissive power spectrum of infrared radiation being emitted from the fusion zone by a radiation detecting device.
9. The method of claim 8, wherein the radiation detecting device comprises a mercury-cadmium-telluride detector.
10. The method of claim 1, wherein the directing step further comprises directing the laser energy to the bond site with a mirror.
11. The method of claim 10, wherein the directing step comprises directing laser energy as a laser beam such that the laser beam impinges on the bond site at a substantially normal angle of incidence.
12. The method of claim 11, wherein the directing step comprises directing laser energy as a laser beam such that the laser beam impinges on the bond site at an angle between about 45 degrees and about 90 degrees.
13. The method of claim 12, wherein the detecting step comprises detecting the emissive power spectrum with a detector positioned on axis with at least a portion of the laser beam that is directed to the bond site.
14. The method of claim 13, wherein the mirror is a dichroic mirror.
15. The method of claim 1, wherein the controllably adjusting step comprises operatively connecting a control system to a detector by a signal based connection and operatively connecting the control system to a laser by a signal based connection.
16. The method of claim 15, further comprising providing an output signal from the control system for receipt of the laser by using a process control algorithm for controllably adjusting the power of the laser energy in response to the electrical signal of the converting step.
17. The method of claim 16, wherein the process control algorithm is a PID control algorithm.
18. The method of claim 1, further comprising directing the laser energy to an optical system with a first mirror, refocusing the laser beam to a predetermined shape with the optical system, and directing the laser energy to the bond site with a second mirror.
19. The method of claim 18, wherein the optical system comprises a first lens and a second lens for refocusing the laser energy as a hollow cylinder.
20. The method of claim 19, wherein the first mirror is a dichroic mirror and the second mirror is a parabolic mirror.
21. The method of claim 20, further comprising improving the signal to noise ratio of the detected infrared radiation by optically modulating and amplifying the infrared radiation and filtering out the radiation which is not modulated.
22. The method of claim 1, wherein the forming step comprises forming a bond site by positioning a portion of a first tubular catheter component with respect to a portion of a second tubular catheter component so that a substantially circular fusion bond site is formed.
23. The method of claim 1, wherein the forming step comprises forming a bond site by positioning a portion of a tubular catheter component with respect to portion of a dilatation balloon so that a substantially circular fusion bond site is formed.
24. An apparatus for forming a fusion bond between a component comprising a polymeric material and at least one additional component, the apparatus comprising:
a workpiece support for supporting and positioning a portion of a first workpiece body with respect to a portion of a second workpiece body so that a fusion bond site is formed;
a laser operatively positioned for directing a laser beam toward at least a portion of the bond site so as to form a fusion zone having an increased temperature, the laser comprising an adjustable power output laser;
a detector operatively positioned for detecting infrared radiation emitted from a fusion zone while a bond site comprising at least a portion of the polymeric material component is illuminated by the laser beam, wherein the infrared radiation has an emissive power spectrum that can be substantially correlated with the temperature of the fusion zone, and the detector includes a signal generator for creating a detector signal based on the emissive power spectrum; and a control system for receiving the detector signal and for sending a control signal to the laser for adjusting the power of the laser beam to obtain a predetermined emissive power spectrum for the infrared radiation being emitted from the fusion zone.
25. The apparatus of claim 24, wherein the first workpiece body is a polymeric body.
26. The apparatus of claim 24, wherein the first workpiece body is a polymeric body and the second workpiece body is a polymeric body.
27. The apparatus of claim 26, wherein the first polymeric body is a tubular catheter and the second polymeric body is a dilatation balloon.
28. The apparatus of claim 24, wherein the laser is a CO2 laser having a wavelength of about 10.6 microns.
29. The apparatus of claim 24, wherein the laser is positioned such that the laser beam impinges on the bond site at a substantially normal angle of incidence.
30. The apparatus of claim 24, wherein the laser is positioned such that the laser beam impinges on the bond site at an angle between about 45 degrees and about 90 degrees.
31. The apparatus of claim 24, wherein the detector is a mercury-cadmium-telluride detector
32. The apparatus of claim 24, further comprising a mirror for directing the laser beam wherein the mirror is positioned such that the laser beam impinges on the bond site.
33. The apparatus of claim 32, wherein the mirror is positioned such that the laser beam impinges on the bond site at a substantially normal angle of incidence.
34. The apparatus of claim 33, wherein the detector is positioned on axis with a portion of the laser beam that is directed to the bond site.
35. The apparatus of claim 34, wherein the mirror is a dichroic mirror.
36. The apparatus of claim 24, wherein the control system is operatively connected to the detector by a signal based connection and wherein the control system is operatively connected to the laser by a signal based connection.
37. The apparatus of claim 36, wherein the control system utilizes a process control algorithm for providing an output signal for controllably adjusting the power of the laser beam in response to an input signal from the detector.
38. The apparatus of claim 37, wherein the process control algorithm is a PID control algorithm.
39. The apparatus of claim 24, further comprising an optical system for refocusing the laser beam to a predetermined shape and further comprising a mirror for directing the laser beam to the optical system and a mirror for directing the laser beam to the bond site after the laser beam leaves the optical system.
40. The apparatus of claim 39, wherein the optical system comprises a first lens and a second lens for refocusing the laser beam as a hollow cylinder.
41. The apparatus of claim 40, wherein the mirror is a parabolic mirror.
42. The apparatus of claim 24, further comprising an optical chopper and a lock-in amplifier for improving the signal to noise ration of the detected thermal radiation.
43. A method for forming a fusion bond between a plurality of components of a balloon catheter system comprising the steps of forming a bond site by positioning a portion of a tubular catheter component with respect to a portion of a dilatation balloon so that a substantially circular fusion bond site is formed;
directing laser energy onto at least a portion of the bond site so that a fusion zone having an increased temperature is formed, the laser energy being directed to the bond site to provide an emissive power spectrum of the fusion zone;
detecting the emissive power spectrum of infrared radiation being emitted from the fusion zone while directing the laser energy onto the bond site;
converting the detected emissive power spectrum of infrared radiation into an electrical signal; and controllably adjusting the laser energy that is directed onto the bond site based on the electrical signal to controllably obtain an emissive power spectrum of infrared radiation emitted from the fusion zone.
44. The method of claim 43, wherein the tubular catheter component is a polymeric catheter component.
45. The method of claim 43, wherein the directing step comprises directing laser energy provided by a laser beam from CO2 laser, the laser energy having a wavelength of about 10.6 microns.
46. The method of claim 43, wherein the directing step comprises directing laser energy as a laser beam such that the laser beam impinges on the bond site at an angle between about 45 degrees and about 90 degrees.
47. The method of claim 43, wherein the directing step comprises directing laser energy as a laser beam such that the laser beam impinges on the bond site at a substantially normal angle of incidence.
48. The method of claim 43, wherein the detecting step comprises detecting the emissive power spectrum of infrared radiation being emitted from the fusion zone by a radiation detecting device.
49. The method of claim 48, wherein the radiation detecting device comprises a mercury-cadmium-telluride detector.
50. The method of claim 43, wherein the directing step further comprises directing the laser energy to the bond site with a mirror.
51. The method of claim 50, wherein the directing step comprises directing laser energy as a laser beam such that the laser beam impinges on the bond site at a substantially normal angle of incidence.
52. The method of claim 51, wherein the directing step comprises directing laser energy as a laser beam such that the laser beam impinges on the bond site at an angle between about 45 degrees and about 90 degrees.
53. The method of claim 52, wherein the detecting step comprises detecting the emissive power spectrum with a detector positioned on axis with a portion of the laser beam that is directed to the bond site.
54. The method of claim 53, wherein the mirror is a dichroic mirror.
55. The method of claim 43, wherein the controllably adjusting step comprises operatively connecting a control system to the detector by a signal based connection and operatively connecting the control system to a laser by a signal based connection.
56. The method of claim 55, further comprising providing an output signal from the control system by using a process control algorithm for controllably adjusting the power of the laser energy in response to the electrical signal of the converting step.
57. The method of claim 56, wherein the process control algorithm is a PID control algorithm.
58. The method of claim 43, further comprising directing the laser energy to an optical system with a first mirror, refocusing the laser beam to a predetermined shape with the optical system, and directing the laser energy to the bond site with a second mirror.
59. The method of claim 58, wherein the optical system comprises a first lens and a second lens for refocusing the laser energy as a hollow cylinder.
60. The method of claim 59, wherein the first mirror is a dichroic mirror and the second mirror is a parabolic mirror.
61. The method of claim 43, further comprising improving the signal to noise ration of the detected infrared radiation by optically modulating and amplifying the infrared radiation and filtering out the radiation which is not modulated.
CA2474622A 2002-01-28 2003-01-21 Apparatus and method for closed-loop control of laser welder for welding polymeric catheter components Expired - Fee Related CA2474622C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/059,634 2002-01-28
US10/059,634 US6858104B2 (en) 2002-01-28 2002-01-28 Apparatus and method for closed-loop control of laser welder for welding polymeric catheter components
PCT/US2003/001856 WO2003064140A2 (en) 2002-01-28 2003-01-21 Apparatus and method for closed-loop control of laser welder for welding polymeric catheter components

Publications (2)

Publication Number Publication Date
CA2474622A1 true CA2474622A1 (en) 2003-08-07
CA2474622C CA2474622C (en) 2010-10-26

Family

ID=27609856

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2474622A Expired - Fee Related CA2474622C (en) 2002-01-28 2003-01-21 Apparatus and method for closed-loop control of laser welder for welding polymeric catheter components

Country Status (9)

Country Link
US (1) US6858104B2 (en)
EP (1) EP1478503B1 (en)
JP (1) JP2005515916A (en)
AT (1) ATE420759T1 (en)
AU (1) AU2003207643A1 (en)
CA (1) CA2474622C (en)
DE (1) DE60325835D1 (en)
ES (1) ES2320433T3 (en)
WO (1) WO2003064140A2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201059A1 (en) * 2002-04-24 2003-10-30 Holman Thomas J. Selective manipulation of material for medical devices and methods and devices made therefrom
US7616321B2 (en) * 2002-12-04 2009-11-10 Infraredx, Inc. Optical coupler for rotating catheter
ATE328698T1 (en) * 2003-08-21 2006-06-15 Leister Process Tech METHOD AND DEVICE FOR SIMULTANEOUS HEATING OF MATERIALS
US20050186377A1 (en) * 2004-02-19 2005-08-25 Hurst William S. Solventless plastic bonding of medical devices and container components through infrared heating
US7744804B2 (en) * 2004-03-12 2010-06-29 Orient Chemical Industries, Ltd. Laser-transmissible composition and method of laser welding
US7345256B2 (en) * 2004-04-08 2008-03-18 Ziyun Chen Methods and apparatus for delivering laser energy for joining parts
US7815624B2 (en) * 2004-05-18 2010-10-19 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US7820936B2 (en) 2004-07-02 2010-10-26 Boston Scientific Scimed, Inc. Method and apparatus for controlling and adjusting the intensity profile of a laser beam employed in a laser welder for welding polymeric and metallic components
DE102004036576B4 (en) * 2004-07-28 2008-10-02 Huf Tools Gmbh Method for producing and checking a weld by means of laser radiation
US8158904B2 (en) * 2004-08-13 2012-04-17 Boston Scientific Scimed, Inc. Method and apparatus for forming a feature in a workpiece by laser ablation with a laser beam having an adjustable intensity profile to redistribute the energy density impinging on the workpiece
DE102004041935B4 (en) * 2004-08-30 2012-04-05 Precitec Kg Device for observing a laser processing process, and device for controlling the laser processing process
WO2006093264A1 (en) * 2005-03-04 2006-09-08 Matsushita Electric Industrial Co., Ltd. Laser heating device and laser heating method
US7728425B2 (en) * 2005-06-21 2010-06-01 Hewlett-Packard Development Company, L.P. Seal of fluid port
US7419563B2 (en) * 2005-06-23 2008-09-02 Boston Scientific Scimed, Inc. Methods of making medical devices
US7678223B2 (en) 2006-04-17 2010-03-16 Boston Scientific Scimed, Inc. Catheter having a multi-section tubular member and method of making the same
US8382709B2 (en) * 2006-09-25 2013-02-26 Boston Scientific Scimed, Inc. Designs for balloon welds
US7857786B2 (en) * 2006-11-03 2010-12-28 Cook Incorporated Balloon catheter having improved balloon folding capability
DE102007035715A1 (en) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Laser beam processing device for hardening of workpieces, includes device for imaging reflected laser radiation from workpiece onto sensor
DE102007035717A1 (en) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Laser welding machine has optical system which produces annular laser beam comprising collimator, axicon, lens system and conical mirror
DE112008001167T5 (en) 2007-05-04 2010-03-04 Branson Ultrasonics Corp., Danbury Infrared plastic welding returning unabsorbed infrared laser light to increase the absorption of infrared laser light
JP5020724B2 (en) * 2007-07-04 2012-09-05 浜松ホトニクス株式会社 Resin welding method and resin welding apparatus
US8167809B2 (en) 2007-12-20 2012-05-01 Silicon Valley Medical Instruments, Inc. Imaging probe housing with fluid flushing
JP4858454B2 (en) * 2008-01-28 2012-01-18 株式会社デンソー Laser welded part manufacturing method
DE102008016019A1 (en) * 2008-03-25 2009-10-01 Jenoptik Automatisierungstechnik Gmbh Method for quality testing a weld of plastic components welded in the lap joint
JP5030871B2 (en) * 2008-06-18 2012-09-19 浜松ホトニクス株式会社 Resin welding method
JP5030872B2 (en) * 2008-06-18 2012-09-19 浜松ホトニクス株式会社 Resin welding method
US20100022989A1 (en) * 2008-07-25 2010-01-28 Parasmo Ronald S Steerable catheter and method of making the same
CN101858503B (en) * 2009-04-10 2012-06-27 富士迈半导体精密工业(上海)有限公司 Solid-state light source assembling device and method
US9521990B2 (en) 2011-05-11 2016-12-20 Acist Medical Systems, Inc. Variable-stiffness imaging window and production method thereof
GB2494733A (en) * 2011-09-14 2013-03-20 Malvern Instr Ltd Measuring particle size distribution by light scattering
EP2768564B1 (en) 2011-10-21 2016-04-27 Boston Scientific Scimed, Inc. Locking catheter hub
US10905851B2 (en) * 2012-03-23 2021-02-02 Acist Medical Systems, Inc. Catheter sheath and methods thereof
JP6285154B2 (en) * 2013-11-14 2018-02-28 株式会社アマダミヤチ Laser welding method and laser welding system
TWI558489B (en) 2013-11-27 2016-11-21 財團法人工業技術研究院 Laser working system utilizing heat radiation image and method thereof
WO2017160766A1 (en) * 2016-03-14 2017-09-21 Analog Devices, Inc. Optical evaluation of skin type and condition
US9808573B1 (en) * 2016-03-18 2017-11-07 Busara Technologies, LLC Organizational system for medical venous access lines
DE102021200551A1 (en) 2021-01-21 2022-07-21 LPKF WeldingQuipment GmbH Process and device for laser welding two thermoplastic components
CN113547753A (en) * 2021-06-24 2021-10-26 深圳华工激光设备有限公司 Laser welding method for plastic

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974016A (en) 1974-11-04 1976-08-10 Bell Telephone Laboratories, Incorporated Bonding of thermoplastic coated cylinders
US4121087A (en) 1977-11-18 1978-10-17 Rockwell International Corporation Method and apparatus for controlling laser welding
US4251305A (en) 1978-11-01 1981-02-17 Baxter Travenol Laboratories, Inc. Method of radiant heat sealing of a balloon onto a catheter employing tinted shrink tubing
US4267959A (en) * 1979-10-22 1981-05-19 Westvaco Corporation Hinged paperboard container
DE3908187A1 (en) 1989-03-14 1990-09-20 Jurca Marius Christian METHOD FOR QUALITY ASSURANCE IN LASER BEAM WELDING AND CUTTING
DE4003696C1 (en) 1990-02-07 1990-12-13 Petzetakis, George Aristovoulos, Piraeus, Gr
US5279693A (en) 1990-05-09 1994-01-18 Lps Industries, Inc. Welding thermoplastic material with a laser
US5267959A (en) 1991-11-29 1993-12-07 Schneider, Inc. Laser bonding of angioplasty balloon catheters
US5283416A (en) 1992-06-26 1994-02-01 Trw Inc. Laser process monitoring and evaluation
US5354323A (en) 1992-10-20 1994-10-11 Premier Laser Systems, Inc. Optical heating system
US5674415A (en) 1996-01-22 1997-10-07 The University Of Chicago Method and apparatus for real time weld monitoring
US6042578A (en) * 1996-05-13 2000-03-28 Schneider (Usa) Inc. Catheter reinforcing braids
US6485599B1 (en) * 2000-07-11 2002-11-26 International Business Machines Corporation Curing of sealants using multiple frequencies of radiation

Also Published As

Publication number Publication date
DE60325835D1 (en) 2009-03-05
JP2005515916A (en) 2005-06-02
US20030141002A1 (en) 2003-07-31
EP1478503A2 (en) 2004-11-24
CA2474622C (en) 2010-10-26
WO2003064140A3 (en) 2003-11-06
ATE420759T1 (en) 2009-01-15
EP1478503B1 (en) 2009-01-14
WO2003064140A2 (en) 2003-08-07
US6858104B2 (en) 2005-02-22
AU2003207643A1 (en) 2003-09-02
ES2320433T3 (en) 2009-05-22

Similar Documents

Publication Publication Date Title
CA2474622A1 (en) Apparatus and method for closed-loop control of laser welder for welding polymeric catheter components
US7820936B2 (en) Method and apparatus for controlling and adjusting the intensity profile of a laser beam employed in a laser welder for welding polymeric and metallic components
US8727610B2 (en) Laser processing apparatus,laser processing temperature measuring apparatus,laser processing method,and laser processing temperature measuring method
RU2141887C1 (en) Method and apparatus for laser sintering of powder
KR101467956B1 (en) Laser-beam working device comprising means for forming an image of the reflected annular laser radiation on a sensor unit and method for adjusting the focal position
US6860960B1 (en) Method of applying a laser beam around the circumference of a catheter
JP2001096386A (en) Method of and equipment for positioning focal point of laser beam
JPH04272122A (en) Laser-beam machine
JP2007532198A (en) Method and apparatus for delivering laser energy for joining parts
KR20150105298A (en) Hand maneuverable laser welding gun
JPH1052779A (en) Laser beam convergence control in treatment of material
WO2000066345A3 (en) Method of clamping thermoplastic pieces and heat control for laser welding
JP3840947B2 (en) Laser welding equipment
US20070090097A1 (en) Laser welding system for welding workpiece
CN101022914A (en) Methods and apparatus for delivering laser energy for joining parts
JP3076747B2 (en) High power laser transmission method and device
JPH03230885A (en) Equipment and method for laser beam welding
JPH08215869A (en) Laser beam welding method and its device
WO2023285752A1 (en) Method for calibrating a sensor for monitoring a melt pool in an additive manufacturing machine
Gu et al. A gap-detection technique for laser beam butt welding
KR20150037693A (en) Laser apparatus capable of controlling power applying laser beam sensor
KR20230045786A (en) Laser processing apparatus for object, method for the same and the object made by the apparatus
KR20190071425A (en) Welding temperature control system reflecting emissivity of base material of laser welding machine and control method thereof
JPH03210985A (en) Laser beam welding equipment and method
JPS6343785A (en) Laser beam joining device

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140121