CA2506357C - Distraction and retraction system for spinal surgery - Google Patents

Distraction and retraction system for spinal surgery Download PDF

Info

Publication number
CA2506357C
CA2506357C CA2506357A CA2506357A CA2506357C CA 2506357 C CA2506357 C CA 2506357C CA 2506357 A CA2506357 A CA 2506357A CA 2506357 A CA2506357 A CA 2506357A CA 2506357 C CA2506357 C CA 2506357C
Authority
CA
Canada
Prior art keywords
frame
distractor
plane
retractor
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2506357A
Other languages
French (fr)
Other versions
CA2506357A1 (en
Inventor
Steven D. Deridder
John L. White
George Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2506357A1 publication Critical patent/CA2506357A1/en
Application granted granted Critical
Publication of CA2506357C publication Critical patent/CA2506357C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0293Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors with ring member to support retractor elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7076Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
    • A61B17/7077Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for moving bone anchors attached to vertebrae, thereby displacing the vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7076Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
    • A61B17/7082Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for driving, i.e. rotating, screws or screw parts specially adapted for spinal fixation, e.g. for driving polyaxial or tulip-headed screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • A61B17/7037Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine

Abstract

The surgical instrumentation system is adapted to provide an operative approach to the spinal column and maintain distraction of adjacent vertebrae.
The system includes at least one retractor and a pair of opposite distractor mechanisms mounted to a frame. The distractor mechanisms each include an adjustment mechanism permitting the distractor mechanism to be pivoted relative to the vertebra and secured to the frame after being repositioned.

Description

DISTRACTION AND RETRACTION SYSTEM FOR SPINAL SURGERY
BACKGROUND
Surgeons have employed retractors formed by plates to retract tissue and provide access to a surgical site. These retractors are manually inserted by shifting aside the blood vessels, the nerves and the soft tissues by means of their end portions that are positioned adjacent to the spine. The retractors may be completed by pins which have ends inserted in the spine. The retractors can slide along these pins. Another technique teaches connecting the retractors about a frame so as to maintain them in the desired position and clear the operating area between the retractors.
Prior devices are not fully convenient to use in spinal surgery, in particular for positioning and maintaining retractors in a desired angular orientation relative to the operating space, in providing and maintaining an operating space in a posterior lateral approach, or for maintaining distraction of adjacent vertebrae. In addition, these prior systems are not fully compatible with spinal stabilization procedures both in the disc space and exteriorly of the disc space. Further, the design of such systems may require tissue retraction and exposure beyond that which may be desirable to minimize trauma to the patient as a result of the surgical procedure.
Thus, there is a need for systems for spinal surgery that facilitate distraction of adjacent vertebrae while maintaining tissue retraction and minimizing the invasiveness of the procedure.
SUMMARY
Surgical instrumentation systems are provided that particularly, but not exclusively, relate to instrumentation for retracting and shifting aside soft tissues and vessels and also for maintaining distraction of bony structures for the purpose of spinal surgery. In one application, distractor maintenance mechanisms are pivotally adjustable relative to the bony structure to which each is engaged to reduce the invasiveness of the procedure and facilitate instrument placement at the operative site through the operative approach formed by the surgical instrumentation system.
According to one aspect, the surgical instrumentation system is adapted for a posterior lateral approach to the spine. It is further contemplated that the surgical instrumentation system has application in other approaches to the spine, either in the posterior-lateral configuration or in an alternative configuration.
According to another aspect, a surgical instrumentation system for providing access to the patient's spine includes a frame and at least one retractor attached to a frame.
First and second distractor mechanisms are engageable to respective ones of first and second anchors engaged to adjacent vertebrae. The distractor mechanisms are pivotal relative to the vertebra to which each is mounted, and can be coupled to the frame to provide a rigid construct between the anchor and the frame to maintain distraction of the adjacent vertebrae.
According to a further aspect, a surgical instrumentation system to provide access to the patient's spine includes a frame and a pair of retractors attached to the frame. The frame includes a first portion lying in a first plane and a second portion lying in a second plane, the second plane forming an angle with the first plane. In the operative position of the frame, a medial retractor is attached to the first portion and positionable in an incision adjacent the midline of the spinal column. A lateral retractor is attached to the second portion of the frame and positioned in the incision along a posterior lateral approach to the disc space.
In another aspect, surgical instrumentation to provide access to a patient's spine includes a frame and a number of distractor mechanisms attached to the frame.
A first distractor mechanism is engaged to bony structure with a first anchor at its distal end. A
second distractor mechanism is coupled at its distal end to a second anchor that is engaged to bony structure. The first and second anchors allow the first and second distractor mechanisms to be pivoted relative to the vertebrae.
In a further aspect, a surgical instrumentation system includes a frame and first and second distractor mechanisms mounted to anchors engaged to respective ones of first and second vertebrae. Adjustment mechanisms are provided to attach the first and second distractor mechanisms to the frame. The adjustment mechanisms are movable from a first condition in locking engagement with the distractor mechanisms to a second condition permitting the distractor mechanisms to pivot relative to the vertebrae.

Methods for performing spinal surgery are also contemplated. An incision is made for access to a spinal disc space. At least one retractor is positioned in the incision and engaged to a frame. Cephalad and caudal distractor mechanisms are coupled to anchors engaged to vertebrae on each side of the target disc space. The disc space is distracted and the cephalad and caudal distractor mechanisms are coupled to the frame to maintain distraction.
Further distraction or compression of the adjacent vertebrae can be effected through manipulation of the cephalad and caudal distraction mechanisms.

According to one aspect of the present invention, there is provided a surgical instrumentation system to provide a surgical approach to a patient's spine, comprising: a frame including a first portion lying in a first plane and a second portion lying in a second plane, said second plane forming an angle with said first plane;
and a number of retractors attached to the frame, at least one of said retractors being attached to said first portion of said frame and extending transversely to said first plane and at least one other of said retractors being attached to said second portion of said frame and extending transversely to said second plane, wherein said first and second portions of said frame each include a recess to receive clamping devices coupled to respective ones of said retractors, said clamping devices each including a foot with a pair of arms located on opposite sides of,said frame and each including a receptacle defined between said pair of arms for receiving said frame between said pair of arms with said clamping 3a devices being slideable from said respective recess along a respective one of said first and second portions of said frame for attachment to said respective portion of said frame at a selected position therealong spaced from said recess.

According to another aspect of the present invention, there is provided a surgical instrumentation system to provide a surgical approach to a patient's spine, comprising: first and second anchors engageable to first and second vertebrae of the spine; a frame lying in at least one plane; a retractor attachable to said frame, said retractor including a blade portion extending transversely to said at least one plane, said blade portion including a tissue contacting surface adapted to contact and retract tissue from the surgical approach; a first distractor mechanism attachable to said frame and extending transversely to said at least one plane, said first distractor mechanism including a distal end engageable to said first anchor with said first distractor mechanism in pivotal relation to the first vertebra when said first anchor is engaged with the first vertebra; a second distractor mechanism attachable to said frame and extending transversely to said at least one plane, said second distractor mechanism including a distal end engageable to said second anchor; and at least one adjustment mechanism engageable with at least one of said first and second distractor mechanisms, wherein said at least one adjustment mechanism includes a shaft having a distal end pivotally coupled with said at least one of said first and second distractor mechanisms at a pivoting coupling location adjacent a proximal end of said at least one distractor mechanism, said shaft extending away from said pivoting coupling location toward said frame and into a clamping device movable along said frame, the clamping 3b device operable to clampingly engage said adjustment mechanism to said frame.

According to still another aspect of the present invention, there is provided a surgical instrumentation system to provide a surgical approach to a patient's spine, comprising: first and second anchors engageable to respective ones of first and second vertebrae of the spine;
a frame includes a first portion lying in a first plane and a second portion lying in a second plane forming an angle with said first plane; first and second distractor mechanisms each moveable along said frame and attachable to said frame at a selected position along said frame while extending transversely to said at least one plane, said first and second distractor mechanisms each including a distal end engageable to a respective one of said first and second anchors; and first and second adjustment mechanisms coupled to respective ones of said first and second distractor mechanisms adjacent a proximal end of said respective distractor mechanism, said adjustment mechanisms each including a first condition in locking engagement with said respective distractor mechanism to fixedly secure said distractor mechanism relative to said frame, said adjustment mechanisms further each including a second condition unlocked from said distractor mechanism to permit proximal ends of said distractor mechanisms to pivot relative to said respective first and second anchors engaged to said distal end thereof and with said proximal ends of said distractor mechanisms movable toward and away from said frame.

According to yet another aspect of the present invention, there is provided a surgical instrumentation system to provide a surgical approach to a patient's spine, comprising: first and second anchors engageable to first and second vertebrae of the spine; a frame lying in at least one 3c plane; a retractor attachable to said frame, said retractor including a blade portion extending transversely to said at least one plane, said blade portion including a tissue contacting surface adapted to contact and retract tissue from the surgical approach; a first distractor mechanism attachable to said frame and extending transversely to said at least one plane, said first distractor mechanism including a distal end engageable to said first anchor with said first distractor mechanism in pivotal relation to the first vertebra when said first anchor is engaged with the first vertebra; a second distractor mechanism attachable to said frame and extending transversely to said at least one plane, said second distractor mechanism including a distal end engageable to said second anchor with said second distractor mechanism in pivotal relation to the second vertebra when said second anchor is engaged with the second vertebra, wherein said first and second distractor mechanisms are each attachable to said frame to fix said first and second distractor mechanisms in position relative to the first and second vertebrae, respectively;. first and second adjustment mechanisms coupled to respective ones of said first and second distractor mechanisms, said adjustment mechanisms each including a first condition in locking engagement with said respective distractor mechanism to fixedly secure said distractor mechanism relative to said frame and the respective one of the first and second vertebrae, said adjustment mechanisms further each including a second condition in pivotal engagement with said respective distractor mechanism to permit said distractor mechanism to pivot relative to said frame, wherein said adjustment mechanisms each include: an adjustment handle; a shaft assembly extending from said adjustment handle, said shaft assembly including an outer shaft and an inner shaft movably positioned within said outer shaft; and an 3d engagement member at an end of said shaft assembly opposite said adjustment handle, said engagement member extending from a distal end of said inner shaft and including a number of teeth configured to selectively interdigitate and lockingly engage a number of teeth provided adjacent a proximal end of said distractor mechanism, said number of teeth engaging one another along concave-convex pivot path of said distractor mechanism, wherein said adjustment handle is linked with said inner shaft, said adjustment handle being rotatable to move said inner shaft and said engagement member between said first condition and said second condition.

According to a further aspect of the present invention, there is provided a surgical instrumentation system to provide a surgical approach to a patient's spine, comprising: first and second anchors engageable to first and second vertebrae of the spine; a frame lying in at least one plane; a retractor attachable to said frame, said retractor including a blade portion extending transversely to said at least one plane, said blade portion including a tissue contacting surface adapted to contact and retract tissue from the surgical approach; a first distractor mechanism attachable to said frame and extending transversely to said at least one plane, said first distractor mechanism including a distal end engageable to said first anchor with said first distractor mechanism in pivotal relation to the first vertebra when said first anchor is engaged with the first vertebra; a second distractor mechanism attachable to said frame and extending transversely to said at least one plane, said second distractor mechanism including a distal end engageable to said second anchor with said second distractor mechanism in pivotal relation to the second vertebra when said second anchor is engaged with the second 3e vertebra, wherein said first and second distractor mechanisms are each attachable to said frame to fix said first and second distractor mechanisms in position relative to the first and second vertebrae, respectively; first and second adjustment mechanisms coupled to respective ones of said first and second distractor mechanisms, said adjustment mechanisms each including a first condition in locking engagement with said respective distractor mechanism to fixedly secure said distractor mechanism relative to said frame and the respective one of the first and second vertebrae, said adjustment mechanisms further each including a second condition in pivotal engagement with said respective distractor mechanism to permit said distractor mechanism to pivot relative to said frame, wherein said adjustment mechanisms each include: an engagement member at a distal end thereof including a number of teeth configured to selectively interdigitate and lockingly engage a number of teeth provided adjacent a proximal end of said distractor mechanism, said number of teeth engaging one another along concave-convex pivot path of said distractor mechanism; and a pair of plates at said distal end of said adjustment mechanism and said distractor mechanism includes a pair of proximal flanges pivotally coupled to said pair of plates.

Further objects, features, forms, benefits, aspects, and advantages will appear from the following description, with reference to the accompanying drawings.

3f BRIEF DESCRIPTION OF THE FIGURES
Fig. 1 is a perspective view of a surgical instrumentation system positioned to provide access to the spine.
Fig. 2 is a side view of the surgical instrumentation system and spinal column segment of Fig. 1 looking medially toward the spine.
Fig. 3 is a view looking down at the surgical instrumentation system of Fig. 1 along the approach formed to the spine with it.
Fig. 4 is an elevation view of the surgical instrumentation system of Fig. I
looking cephaladly along the spine.
Fig. 5 is the view of Fig. 4 showing anchors attaching the cephalad and caudal distractor mechanisms to vertebrae of the spine.
Fig. 6 is a perspective view of the medial retractor and caudal distractor mechanism of the surgical instrumentation system of Fig. 1.
Fig. 7 is a perspective view of a proximal portion of a retractor portion of the distractor mechanism comprising a portion of the surgical instrumentation system.
Fig. 8 is a perspective view looking at a distal end of the retractor portion of the distractor mechanism of the surgical instrumentation system.
Fig. 9 is a sectional view of an adjustment mechanism engaged with a proximal portion of a distractor blade comprising a portion of the surgical instrumentation system.
Fig. 10 is an enlarged view of a proximal end of the adjustment mechanism of Fig.
9.
Fig. 11 is a sectional view of the connection of the adjustment mechanism with the retractor portion of the distractor mechanism.
Fig. 12 is a perspective view of one embodiment bone anchor.
Fig. 13 is a perspective view of a driving instrument assembly engaged to the bone anchor of Fig. 12.
Fig. 14 is a perspective view of the engagement of the driving instrument assembly with the bone anchor.
Fig. 15 is a perspective view with an extender of the driving instrument assembly attached to the bone anchor and a driver instrument of the driving instrument assembly removed.
Fig. 16 is a section view of a clamping device comprising a portion of the surgical instrumentation system.
DESCRIPTION OF ILLUSTRATED EMBODIMENTS
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
The surgical instrumentation system 10 illustrated in the figures is adapted to enable a surgeon to effect retraction and shifting aside of soft tissues, muscles, and vessels so as to clear an operating area on the spine while simultaneously maintaining a distraction of adjacent bony portions, such as adjacent vertebrae, of the spinal column.
Surgical instrumentation system 10 provides an operative approach to the spine for a subsequent surgical intervention such as, for example, to installing spinal prostheses or stabilization systems in a disc space between adjacent vertebrae or exteriorly between vertebrae. In one specific application, surgical instrumentation system 10 provides a posterior lateral operative approach in order to, for example, provide access to the disc space for distraction, removal of disc material and bone material, and insertion of spinal implants.
Surgical instrumentation system 10 also has application in other approaches to the spinal column to provide access to one or more spinal disc spaces or bony structures of the vertebrae.
5 Surgical instrumentation system 10 is shown in one operative orientation relative to a spinal column segment S in Figs. 1-6. The spinal column segment S
includes vertebrae V1, V2 with disc space D1 therebetween; vertebrae V2, V3 with disc space D2 therebetween; vertebrae V3, V4 with disc space D3 therebetween; and vertebrae V4, V5 with disc space D4 therebetween. Spinal column segment S can comprise the lumbar region of the spine; however, it is contemplated that surgical instrumentation system includes applications in other regions of the spine, including the thoracic, cervical and sacral regions. Surgical instrumentation system 10 is further shown positioned relative to spinal column segment S to provide access to disc space D3 between vertebrae V3, V4, which can correspond to the L3 and L4 vertebrae. Surgical instrumentation system 10 can also be positioned to provide access to one or more disc spaces, to disc spaces between other vertebrae of the spine, and in operative orientations other than a posterior-lateral approach.
Surgical instrumentation system 10 comprises a frame 20 having at least one of two retractors 120 and 220 and a pair of distractor mechanisms 320 releasably attachable thereto. Each retractor 120 and 220 includes a blade portion 122 and 221, respectively, for shifting aside soft tissues and blood vessels. Distractor mechanisms 320 are mounted to respective vertebrae of spinal column segment S, and may include a retractor portion 332 adapted to contact and retract adjacent tissue. In its illustrated operative position relative to the patient for a posterior lateral approach, retractor 120 is positioned medially adjacent the midline or posterior elements of the spinal column segment S, and retractor 220 is positioned laterally or postero-laterally relative to the spinal column segment S.
Embodiments are further contemplated in which retractor 220 is not provided, but rather a single medial retractor 120 is provided and attached to frame 20.
In Figs. 1-6 surgical instrumentation system 10 includes a pair of distraction mechanisms 320 secured to respective ones of the vertebrae V3, V4. Distraction mechanisms 320 can be movable attached to frame 20. As shown in Fig. 5, distraction mechanisms 320 can be secured to vertebrae V3, V4 with anchors 100 engaged to respective ones of vertebrae V3, V4. In the illustrated embodiment, anchors 100 are multi-axial screws engaged in the pedicles of the vertebrae V3, V4. Some examples of multi-axial screws having application herewith are described in U.S. Patents Nos. 5,797,911 and 5,879,350. Other techniques employing surgical instrumentation system 10 contemplate other forms for anchors 100, such as uni-axial bone screws, staples, interbody devices, suture anchors, clamps, hooks or bolts, or other anchor device, for example. It is also contemplated that anchors 100 can be engaged to other portions of vertebrae V3, V4, such as the facets, the anterior portion of the vertebral body, or any posterior elements of the vertebrae. Anchors 100 can be engaged bi-cortically or uni-cortically to bony elements, or to soft tissue elements.
In the operative position illustrated in Figs. 1-6, frame 20 includes a lateral member 21, a caudal member 23, a medial member 25, and a cephalad member 27.
At least one recess 22, 24, 26, 28 is formed in each of the members 21, 23, 25, 27 to accommodate attachment of a clamping device 40 thereto, as discussed further below.
Each retractor 120, 220 and distractor mechanism 320 is attached to frame 20 by a respective one of the clamping mechanisms 40 and adjustment mechanisms 70, as discussed further below. Members 21, 23, 25, 27 can be integrally formed with one another to provide frame 20 in the form of a ring which completely encircles an opening 30. Opening 30 is sized to accommodate placement of the retractors 120, 220 and distractor mechanisms 320 therein while also providing space to access the surgical site through the operative approach formed between the retractors 120, 220 and distractor mechanisms 320.
In one embodiment, frame 20 includes lateral member 21 that lies in plane PI
and medial member 25 that lies in plane P2. Plane P2 forms angle A with plane P 1.
When positioned on the patient to provide a posterior-lateral operative approach, medial member 25 extends along the posterior side of the patient while lateral member 21 extends along the posterior-lateral side of the patient. Angle A allows the members 21, 25 of frame 20 to follow the patient anatomy, and also allows optimal positioning of retractors 120, 220 on the frame and relative to the patient to provide a posterior lateral access path to the spinal disc space. In one embodiment, angle A is about 30 degrees. Caudal and cephalad members 23, 27 are parallel and extend between lateral and medial members 21, 25 and provide a transition between planes PI and P2. Other embodiments contemplate angle A
ranging from 0 degrees to 90 degrees.
In addition, cephalad member 27 and caudal member 23 include at least a portion lying in plane P2, allowing attachment of distraction mechanisms 320 to frame 20 in the same plane as medial retractor 120. When attached to frame 20 and anchors 100, distraction mechanisms 320 can maintain a distraction provided between vertebrae V3 and V4 to restore disc space D3 to a desired disc space height. Such distraction can be achieved with a distraction instrument positioned in the disc space prior to securing distraction mechanisms 320 to frame 20. Such distraction can also be achieved by applying distraction forces to anchors 100 either directly, or through extensions coupled to anchors 100 prior to securement of distraction mechanisms 320 to frame 20.
In a further form, the laterally positioned retractor 220 can be eliminated, and tissue retraction along the posterior lateral side is maintained by the tissue displacement provided by and between the laterally oriented sides of distraction mechanisms 320.
Frame 20 can also be provided in a form in which each member thereof lies in the same plane. Other shapes for frame 20 are also contemplated. For example, frame 20 can be circular, rectangular, square, elliptical or U-shaped. In embodiments eliminating retractor 220, frame 20 can be provided with an open side formed by omitting lateral member 21, for example. Frame 20 may further be provided with one or more brackets 32 to enable the surgeon to attach frame 20 to an arm secured to the surgical table to support instrumentation system 10 in its operative position. In the illustrated embodiment, a bracket 32 is provided at each corner of frame 20 positioned along the spinal mid-line.
Medial retractor 120 includes an elongated blade portion 122 extending proximally from a distal end portion 124. Blade portion 122 can include a relatively flat profile along its medially oriented tissue contacting surface and its opposite laterally oriented surface which extends along the operative approach to the spinal column. However, curved surfaces are also contemplated. Distal end portion 124 is curved medially from blade portion 122, and is positionable along or against the posterior bony structures of the vertebrae, such as the spinous processes. Blade portion 122 includes a width that retains tissue, and vessels away from the approach formed between the retractors and distractor mechanisms of surgical instrumentation system 10. Blade portion 122 is generally linear along its longitudinal axis between distal end portion 124 and proximal end portion 126.
Proximal end portion 126 is offset from and extends generally parallel to blade portion 122. Proximal end portion 126 is offset laterally relative to blade portion 122 to facilitate placement of blade portion 122 and distal end portion 124 more medially relative to the operative approach when proximal end portion 126 is coupled to frame 20.
Proximal end portion 126 includes flanges 128 for engaging adjustment mechanism 70, as discussed further below. Retractor 220 similarly includes flanges 228 at its proximal end for engaging an adjustment mechanism 70.
Lateral retractor 220 is formed by an elongate blade portion 221 extending along longitudinal axis 225. Blade portion 221 includes a lower laterally oriented tissue contacting surface 222 concavely curved along longitudinal axis 225 and positionable against the tissue to be retracted. Blade portion 221 of retractor 220 includes an opposite medially oriented support surface 224 convexly curved along longitudinal axis 225.
Support surface 224 is oriented toward the operative approach formed by surgical instrumentation system 10. As shown in Fig. 3, support surface 224 of retractor 220 includes a concave curvature across its width and transversely to longitudinal axis 225, forming a slight U-shape that can accommodate and support surgical instruments positioned therealong. Retractor 220 further includes a lower distal end portion 226 tapering in width along longitudinal axis 225 toward the distal tip of blade portion 221 to minimize its intrusion into the surrounding tissue. The curvature of blade portion 221 of lateral retractor 220 also positions its distal end away from the access opening formed into the disc space, providing greater tissue retraction in this area and additional room to accommodate placement of surgical instruments, implants and devices between and along the vertebrae.
Surgical instrumentation system 10 includes distraction mechanisms 320 mountable to respective ones of the cephalad and caudal members 27, 23 of frame 20 and also to respective ones of the anchors 100. Distractor mechanisms 320 each include retractor portion 332 mountable to an anchor extension 142 extending from respective ones of the anchors 100. As shown in further detail in Figs. 7 and 8, retractor portion 332 includes a tissue contacting surface 340 that is convexly curved between the opposite lateral sides 344, 345 of retractor portion 332. Retractor portion 332 includes an opposite distal lip 349, which includes a pair of arms 334, 335 projecting therefrom and extending therealong that form a receptacle 336 therebetween. Arms 334, 335 can each define a concave inner surface and outer ends that project toward one another to provide receptacle 336 with a form that slidably captures anchor extension 142 therein.
Retractor portion 332 further includes a proximal end adapted to be pivotally coupled with adjustment mechanism 70, as shown in Figs 9-11. In the illustrated embodiment, this configuration includes flanges 328 projecting from tissue contacting surface 340 in a direction opposite arms 334, 335. Each flange 328 includes an arcuate slot 326 extending therethrough and aligned with one another to receive a pin to pivotally couple retractor portion 332 to adjustment mechanism 70. Slots 326 define a range of positions along which distractor mechanism 320 can be repositioned relative to the vertebra to which it is coupled. An engagement member 324 is positioned between flanges 328, and includes a number of teeth 325 along a convexly curved surface thereof for selective and locking engagement with adjustment mechanism 70, as discussed further below.
Adjustment mechanisms 70 provide a pivotal coupling arrangement with each of the retractors 120, 220 and distractor mechanisms 320 that facilitates pivotal adjustment of the retractors 120, 220 and distractor mechanisms 320 in their operative position in the patient. Adjustment mechanism 70 will be described with reference to distractor mechanisms 320, it being understood that retractors 120, 220 may include a similar proximal end configuration with flanges for coupling with the adjustment mechanism 70 extending therefrom.
Adjustment mechanism 70 includes an adjustment handle 72 and a shaft assembly 74 extending from adjustment handle 72 toward distractor mechanism 320. Shaft assembly 74 extends to a coupling assembly 76 opposite adjustment handle 72.
Coupling assembly 76 includes side plates 94 having upper and lower abutment rollers 92 extending therebetween. A pivot roller 90 extends between plates 94, and also through slots 326 of flanges 328 of retractor portion 332. Pivot roller 90 pivotally couples retractor portion 332 to a distal end of adjustment mechanism 70.

Shaft assembly 74 includes an outer shaft 84 and an inner shaft 85 positioned therethrough. Inner shaft 85 includes an engagement member 87 at a distal portion thereof. Engagement member 87 includes a number of teeth 89 at a distal end thereof that interdigitate with teeth 325 of engagement member 324 of retractor portion 332. The 5 distal end of engagement member 87 includes a concave profile adapted to receive the convexly curved profile of the adjacent surface of engagement member 324. The interdigitating concave-convex surfaces facilitate locking a position of retractor portion 332 after pivoting movement of retractor portion 332, as indicated by arrows 327, when engagement members 87, 324 are disengaged from one another.
10 When the desired orientation of distractor mechanism 320 (or retractors 120, 220) has been obtained with pivotal adjustment, engagement member 87 can then be engaged to engagement member 324 at any one of a number of positions defined by the interdigitating teeth 89, 325. The concave-convex mating surface profiles allow all of the teeth to interdigitate in the engaged position at any orientation of distractor mechanism 320, providing rigidity between the adjustment mechanism 70 and the retractor or distractor mechanism to which it is engaged. The rigidity of the engagement between adjustment mechanism 70 and distractor mechanism 320 is further enhanced by abutment rollers 92 contacting the ends of the adjacent flanges 328 and with pivot roller 90 restraining flange members 328 therebetween.
To facilitate engagement and disengagement of the engagement members 87, 324, engagement member 87 includes a slot 88 through which pivot roller 90 extends.
Pivot roller 90 is free to travel longitudinally along slot 88 as engagement member 87 and inner shaft 85 are longitudinally moved with adjustment handle 72. Accordingly, adjustment handle 72 is operable to selectively release and engage engagement member 87 with engagement member 324.
As shown in Fig. 10, adjustment handle 72 includes an internal cavity 78 that receives a linking member 80. Adjustment handle 72 is threadingly engaged to a proximal portion of linking member 80,and can be locked thereto with a locking thread configuration, epoxy or other suitable locking arrangement. A distal portion of linking member 80 is rotatably positioned about a proximal end of outer shaft 84. A
number of bearings 82 rotatably couple linking member 80 and adjustment handle 72 about outer shaft 84. Linking member 80 further includes an inner passage extending therethrough, which is configured along the proximal portion of linking member 80 to threadingly engage a proximal end 86 of inner shaft 85.
Adjustment handle 72 and linking member 80 can be rotated about the proximal end 86 of inner shaft 85. The threaded engagement between inner shaft 85 and linking member 80 moves inner shaft 85, and thus engagement member 87, distally and proximally in accordance with the particular thread turn provided between inner shaft 85 and linking member 80. Engagement member 87 can accordingly be moved along roller 90 and into and out of engagement with engagement member 324 in accordance with the direction of rotation of adjustment handle 72.
Referring back to Fig. 8, retractor portion 332 includes a distal end configured to receive a proximal end of anchor 100 therein such that retractor portion 332 is fixedly secured to anchor 100. In Fig. 12, anchor 100 is shown as a multi-axial screw having a lower threaded shaft 102 for engaging bony structure and a proximal head 104.
The proximal portion of anchor 100 can comprise a yoke 106 pivotally coupled to head 104.
Yoke 106 includes a pair of arms 108, 110 defining a U-shaped passage 112 therebetween to receive a stabilization device, such as a spinal rod or tether. Arms 108, 110 can further be internally threaded to receive a set screw to retain the stabilization device in passage 112.
Arms 108, 110 of yoke 106 are received and firmly seated in a socket portion of retractor portion 332 when distractor mechanism 320 is engaged to anchor 100. Socket portion 338 is formed by distal ends 346, 347 of respective ones of the arms 334, 335, and by distal extensions 341, 343 of the outer portions of arms 334, 335. Distal extensions 341, 343 are recessed relative to arms 334, 335 along receptacle 336 so that arms 108, 110 of yoke 106 can be positioned in socket portion 338 with passage 112 remaining substantially unobstructed. So positioned, arms 108, 110 form an extension of the adjacent arm 334, 335, and passage 112 is aligned with receptacle 336. The yoke 106 is firmly and non-pivotally seated in socket portion 338, while yoke 106 is allowed to pivot relative to shaft 102. Retractor portion 332 further includes a distal lip 349 extending distally of socket portion 338 and positionable along seat 114 of yoke 106.
It is further contemplated that anchor extension 142 may comprise a portion of a driving instrument assembly that can be engaged to anchor 100 to facilitate engagement of anchor 100 to the bony structure. As shown in Figs. 13-15, a driving instrument assembly 140 is engaged to anchor 100, and is operable by the surgeon to engage threaded shaft 102 to a bony structure. Threaded shaft 102 can be provided in a form suitable for self-drilling into the bone during placement, for self-tapping a pre-drilled bore, or for positioning in a pre-drilled and pre-tapped bore in the bony structure.
Driving instrument assembly 140 includes a cylindrical anchor extension 142 and driver instrument 150 removably positioned through a longitudinal passage of anchor extension 142. Anchor extension 142 includes a distal extension 148 threadingly engageable between arms 108, 110 of yoke 106. Driving instrument 150 includes a driving instrument coupler 144 to facilitate attachment and removal of driving instrument 150 to anchor extension 142. Driving instrument 150 includes a shaft 152 extending through and rotatably coupled to a sleeve 154 of coupler 144 with a number of bearings.
Shaft 152 is further allowed to axially translate relative to coupler 144 and anchor extension 142 within a limited range defined by the interconnection between shaft 152 and sleeve 154. Driving instrument 150 includes a proximal extension 152 with a tool engagement portion at a proximal end thereof. As shown in Fig. 14, driving instrument 150 includes a distal end 156 projecting from anchor extension 142 for engaging a tool recess in head 104 of anchor 100.
In use, driving instrument 150 is inserted through and engaged to anchor extension 142, and its distal end 156 is positioned in the tool recess in head 104 of anchor 100.
Anchor extension 142 is threadingly engaged to yoke 106. Driving instrument 150 is rotatable relative to anchor extension 142 with a driving instrument engaged to the proximal end of shaft 152. When the anchor 100 has been suitably engaged to the bony structure, driving instrument 150 can be removed from anchor extension 142 by detaching coupler 144 from anchor extensions 142. Retractor portion 332 of distraction mechanism 320 can then be loaded onto anchor extension 142 with anchor extension 142 in receptacle 336.
Retractor portion 332 can be secured to anchor extension 142 with a second coupling member 160 engaged to proximal end 147 of anchor extension 142 (Figs.
1-6 and 15.) Coupling member 160 contacts the proximal end of retractor portion 332 to push and retain socket portion 338 into contact with yoke 106 of anchor 100 and firmly couple the retractor portion 332 thereto. However, yoke 106 can still be pivoted relative to shaft portion 102 of anchor 100, permitting distractor mechanism 320 to be pivotally adjustable in position relative to the vertebra to which it is mounted. Anchor extension 142 is provided with a proximal tool engagement portion 149 to facilitate removal of anchor extension 142 from anchor 100 if necessary.
In another embodiment, distractor mechanism 320 does not include a retractor portion 332, but rather the anchor extension portion of the distractor mechanism contacts and retracts the adjacent tissue. Such a modified distractor mechanism can be employed with frame 20 with an opposite distractor mechanism, and a medial retractor 120 alone or in combination with a lateral retractor 220.
In order to secure retractors 120, 220 and distractor mechanisms 320 to frame 20, a number of clamping devices 40 are provided that releasably engage the corresponding adjustment mechanism 70 extending from the retractors 120, 220 and distractor mechanisms 320. As shown in Fig. 6, and in further detail in Fig. 16, clamping device 40 includes a foot portion 50 slidably positioned along the respective member of frame 20.
Foot portion 50 includes first and second arms 51, 55 defining a receptacle therebetween.
Arm 51 includes a recessed undercut portion 53 shaped to receive an undercut portion 34 of frame 20 to mount foot portion 50 thereto. The interface between foot portion 50 and undercut portion 34 prevents clamping device 40 from pivoting or lifting from frame 20.
Foot portion 50 is positionable on the corresponding member 21, 23, 25, 27 by placing foot portion 50 on frame 20 at the corresponding recess 22, 24, 26, 28. Foot portion 50, and thus clamping device 40, can be slid along the corresponding frame member 21, 23, 25, 27 to the desired location therealong where the receptacle between arms 51, 55 is located along the corresponding undercut portion 34.
In Fig. 16 clamping device 40 includes a mounting post 44 extending from foot portion 50, and an inner clamping sleeve 42 positioned about mounting post 44.
Clamping sleeve 42 includes an upper threaded attachment portion 52 and a lower clamping portion 54. Lower clamping portion 54 includes a frusto-conically shaped lower support member 56 extending thereabout, and at least one slot extending axially through support member 56 to divide clamping portion 54 into a corresponding number of fingers.
Accordingly, the fingers of clamping portion 54 can be compressed about mounting post 44 to selectively grip and release mounting post 44 therebetween. Accordingly, clamping sleeve 42 can be axially translated relative to mounting post 44 and clamped at any one of a number of positions therealong to provide elevational adjustment of the respective retractor 120, 220 or distractor mechanism 320 engaged thereto.
A coupler 48 is positionable about clamping sleeve 42, and is supported on a contact surface 62 of lower support member 56. Coupler 48 includes a relief slot 58 formed therein that divides coupler 48 into upper and lower clamping halves 61, 63 joined by an integral hinge. An enlarged receptacle 60 is provided along one side of coupling member 48 in communication with relief slot 58 that is sized to receive shaft assembly 74 of adjustment mechanism 70 therethrough. A clamping nut 46 is threadingly engaged to attachment portion 52, and movable therealong to contact coupling member 48.
As clamping nut 46 is threaded downwardly, it contacts coupler 48 to flex clamping halves 61, 63 toward one another, gripping shaft assembly 74 therebetween in receptacle 60. In addition, coupler 48 includes lower contact surface 64 that presses on contact surface 62 to compress clamping portion 54 of clamping sleeve 42 to mounting post 44.
Receptacle 60 can be configured to capture shaft assembly 74 therein to prevent shaft assembly 74 from slipping laterally therefrom.
Accordingly, clamping device 40 allows adjustment mechanism 70 and the retractor 120, 220 or distractor mechanism 320 to be repositioned relative to frame 20.
When clamping nut 46 is loosened, retractors 120, 220 can be disengaged from adjustment mechanism 70 and pivoted, moved toward the center of frame 20, and/or moved away from the center of frame 20. Clamping nut 46 can then be re-engaged to secure the re-positioned shaft assembly 74 in receptacle 60. Coupler 48 and clamping sleeve 42 can further be repositioned or translated up and down along the length of mounting post 44 to accommodate re-positioning of retractors 120, 220 and distractor mechanisms 320 in the patient.
Other means for securing retractors 120, 220 to frame 20 are also contemplated.
Other examples are provided in U.S. Patent No. 6,083,154. With regard to distractor mechanisms 320, the arrangement between the distractor mechanism and anchor, adjustment mechanism, and clamping device can provide a suitably rigid coupling arrangement to maintain distraction of the adjacent vertebrae when distraction devices are removed from the disc space.
One technique for using surgical instrumentation system 10 includes the surgeon 5 making an incision in the skin of the patient to provide access to the facet joints of adjacent vertebrae in a posterior lateral approach. Retractor 120 can be placed in the incision to assist in exposing and identifying the underlying bony structure.
Frame 20 can then be placed around retractor 120, and retractor 220 if employed. Adjustment mechanisms 70 extending from retractors 120, 220 can be engaged to clamping devices 40 10 to maintain and provide for adjustment of the retracted condition of the skin and tissue.
Anchors 100 are engaged to adjacent vertebrae, and anchor extensions 142 are coupled to corresponding ones of the anchors 100 as discussed above. Anchors 100 are engaged to bony structure of the vertebrae positioned on each side of the target disc space.
For example, anchors 100 can be engaged in the pedicles of the adjacent vertebrae. The 15 multi-axial heads on anchors 100 allow anchor extensions 142 to be oriented relative to anchors 100 for attachment to the respective portions of frame 20. If employed, retractor portions 332 are then engaged to anchors 100 by sliding retractor portions 332 along the respective anchor extension 142, and engaging retractor portions 332 to the anchor extensions 142 with coupling members 160.
With frame 20 positioned around retractors 120, 220 and distractor mechanisms 320 engaged to anchors 100, the disc space can be distracted with appropriate distraction or spreading instruments. When anchors 100 include multi-axial capabilities, distractor mechanisms 320 can be pivoted relative to the vertebra to which it is mounted.
Adjustment mechanisms 70 extending from distractor mechanisms 320 can then be secured to frame 20 with clamping devices 40 when suitably positioned and oriented in the incision. Adjustment mechanisms 70 are then engaged to the respective clamping devices 40 to maintain the distracted disc space condition and retracted tissue condition.
Retractors 120, 220 and distractor mechanisms 320 can be adjusted in the desired angular and elevational orientation by means of the adjustment mechanisms 70 and clamping devices 40. The positioning of retractors 120, 220 and distractor mechanisms 320 may be facilitated by the use of push members, handles or the like.
With the access opening formed to the disc space and the disc space distraction properly maintained with surgical instrumentation system 10, surgical procedures can be performed through the minimally invasive access opening provided between distractor mechanisms 320 and the one or more retractors 120, 220. With distractor mechanisms 320 maintaining the distracted disc space, distraction instruments in the disc space can be eliminated during the procedure and enabling a less invasive approach to accommodate the surgical instruments. Examples of instrumentation, techniques and implants suitable for a posterior-lateral approach are provided in PCT Publication No. WO

and PCT Application No PCT/US02/15374, each of which is incorporated herein by reference in its entirety. Furthermore, the angulation of the distractor mechanisms with the vertebrae allows the spacing of anchors 100 at the operative site to be as close together as possible, while providing sufficient retraction of tissue in the approach to the operative site to accommodate the surgical instruments.
The retractors 120, 220 and distractor mechanisms 320 can be made of a material which permits effecting a radiographic monitoring during the operation, i.e. a material which is radio-transparent or radio-translucid. It is also contemplated that this material be selected, for example, from the following group: aluminum, titanium, stainless steel, carbon composites, and plastics.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character.
All changes, modifications and equivalents that come within the spirit of the invention as defined by the following claims are desired to be protected.

Claims (16)

CLAIMS:
1. A surgical instrumentation system to provide a surgical approach to a patient's spine, comprising:

a frame including a first portion lying in a first plane and a second portion lying in a second plane, said second plane forming an angle with said first plane; and a number of retractors attached to the frame, at least one of said retractors being attached to said first portion of said frame and extending transversely to said first plane and at least one other of said retractors being attached to said second portion of said frame and extending transversely to said second plane, wherein said first and second portions of said frame each include a recess to receive clamping devices coupled to respective ones of said retractors, said clamping devices each including a foot with a pair of arms located on opposite sides of said frame and each including a receptacle defined between said pair of arms for receiving said frame between said pair of arms with said clamping devices being slideable from said respective recess along a respective one of said first and second portions of said frame for attachment to said respective portion of said frame at a selected position therealong spaced from said recess.
2. The system of claim 1, wherein said frame includes an undercut portion extending therealong, and at least one of said pair of arms of said clamping devices includes a recessed undercut portion shaped to receive said undercut portion of said frame to prevent said clamping devices from pivoting relative to said frame.
3. The system of claim 2, wherein said frame forms an oval shape.
4. The system of claim 2, wherein said frame includes first and second members, said first member lying in said first plane and including said at least one retractor attached thereto, said second member lying in said second plane and including said at least one other of said retractors attached thereto.
5. The system of claim 4, wherein said frame further comprises a third member and a fourth member extending generally parallel to one another and between said first and second members, said at least a portion of said third and fourth members lying in said first plane, and further comprising distractor mechanisms respectively attached to each of said third and fourth members.
6. The system of claim 5, wherein each of said distractor mechanisms is attachable to said portion of said third and fourth members lying in said first plane.
7. The system of claim 1, wherein said angle is about 30 degrees.
8. The system of claim 1, further comprising a pair of distractor mechanisms each mountable to respective anchors engageable to a respective one of adjacent vertebrae of the patient, said distractor mechanisms each further being attachable to said first portion of said frame.
9. The system of claim 8, wherein said distractor mechanisms each include an anchor extension removably engageable to said anchor.
10. The system of claim 9, wherein said distractor mechanisms each include a retractor portion positionable about a respective one of said anchor extensions.
11. The system of claim 10, wherein said retractor portion includes a tissue contacting surface along one side thereof and a receptacle along an opposite side thereof, said receptacle being configured to capture said anchor extension therein.
12. The system of claim 11, wherein said receptacle is formed between a pair of arms projecting from and extending along said opposite side of said retractor portion.
13. The system of claim 11, wherein said retractor portion includes a socket portion at a distal end thereof adapted to fixedly mount said retractor portion to said anchor.
14. The system of claim 8, wherein said anchor is a multi-axial screw.
15. The system of claim 1, wherein in an operative position said first portion of said frame is adapted to lie along the posterior side of the spine and said second portion is adapted to lie along a posterior-lateral side of the spine.
16. The system of claim 15, wherein in said operative position a first one of said retractors is attachable to said first portion and is positionable adjacent the spinal mid-line, and a second one of said number of retractors is positionable in a posterior-lateral orientation relative to the spine.
CA2506357A 2002-11-23 2003-11-24 Distraction and retraction system for spinal surgery Expired - Fee Related CA2506357C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US42880002P 2002-11-23 2002-11-23
US60/428,800 2002-11-23
PCT/US2003/037729 WO2004047650A2 (en) 2002-11-23 2003-11-24 Istraction and retraction system for spinal surgery

Publications (2)

Publication Number Publication Date
CA2506357A1 CA2506357A1 (en) 2004-06-10
CA2506357C true CA2506357C (en) 2011-05-24

Family

ID=32393455

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2506357A Expired - Fee Related CA2506357C (en) 2002-11-23 2003-11-24 Distraction and retraction system for spinal surgery

Country Status (7)

Country Link
US (1) US8100828B2 (en)
EP (1) EP1567064B1 (en)
JP (1) JP4708794B2 (en)
AT (1) ATE556658T1 (en)
AU (1) AU2003295934B2 (en)
CA (1) CA2506357C (en)
WO (1) WO2004047650A2 (en)

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005887A2 (en) 2001-07-11 2003-01-23 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
JP2005503857A (en) 2001-09-25 2005-02-10 ヌバシブ, インコーポレイテッド Systems and methods for performing surgical procedures and surgical diagnosis
JP3913506B2 (en) * 2001-09-26 2007-05-09 三洋電機株式会社 Disc recording or playback device with a tray that can be moved up and down
US7582058B1 (en) 2002-06-26 2009-09-01 Nuvasive, Inc. Surgical access system and related methods
US6945933B2 (en) 2002-06-26 2005-09-20 Sdgi Holdings, Inc. Instruments and methods for minimally invasive tissue retraction and surgery
US7473222B2 (en) * 2002-06-26 2009-01-06 Warsaw Orthopedic, Inc. Instruments and methods for minimally invasive tissue retraction and surgery
US9259144B2 (en) 2002-07-11 2016-02-16 Nuvasive, Inc. Surgical access system and related methods
JP2006501947A (en) * 2002-10-08 2006-01-19 エスディージーアイ・ホールディングス・インコーポレーテッド Orthopedic graft insertion devices and techniques
US8137284B2 (en) 2002-10-08 2012-03-20 Nuvasive, Inc. Surgical access system and related methods
US7850608B2 (en) * 2002-10-25 2010-12-14 K2M, Inc. Minimal incision maximal access MIS spine instrumentation and method
US6849064B2 (en) * 2002-10-25 2005-02-01 James S. Hamada Minimal access lumbar diskectomy instrumentation and method
US7946982B2 (en) 2002-10-25 2011-05-24 K2M, Inc. Minimal incision maximal access MIS spine instrumentation and method
US7887482B2 (en) * 2002-10-25 2011-02-15 K2M, Inc. Minimal access lumbar diskectomy instrumentation and method
US7935054B2 (en) * 2002-10-25 2011-05-03 K2M, Inc. Minimal access lumbar diskectomy instrumentation and method
US7691057B2 (en) 2003-01-16 2010-04-06 Nuvasive, Inc. Surgical access system and related methods
WO2004073563A2 (en) 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
WO2005030318A1 (en) 2003-09-25 2005-04-07 Nuvasive, Inc. Surgical access system and related methods
US7905840B2 (en) 2003-10-17 2011-03-15 Nuvasive, Inc. Surgical access system and related methods
US9795367B1 (en) 2003-10-17 2017-10-24 Nuvasive, Inc. Surgical access system and related methods
US7588575B2 (en) 2003-10-21 2009-09-15 Innovative Spinal Technologies Extension for use with stabilization systems for internal structures
US7967826B2 (en) 2003-10-21 2011-06-28 Theken Spine, Llc Connector transfer tool for internal structure stabilization systems
EP2332468B1 (en) 2003-12-18 2016-11-09 DePuy Spine, Inc. Surgical retractor systems
US7776051B2 (en) 2004-05-03 2010-08-17 Theken Spine, Llc System and method for displacement of bony structures
US8460310B2 (en) 2004-08-04 2013-06-11 Leslie Stern Surgical base unit and retractor support mechanism
US7637914B2 (en) 2004-08-04 2009-12-29 Leslie Stern Surgical base unit and retractor support mechanism
US7556600B2 (en) * 2004-09-09 2009-07-07 Zimmer Spine, Inc. Surgical retraction apparatus and associated methods
WO2006058221A2 (en) 2004-11-24 2006-06-01 Abdou Samy M Devices and methods for inter-vertebral orthopedic device placement
FR2880254B1 (en) * 2004-12-30 2007-11-30 Neuro France Implants Sarl IMPLANT DEVICE FOR VERTEBRAL OSTEOSYNTHESIS EQUIPMENT AND TOOL FOR ITS PLACEMENT
WO2008024937A2 (en) 2006-08-23 2008-02-28 Pioneer Surgical Technology, Inc. Minimally invasive surgical system
WO2006091863A2 (en) 2005-02-23 2006-08-31 Pioneer Laboratories, Inc. Minimally invasive surgical system
US20060200023A1 (en) * 2005-03-04 2006-09-07 Sdgi Holdings, Inc. Instruments and methods for nerve monitoring in spinal surgical procedures
US20060224044A1 (en) * 2005-03-31 2006-10-05 Depuy Spine, Inc. Surgical retractors and methods of use
EP1903948A2 (en) * 2005-07-06 2008-04-02 Copf jun., Franz Device for preparing an intervertebral disc compartment
CA2617872C (en) 2005-08-16 2013-12-24 Benvenue Medical, Inc. Spinal tissue distraction devices
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
US8454617B2 (en) 2005-08-16 2013-06-04 Benvenue Medical, Inc. Devices for treating the spine
US8911364B2 (en) * 2005-09-08 2014-12-16 DePuy Synthes Products, LLC Spine retractor and distractor device
US7758501B2 (en) 2006-01-04 2010-07-20 Depuy Spine, Inc. Surgical reactors and methods of minimally invasive surgery
US7918792B2 (en) * 2006-01-04 2011-04-05 Depuy Spine, Inc. Surgical retractor for use with minimally invasive spinal stabilization systems and methods of minimally invasive surgery
US7981031B2 (en) 2006-01-04 2011-07-19 Depuy Spine, Inc. Surgical access devices and methods of minimally invasive surgery
US7955257B2 (en) 2006-01-05 2011-06-07 Depuy Spine, Inc. Non-rigid surgical retractor
US7985179B2 (en) 2006-01-23 2011-07-26 Pioneer Surgical Technology Retraction apparatus and method of use
US8876687B2 (en) * 2006-03-08 2014-11-04 Zimmer Spine, Inc. Surgical retractor and retractor assembly
ZA200808411B (en) 2006-04-11 2009-12-30 Synthes Gmbh Minimally invasive fixation system
GB0608561D0 (en) * 2006-04-29 2006-06-07 Comis Orthopaedics Ltd Surgical apparatus
US8696560B2 (en) * 2006-05-02 2014-04-15 K2M, Inc. Minimally open retraction device
US8992425B2 (en) * 2006-06-06 2015-03-31 Globus Medical, Inc. Surgical retractor system
US8197488B2 (en) * 2006-10-16 2012-06-12 Depuy Spine, Inc. Automatic locking casper distractor
WO2008070863A2 (en) 2006-12-07 2008-06-12 Interventional Spine, Inc. Intervertebral implant
EP2124777A4 (en) 2007-02-21 2013-06-05 Benvenue Medical Inc Devices for treating the spine
EP2144550B1 (en) 2007-04-17 2021-05-26 K2M, Inc. Retraction device for minimally invasive spinal surgery
US8192463B2 (en) 2007-05-24 2012-06-05 Mcloughlin Joseph Surgical retractor and related methods
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US8361126B2 (en) 2007-07-03 2013-01-29 Pioneer Surgical Technology, Inc. Bone plate system
WO2009006604A1 (en) 2007-07-03 2009-01-08 Pioneer Surgical Technology, Inc. Bone plate system
US8852089B2 (en) * 2007-08-01 2014-10-07 Warsaw Orthopedic, Inc. Instrumentation for tissue retraction
US9232968B2 (en) 2007-12-19 2016-01-12 DePuy Synthes Products, Inc. Polymeric pedicle rods and methods of manufacturing
AU2009205896A1 (en) 2008-01-17 2009-07-23 Synthes Gmbh An expandable intervertebral implant and associated method of manufacturing the same
BRPI0910325A8 (en) 2008-04-05 2019-01-29 Synthes Gmbh expandable intervertebral implant
US8262570B2 (en) 2008-05-30 2012-09-11 Pioneer Surgical Technology, Inc. Retraction apparatus and method of use
US8968192B2 (en) 2008-06-06 2015-03-03 Warsaw Orthopedic, Inc. Systems and methods for tissue retraction
US8226554B2 (en) 2008-10-30 2012-07-24 Warsaw Orthopedic, Inc. Retractor assemblies for surgery in a patient
US8641734B2 (en) 2009-02-13 2014-02-04 DePuy Synthes Products, LLC Dual spring posterior dynamic stabilization device with elongation limiting elastomers
US8062218B2 (en) * 2009-02-27 2011-11-22 Warsaw Orthopedic, Inc. Surgical access instrument
US8535327B2 (en) 2009-03-17 2013-09-17 Benvenue Medical, Inc. Delivery apparatus for use with implantable medical devices
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
KR101767274B1 (en) 2009-05-20 2017-08-10 신세스 게엠바하 Patient-mounted retraction
US9320543B2 (en) 2009-06-25 2016-04-26 DePuy Synthes Products, Inc. Posterior dynamic stabilization device having a mobile anchor
US20110098537A1 (en) * 2009-10-28 2011-04-28 Warsaw Orthopedic, Inc. Tissue massage retractor
DE112010004338B4 (en) * 2009-11-10 2019-06-27 Nuvasive, Inc. DEVICE FOR IMPLEMENTING SPINE SURGERY
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US8636655B1 (en) 2010-01-19 2014-01-28 Ronald Childs Tissue retraction system and related methods
WO2011097315A1 (en) * 2010-02-02 2011-08-11 Azadeh Farin Spine surgery device
US9445844B2 (en) 2010-03-24 2016-09-20 DePuy Synthes Products, Inc. Composite material posterior dynamic stabilization spring rod
US8535318B2 (en) 2010-04-23 2013-09-17 DePuy Synthes Products, LLC Minimally invasive instrument set, devices and related methods
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9592063B2 (en) 2010-06-24 2017-03-14 DePuy Synthes Products, Inc. Universal trial for lateral cages
AU2011271465B2 (en) 2010-06-29 2015-03-19 Synthes Gmbh Distractible intervertebral implant
US8827902B2 (en) * 2010-08-16 2014-09-09 Donald David DIETZE, Jr. Surgical instrument system and method for providing retraction and vertebral distraction
GB2541563B (en) 2010-08-23 2017-08-16 Nuvasive Inc A retractor assembly for creating an operative corridor to a spinal surgical target
US9101412B2 (en) 2010-09-09 2015-08-11 DePuy Synthes Products, Inc. Vertebral adjustment systems for spine alignment
US8623022B2 (en) * 2010-09-20 2014-01-07 Zimmer Spine, Inc. Surgical instrument support system and method
JP6045497B2 (en) 2010-10-08 2016-12-14 ケー2エム, インコーポレイテッド Side access system and method of use
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US20140107707A1 (en) * 2011-02-10 2014-04-17 Robert A. Rovner Table anchored scoliosis de-rotation system and method
US8702600B2 (en) 2011-03-08 2014-04-22 Pioneer Surgical Technology, Inc. Apparatus and method for enlarging an incision
US10357239B2 (en) 2011-03-08 2019-07-23 Pioneer Surgical Technology, Inc. Apparatus and method for enlarging an incision
US9579095B2 (en) 2011-03-08 2017-02-28 Pioneer Surgical Technology, Inc. Apparatus and method for enlarging an incision
US8790406B1 (en) 2011-04-01 2014-07-29 William D. Smith Systems and methods for performing spine surgery
US9615733B2 (en) * 2011-04-13 2017-04-11 Mayo Foundation For Medical Education And Research Anterior cervical retractor system
US8974381B1 (en) 2011-04-26 2015-03-10 Nuvasive, Inc. Cervical retractor
US8900137B1 (en) 2011-04-26 2014-12-02 Nuvasive, Inc. Cervical retractor
US9307972B2 (en) 2011-05-10 2016-04-12 Nuvasive, Inc. Method and apparatus for performing spinal fusion surgery
JP6072012B2 (en) 2011-05-27 2017-02-01 シンセス・ゲーエムベーハーSynthes GmbH Minimally invasive spinal fixation system including vertebra alignment features
WO2012178018A2 (en) 2011-06-24 2012-12-27 Benvenue Medical, Inc. Devices and methods for treating bone tissue
US8636656B2 (en) 2011-08-16 2014-01-28 Warsaw Orthopedic, Inc. Retractor assemblies with blade drive mechanisms
US9113853B1 (en) 2011-08-31 2015-08-25 Nuvasive, Inc. Systems and methods for performing spine surgery
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US9198769B2 (en) 2011-12-23 2015-12-01 Pioneer Surgical Technology, Inc. Bone anchor assembly, bone plate system, and method
US9125703B2 (en) 2012-01-16 2015-09-08 K2M, Inc. Rod reducer, compressor, distractor system
US9066701B1 (en) 2012-02-06 2015-06-30 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US9655505B1 (en) 2012-02-06 2017-05-23 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US8852090B2 (en) * 2012-03-13 2014-10-07 Globus Medical, Inc. System and method for retracting body tissue
US9615728B2 (en) 2012-06-27 2017-04-11 Camplex, Inc. Surgical visualization system with camera tracking
US9642606B2 (en) * 2012-06-27 2017-05-09 Camplex, Inc. Surgical visualization system
US9179947B2 (en) 2012-07-03 2015-11-10 Tedan Surgical Innovations, Llc Locking distractor with two-start distraction screw
EP2684533B1 (en) * 2012-07-09 2016-03-16 Zimmer Spine Anchor for attachment to a bony structure
WO2014018624A1 (en) * 2012-07-27 2014-01-30 Spinal Usa, Inc. Minimally invasive devices, systems and methods for treating the spine
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US20150250521A1 (en) * 2012-10-18 2015-09-10 Deroyal Industries Inc. Driver Apparatus For A Pedicle Screw Assembly
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US9084591B2 (en) 2012-10-23 2015-07-21 Neurostructures, Inc. Retractor
US9757067B1 (en) 2012-11-09 2017-09-12 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
US9510815B2 (en) * 2013-04-29 2016-12-06 Gehring Cut Ag Method and apparatus for the removal of intervertebral discs
DE202013004369U1 (en) * 2013-04-29 2014-07-30 Silony Medical International AG Screwdrivers for bone screws
EP2999414B1 (en) 2013-05-21 2018-08-08 Camplex, Inc. Surgical visualization systems
US10028651B2 (en) 2013-09-20 2018-07-24 Camplex, Inc. Surgical visualization systems and displays
EP3046458B1 (en) 2013-09-20 2020-10-21 Camplex, Inc. Surgical visualization systems
AU2014332172B2 (en) 2013-10-07 2019-05-30 K2M, Inc. Rod reducer
CA2992336C (en) 2013-12-13 2020-04-14 Stryker European Holdings I, Llc Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion
US9414828B2 (en) 2014-05-01 2016-08-16 Blackstone Medical, Inc. Integrated retractor-distractor system for use with modular bone screws
WO2017008087A1 (en) 2015-07-06 2017-01-12 Javier Garcia-Bengochea Methods and devices for surgical access
JP6626503B2 (en) 2014-07-06 2019-12-25 ハビエル・ガルシア−ベンゴチェア Methods and devices for surgical access
GB2598671B (en) 2014-08-13 2022-07-13 Nuvasive Inc Minimally disruptive retractor and associated methods for spinal surgery
US10426454B2 (en) * 2014-10-21 2019-10-01 Globus Medical, Inc. Orthopedic tools for implantation
EP3226799A4 (en) 2014-12-05 2018-07-25 Camplex, Inc. Surgical visualization systems and displays
EP3047811B1 (en) 2015-01-15 2022-05-18 K2M, Inc. Rod reducer
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
EP3277152A4 (en) 2015-03-25 2018-12-26 Camplex, Inc. Surgical visualization systems and displays
WO2016175885A1 (en) 2015-04-30 2016-11-03 K2M, Inc. Rod reducer
US10149674B2 (en) 2015-08-12 2018-12-11 K2M, Inc. Orthopedic surgical system including surgical access systems, distraction systems, and methods of using same
US10499894B2 (en) 2015-08-12 2019-12-10 K2M, Inc. Orthopedic surgical system including surgical access systems, distraction systems, and methods of using same
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10022157B2 (en) 2015-11-20 2018-07-17 Blackstone Medical, Inc. Convertible screw for spinal fixation
US10966798B2 (en) 2015-11-25 2021-04-06 Camplex, Inc. Surgical visualization systems and displays
US10524843B2 (en) 2016-05-06 2020-01-07 K2M, Inc. Rotation shaft for a rod reducer
US10010350B2 (en) 2016-06-14 2018-07-03 Stryker European Holdings I, Llc Gear mechanisms for fixation frame struts
EP4233801A3 (en) 2016-06-28 2023-09-06 Eit Emerging Implant Technologies GmbH Expandable, angularly adjustable intervertebral cages
EP3474782A2 (en) 2016-06-28 2019-05-01 Eit Emerging Implant Technologies GmbH Expandable and angularly adjustable articulating intervertebral cages
US10405842B2 (en) 2016-09-26 2019-09-10 K2M, Inc. Retraction system and method of use
DE102016118718A1 (en) 2016-10-04 2018-04-05 Zbigniew Combrowski Surgical instrument
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10786328B2 (en) * 2016-10-26 2020-09-29 Thompson Surgical Instruments, Inc. Adaptor handle for surgical retractor
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
CN108201453A (en) * 2016-12-20 2018-06-26 上海三友医疗器械股份有限公司 For the multidirectional pull device of spinal surgery
US10653407B2 (en) 2016-12-21 2020-05-19 Nuvasive, Inc. Surgical retractor
US10779866B2 (en) 2016-12-29 2020-09-22 K2M, Inc. Rod reducer assembly
US10485590B2 (en) 2017-01-18 2019-11-26 K2M, Inc. Rod reducing device
US10874433B2 (en) 2017-01-30 2020-12-29 Stryker European Holdings I, Llc Strut attachments for external fixation frame
CN110267610B (en) * 2017-02-17 2023-02-21 华沙整形外科股份有限公司 Surgical systems and methods
US10499897B2 (en) 2017-03-06 2019-12-10 Thompson Surgical Instruments, Inc. Distractor with bidirectional ratchet
WO2018208691A1 (en) 2017-05-08 2018-11-15 Camplex, Inc. Variable light source
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US11317902B2 (en) 2017-06-15 2022-05-03 DePuy Synthes Products, Inc. SST retractor with radiolucent feature
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10238375B2 (en) 2017-07-19 2019-03-26 Nuvasive, Inc. Surgical retractor
US11559372B2 (en) 2017-09-22 2023-01-24 Medos International Sarl Patient-mounted surgical retractor
US10945773B2 (en) 2017-09-22 2021-03-16 Medos International Sarl Patient-mounted surgical support
CN111526800A (en) * 2017-09-22 2020-08-11 美多斯国际有限公司 Patient-fixed surgical retractor
US11413028B2 (en) 2017-10-18 2022-08-16 Spine Wave, Inc. Screw-based retractor having arms with plural discrete selectively lockable positions
US10363022B2 (en) 2017-10-18 2019-07-30 Spine Wave, Inc. Screw based retractor with expandable blades
CN108814662B (en) * 2018-05-16 2020-03-31 温州冲亚电子科技有限公司 Simple soft tissue spreader for animal experiments
US11013545B2 (en) 2018-05-30 2021-05-25 Acumed Llc Distraction/compression apparatus and method for bone
JP2022514431A (en) * 2018-09-17 2022-02-10 ラモン フランシスコ チェステロ Adjustable locking surgical retractor
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
CN109431560B (en) * 2018-12-12 2020-08-21 南昌大学第二附属医院 Lumbar vertebra posterior surgery distraction device
US11426152B2 (en) * 2019-01-30 2022-08-30 Spine Wave, Inc. Multilevel lateral access system
CN110327086B (en) * 2019-07-15 2020-09-29 郑州大学第一附属医院 Lymph gland cleaning drag hook and cleaning auxiliary device for breast protection surgery
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11877779B2 (en) 2020-03-26 2024-01-23 Xtant Medical Holdings, Inc. Bone plate system
US11627952B2 (en) 2020-06-29 2023-04-18 Surgalign Spine Technologies, Inc. Surgical retractor
CN112022248A (en) * 2020-08-31 2020-12-04 王瑞泓 Spinal surgery is with leading out device
EP4259007A1 (en) 2020-12-09 2023-10-18 Alphatec Spine, Inc. Surgical retractors
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US563236A (en) 1896-06-30 Speculum
US1157202A (en) * 1913-10-14 1915-10-19 Uri C Bates Surgical apparatus.
US1400616A (en) * 1921-01-10 1921-12-20 Harvey B Mccrory Abdominal retractor
US1839726A (en) * 1930-08-01 1932-01-05 Hubert R Arnold Circular retractor
US2473266A (en) * 1946-06-12 1949-06-14 David J Wexler Self-retaining abdominal retractor
FR1019217A (en) 1950-03-10 1953-01-19 Improvements made to surgical retractors, especially those for endothoracic operations
US2623517A (en) * 1950-06-29 1952-12-30 Barlow Israel Owen Surgical abdominal retractor
US2661735A (en) 1952-07-28 1953-12-08 Davis Rachel Darden Speculum
US3054398A (en) 1961-02-13 1962-09-18 Arnold J Kobler Eyelid spreader
US3752149A (en) 1971-12-16 1973-08-14 L Ungar Vaginal speculum
US3788318A (en) 1972-06-12 1974-01-29 S Kim Expandable cannular, especially for medical purposes
US3965890A (en) * 1974-10-18 1976-06-29 William Kohlmann Gauthier Surgical retractor
US4156424A (en) 1978-05-01 1979-05-29 Burgin Kermit H Locking adjustable speculum
US4545374A (en) 1982-09-03 1985-10-08 Jacobson Robert E Method and instruments for performing a percutaneous lumbar diskectomy
US4747395A (en) 1983-08-24 1988-05-31 Brief L Paul Surgical retractor for bone surgery
DE3509787A1 (en) 1984-04-04 1985-10-31 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen SURGICAL INSTRUMENT FOR SPREADING WINDBANDS
GB8424436D0 (en) 1984-09-27 1984-10-31 Pratt Int Ltd Burnerd Surgical appliance
GB8513702D0 (en) 1985-05-30 1985-07-03 Gill S S Expansible trocar
SU1459658A1 (en) 1986-04-24 1989-02-23 Благовещенский государственный медицинский институт Retractor
US4747394A (en) 1986-10-08 1988-05-31 Watanabe Orthopedic Systems, Inc. Spinal retractor
DE8704901U1 (en) * 1987-04-02 1987-07-23 Kluger, Patrick, Dr.Med., 3590 Bad Wildungen, De
US4817587A (en) 1987-08-31 1989-04-04 Janese Woodrow W Ring para-spinal retractor
US4852552A (en) 1987-09-03 1989-08-01 Pilling Co. Sternal retractor
US6120437A (en) 1988-07-22 2000-09-19 Inbae Yoon Methods for creating spaces at obstructed sites endoscopically and methods therefor
US5052373A (en) 1988-07-29 1991-10-01 Michelson Gary K Spinal retractor
GB2240926A (en) 1990-02-14 1991-08-21 Steven Streatfield Gill An expansible cannula
US5197971A (en) 1990-03-02 1993-03-30 Bonutti Peter M Arthroscopic retractor and method of using the same
US5454365A (en) 1990-11-05 1995-10-03 Bonutti; Peter M. Mechanically expandable arthroscopic retractors
US5163949A (en) 1990-03-02 1992-11-17 Bonutti Peter M Fluid operated retractors
US5514153A (en) 1990-03-02 1996-05-07 General Surgical Innovations, Inc. Method of dissecting tissue layers
US5027793A (en) 1990-03-30 1991-07-02 Boehringer Mannheim Corp. Surgical retractor
US5389080A (en) 1990-07-26 1995-02-14 Yoon; Inbae Endoscopic portal for use in endoscopic procedures and methods therefor
US5125396A (en) 1990-10-05 1992-06-30 Ray R Charles Surgical retractor
US5219349A (en) * 1991-02-15 1993-06-15 Howmedica, Inc. Spinal fixator reduction frame
US5158545A (en) 1991-05-02 1992-10-27 Brigham And Women's Hospital Diameter expansion cannula
US5217451A (en) 1991-05-24 1993-06-08 Dexide, Inc. Gear activated trocar assembly
CA2110695A1 (en) 1991-06-06 1992-12-07 Victor Manuel Pracas Speculum
US5490819A (en) 1991-08-05 1996-02-13 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5312417A (en) 1992-07-29 1994-05-17 Wilk Peter J Laparoscopic cannula assembly and associated method
US5961499A (en) 1993-02-04 1999-10-05 Peter M. Bonutti Expandable cannula
US5320611A (en) 1993-02-04 1994-06-14 Peter M. Bonutti Expandable cannula having longitudinal wire and method of use
US5674240A (en) 1993-02-04 1997-10-07 Peter M. Bonutti Expandable cannula
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
US5353784A (en) 1993-04-02 1994-10-11 The Research Foundation Of Suny Endoscopic device and method of use
US5339803A (en) 1993-04-13 1994-08-23 Ilya Mayzels Self-hinging disposable retractor instrument for endoscopic surgery
US5512038A (en) 1993-11-15 1996-04-30 O'neal; Darrell D. Spinal retractor apparatus having a curved blade
US5620458A (en) 1994-03-16 1997-04-15 United States Surgical Corporation Surgical instruments useful for endoscopic spinal procedures
DE4415074C1 (en) 1994-04-29 1995-08-17 Aesculap Ag Surgical retractor for use with heart surgery
US6162236A (en) 1994-07-11 2000-12-19 Terumo Kabushiki Kaisha Trocar needle and expandable trocar tube
US5503617A (en) 1994-07-19 1996-04-02 Jako; Geza J. Retractor and method for direct access endoscopic surgery
US5807243A (en) 1994-08-31 1998-09-15 Heartport, Inc. Method for isolating a surgical site
US5681265A (en) 1994-09-02 1997-10-28 Yufu Seiki Co., Ltd. Cylindrical anal retractor
US5795291A (en) 1994-11-10 1998-08-18 Koros; Tibor Cervical retractor system
US5667481A (en) 1995-02-01 1997-09-16 Villalta; Josue J. Four blade medical retractor
US6027518A (en) 1995-05-30 2000-02-22 Gaber; Benny Seizing instrument
DE19522879A1 (en) * 1995-06-23 1997-01-02 Aesculap Ag Surgical retractor
GB9518888D0 (en) 1995-09-15 1995-11-15 Byrne Phillip O Device and method for transcutaneous surgery
US5688223A (en) 1995-11-08 1997-11-18 Minnesota Scientific, Inc. Retractor support with adjustable retractor blades
US5707359A (en) 1995-11-14 1998-01-13 Bufalini; Bruno Expanding trocar assembly
US5776054A (en) 1996-08-07 1998-07-07 Bobra; Dilip Apparatus for retracting tissue
US6431025B1 (en) * 1996-08-30 2002-08-13 Tibor Koros Ratchet mechanism for a surgical retractor assembly
US5879350A (en) * 1996-09-24 1999-03-09 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5797911A (en) * 1996-09-24 1998-08-25 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5785648A (en) 1996-10-09 1998-07-28 David Min, M.D., Inc. Speculum
US5865731A (en) 1997-01-25 1999-02-02 Lenox-Maclaren Surgical retractor having variable position retractor blades
EP1006886B1 (en) 1997-02-13 2003-07-09 Boston Scientific Limited Dilator for minimally invasive pelvic surgery
US5967972A (en) 1997-03-28 1999-10-19 Kapp Surgical Instrument, Inc. Minimally invasive surgical retractor and method of operation
US5976146A (en) 1997-07-11 1999-11-02 Olympus Optical Co., Ltd. Surgical operation system and method of securing working space for surgical operation in body
US6042540A (en) 1997-08-18 2000-03-28 Pacific Surgical Innovations, Inc. Side-loading surgical retractor
US5944658A (en) * 1997-09-23 1999-08-31 Koros; Tibor B. Lumbar spinal fusion retractor and distractor system
US5779629A (en) * 1997-10-02 1998-07-14 Hohlen; Robert D. Dual axis retractor
FR2770124B1 (en) * 1997-10-23 1999-12-10 Materiel Orthopedique En Abreg SURGICAL INSTRUMENTATION FOR SHRINKAGE AND SPREADING OF SOFT TISSUES AND VESSELS FOR AN ANTERIOR APPROACH OF THE RACHIS
US5931777A (en) 1998-03-11 1999-08-03 Sava; Gerard A. Tissue retractor and method for use
US5951466A (en) 1998-04-13 1999-09-14 Viamedics, Llc Self-seating surgical access device and method of gaining surgical access to a body cavity
US5928139A (en) 1998-04-24 1999-07-27 Koros; Tibor B. Retractor with adjustable length blades and light pipe guides
US6096046A (en) 1998-06-24 2000-08-01 Weiss; Sol Surgical instrument
US6139493A (en) * 1998-07-08 2000-10-31 Koros; Tibor B. Retractor with adjustable length blades and light pipe guides
US6187000B1 (en) 1998-08-20 2001-02-13 Endius Incorporated Cannula for receiving surgical instruments
US6280447B1 (en) 1998-12-23 2001-08-28 Nuvasive, Inc. Bony tissue resector
FR2788958B1 (en) * 1999-02-02 2001-06-08 Materiel Orthopedique En Abreg TISSUE RETRACTOR FOR SPINAL SURGERY
US6200322B1 (en) 1999-08-13 2001-03-13 Sdgi Holdings, Inc. Minimal exposure posterior spinal interbody instrumentation and technique
US6530929B1 (en) * 1999-10-20 2003-03-11 Sdgi Holdings, Inc. Instruments for stabilization of bony structures
WO2001028469A2 (en) 1999-10-21 2001-04-26 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US6605088B1 (en) * 2000-03-15 2003-08-12 Richard A. St. Onge Bone setting apparatus and method
FR2807313B1 (en) * 2000-04-07 2003-01-10 Materiel Orthopedique En Abreg ORTHOPEDIC SOFT TISSUE RETRACTOR ASSEMBLY, PARTICULARLY FOR RACHIS SURGERY
US6296609B1 (en) 2000-04-14 2001-10-02 Salvador A. Brau Surgical retractor and related surgical approach to access the anterior lumbar region
US6371911B1 (en) 2000-08-10 2002-04-16 Pilling Weck Incorporated Surgical retractor
DE10048790A1 (en) 2000-10-02 2002-04-25 Aesculap Ag & Co Kg Device for creating percutaneous access
US6616605B2 (en) 2001-02-15 2003-09-09 Genesee Biomedical, Inc. Quadretractor and method of use
US20030149341A1 (en) * 2002-02-06 2003-08-07 Clifton Guy L. Retractor and/or distractor for anterior cervical fusion
US6860883B2 (en) * 2002-02-11 2005-03-01 Pioneer Laboratories, Inc. External fixation apparatus and method
US6945933B2 (en) 2002-06-26 2005-09-20 Sdgi Holdings, Inc. Instruments and methods for minimally invasive tissue retraction and surgery

Also Published As

Publication number Publication date
AU2003295934B2 (en) 2009-02-26
US20040230191A1 (en) 2004-11-18
WO2004047650A2 (en) 2004-06-10
JP4708794B2 (en) 2011-06-22
EP1567064A2 (en) 2005-08-31
CA2506357A1 (en) 2004-06-10
JP2006507099A (en) 2006-03-02
EP1567064B1 (en) 2012-05-09
WO2004047650A3 (en) 2004-08-26
US8100828B2 (en) 2012-01-24
AU2003295934A1 (en) 2004-06-18
ATE556658T1 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
CA2506357C (en) Distraction and retraction system for spinal surgery
USRE49410E1 (en) Rod reducer, compressor, distractor system
US11622793B2 (en) Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion
US10098666B2 (en) Minimally invasive spinal fixation system including vertebral alignment features
EP1718230B1 (en) Instruments for minimally invasive spinal stabilization
EP2184022A1 (en) Surgical instruments
US9131935B2 (en) Retractor
WO2011022723A1 (en) Transverse rod connector
US10973552B2 (en) Surgical system for bone screw insertion and rod reduction
US11033301B2 (en) Spinal implant and methods of use thereof
AU2014277759B2 (en) Transverse rod connector

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20141124