CA2482566A1 - Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof - Google Patents

Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof Download PDF

Info

Publication number
CA2482566A1
CA2482566A1 CA002482566A CA2482566A CA2482566A1 CA 2482566 A1 CA2482566 A1 CA 2482566A1 CA 002482566 A CA002482566 A CA 002482566A CA 2482566 A CA2482566 A CA 2482566A CA 2482566 A1 CA2482566 A1 CA 2482566A1
Authority
CA
Canada
Prior art keywords
area
gradient
nanofluidic
blocking mask
microfluidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002482566A
Other languages
French (fr)
Other versions
CA2482566C (en
Inventor
Han Cao
Jonas Tegenfeldt
Stephen Y. Chou
Robert H. Austin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Princeton University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA2702194A priority Critical patent/CA2702194C/en
Publication of CA2482566A1 publication Critical patent/CA2482566A1/en
Application granted granted Critical
Publication of CA2482566C publication Critical patent/CA2482566C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00119Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2008Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the reflectors, diffusers, light or heat filtering means or anti-reflective means used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0896Nanoscaled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0156Lithographic techniques
    • B81C2201/0157Gray-scale mask technology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0156Lithographic techniques
    • B81C2201/0159Lithographic techniques not provided for in B81C2201/0157
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Abstract

The present invention relates to a device for interfacing nanofluidic and microfluidic components suitable for use in performing high throughput macromolecular analysis. Diffraction gradient lithography (DGL) is used to form a gradient interface between a microfluidic area and a nanofluidic area.
The gradient interface area reduces the local entropic barrier to anochannels formed in the nanofluidic area. In one embodiment, the gradient interface area is formed of lateral spatial gradient structures for narrowing the cross section of a value from the micron to the nanometer length scale. In another embodiment, the gradient interface area is formed of a vertical sloped gradient structure. Additionally, the gradient structure can provide both a lateral and vertical gradient.

Claims (69)

1. A method for fabricating a fluidic device comprising the steps of:
forming a nanofluidic area on a substrate;
forming a microfluidic area on said substrate; and forming a gradient interface area between said nanofluidic area and said microfluidic area.
2. The method of claim 1 wherein said gradient interface area comprises a plurality of gradient structures, and a lateral distance between said gradient structures is decreased towards said nanofluidic area.
3. The method of claim 2 wherein said distance between said gradient structures is reduced below about 500 nanometers.
4. The method of claim 2 wherein said distance between said gradient structures is reduced below about 10 nm.
5. The method of claim 2 wherein said distance between said gradient structures is reduced to a distance substantially of a diameter of a biopolymer.
6. The method of claim 2 wherein said gradient structures have a gradual vertical elevation from said microfluidic area to said nanofluidic area.
7. The method of claim 2 wherein said gradient structures are branched channels.
8. The method of claim 1 wherein said gradient interface provides a gradual increase in vertical elevation from said microfluidic area to said nanofluidic area.
9. The method of claim 1 wherein said steps of forming said gradient interface area and forming said microfluidic area are formed simultaneously by the steps of:
coating photoresist over said substrate;
providing a photomask over said photoresist, said photomask patterning said microfluidic area and said gradient interface area;
providing a blocking mask over said photomask, said blocking mask extending over a portion of said photomask applied over said nanofluidic area; and exposing said photomask to light.
10. The method of claim 9 wherein said blocking mask causes light diffraction along an edge of said blocking mask.
11. The method of claim 10 further comprising the step of:
selecting said edge of blocking mask for controlling said light diffraction.
12. The method of claim 9 wherein said blocking mask is formed of a material which is opaque to light.
13. The method of claim 9 wherein said blocking mask is formed of a metal.
14. The method of claim 9 wherein said blocking mask is formed of aluminum foil.
15. The method of claim 9 further comprising the step of:
developing said photoresist after said step of placing said blocking mask over said photomask, wherein said photoresist has a gradient of undeveloped photoresist along a light diffraction area, said light diffraction area caused by an edge of said blocking mask.
16. The method of claim 9 wherein said photomask has a thickness in a range of about 1 mm to about 10 mm.
17. The method of claim 9 wherein said blocking mask has a thickness in the range of about 1 mm to about 12 mm.
18. The method of claim 9 wherein said step of providing a blocking mask over said photomask further comprises the step of:
controlling a distance between said blocking mask and said photomask, wherein said distance controls an amount light diffraction along an edge of said blocking mask.
19. The method of claim 1 wherein said nanofluidic area comprises a nanofluidic structure selected from the group consisting of nanopillars, nanopores and nanochannels.
20. The method of claim 19 wherein said nanofluidic structure comprises nanochannels, said nanochannels being formed by: nanoimprint lithography, interference lithography, self assembled copolymer pattern transfer, spin coating, electron beam lithography, focused ion beam milling, photolithography, reactive ion-etching, wet-etching, plasma-enhanced chemical vapor deposition, electron beam evaporation, sputter deposition, and combinations thereof.
21. A fluidic device formed by the method of claim 1.
22. A method for forming a microfluidic/nanofluidic device comprising the steps of:

forming a nanofluidic area on a substrate;
coating photoresist on said substrate;
providing a blocking mask over said photoresist, said blocking mask extending over a portion of said photoresist; and exposing said blocking mask to light, wherein said photoresist has a gradient of undeveloped photoresist along a light diffraction area forming a gradient interface area, said light diffraction area caused by an edge of said blocking mask.
23. The method of claim 22 wherein after said step of coating photoresist on said substrate further comprising the step of:
providing a photomask over said photoresist, said photomask patterning said microfluidic area and said gradient interface area.
24. The method of claim 23 wherein in said step of providing a blocking mask, said blocking mask is coated on said photoresist.
25. The method of claim 23 wherein said step of providing a blocking mask over said photomask further comprises the step of:
controlling a distance between said blocking mask and said photomask, wherein said distance controls an amount light diffraction.
26. A fluidic device formed by the method of claim 22.
27. A system for fabricating a fluidic device comprising:
means for forming a nanofluidic area on a substrate;
means for forming a microfluidic area on said substrate; and means for forming a gradient interface area between said nanofluidic area and said microfluidic area.
28. The system of claim 27 wherein said gradient interface area comprises a plurality of gradient structures, and a lateral distance between said gradient structures is decreased towards said nanofluidic area.
29. The system of claim 28 wherein said distance between said gradient structures is reduced below 500 nanometers.
30. The system of claim 28 wherein said distance between said gradient structures is reduced below about 10 nm.
31. The system of claim 28 wherein said distance between said gradient structures is reduced to a distance substantially a diameter of a biopolymer.
32. The system of claim 28 wherein said gradient structures are branched channels.
33. The system of claim 28 wherein said gradient structures have a gradual vertical elevation from said substrate to said nanofluidic area.
34. The system of claim 28 wherein said gradient interface provides a gradual increase in vertical elevation from said microfluidic area to said nanofluidic area.
35. The system of claim 27 wherein said means for forming a gradient interface area comprises:
means for applying photoresist over said substrate;
means for applying a photomask over said photoresist;
means for providing a blocking mask over said photomask, said blocking mask extending over a portion of said nanofluidic area; and means for exposing said photomask to light.
36. The system of claim 35 wherein said blocking mask causes light diffraction along an edge of said blocking mask.
37. The system of claim 36 wherein said edge of blocking mask is selected to control said light diffraction.
38. The system of claim 35 wherein said blocking mask is formed of a material which is opaque to light.
39. The system of claim 35 wherein said blocking mask is formed of a metal.
40. The system of claim 35 wherein said blocking mask is formed of aluminum foil.
41. The system of claim 35 further comprising:
means for developing said photoresist, wherein said photoresist has a gradient of undeveloped photoresist along a light diffraction area, said light diffraction area caused by an edge of said blocking mask.
42. The system of claim 35 wherein said photomask has a thickness in a range of about 1 mm to about 10 mm.
43. The system of claim 3 S wherein said nanofluidic area comprises nanofluidic structures selected from the group consisting of nanopillars, nanopores and nanochannels.
44. The system of claim 43 wherein said plurality of channels are formed by:
nanoimprint lithography, interference lithography, self-assembled copolymer pattern transfer, spin coating, electron beam lithography, focused ion beam milling, photolithography, reactive ion-etching, wet-etching, plasma-enhanced chemical vapor deposition, electron beam evaporation, sputter deposition, and combinations thereof.
45. A fluidic chip comprising:
a surface having a nanofluidic area formed in the material of the surface;
a microfluidic area on said surface;
a gradient interface area between said nanofluidic area and said microfluidic area, at least one sample reservoir in fluid communication with said microfluidic area, said sample reservoir capable of receiving a fluid; and at least one waste reservoir in fluid communication with at least one of said channels, said waste reservoir capable of receiving a fluid.
46. The fluidic chip of claim 45 wherein said gradient interface area comprises branched fluidic channels having reduced lateral distance between adjacent channels toward said nanofluidic area.
47. A method of analyzing at least one macromolecule, comprising the steps of:
providing a surface having a nanofluidic area formed of a plurality of channels in the material of the surface;
a microfluidic area on said surface;
a gradient interface area between said nanofluidic area and said microfluidic area, at least one sample reservoir in fluid communication with said microfluidic area, said sample reservoir capable of receiving a fluid;
at least one waste reservoir in fluid communication with said nanofluidic area, said waste reservoir capable of receiving a fluid;
providing the at least one sample reservoir with at least one fluid, said fluid comprising at least one macromolecule;
transporting the at least one macromolecule between said microfluidic area and said nanofluidic area to elongate said at least one macromolecule;

detecting at least one signal transmitted from the at least one elongated macromolecule; and correlating the detected signal to at least one property of the at least one macromolecule.
48. The method according to claim 47 wherein the detected signal is correlated to at least one of the following properties: length, conformation, physical and chemical attachment such as a bound marker or tagging and chemical composition.
49. The method according to claim 47 wherein the macromolecule is a synthetic polymer or biopolymer.
50. The method of claim 49 wherein the biopolymer is at least one of: a protein, a polypeptide, and a nucleic acid.
51. The method of claim 50 wherein the nucleic acid is DNA and the detected signals are correlated to the base pair sequence of said DNA.
52. The method of claim 49 wherein the biopolymers are at least substantially unfolded in the channels.
53. The method of claim 47 wherein the concentration of the macromolecules in the fluid is at least one attogram per milliliter.
54. The method of claim 47 wherein the concentration of the macromolecules in the fluid is at least one femtogram per milliliter.
55. The method of claim 47 wherein the concentration of the macromolecules in the fluid is at least one picogram per milliliter.
56. The method of claim 47 wherein the concentration of the macromolecules in the fluid is less than 5 micrograms per milliliter.
57. The method of claim 47 wherein the concentration of the macromolecules in the fluid is less than 0.5 micrograms per milliliter.
58. The method of claim 47 wherein the macromolecules have an elongated length in the channels of greater than 150 nanometers.
59. The method of claim 47 wherein the macromolecules have an elongated length in the channels of greater than 500 nanometers.
60. The method of claim 47 wherein the macromolecules have an elongated length in the channels of greater than 1 micron.
61. The method of claim 47 wherein the macromolecules have an elongated length in the channels of greater than 10 microns.
62. The method of claim 47 wherein the macromolecules are DNA having greater than 100 base pairs.
63. The method of claim 47 wherein the macromolecules are DNA having greater than 1,000 base pairs.
64. The method of claim 47 wherein the macromolecules are DNA having greater than 10,000 base pairs.
65. The method of claim 47 wherein the macromolecules are DNA having greater than 100,000 base pairs.
66. The method of claim 47 wherein the macromolecules are DNA having greater than 1,000,000 base pairs.
67. The method of claim 47 wherein the at least one macromolecule is a chromosome.
68. The method of claim 67 wherein the at least one chromosome is analyzed to determine the presence of at least one single nucleotide polymorphism.
69. A cartridge comprising at least one fluidic chip, said cartridge capable of being inserted and removed from a system for carrying out macromolecular analysis, said at least one fluidic chip comprising at least one nanochannel array, said nanochannel array comprising:
a surface having a nanofluidic area formed in the material of the surface;
a microfluidic area on said surface;
a gradient interface area between said nanofluidic area and said microfluidic area, at least one sample reservoir in fluid communication with said microfluidic area, said sample reservoir capable of receiving a fluid;
at least one waste reservoir in fluid communication with at least one of said channels, said waste reservoir capable of receiving a fluid; and an apparatus for detecting at least one signal transmitted from the at least one fluid in said at least one channel.
CA2482566A 2002-04-16 2003-04-16 Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof Expired - Lifetime CA2482566C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2702194A CA2702194C (en) 2002-04-16 2003-04-16 Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US60/419,742 2002-01-01
US37340902P 2002-04-16 2002-04-16
US60/373,409 2002-04-16
US41974202P 2002-10-18 2002-10-18
PCT/US2003/011721 WO2003106693A2 (en) 2002-01-01 2003-04-16 Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
US10/414,620 US7217562B2 (en) 2002-04-16 2003-04-16 Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
US10/414,620 2003-04-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2702194A Division CA2702194C (en) 2002-04-16 2003-04-16 Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof

Publications (2)

Publication Number Publication Date
CA2482566A1 true CA2482566A1 (en) 2003-12-24
CA2482566C CA2482566C (en) 2010-07-20

Family

ID=29739674

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2482566A Expired - Lifetime CA2482566C (en) 2002-04-16 2003-04-16 Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof

Country Status (7)

Country Link
US (6) US7217562B2 (en)
EP (2) EP1572860B1 (en)
JP (1) JP4799861B2 (en)
AU (1) AU2003269813A1 (en)
CA (1) CA2482566C (en)
IL (1) IL214684A (en)
WO (1) WO2003106693A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722888B2 (en) 2015-07-16 2020-07-28 The Hong Kong University Of Science And Technology Dynamic formation of nanochannels for single-molecule DNA analysis

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2264523A3 (en) * 2000-07-16 2011-11-30 Board Of Regents, The University Of Texas System A method of forming a pattern on a substrate in imprint lithographic processes
JP2004505273A (en) * 2000-08-01 2004-02-19 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Method for highly accurate sensing of gap and orientation between transparent template and substrate for transfer lithography
US20050274219A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
WO2002044425A2 (en) * 2000-12-01 2002-06-06 Visigen Biotechnologies, Inc. Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity
US7668697B2 (en) * 2006-02-06 2010-02-23 Andrei Volkov Method for analyzing dynamic detectable events at the single molecule level
US20050064344A1 (en) * 2003-09-18 2005-03-24 University Of Texas System Board Of Regents Imprint lithography templates having alignment marks
CA2454570C (en) 2001-07-25 2016-12-20 The Trustees Of Princeton University Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US9678038B2 (en) 2001-07-25 2017-06-13 The Trustees Of Princeton University Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US7652574B2 (en) * 2002-04-08 2010-01-26 Sayegh Adel O Article surveillance tag having a vial
JP4799861B2 (en) 2002-04-16 2011-10-26 プリンストン ユニバーシティ Gradient structure for interface between microfluidic and nanofluid, and its manufacturing and use
US7169251B2 (en) * 2002-05-13 2007-01-30 The Regents Of The University Of Michigan Method of forming nanofluidic channels
US7019819B2 (en) * 2002-11-13 2006-03-28 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US7070405B2 (en) * 2002-08-01 2006-07-04 Molecular Imprints, Inc. Alignment systems for imprint lithography
US7027156B2 (en) * 2002-08-01 2006-04-11 Molecular Imprints, Inc. Scatterometry alignment for imprint lithography
US8349241B2 (en) * 2002-10-04 2013-01-08 Molecular Imprints, Inc. Method to arrange features on a substrate to replicate features having minimal dimensional variability
US7323130B2 (en) * 2002-12-13 2008-01-29 Molecular Imprints, Inc. Magnification correction employing out-of-plane distortion of a substrate
US20040203126A1 (en) * 2003-04-08 2004-10-14 Yokogawa Electric Corporation Method and apparatus for separating and purifying biopolymers
US7150622B2 (en) * 2003-07-09 2006-12-19 Molecular Imprints, Inc. Systems for magnification and distortion correction for imprint lithography processes
US7136150B2 (en) * 2003-09-25 2006-11-14 Molecular Imprints, Inc. Imprint lithography template having opaque alignment marks
SE0400662D0 (en) * 2004-03-24 2004-03-24 Aamic Ab Assay device and method
US20050212022A1 (en) * 2004-03-24 2005-09-29 Greer Edward C Memory cell having an electric field programmable storage element, and method of operating same
US20050275311A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Compliant device for nano-scale manufacturing
US20050270516A1 (en) * 2004-06-03 2005-12-08 Molecular Imprints, Inc. System for magnification and distortion correction during nano-scale manufacturing
US7768624B2 (en) * 2004-06-03 2010-08-03 Board Of Regents, The University Of Texas System Method for obtaining force combinations for template deformation using nullspace and methods optimization techniques
KR101175108B1 (en) * 2004-06-03 2012-08-21 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 System and method for improvement of alignment and overlay for microlithography
US7785526B2 (en) 2004-07-20 2010-08-31 Molecular Imprints, Inc. Imprint alignment method, system, and template
US7630067B2 (en) 2004-11-30 2009-12-08 Molecular Imprints, Inc. Interferometric analysis method for the manufacture of nano-scale devices
US7292326B2 (en) * 2004-11-30 2007-11-06 Molecular Imprints, Inc. Interferometric analysis for the manufacture of nano-scale devices
US20070231421A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Enhanced Multi Channel Alignment
WO2006060758A2 (en) * 2004-12-01 2006-06-08 Molecular Imprints, Inc. Methods of exposure for the purpose of thermal management for imprint lithography processes
US20070228608A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Preserving Filled Features when Vacuum Wiping
US7947485B2 (en) * 2005-06-03 2011-05-24 Hewlett-Packard Development Company, L.P. Method and apparatus for molecular analysis using nanoelectronic circuits
US20060275779A1 (en) * 2005-06-03 2006-12-07 Zhiyong Li Method and apparatus for molecular analysis using nanowires
US20070009821A1 (en) * 2005-07-08 2007-01-11 Charlotte Cutler Devices containing multi-bit data
US8921102B2 (en) * 2005-07-29 2014-12-30 Gpb Scientific, Llc Devices and methods for enrichment and alteration of circulating tumor cells and other particles
WO2007041621A2 (en) * 2005-10-03 2007-04-12 Xingsheng Sean Ling Hybridization assisted nanopore sequencing
US7835870B2 (en) * 2005-11-01 2010-11-16 Georgia Institute Of Technology Methods and systems for evaluating the length of elongated elements
WO2007065025A2 (en) * 2005-11-29 2007-06-07 Wisconsin Alumni Research Foundation Method of dna analysis using micro/nanochannel
WO2007117524A2 (en) 2006-04-03 2007-10-18 Molecular Imprints, Inc. Method of concurrently patterning a substrate having a plurality of fields and alignment marks
AU2007338862B2 (en) * 2006-07-19 2014-02-06 Bionano Genomics, Inc. Nanonozzle device arrays: their preparation and use for macromolecular analysis
JP5027468B2 (en) * 2006-09-15 2012-09-19 日本ミクロコーティング株式会社 Probe cleaning or probe processing sheet and probe processing method
KR100785033B1 (en) * 2006-12-06 2007-12-12 삼성전자주식회사 Information storage device using magnetic domain wall moving and method for manufacturing the same
US20080186801A1 (en) * 2007-02-06 2008-08-07 Qisda Corporation Bubble micro-pump and two-way fluid-driving device, particle-sorting device, fluid-mixing device, ring-shaped fluid-mixing device and compound-type fluid-mixing device using the same
JP5491378B2 (en) * 2007-03-28 2014-05-14 バイオナノ ジェノミックス、インク. Macromolecular analysis method using nanochannel array
DE102007027414B3 (en) 2007-06-11 2009-01-22 Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH Micro- and Nanofluidsystem for the dynamic structural analysis of linear macromolecules and their applications
WO2009046094A1 (en) 2007-10-01 2009-04-09 Nabsys, Inc. Biopolymer sequencing by hybridization of probes to form ternary complexes and variable range alignment
US8951731B2 (en) * 2007-10-15 2015-02-10 Complete Genomics, Inc. Sequence analysis using decorated nucleic acids
US8008032B2 (en) * 2008-02-25 2011-08-30 Cellective Dx Corporation Tagged ligands for enrichment of rare analytes from a mixed sample
KR20170094003A (en) 2008-06-06 2017-08-16 바이오나노 제노믹스, 인크. Integrated nanofluidic analysis devices, fabrication methods and analysis techniques
CA3062190C (en) 2008-06-30 2023-03-28 Bionano Genomics, Inc. Methods and devices for single-molecule whole genome analysis
WO2010002939A2 (en) * 2008-06-30 2010-01-07 Life Technologies Corporation Methods for real time single molecule sequencing
US9650668B2 (en) 2008-09-03 2017-05-16 Nabsys 2.0 Llc Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels
US8262879B2 (en) 2008-09-03 2012-09-11 Nabsys, Inc. Devices and methods for determining the length of biopolymers and distances between probes bound thereto
JP5717634B2 (en) * 2008-09-03 2015-05-13 ナブシス, インコーポレイテッド Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluid channels
EP2370594B1 (en) 2008-11-18 2014-01-08 BioNano Genomics, Inc. Polynucleotide mapping and sequencing
WO2010111605A2 (en) * 2009-03-27 2010-09-30 Nabsys, Inc. Devices and methods for analyzing biomolecules and probes bound thereto
WO2010111686A2 (en) 2009-03-27 2010-09-30 Life Technologies Corp Labeled enzyme compositions, methods & systems
US8455260B2 (en) * 2009-03-27 2013-06-04 Massachusetts Institute Of Technology Tagged-fragment map assembly
US8246799B2 (en) * 2009-05-28 2012-08-21 Nabsys, Inc. Devices and methods for analyzing biomolecules and probes bound thereto
US20100330557A1 (en) * 2009-06-30 2010-12-30 Zohar Yakhini Genomic coordinate system
WO2011032040A1 (en) 2009-09-10 2011-03-17 Centrillion Technology Holding Corporation Methods of targeted sequencing
US10174368B2 (en) 2009-09-10 2019-01-08 Centrillion Technology Holdings Corporation Methods and systems for sequencing long nucleic acids
US20120282709A1 (en) * 2009-09-14 2012-11-08 Byung Chul Lee Method and device for dna sequence analysis using multiple pna
US8969007B2 (en) 2009-11-06 2015-03-03 University Of Notre Dame Du Lac Microchamber electrochemical cell having a nanoslot
US8187979B2 (en) * 2009-12-23 2012-05-29 Varian Semiconductor Equipment Associates, Inc. Workpiece patterning with plasma sheath modulation
WO2011108540A1 (en) 2010-03-03 2011-09-09 国立大学法人大阪大学 Method and device for identifying nucleotide, and method and device for determining nucleotide sequence of polynucleotide
KR20110100963A (en) * 2010-03-05 2011-09-15 삼성전자주식회사 Microfluidic device and method for deterimining sequences of target nucleic acids using the same
US8535544B2 (en) 2010-07-26 2013-09-17 International Business Machines Corporation Structure and method to form nanopore
US8138068B2 (en) 2010-08-11 2012-03-20 International Business Machines Corporation Method to form nanopore array
US8715933B2 (en) 2010-09-27 2014-05-06 Nabsys, Inc. Assay methods using nicking endonucleases
GB201017905D0 (en) * 2010-10-25 2010-12-01 Mir Kalim U Preparation and analysis of samples
US8815145B2 (en) 2010-11-11 2014-08-26 Spirit Aerosystems, Inc. Methods and systems for fabricating composite stiffeners with a rigid/malleable SMP apparatus
US8974217B2 (en) 2010-11-11 2015-03-10 Spirit Aerosystems, Inc. Reconfigurable shape memory polymer tooling supports
US8734703B2 (en) 2010-11-11 2014-05-27 Spirit Aerosystems, Inc. Methods and systems for fabricating composite parts using a SMP apparatus as a rigid lay-up tool and bladder
US8945325B2 (en) 2010-11-11 2015-02-03 Spirit AreoSystems, Inc. Methods and systems for forming integral composite parts with a SMP apparatus
WO2012067911A1 (en) 2010-11-16 2012-05-24 Nabsys, Inc. Methods for sequencing a biomolecule by detecting relative positions of hybridized probes
US11274341B2 (en) 2011-02-11 2022-03-15 NABsys, 2.0 LLC Assay methods using DNA binding proteins
US20120252682A1 (en) 2011-04-01 2012-10-04 Maples Corporate Services Limited Methods and systems for sequencing nucleic acids
CN103998932B (en) 2011-06-29 2017-06-06 中央研究院 Capture, purifying and release using face coat to biological substance
US11053535B2 (en) 2011-09-12 2021-07-06 The University Of North Carolina At Chapel Hill Devices with a fluid transport nanochannel intersected by a fluid sensing nanochannel and related methods
EP2570488A1 (en) 2011-09-16 2013-03-20 Centre National de la Recherche Scientifique (C.N.R.S) Method for longitudinal macromolecule spreading and method for analyzing macromolecules
KR101284274B1 (en) * 2011-12-12 2013-07-08 한국과학기술원 Sensor Having Nano Channel Structure and Method for Preparing the Same
JP2015511812A (en) * 2011-12-28 2015-04-23 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. Two-dimensional nanofluidic CCD array for manipulating charged molecules in solution
US9989515B2 (en) 2012-02-10 2018-06-05 The University Of North Carolina At Chapel Hill Devices with fluidic nanofunnels, associated methods, fabrication and analysis systems
KR101349332B1 (en) 2012-08-03 2014-01-13 한국해양과학기술원 Protein biosensor comprising pore structure using diffusive flow and fabricating method thereof
EP2887058B1 (en) 2012-08-17 2017-11-29 Quantum Biosystems Inc. Sample analysis method
US9409173B2 (en) * 2012-11-30 2016-08-09 The Arizona Board Of Regents On Behalf Of The University Of Arizona Method and device for generating a tunable array of fluid gradients
US9914966B1 (en) 2012-12-20 2018-03-13 Nabsys 2.0 Llc Apparatus and methods for analysis of biomolecules using high frequency alternating current excitation
JP6282036B2 (en) 2012-12-27 2018-02-21 クオンタムバイオシステムズ株式会社 Method and control apparatus for controlling movement speed of substance
US10040018B2 (en) 2013-01-09 2018-08-07 Imagine Tf, Llc Fluid filters and methods of use
WO2014113557A1 (en) 2013-01-18 2014-07-24 Nabsys, Inc. Enhanced probe binding
WO2014134095A1 (en) 2013-02-28 2014-09-04 The University Of North Carolina At Chapel Hill Nanofluidic devices with integrated components for the controlled capture, trapping, and transport of macromolecules and related methods of analysis
US9255288B2 (en) 2013-03-13 2016-02-09 The University Of North Carolina At Chapel Hill Nanofluidic devices for the rapid mapping of whole genomes and related systems and methods of analysis
US20150064153A1 (en) 2013-03-15 2015-03-05 The Trustees Of Princeton University High efficiency microfluidic purification of stem cells to improve transplants
US10324011B2 (en) 2013-03-15 2019-06-18 The Trustees Of Princeton University Methods and devices for high throughput purification
EP2971287B1 (en) 2013-03-15 2019-08-14 GPB Scientific, LLC On-chip microfluidic processing of particles
ES2897575T3 (en) * 2013-06-03 2022-03-01 Lumicks Dsm Holding B V Method and system for imaging a molecular strand
US9364832B2 (en) 2013-07-17 2016-06-14 International Business Machines Corporation Nanofluidic channels with gradual depth change for reducing entropic barrier of biopolymers
KR20160079780A (en) 2013-09-18 2016-07-06 퀀텀 바이오시스템즈 가부시키가이샤 Biomolecule sequencing devices, systems and methods
CN103638558B (en) * 2013-09-30 2015-04-29 中国人民解放军第三军医大学第二附属医院 In vitro construction method for bionic ligament-bone tissue engineering connector
JP2015077652A (en) 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 Nano-gap electrode and method for manufacturing same
WO2015126840A1 (en) 2014-02-18 2015-08-27 Bionano Genomics, Inc. Improved methods of determining nucleic acid structural information
US9322061B2 (en) 2014-03-06 2016-04-26 International Business Machines Corporation Nanochannel device with three dimensional gradient by single step etching for molecular detection
TW201623605A (en) 2014-04-01 2016-07-01 中央研究院 Methods and systems for cancer diagnosis and prognosis
US10438811B1 (en) 2014-04-15 2019-10-08 Quantum Biosystems Inc. Methods for forming nano-gap electrodes for use in nanosensors
US9861920B1 (en) 2015-05-01 2018-01-09 Imagine Tf, Llc Three dimensional nanometer filters and methods of use
US9658184B2 (en) 2014-05-07 2017-05-23 International Business Machines Corporation Increasing the capture zone by nanostructure patterns
WO2015170782A1 (en) * 2014-05-08 2015-11-12 Osaka University Devices, systems and methods for linearization of polymers
KR101647095B1 (en) * 2014-05-19 2016-08-11 한국과학기술원 Microfluidic system, manufacturing method thereof and method of cell encapsulation in hydrogel
US10730047B2 (en) 2014-06-24 2020-08-04 Imagine Tf, Llc Micro-channel fluid filters and methods of use
DE102014109468B3 (en) * 2014-07-07 2015-08-06 Stiftung Caesar Center Of Advanced European Studies And Research Culture chamber device for generating flowless and time stable gradients
US9228994B1 (en) 2014-08-06 2016-01-05 Globalfoundries Inc. Nanochannel electrode devices
EP2998026B1 (en) 2014-08-26 2024-01-17 Academia Sinica Collector architecture layout design
US10124275B2 (en) 2014-09-05 2018-11-13 Imagine Tf, Llc Microstructure separation filters
CN107110763B (en) 2014-11-03 2020-12-15 通用医疗公司 Sorting particles in a microfluidic device
US10058895B2 (en) 2014-11-26 2018-08-28 International Business Machines Corporation Continuous flow, size-based separation of entities down to the nanometer scale using nanopillar arrays
US9835538B2 (en) 2014-11-26 2017-12-05 International Business Machines Corporation Biopolymer separation using nanostructured arrays
US9636675B2 (en) 2014-11-26 2017-05-02 International Business Machines Corporation Pillar array structure with uniform and high aspect ratio nanometer gaps
US10758849B2 (en) 2015-02-18 2020-09-01 Imagine Tf, Llc Three dimensional filter devices and apparatuses
US10156568B2 (en) 2015-04-30 2018-12-18 International Business Machines Corporation Immunoassay for detection of virus-antibody nanocomplexes in solution by chip-based pillar array
US10471428B2 (en) 2015-05-11 2019-11-12 The University Of North Carolina At Chapel Hill Fluidic devices with nanoscale manifolds for molecular transport, related systems and methods of analysis
US10118842B2 (en) 2015-07-09 2018-11-06 Imagine Tf, Llc Deionizing fluid filter devices and methods of use
US10479046B2 (en) 2015-08-19 2019-11-19 Imagine Tf, Llc Absorbent microstructure arrays and methods of use
US10976232B2 (en) 2015-08-24 2021-04-13 Gpb Scientific, Inc. Methods and devices for multi-step cell purification and concentration
US9700891B2 (en) * 2015-11-13 2017-07-11 International Business Machines Corporation Integrated nanofluidic arrays for high capacity colloid separation
US9719926B2 (en) 2015-11-16 2017-08-01 International Business Machines Corporation Nanopillar microfluidic devices and methods of use thereof
US9733232B1 (en) 2016-01-25 2017-08-15 International Business Machines Corporation Nanopillar arrays with interfaces for controlled polymer stretching and effective translocation into nanochannels
US10640822B2 (en) 2016-02-29 2020-05-05 Iridia, Inc. Systems and methods for writing, reading, and controlling data stored in a polymer
US10859562B2 (en) 2016-02-29 2020-12-08 Iridia, Inc. Methods, compositions, and devices for information storage
US10438662B2 (en) 2016-02-29 2019-10-08 Iridia, Inc. Methods, compositions, and devices for information storage
US10107726B2 (en) 2016-03-16 2018-10-23 Cellmax, Ltd. Collection of suspended cells using a transferable membrane
US9993750B2 (en) 2016-03-16 2018-06-12 International Business Machines Corporation Clog-resistant serpentine pillar filters and bladed loading structures for microfluidics
US10465706B2 (en) * 2016-04-19 2019-11-05 Garrett Transportation I Inc. Adjustable-trim centrifugal compressor for a turbocharger
US10639634B2 (en) 2016-06-01 2020-05-05 Government Of The United States Of America, As Represented By The Secretary Of Commerce Vacuum compatible fluid sampler
KR101711792B1 (en) * 2016-06-27 2017-03-06 한국기계연구원 High throughput micro-fluidic device
CN106744668A (en) * 2017-03-10 2017-05-31 浙江工业大学 Double layer heterojunction structure mould, manufacture method and its preparing the application of micro Nano material
EP3675876A4 (en) 2017-09-01 2021-06-02 GPB Scientific, Inc. Methods for preparing therapeutically active cells using microfluidics
WO2019083507A1 (en) 2017-10-24 2019-05-02 Hewlett-Packard Development Company, L.P. Surface enhanced luminescence nano pillar stage
US11161281B2 (en) 2017-12-22 2021-11-02 International Business Machines Corporation Structure and method for monitoring directed self-assembly pattern formation
US10830724B2 (en) 2017-12-22 2020-11-10 International Business Machines Corporation Micro-capacitance sensor array containing spaced apart first and second overlapping and parallel electrode plates for sensing analytes
CN107930712A (en) * 2017-12-22 2018-04-20 厦门百恩芯科技有限公司 Biomedical detecting system based on nano impression micro flow chip and preparation method thereof
US10961563B1 (en) * 2019-12-19 2021-03-30 Robert Bosch Gmbh Nanoscale topography system for use in DNA sequencing and method for fabrication thereof
WO2021253014A1 (en) * 2020-06-12 2021-12-16 Biofluidica, Inc. Dual-depth thermoplastic microfluidic device and related systems and methods
US11837302B1 (en) 2020-08-07 2023-12-05 Iridia, Inc. Systems and methods for writing and reading data stored in a polymer using nano-channels
KR102458206B1 (en) * 2020-09-28 2022-10-24 한양대학교 산학협력단 Concentration gradient generator
EP3984640A1 (en) * 2020-10-16 2022-04-20 Universität Hamburg An autonomous nanofluidic analysis device and a method for the analysis of dna molecules
WO2023122088A2 (en) * 2021-12-20 2023-06-29 The General Hospital Corporation Microfluidic systems and methods for isolating target entities

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973121A (en) * 1972-12-29 1976-08-03 Fite Wade L Detector for heavy ions following mass analysis
US4283276A (en) * 1980-02-29 1981-08-11 E. I. Du Pont De Nemours And Company Rotor for sedimentation field flow fractionation
US5772905A (en) 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US6482742B1 (en) 2000-07-18 2002-11-19 Stephen Y. Chou Fluid pressure imprint lithography
US6518189B1 (en) 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US6309580B1 (en) 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
AU719454B2 (en) 1995-12-01 2000-05-11 Innogenetics N.V. Impedimetric detection system and method of production thereof
US5867266A (en) 1996-04-17 1999-02-02 Cornell Research Foundation, Inc. Multiple optical channels for chemical analysis
US6165688A (en) 1996-05-15 2000-12-26 The United States Of America, As Represented By The Secretary Of Commerce Method of fabricating of structures by metastable atom impact desorption of a passivating layer
US6403311B1 (en) 1997-02-12 2002-06-11 Us Genomics Methods of analyzing polymers using ordered label strategies
CA2281205A1 (en) 1997-02-12 1998-08-13 Eugene Y. Chan Methods and products for analyzing polymers
US6316213B1 (en) 1997-03-19 2001-11-13 The Board Of Trustees Of The University Of Arkansas Methods for the early diagnosis of ovarian, breast and lung cancer
US6235471B1 (en) * 1997-04-04 2001-05-22 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6083758A (en) 1997-04-09 2000-07-04 California Institute Of Technology Method for screening peptides for metal coordinating properties and fluorescent chemosensors derived therefrom
EP0988529B1 (en) * 1997-04-25 2013-06-12 Caliper Life Sciences, Inc. Microfluidic devices incorporating improved channel geometries
DE69823347T2 (en) * 1997-05-16 2005-05-12 Alberta Research Council, Edmonton MICROFLUIDIC SYSTEM AND METHOD FOR THE OPERATION THEREOF
US6969488B2 (en) * 1998-05-22 2005-11-29 Solexa, Inc. System and apparatus for sequential processing of analytes
US5882465A (en) * 1997-06-18 1999-03-16 Caliper Technologies Corp. Method of manufacturing microfluidic devices
GB9715101D0 (en) * 1997-07-18 1997-09-24 Environmental Sensors Ltd The production of microstructures for analysis of fluids
JP4065468B2 (en) * 1998-06-30 2008-03-26 キヤノン株式会社 Exposure apparatus and device manufacturing method using the same
US6263286B1 (en) 1998-08-13 2001-07-17 U.S. Genomics, Inc. Methods of analyzing polymers using a spatial network of fluorophores and fluorescence resonance energy transfer
CN1323355A (en) 1998-08-13 2001-11-21 美国吉诺米克斯公司 Optically characterizing polymers
US6210896B1 (en) 1998-08-13 2001-04-03 Us Genomics Molecular motors
US6713238B1 (en) 1998-10-09 2004-03-30 Stephen Y. Chou Microscale patterning and articles formed thereby
US6438279B1 (en) 1999-01-07 2002-08-20 Cornell Research Foundation, Inc. Unitary microcapiliary and waveguide structure and method of fabrication
EP1157144A4 (en) * 1999-01-13 2010-04-28 Cornell Res Foundation Inc Monolithic fabrication of fluidic structures
US6334960B1 (en) 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6515751B1 (en) 1999-03-11 2003-02-04 Cornell Research Foundation Inc. Mechanically resonant nanostructures
US6616821B2 (en) 1999-06-08 2003-09-09 Broadley Technologies Corporation Reference electrode having a microfluidic flowing liquid junction
AU6771100A (en) * 1999-08-13 2001-03-13 U.S. Genomics, Inc. Methods and apparatuses for stretching polymers
US6927065B2 (en) 1999-08-13 2005-08-09 U.S. Genomics, Inc. Methods and apparatus for characterization of single polymers
US6762059B2 (en) 1999-08-13 2004-07-13 U.S. Genomics, Inc. Methods and apparatuses for characterization of single polymers
AU4504001A (en) 1999-11-04 2001-06-04 Princeton University Electrodeless dielectrophoresis for polarizable particles
US6534425B1 (en) 1999-12-02 2003-03-18 Seagate Technology Llc Mask design and method for controlled profile fabrication
EP1255995A2 (en) 2000-02-16 2002-11-13 Wisconsin Alumni Research Foundation Method and apparatus for detection of microscopic pathogens
US6491061B1 (en) * 2000-02-25 2002-12-10 University Of New Mexico Stimuli responsive hybrid materials containing molecular actuators and their applications
US6643010B2 (en) 2000-08-07 2003-11-04 Royce Technologies Llc Multiple microchannels chip for biomolecule imaging
WO2002065515A2 (en) * 2001-02-14 2002-08-22 Science & Technology Corporation @ Unm Nanostructured devices for separation and analysis
US7316769B2 (en) 2001-03-19 2008-01-08 Cornell Research Foundation, Inc. Length-dependent recoil separation of long molecules
AU2002311885A1 (en) * 2001-05-03 2002-11-18 Colorado School Of Mines Devices employing colloidal-sized particles
US6743570B2 (en) 2001-05-25 2004-06-01 Cornell Research Foundation, Inc. Method of using heat-depolymerizable polycarbonate sacrificial layer to create nano-fluidic devices
CA2454570C (en) * 2001-07-25 2016-12-20 The Trustees Of Princeton University Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US20030080472A1 (en) 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method with bonded release layer for molding small patterns
CN100373528C (en) 2002-03-15 2008-03-05 普林斯顿大学 Laser assisted direct imprint lithography
JP4799861B2 (en) 2002-04-16 2011-10-26 プリンストン ユニバーシティ Gradient structure for interface between microfluidic and nanofluid, and its manufacturing and use
US20050023156A1 (en) * 2003-07-30 2005-02-03 Ramsey J. Michael Nanostructured material transport devices and their fabrication by application of molecular coatings to nanoscale channels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722888B2 (en) 2015-07-16 2020-07-28 The Hong Kong University Of Science And Technology Dynamic formation of nanochannels for single-molecule DNA analysis

Also Published As

Publication number Publication date
US7217562B2 (en) 2007-05-15
IL214684A0 (en) 2011-09-27
AU2003269813A8 (en) 2003-12-31
EP1572860A4 (en) 2007-08-01
EP2484751A3 (en) 2013-10-23
US20170328835A1 (en) 2017-11-16
JP4799861B2 (en) 2011-10-26
US20200158644A1 (en) 2020-05-21
US8333934B2 (en) 2012-12-18
US20140030811A1 (en) 2014-01-30
CA2482566C (en) 2010-07-20
US20070020772A1 (en) 2007-01-25
US10551319B2 (en) 2020-02-04
IL214684A (en) 2014-12-31
AU2003269813A1 (en) 2003-12-31
EP2484751B1 (en) 2018-11-28
WO2003106693A3 (en) 2005-07-21
EP1572860B1 (en) 2018-12-05
US20040033515A1 (en) 2004-02-19
JP2005533636A (en) 2005-11-10
US20230110246A1 (en) 2023-04-13
EP1572860A2 (en) 2005-09-14
WO2003106693A2 (en) 2003-12-24
US9733185B2 (en) 2017-08-15
EP2484751A2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
CA2482566A1 (en) Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
Hoff et al. Nanoscale protein patterning by imprint lithography
US7442339B2 (en) Microfluidic apparatus, Raman spectroscopy systems, and methods for performing molecular reactions
EP2881736B1 (en) Single polymerase molecule loading methods and compositions
US20050023156A1 (en) Nanostructured material transport devices and their fabrication by application of molecular coatings to nanoscale channels
US20040224321A1 (en) Micro/nano-structures fabricated by laser ablation for micro-array applications
JP2005505754A5 (en)
US20110086766A1 (en) Chemical and Biological Detection Arrays
Gavutis et al. Lipid dip-pen nanolithography on self-assembled monolayers
KR101092859B1 (en) Spatially Separation Nano Array Biochip and Method of preparing the same
CA2702194C (en) Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
Köhler Wolfgang Fritzsche Nanotechnology
AU2003255192A1 (en) Micro/Nano-Structures Fabricated by Laser Ablation for Micro-Array Applications

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230417