CA2515435C - Write-once optical recording medium and defect management information management method thereof - Google Patents

Write-once optical recording medium and defect management information management method thereof Download PDF

Info

Publication number
CA2515435C
CA2515435C CA2515435A CA2515435A CA2515435C CA 2515435 C CA2515435 C CA 2515435C CA 2515435 A CA2515435 A CA 2515435A CA 2515435 A CA2515435 A CA 2515435A CA 2515435 C CA2515435 C CA 2515435C
Authority
CA
Canada
Prior art keywords
defect management
area
recording medium
optical recording
temporary defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2515435A
Other languages
French (fr)
Other versions
CA2515435A1 (en
Inventor
Yong Cheol Park
Sung Dae Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CA2515435A1 publication Critical patent/CA2515435A1/en
Application granted granted Critical
Publication of CA2515435C publication Critical patent/CA2515435C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1883Methods for assignment of alternate areas for defective areas
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B2020/1873Temporary defect structures for write-once discs, e.g. TDDS, TDMA or TDFL
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers

Abstract

A write-once optical recording medium, a method for allocating a defect management area of the write-once optical recording medium, and a method for allocating a spare area of the write-once optical recording medium are provided. A method of managing defects on a write-once optical recording medium having at least one recording layer includes the steps of allocating at least one temporary defect management area having a fixed size and at least one temporary defect management area having a variable size to said optical recording medium, respectively, recording defect management information on the at least one temporary defect management area having a fixed size and the at least one temporary defect management area having a variable size; and using the at least one temporary defect management area having a fixed size and the at least one temporary defect management area having a variable size is provided herein.

Description

WRITE-ONCE OPTICAL RECORDING MEDIUM AND DEFECT
MANAGEMENT INFORMATION MANAGEMENT METHOD
THEREOF
Technical Field The present invention relates to a write-once optical recording medium, a method and apparatus for managing defect management information thereof, and more particularly, to a method and device for allocating a temporary defect management area, a method fox allocating a spare area for defect management, and a write-once optical recording medium on which the temporary defect management area and the spare area are allocated on a type of the optical recording medium such as a write-once Blu-ray disc.
I~acl~~round ArL
Optical discs, which are a kind of optical recording media, can record a large amount of data, and are now being widely used. Currently, a kind of innovative high-density digital versatile disc (HD-DVD) such as blue ray disc (Blu-ray Disc) is under development. This kind of medium can record and store video data of high quality and audio data of high fidelity for a long time.
The Blu-ray disc is a next generation optical recording solution that can store a larger amount of data than a conventional DVD.
The Blu-ray disc generally employs a blue-violet laser having a wavelength of 405nm. This wavelength is shorter than a red laser used on a convenfiional DVD. The wavelength of the red laser is 650 nm. The BIu-ray disc has a thickness of 1.2 mm and a diameter of 12 cm, and includes a light WO 2004/075180 PCT/KIt2003/002027 transmission layer having a thickness of about 0.1 mm. Therefore, the Blu-ray disc can store a larger amount of data than a conventional DVD.
An optical disc device for writing and reading data on the Blu-ray disc is shown in FIG. 1. It includes an optical pick-up 11 for writing and reading a 5 signal onlfrom an optical disc 10, a video disc recorder (VDR) system 12 for processing the signal read out from the optical pick-up 11 into a replay signal, or for modulating and processing an externally inputted data stream into a record signal suitable for recording, and an encoder 13 for encoding an externally inputted analog signal and outputting the encoded analog signal to the VDR
1 o system 12.
A Blu-ray disc can be of a rewritable type, which is referred to herein as a Blu-ray Disc Rewritable (BD-RE). A BD-RE has a rewritable capability, which enables video and audio data to be written, erased, and rewritten thereon repeatedly. The BD-RE (shown in FIG. 2) is divided into a lead-in area (LIA), 15 a data area and a lead-out area (LOA), and the front and the rear of the data area are allocated to have an inner spare area (ISA) and an outer spare area (OSA).
With the BD-RE configured in the manner described above, the VDR
system 12 of the optical disc device shown in FIG.1 encodes and modulates externally inputted data into a signal suitable for recording, and records by 20 cluster unit corresponding to error correction block unit. If a defective area occurs in the data area while recording data on the BD-RE, the data of one cluster unit recorded on the defective area is also recorded on the spare area (for example, the inner spare area on the BD-RE) according to a linear replacement operation. A series of linear replacement operations can be 25 performed.
Accordingly, the VDR system 12 of the optical disc device records the data of the cluster unit recorded on the defective area onto the spare area, even if the defective area occurs in the data area of the rewritable Blu-ray disc.
When a playback operation is performed for the rewritable Blu-ray disc, the data recorded onto the spare area are read out and replayed so that a data recording error can be prevented.
Various standards related to the Blu-ray disc are under development.
In this respect, a second type of Blu-ray disc, on which data is not repeatedly rewritten (non-rewritable), but is written only once, is herein referred to as a Blu-ray Disc Write-Once (BD-WO).
The Write-once Blu-Ray disc is useful when it is not desirable to repeatedly rewrite data. In a BD-WO, management of defective areas is needed.
Since data can be recorded on the BD-RE repeatedly (due to the characteristics of the BD-RE), the size of the defect management area (DMA) for the rewritable Blu-ray disc is relatively small (see DMAI-DMA4 in FIG.2).
In contrast, since data is recorded on the write-once Blu-ray disc only one time, 15 the area required to manage the defective area For the BD-W~! needs to be larger than the area required for the BD-RE. Accordingly, a su~ciently sized defect management area should be allocated for the BD-W0.
An effective defect management method for a BD-WO requires consistency and compatibility with standards that are applicable to the BD-RE, 2o including consistency and compatibility related to recording and replaying of management information in order to obtain more efficient, more stable and higher performance in recording and replaying information and data. Thus, an innovative method, apparatus and structure for both recording and management of defective areas and related information for the BD-WO are needed.
Disclosure of Invention Accordingly, the present invention is directed to a write-once optical recording medium (BD-WO), a defect management information management method thereof, and an apparatus for implementing the method, that substantially obviate one or more problems due to limitations and disadvantages of the background art.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows, and in part will become apparent to those having ordinary skill in the art upon examination of the following, or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a method of managing defects on a i.~rrite-once optical recording medium haring at least one recording layer, the method comprising the steps of allocating at least one temporary defect management area having a fixed size and at least one temporary defect management area having a variable size to the optical recording medium, respectively, and recording defect management information on the at least one temporary defect management area having a fixed size and/or the at least one temporary defect management area having a variable size.
In another aspect of the present invention, an apparatus for managing defects on a write-once optical recording medium, the apparatus comprising means for allocating at least one temporary defect management area having a fixed size and at least one temporary defect management area having a variable size to the optical recording medium, respectively, and means for recording defect management information on the at least one temporary defect S
management area having a fixed size and/or the at least one temporary defect management area having a variable size.
In another aspect of the present invention, a write-once optical recording medium having at least one recording layer comprises at least one temporary defect management area having a fixed size and at least one temporary defect management area having a variable size, wherein defect management information is recorded on the at least one temporary defect management area having a fixed size and/or the at least one temporary defect management area having a variable size.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide farther explanation of the invention as claimed.
Brief 1~~~~cri~tioa~ of the 1~~~-~~van~e Further objects and advantages of the invention can be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 illustrates a schematic configuration of an optical disc device of the Background Art;
FIG. 2 illustrates a configuration of a recording area of a BD-RE;
FIG. 3 illustrates a schematic configuration of an optical disc device for a BD-WO of the present invention;
FIG. 4 illustrates a configuration of a recording area of an optical recording medium according to an embodiment of the present invention;
FIG. S illustrates a configuration of a recording area of an optical recording medium according to another embodiment of the present invention;
FIG. 6 illustrates an example of a temporary or interim defect management area usage method of the present invention;
FIG. 7 illustrates another example of a temporary or interim defect management area usage method of the present invention;
FIG. 8 illustrates another example of a temporary or interim defect management information composition method of the present invention;
FIG. 9 illustrates another example of a temporary or interim defect management information composition method of the present invention;
FIG. 10 illustrates a configuration of TDDS and information contents according to an embodiment of the present invention; and FIG. 11 is a table of comparison of DhIA, TDIVIA and IDII~ of the present invention.
I~,e~t In~d~ fag- c~~rawhh ~~ut the Tialventci~n Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Referring to FIG.3, an optical disc recording/reproducing device 20 for a BIu-ray write-once optical recording medium according to the present invention includes an optical pickup 22 for writing/reading data to/from an optical recording medium 21 such as a BD-WO, a pickup servo unit 23 for controlling the optical pickup 22 to maintain a distance between an objective lens in the optical pickup 22 and the optical recording medium 21 and for tracking a pertinent track, a data processor 24 for processing and providing input data to WO 2004/075180 PCTlKIt2003/002027 the optical pickup 22, an interface 25 for exchanging data with an external host 30, a memory 27 for storing information regarding defect management, and a microcomputer 26 for controlling the above units. All of the components of the device 20 are operatively coupled. The host 30 is connected to the interface 5 of the device 20 for recording/reproducing data to/from the optical recording medium 2 i for exchange of commands and data.
When an optical recording medium such as a BD-WO is loaded, the device 20 loads information regarding defect management, such as DMA (defect management area) information, TDMA. (temporary defect management area) 1o information and so on, into the memory 26 or other suitable storage. During operation, the memory 27 is updated in accordance with a defect management operation. The present method can be also implemented using the device shown in FIG.1 or other suitable devices or systems.
FIG. 4 illustrates a configuration of a recording area of a BD-WO
I5 according to the present invention. The BD-WO shown in FIG.4 hay a structure of a single layer disc. Also, the BD-WO shown in FIG.4 includes a lead-in area, a data area and a lead-out area. A user data area is located in the data area. The lead-in and lead-out areas include final or permanent defect management areas (DMAl-DMA4). The arrows in each respective area are used 20 as examples of a data recording direction.
A temporary defect management area (TDMA) according to the present invention is provided in the lead-in area of the BD-WO. Here, the TDMA can be distinguished from the defect management areas (DMAl, DMA2, DMA3, DMA4). Particularly, the temporary defect management area (TDMA) is an 25 area of the BD-WO that is used to temporarily record and manage defect management information until the BD-WO is frnalized. Afterward, the defect management information is recorded onto at least one of multiple defect management areas, for example, DMA1-DMA4 on a recording layer shown in FIG. 4. The BD-WO is considered to be finalized, e.g., when recording of data onto a user data area of the BD-WO has been completed. The TDMA provided in the lead-in area has a fixed size, for example, 2048 clusters.
The data area of the BD-WO shown in FIG.4 includes the user data area, an inner spare area ISAO and an outer spare area OSAO. The entire inner spare area /SAO is used as an area for linear replacement, i.e., a replacement area for storing data assigned to a defective area of the user data area. No TDMA is allocated to the inner spare area ISAO. The outer spare area OSAO includes an l0 interim defect management area (IDMA) as provided by an embodiment of the present invention. Here, the /DMA is distinguished from the TDMA having a fixed size in the lead-in area described above. In this regard, the II7MA is considered a temporary defect management area having a variable size.
However, the TDMA and the /DMA may have the same contents despite the difference between the terms and/or may differ firom each other depending on a manner in which the TDIi~lA and /DMA are used with respect to various manners, times and/or events in the actual recording process. This will be discussed in more detail when the methods of using the TDMA and IDMA are discussed.
2o In the single layer BD-WO shown in FIG. 4, a portion of the outer spare area OSAO is used as the IDMA and a remaining portion of the outer spare area OSAO is used as an area for linear replacement (replacement area). For example, the /DMA is allocated to a portion adjacent to the replacement area of the OSAO. The size of the IDMA is variably allocated depending on the size of 25 the spare area. Since the outer spare area (OSAO) has a variable size, the 117MA also has a variable size.
Here, the IL7MA having a variable size is allocated to the data area, depending on whether or not there is a determination made to allocate a spare area. If an outer spare area is to be allocated, the IDMA may be allocated in the manner described above. If an outer spare area is not allocated, only the TDMA having a fixed size is allocated (IDMA is not allocated). In such a case, the TDMA is used to manage defect management information. In another example, even though the spare area OSAO exists, the IDMA may still riot be allocated according to a choice of design. This means that the designer has a wide variety of design choices with respect to allocation of the IDMA.
However, if the spare area (e.g., OSAO) is allocated, in one embodiment both are 10 generally always allocated together, that is, if OSAO is allocated, the IDMA is allocated also in the OSAO.
The size of the IDMA positioned at the outer track of the disc depends on the size of the spare area OSAO (the size of OSAO is variable). For example, if the size of the spare area OSAO is N ' 256 (0 ~ N <- 64) clusters, the size of 15 the IDl~IA can be varied to P " 256 cluster;;, vdhere P = hl/4~. >' and 1~1 may be integers. In other words, in the example set forth above, a method can be used (as an example) in which the size of the )DMA (having a variable size) is allocated by one-fourth the size of the outer spare area.
As an example, if N = 64, since the size of the outer spare area OSAO is 20 16384 clusters and P = N/4 = 16, the size of the interim defect management area IDMA is 4096 clusters.
Similarly, the size of the IDMA positioned at an outer track area of the disc may have a size that is different from the example given above in that it is made to be variable depending on the size of the spare area OSAO. This is 25 possible in a case which takes into consideration that when the area for linear replacement is reserved in the outer spare area OSAO, the size of the area for lineax replacement, the size of the defect management area and the size of the spare area OSAO all depend on one another. In comparison, the size of the inner track area, especially the size of the TDMA positioned at the lead-in area, has a fixed value.
In the embodiment shown in FIG.4, it is readily apparent that the TDMA
5 is not positioned in the data area, but is positioned in the lead-in area.
The interim defect management area 117MA is positioned in the outer spare area OSAO and can be set to a size of'0'. In this case, the entire OSAO would be used as a replacement area. In another case, the ISAO and OSAO can be allocated by a size of '0' if no defect management is to be performed. Nevertheless, since the l0 TDMA of the lead-in area is available, specific information can be recorded and managed using a temporary disc definition structure (TDDS), even though a temporary defect list (TDFL) is not managed. A further explanation of the method in which the TDFL and TDDS is recorded (and used herein) will be provided later.
According to the present embodiment, if a defective area fe.g., the user data area) is created or discovered when data are recorded in the BD-WO, the data recorded (or to be recorded) 'on the defective area. is recorded on a predetermined area for linear replacement. A defective area may be created as a result of the recording process itself, or a defective area may be "discovered"
2o while recording. In the latter case, a discovered defective area is not the result of the current recording process. In case of the created defect, the corresponding defect management information is recorded on both the temporary and interim defect management areas TDMA and IDMA.
FIG. 5 shows an embodiment of the present invention, which illustrates another configuration of a recording area of a BD-WO. The BD-WO shown in FIG. 5 has a structure of a dual layer disc. The BD-WO structure shown in FIGS includes a lead-in area, a data area SOa and an outer area (Outer Area 0) WO 2004!075180 PCTIKR2003/002027 on a first recording layer (Layer 0), and a lead-out area, a data area SOb and an outer area (Outer Area 1) on a second recording layer (Layer 1).
The arrows in each area are examples which indicate a data recording direction.
In the dual layer BD-WO shown, however, the temporary defect management area (TDMA) of the present invention is provided in both the lead-in area and the lead-out area. The data areas SOa, SOb include inner spare areas ISAO and ISAl and outer spare areas OSAO and OSAl as shown. Each of the inner spare area ISAl and the outer spare areas OSAO and OSAl includes an 10 IDMA on each recording layer. In other words, an IDMA is allocated to each of the spare areas OSAO, OSA1 and ISA1, all having a variable size depending on the variable size of the spare area except for ISAO (which may have a fixed size).
In this example, the TDMA provided in the lead-in area (first recording 15 layer) and the lead-out area. (second recording la~jer) of the dual lay er BIa-ENO
shown in FIGS has a fixed size, for example, 2048 clusters.
All of the inner spare area ISAO is used as an area for linear replacement.
In other words, an IDMA for temporary defect management is not allocated to the inner spare area ISAO.
20 Portions of the inner spare area ISAl and the outer spare areas OSAO and OSAl are used as the IDMA, and the remaining portions (or other portions) of the inner spare area ISAl and the outer spare areas OSAO and OSAl are used as areas for linear replacement of a defective area. In one example, IDMAs are allocated to a portion in the spare areas, which is adjacent to an area for linear 25 replacement. The size of the IDMA(s) is allocated depending on the size of the spare areas ISAl, OSAO and OSAl (these spare areas have a variable size).
Here, the )DMAs having a variable size are allocated to the data area depending on whether or not a determination is made to allocate the corresponding spare areas (spare area that corresponds to the particular IDMA).
If the spare area is allocated, the IDMAs may be allocated as described above.
If the spare areas are not allocated, only the TDMAs are allocated. Some or all of the lead-in area and/or the lead-out area may be used to store defect management information. As one example, if the size of the outer spare area OSAO, OSAl is N ' 256 (0 ~ N ~ 32) clusters and the size of the inner spare area ISA1 is L ' 256 (0 ~ L ~ 64) clusters, then the size of the interim defect management areas in the OSAO and OSAl can be varied to P ' 256 clusters and the size of the interim defect management area in the ISA1 can be varied to Q ' 256 clusters, where P and Q are determined to be P =1~T/4 and Q = L/4. N
and L may be integers. This method can be referred to as a method in which the size of the IDMA having a variable size is allocated by one-fourth the size of the corresponding outer or inner spare area. OSAO, OSAl or ISAl.
For example, if I!T = 32, since the size of the outer spare areas (OSt'~0 +
OSAl) is 16384 clusters and P = N/4 = 8, the total size of the >DMA in the OSAO and the IDMA in the OSAl is 4096 clusters. If L = 64, since the size of the inner spare area ISAl is 16384 clusters and Q = L/4 = 16, the size of IDMA
in the ISAl is 4096 clusters. Then the total size of all the interim defect 20 management areas on the first and second recording layers is 8192 clusters.
Similarly, the size of the IDMAs is made to be variable depending on the size of the spare areas ISAl, OSAO and OSAl, taking into account that when the area for linear replacement is designed to be in the spare area, the size of the axea for linear replacement, the size of the defect management area and the size of the 25 spare area all depend on one another. In comparison, the size of the inner track area (especially the TDMA positioned at the lead-in area and the lead-out area) has a fixed value.
In the above embodiment having a dual layer BD-WO structure of the present invention, it is readily apparent that the TDMA is positioned in the lead-in area and also positioned in the lead-out area. The interim defect management areas mMAs positioned on the spare areas may have a size of '0' if all of the data area is used for user data recording. The spare areas may be allocated by a size of '0' if defect management is not performed.
Nevertheless, since the TDMAs of the lead-in area and the lead-out area remain available for use, specific information can be recorded and managed using a temporary disc to definition structure (TDDS) although a temporary defect list (TDFL) may not be managed. These will be explained in more detail later, but meanwhile, an IDMA
having a size of "0" is an indication that the TDFL is not managed.
Also according to the embodiment shown in FIG. 5, if a defective area is created during the actual recording of data in the BD-WO, the data to be recorded on the defective area is recorded on a predetermined area for linear replacement. In such a case, the associated defect management information may be recorded on both the temporary and interim defect management areas TDMA and IDMA in the OSAO, OSAl or ISAl.
In general, allocation of an IDMA depends on whether or not a determination is made to allocate a spare area. Once a determination is made to allocate a spare area, the method of allocating an IDMA (employing the method of allocating a spare area and the method of managing a defect) will be applicable as described herein.
In addition to the discussion set forth above, there is also a case to be considered in which a spare area is not allocated in the dual layer BD-WO.
Particularly, there is a case in which only the TDMA is used, and a case in which only the TDMA is used if only the inner spare area ISAO is allocated. If the inner spare area ISAO and outer spare areas OSAO and OSA1 are allocated, the IDMAS in the OSAO and OSAl are allocated. If only the inner spare areas ISAO and ISAl are allocated but the outer spare areas OSAO and OSAl are not allocated, the interim defect management area IDMA in the ISAl can be 5 allocated. If all of the spare areas are allocated, the IDMAs in the ISAl, OSAO
and OSAl can all be allocated as described above.
FIG. 6 illustrates an example of a method of using temporary or interim defect management areas TDMA or IDMA in the single layer or dual layer BD-WO according to an embodiment of the present invention. In this method, 1o the TDMA shows both TDDS and TDFL. However, although not shown in the illustration, the IDMA can also include both TDDS and TDFL. The embodiment shown in FIG. 6 illustrates that the particular defect management information (TDDS and TDFL) is recorded in the TDMA before it is recorded in the IDMA.
15 A discussion of TDDS and TDFL will not~r be provided. In the present invention, TDDS refers to temporary disc definition structure and is distinguished from DDS (disc definition structure), in that TDDS is temporary.
Similarly TDFL refers to a temporary defect list, and is distinguished from a DFL (defect list) in that TDDS is temporary. Herein, both the TDFL and TDDS
2o are included in the TDMA, and also both the TDFL and TDDS are included in the IDMA.
The temporary defect list (TDFL) contains (in part) a list of clusters that are determined to be defective during the use of the media. In relation thereto, TDDS specifies the format and status of the disc with relation to defect 25 management, and in general, provides overall management information. A
format of the disc may include information regarding the specific layout of areas on the disc for managing defective areas, and status of a disc may include WO 2004!075180 PCT/KR2003/002027 various flags (explained below). The TDFL includes the addresses of the defective areas and the replacement areas on the BD-WO. TDDS and TDFL
recorded ~ in temporary defect management areas (for example, TDMA and IDMA), becomes permanent information (DDS and DFL) which is written in 5 permanent defect management areas (for example DMA!-DMA4). For instance, when a disc is finalized, TDDS and TDFL are transferred and recorded in at least one of the DMAs. During the user data recording operation of the BD-WO, the TDDS and TDFL are updated periodically or at the same tune and the updates are recorded in the TDMA(s) and/or the IDMA(s). The particular to operation of these will become more apparent as the discussion thereof progresses.
In the embodiment shown in FIG.6, the TDMA is used first (before the IDMA is used) to record defect management information such as TDDS and TDFL. When the TDMA is full, the IDMA is used to record defect 15 management information. However, in another variation, the IDMI~y is used first (before the TDMA). In this case, when the )DMA is full, the TDI~lA is used to record the defect management information. In such an instance, information providing notification of which area among the TDMA is full is indicated by a "full flag" of TDMA. The "full flag" indication is necessary because preferred embodiments disclosed herein require information indicating which area among a plurality of TDMAS and/or IDMAS is full. In one example, this TDMA full flag may be included in TDDS.
Accordingly, in the embodiment of FIG.6, the TDMA and IDMA, or the IDMA and TDMA are sequentially used to store defect management information.
In further embodiments, the TDMA and IDMA are located in both lead-in areas and lead-out areas. The usage of a particular TDMA and ll~MA depends on a variety of factors, examples of which will be provided in a discussion of methods of using TDMA and IDMA.
It should be noted that the method of FIG. 6 and any other methods discussed herein (FIGS. 7-11) are applicable to the disc structures of FIGS. 4 and and any other variations thereof discussed above. It should also be noted that 5 the present invention encompasses embodiments that include a plurality of TDMAs and IDMAs on each recording layer of the BD-WO.
FIG. 10 illustrates an example of a full flag indicating that the TDMA
and/or IDMA is full (as recorded in the TDDS) according to an embodiment of the present invention. The TDDS, as mentioned above, includes overall l0 management information. In order to manage a defective area in the present invention, various full flags such as 'Spare Area full flag' and'TDMA/IDMA
full flag', and indicators such as 'the first PShT of latest TDFL' are used and included in the TDDS recorded in the TDMA(s) and/or IDMA(s). Particularly, a full flag provides information on whether a specific area is full and may be a 1-bit indication corresponding to the specific area. In the embodiment shown, if the specific area is a particular TDMA or IDMA of the structure, and the value of the corresponding bit of the TDMA/IDMA full flag is "1 ", then the corresponding area (TDMA or II?MA) is regarded as being full or in a 'full' state.
Accordingly, this TDMA/IDMA can no longer be used because the 2o TDMA/IDMA is full.
FIG. 10 also shows that the Spare Area full flag field includes the 8-bit structure indicated by the arrow extending therefrom. Similarly, the TDMA/IDMA full flag field (also in TDDS) includes the 8-bit structure indicated by the arrow extending therefrom. A number of bytes (size) and corresponding sectors is also indicated in the example of a field in TDDS
shown in FIG. 10.
As one example, the bits b3, b2, bl and b0 of the Spare Area full flag are use to indicate respectively whether or not the outer spare area OSA1, the inner spare area ISA1, the outer spare area OSAO, and the inner spare area ISAO are full. For instance, if the Spare Area full flag has a value of OOOOOOI l, this may indicate that the inner and outer spare areas ISAO and OSAO are full. If the BD-WO is a single layer disc, then only the bits b 1 and b0 may be used.
As another example, the bits b4-b0 of the TDMAlIDMA full flag are used to indicate respectively whether or not the IDMA in the OSAl, the IDMA
in the ISAl, the IDMA in the OSAO, the TDMA in the lead-out area, and the TDMA in the lead-in area are full. For instance, if the TDMAIIDMA full flag l0 has a value of 00000010, then this may indicate that only the TDMA in the lead-out area is full. Obviously, other examples and assignment of bit values and positions are possible for these full flags.
In one embodiment, the size of the TDDS is fixed, e.g., 1 cluster, and the size of the TDFL is variable in recording the TDDS and the TDFL in FIG. 6.
The site of the TDFL of a dual layer BLS-WQ~ as shown in FIG. 5 can he changed from 1 cluster to g clusters. This size may be determined considering the capacity of an entire disc and the size of the spare area.
According to the method of using the TDMA/IDMA, if a defective area is created or discovered when data are recorded on a BD-WO, the data recorded or to be recorded on the defective area of the BD-WO are recorded on a predetermined area (e.g., spare area) for linear replacement in the BD-WO.
FIG. 7 illustrates another example of a temporary or interim defect management area usage method of the present invention. In the method of using the temporary or interim defect management area shown in FIG. 7, the TDMA and IDMA are used randomly without determining any usage order.
The TDMA and IDMA full flags discussed in reference to FIG. 10 are equally applied herein.

If the TDMA/IDMA full flag indicates certain TDMA/IDMA is full, then a subsequent or TDMA/IDMA in the BD-WO is used. In a random case such as the case shown in FIG.7, no usage order is specified. If all the TDMAs and IDMAs are full, defects on the BD-WO cannot be managed any longer. When defects cannot be managed any longer, final information of TDDS and TDFL
(i.e., the last updated TDDS and TDFL in the TDMA/IDMA) is transferred and recorded on at least one of the DMAs (DMA1-DMA4) to reflect the current disc status. Here, the same defect management information may be recorded in each of the DMAs so that if one DMA becomes defective, the important defect l0 management information would not be lost. More discussion on recordation of final information on a DMA will be provided later.
According to the embodiment of FIG. 7, the data of a defective area. are recorded on a predetermined area for linear replacement. The defect management information pertaining to this defective area and the replacement 15 area is randomly recorded on the desired TDM~~ or IDMA. For e:~ample., the TDMA or IDMA nearest to the area where a defective area is located on the BD-WO is available for recording such defect management information. Therefore, as shown in FIG. 7, the TDMA or IDMA may be used variably, or as needed.
In another method of using a temporary defect management area in the 2o embodiment of FIG. 7, a plurality of defect management areas are used variably depending upon a variety of conditions. In one example, the defect management information may be recorded only on an IDMA when using the BD-WO. The latest defect management information is recorded on a TDMA
later when ejecting the BD-WO. In other words, the choice of an area in which 25 to record defect management information is determined between the area to record defect management information when using the disc and the area to record defect management information when ejecting the disc.

In another example, when recording data on the BD-WO, the data recorded (or to be recorded) on the defective area are recorded on the predetermined area for linear replacement if a defective area is created or discovered during the process of recording data. The defect management information is recorded on an IDMA when using the disc. The same defect management information is again recorded on the TDMA when ejecting the disc.
Since the TDMA is positioned in a management area (lead-in or lead-out) of an inner track of a disc, a system first obtains information from the management area when the disc is initially loaded. The TDMA includes the latest to management information even in a situation in which a previous disc has been ejected.
As another method of -using the disc, various objects are used for selecting one of a plurality of defect management areas. One method of using the disc is based on significance. For example, when the significance to update the defect management information is low, the IDM~. may be used to record the defect management information therein. When the significance to update the defect management information is high, the TDMA may be used to record the defect management information therein. Here, the criterion used to determine the significance can be set variously. The frequency of refreshing (updating) 2o defect management information can be made conditional, or based on a designer's choice. The time to eject a disc may also be designated as a significant time in recording defect management information. In such a case, the time a disc is in use is regarded to be less significant so that during this time, the defect management information may be recorded on the IDMA. The time to eject a disc may be regarded to be more significant so that during this time, the defect management information may be recorded on the TDMA. The methods that a designer decides to use are employed discretionally One of the criteria used to determine significance is an update .interval (e.g., for updating the defect management information). In other words, if the time duration between the previous update time and the present update time is long, the present update information is regarded to be relatively significant.
In 5 this case, the defect management information can be recorded on a TDMA
(instead of an IDMA) even though the disc is in use. Another criterion to determine significance is the number of defective areas created or discovered.
If there are relatively many defective areas, since it is regarded that more reliability is required, defect management information may be recorded on a l0 TDMA (instead of an 113MA) even though the disc is in use.
According to the objects of use, if defect management information is recorded on a TDMA according to significance, since the TDMA is positioned on the inner track, significant information can be rapidly and precisely obtained, beginning from the initial time of loading the disc.
15 FIGs. 8 and 9 illustrate examples of a temporary or interim defect management information composition method according to the embodiments of the present invention. In one embodiment, the present invention provides a method of composing and recording defect management information (TDDS and TDFL) on a TDMA or IDMA, wherein the TDDS and the TDFL are separated 2o from each other. Another embodiment of the present invention provides a method of composing and recording defect management information on a TDMA or IDMA wherein the TDDS and the TDFL are integrated with each other. FIG. 8 shows the former case (separated) and FIG. 9 shows the latter case (integrated).
Particularly, FIG. 8 illustrates a method of composing and recording defect management information on a TDMA or IDMA wherein the TDDS and the TDFL are separated from each other. Each TDDS has a fixed size, e.g., 1 cluster, and the size of each TDFL is variable from, e.g., 1 cluster to 8 clusters.
FIG. 9 illustrates a method of composing and recording defect management information on a TDMA or IDMA wherein the TDDS and the TDFL of the TDMA or IDMA are integrated with each other. Defect 5 management information is recorded in the form of TDFL + TDDS as shown in FIG. 9. That is, each time the defect management information is updated, both the latest TDFL and TDDS are recorded in the TDMA or IDMA. Since the size of the TDFL can be variable from 1 cluster to 8 clusters as described above, the size of the (TDFL + TDDS) is variable from 1 cluster to 8 clusters. The to methods of FIGS. 8 and 9 are applicable to each of the disc structures and TDMA/IDMA usage methods discussed in this disclosure.
FIG. 11 is a table representing when a DMA, a TDMA and an IDMA are used and what information each of the DMA, TDMA and IDMA has according to the objects of use. For example, the defect management information is 15 recorded on an IDl~/iA when using the BD-WO. The defect management information is recorded on the TDMA when ejecting the BD-WO. The defect management information is recorded on the DMA when the DMA fill-in process may occur which happens, e.g., the BD-WO is to be finalized and data is not recorded any longer, when a spare area is full, or when a TDMA or IDMA is full 2o and defects cannot be managed any longer. The full information (e.g., full flags) is recorded in TDDS as shown in FIG. 10. If the TDMA and the IDMA
are not separated according to the objects of use, it is clear that times at which to record the defect management information on the TDMA and IDMA do not have to be distinguished from each other. The table in FIG. 11 representing when 25 a DMA, a TDMA and an IDMA are used and what information each of the DMA, TDMA and IDMA has according to the objects of use apply to the structures discussed above, including the structures and methods shown in FIGS.

4-10, and the apparatus shown in FIG. 3.
Industrial apnlicability 5 In the present invention, the information to be recorded on the defective area is recorded on the area for linear replacement in the BD-WO. The defect management information is recorded on a plurality of temporary management areas provided separately on a predetermined area of the disc. The temporary management areas are divided into a temporary management area having a fined to size and a temporary management area having a variable size depending on the spare area so that defect management information can be managed more effectively.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the 15 present invention corers the modifications and ~rariations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (42)

WHAT IS CLAIMED:
1. A method of recording management information managing defects on a write-once optical recording medium having at least one recording layer, the method comprising steps of:
allocating a first temporary defect management area with a fixed size and at least one second temporary defect management area with a size of 0 to a predetermined maximum value to the optical recording medium, respectively; and recording defect management information on one of the first and second temporary defect management areas, the first and second temporary defect management areas being used for recording the defect management information in sequential order, the defect management information including a defect list and position information, the defect list including an address of at least one defective area within the recording medium, the position information indicating a position of the latest defect list.
2. The method as claimed in claim 1, wherein the optical recording medium has at least two recording layers, wherein the allocating step comprises allocating the first and second management areas to each recording layer.
3. The method as claimed in claim 1 or 2, wherein in the allocating step, the first temporary defect management area is allocated to at least one of a lead-in area and a lead-out area of the optical recording medium.
4. The method as claimed in one of claims 1 to 3, wherein the allocating step comprises:
allocating at least one of an inner spare area and an outer spare area for being used to replace a defective area; and allocating the second temporary defect management area onto at least one of the allocated spare areas.
5. The method as claimed in claim 4, wherein the size with which the second temporary defect management area is allocated depends on a size of the allocated spare areas.
6. The method as claimed in one of claims 1 to 5, wherein in the allocating step, if there is no spare area allocated in the optical recording medium, the second temporary defect management area is not allocated, but only the first temporary defect management area is allocated.
7. The method of claim 1, wherein the second temporary defect management area begins to be used for recording the defect management information after the first temporary defect management area is used up.
8. The method as claimed in one of claims 1 to 7, wherein the recording step comprises updating the defect management information and recording the latest updated defect management information on the one of the first and second temporary defect management areas until the optical recording medium is finalized.
9. The method as claimed in one of claims 1 to 7, wherein the recording step comprises updating the defect management information and recording the latest updated defect management information on the one of the first and second temporary defect management areas when the optical recording medium is to be ejected.
10. The method as claimed in claim 1, wherein the recording step comprises recording indication information indicating which temporary defect management area is full.
11. The method as claimed in claim 10, comprising:
reproducing the indication information indicating which temporary defect management area is full, wherein the recording step comprises recording the defect management information on a temporary defect management area indicated being not full by the indication information.
12. The method as claimed in claim 1, further comprising:
recording, onto a permanent defect management area of the optical recording medium, the last defect management information reflecting status of the optical recording medium at the moment when the optical recording medium is to be finalized.
13. The method as claimed in claim 1, further comprising:
recording, onto a permanent defect management area of the optical recording medium, the last defect management information when a spare area of the optical recording medium is full.
14. The method as claimed in claim 1, further comprising:
recording, onto a permanent defect management area of the optical recording medium, the last defect management information when the temporary defect management areas are full and defects on the optical recording medium cannot be managed any longer.
15. An apparatus for recording management information managing defects on a write-once optical recording medium, the apparatus comprising:

a pickup configured to write/read data to/from the optical recording medium;
a servo unit configured to control the pickup to maintain a distance from the optical recording medium and track a pertinent track on the optical recoding medium;
a data processor configured to process and provide input data to the pickup;
an interface configured to exchange data with an external device;
a memory configured to store information associated with the optical recording medium; and a microcomputer operatively coupled to above components - the pickup, the servo unit, the data processor, the interface and the memory - and configured to control the components so that the apparatus allocates a first temporary defect management area with a fixed size and at least one second temporary defect management area with a size of 0 to a predetermined maximum value to the optical recording medium, respectively; and the apparatus records defect management information on one of the first and second temporary defect management areas and records the defect management information onto the first and second temporary defect management areas in sequential order, the defect management information including a defect list and position information, the defect list including an address of at least one defective area within the recording medium, the position information indicating a position of the latest defect list.
16. The apparatus as claimed in claim 15, wherein the optical recording medium has at least two recording layers, wherein the microcomputer is configured to control the components so that the apparatus allocates the first and second temporary defect management areas to each recording layer.
17. The apparatus as claimed in claim 15 or 16, wherein the microcomputer is configured to control the components so that the apparatus allocates first temporary defect management area onto at least one of a lead-in area and a lead-out area of the optical recording medium.
18. The apparatus as claimed in one of claims 15 to 17, wherein the microcomputer is configured to control the components so that the apparatus allocates onto a data area of the optical recording medium at least one of an inner spare area and an outer spare area for being used to replace a defective area; and allocates onto at least one of the allocated spare area the second temporary defect management area.
19. The apparatus as claimed in claim 18, wherein the microcomputer is configured to control the components so that the apparatus allocates the second temporary defect management area with a size depending on a size of the allocated spare areas.
20. The apparatus as claimed in one of claims 15 to 19, wherein the microcomputer is configured to control the components so that the apparatus does not allocate the second temporary defect management area if there is no spare area allocated in the optical recording medium, but allocates only the first temporary defect management area.
21. The apparatus of claim 15, wherein the microcomputer is configured to control the pickup so that the second temporary defect management area begins to be used for recording the defect management information after the first temporary defect management area is used up.
22. The apparatus as claimed in one of claims 15 to 21, wherein the microcomputer is configured to control the components so that the apparatus updates the defect management information in accordance with a defect management information and stores the updated defect management information on the memory and records the latest updated defect management information on the one of the first and second temporary defect management areas when the optical recording medium is to be ejected.
23. The apparatus as claimed in claim 15, wherein the microcomputer is configured to control the components so that the apparatus records indication information indicating which temporary defect management area is full.
24. The apparatus as claimed in claim 23, wherein the microcomputer is configured to control the components so that the apparatus reproduces the indication information indicating which temporary defect management area is full and records the defect management information on a temporary defect management area indicated being not full by the indication information.
25. The apparatus as claimed in claim 15, wherein the microcomputer is configured to control the components so that the apparatus records, onto a permanent defect management area of the optical recording medium, the last defect management information reflecting status of the optical recording medium at the moment when the optical recording medium is to be finalized.
26. The apparatus as claimed in claim 15, wherein the microcomputer is configured to control the components so that the apparatus records, onto a permanent defect management area of the optical recording medium, the last defect management information reflecting status of the optical recording medium at the moment when the temporary defect management areas are full.
27. The apparatus as claimed in claim 15, comprising:
a host connected to the interface and configured to transmit a command into the microcomputer via the interface.
28. A write-once optical recording medium having at least one recording layer, comprising:
a first temporary defect management area allocated with a fixed size and at least one second temporary defect management area with a size of 0 to a predetermined maximum value, the first and second temporary defect management areas storing therein defect management information until the optical recording medium is to be finalized, the first and second temporary defect management areas storing therein the defect management information in sequential order, the defect management information including a defect list and position information, the defect list including an address of at least one defective area within the recording medium, the position information indicating a position of the latest defect list; and a permanent defect management area storing therein the last defect management information reflecting status of the optical recording medium at the moment when the optical recording medium is finalized.
29. The optical recording medium as claimed in claim 28, wherein the optical recording medium comprises at least two recording layers, each of which includes the first and second temporary defect management areas.
30. The optical recording medium as claimed in claim 28 or 29, wherein the first temporary defect management area is located in at least one of a lead-in area and a lead-out area of the optical recording medium.
31. The optical recording medium as claimed in one of claims 28 to 30, comprising:
at least one of an inner spare area and an outer spare area for being used to replace a defective area; and wherein the second temporary defect management area to manage defect management information is located in at least one of the allocated spare area.
32. The optical recording medium as claimed in claim 31, wherein the second temporary defect management area has a size allocated depending on a size of the allocated spare areas.
33. The optical recording medium as claimed in one of claims 28 to 32, wherein the first and second temporary defect management areas stores therein defect management information updated when the optical recording medium is ejected.
34. The optical recording medium as claimed in claim 28, wherein the optical recording medium stores therein indication information indicating which temporary defect management area is full.
35. A method of reproducing management information managing defects on a write-once optical recording medium having at least one recording layer, the method comprising steps of:
reproducing, from one of first and second temporary defect management areas of the optical recording medium, defect management information before the optical recording medium is finalized, the first temporary defect management area allocated with a fixed size and the second temporary defect management area allocated with a size of 0 to a predetermined maximum value, the first and second temporary defect management areas storing therein the defect management information in sequential order, the defect management information including a defect list and position information, the defect list including an address of at least one defective area within the recording medium, the position information indicating a position of the latest defect list; and reproducing, from a permanent defect management area of the optical recording medium, the last defect management information after the optical recording medium is finalized, the last defect management information reflecting status of the optical recording medium at the moment when the optical recording medium is finalized.
36. The method as claimed in claim 35, wherein before the optical recording medium is finalized, the defect management information is reproduced from the first temporary defect management area allocated in at least one of a lead-in area and a lead-out area of the optical recording medium.
37. The method as claimed in claim 35 or 36, wherein before the optical recording medium is finalized, the defect management information is reproduced from the second temporary defect management area allocated in a spare area allocated in a data area of the optical recording medium.
38. The method as claimed in one of claims 35 to 37, comprising:
reproducing indication information indicating which temporary defect management area is full and recording updated defect management information onto a temporary defect management area indicated being not full by the indication information.
39. An apparatus for reproducing management information managing defects on a write-once optical recording medium having at least one recording layer, the apparatus comprising:
a pickup configured to write/read data to/from the optical recording medium;
a servo unit configured to control the pickup to maintain a distance from the optical recording medium and track a pertinent track on the recoding medium;
a data processor configured to process and provide input data to the pickup;
an interface configured to exchange data with an external device;
a memory configured to store information associated with the optical recording medium; and a microcomputer operatively coupled to above components - the pickup, the servo unit, the data processor, the interface and the memory - and configured to control the components so that the apparatus reproduces, from one of first and second temporary defect management areas of the optical recording medium, defect management information before the optical recording medium is finalized, the first temporary defect management area allocated with a fixed size and the second temporary defect management area allocated with a size of 0 to a predetermined maximum value, the first and second temporary defect management areas storing therein the defect management information in sequential order, the defect management information including a defect list and position information, the defect list including an address of at least one defective area within the recording medium, the position information indicating a position of the latest defect list; and the apparatus reproduces, from a permanent defect management area of the optical recording medium, the last defect management information after the optical recording medium is finalized, the last defect management information reflecting status of the optical recording medium at the moment when the optical recording medium is finalized.
40. The apparatus as claimed in claim 39, wherein before the optical recording medium is finalized, the microcomputer is configured to control the components so that the apparatus reproduces the defect management information from the first temporary defect management area allocated in at least one of a lead-in area and a lead-out area of the optical recording medium.
41. The apparatus as claimed in claim 39 or 40, wherein before the optical recording medium is finalized, the microcomputer is configured to control the components so that the apparatus reproduces the defect management information from the second temporary defect management area allocated in a spare area allocated in a data area of the optical recording medium.
42. The apparatus as claimed in one of claims 39 to 41, wherein the microcomputer is configured to control the components so that the apparatus reproduces indication information indicating which temporary defect management area is full and records updated defect management information on a temporary defect management area indicated being not full.
CA2515435A 2003-02-21 2003-10-01 Write-once optical recording medium and defect management information management method thereof Expired - Lifetime CA2515435C (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR20030010925 2003-02-21
KR10-2003-0010925 2003-02-21
KR10-2003-0013200 2003-03-03
KR20030013200 2003-03-03
KR10-2003-0023876 2003-04-16
KR20030023876 2003-04-16
PCT/KR2003/002027 WO2004075180A1 (en) 2003-02-21 2003-10-01 Write-once optical recording medium and defect management information management method thereof

Publications (2)

Publication Number Publication Date
CA2515435A1 CA2515435A1 (en) 2004-09-02
CA2515435C true CA2515435C (en) 2012-12-04

Family

ID=36147040

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2515435A Expired - Lifetime CA2515435C (en) 2003-02-21 2003-10-01 Write-once optical recording medium and defect management information management method thereof

Country Status (15)

Country Link
US (2) US7643390B2 (en)
EP (2) EP2088598A3 (en)
JP (2) JP4838586B2 (en)
KR (1) KR101067777B1 (en)
CN (2) CN101261867B (en)
AT (1) ATE436069T1 (en)
AU (1) AU2003265116B2 (en)
BR (1) BR0318116A (en)
CA (1) CA2515435C (en)
DE (1) DE60328310D1 (en)
ES (1) ES2329034T3 (en)
MX (1) MXPA05008822A (en)
RU (1) RU2334289C2 (en)
TW (1) TWI335587B (en)
WO (1) WO2004075180A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040027259A (en) 2002-09-26 2004-04-01 엘지전자 주식회사 Method for managing a defect area on optical disc write once
KR20040028469A (en) 2002-09-30 2004-04-03 엘지전자 주식회사 Method for managing a defect area on optical disc write once
US7233550B2 (en) 2002-09-30 2007-06-19 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
BRPI0317147B1 (en) 2002-12-11 2016-04-26 Lg Electronics Inc apparatus and method for recording data to a recording medium only once, apparatus and method for reproducing data from a recording medium only once and said recording medium only once
US7672204B2 (en) 2003-01-27 2010-03-02 Lg Electronics Inc. Optical disc, method and apparatus for managing a defective area on an optical disc
TWI314315B (en) 2003-01-27 2009-09-01 Lg Electronics Inc Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
US20040160799A1 (en) 2003-02-17 2004-08-19 Park Yong Cheol Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc
TWI335587B (en) 2003-02-21 2011-01-01 Lg Electronics Inc Write-once optical recording medium and defect management information management method thereof
US7499383B2 (en) 2003-02-21 2009-03-03 Lg Electronics Inc. Write-once optical disc and method for managing spare area thereof
US7385889B2 (en) * 2003-03-03 2008-06-10 Samsung Electronics Co., Ltd. Method and apparatus for managing disc defect using temporary DFL and temporary DDS including drive and disc information disc with temporary DFL and temporary DDS
JP4658614B2 (en) 2003-03-04 2011-03-23 エルジー エレクトロニクス インコーポレイティド Recording method and apparatus for optical recording medium
TWI328805B (en) 2003-03-13 2010-08-11 Lg Electronics Inc Write-once recording medium and defective area management method and apparatus for write-once recording medium
EP2068322A3 (en) 2003-05-09 2009-09-23 LG Electronics Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
MXPA05012044A (en) 2003-05-09 2006-02-03 Lg Electronics Inc Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc.
KR20050009031A (en) 2003-07-15 2005-01-24 엘지전자 주식회사 Method for recording management information on optical disc write once
CN101046991A (en) * 2003-07-23 2007-10-03 日本先锋公司 Write-once-type recording medium, recording apparatus and method for write-once-type recording medium, reproducing apparatus and method for write-once-type recording medium, and computer program
ES2341859T3 (en) * 2003-08-05 2010-06-29 Lg Electronics, Inc. OPTICAL DISK WRITE AND METHOD AND APPARATUS FOR RECORDING / PLAYING MANAGEMENT INFORMATION ON / FROM THE OPTICAL DISK.
EP2053596B1 (en) * 2003-08-05 2014-02-26 LG Electronics Inc. Write-once optical disc, and method and apparatus for recording/playback management information on/from optical disc
US7313065B2 (en) 2003-08-05 2007-12-25 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording/reproducing management information on/from optical disc
BRPI0414208A (en) 2003-09-08 2006-10-31 Lg Electronics Inc method and apparatus for recording management information, physical recording medium
MXPA06002622A (en) 2003-09-08 2006-06-05 Lg Electronics Inc Write-once optical disc, and method and apparatus for recording management information thereon.
CA2537888C (en) 2003-09-08 2015-03-03 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon
KR20050031683A (en) * 2003-09-30 2005-04-06 삼성전자주식회사 Write-once disc and method of using the write-once disc
KR100964685B1 (en) 2003-10-20 2010-06-21 엘지전자 주식회사 Method and apparatus for recording and reproducing data on/from optical disc write once
BRPI0507170A (en) 2004-01-30 2007-06-26 Koninkl Philips Electronics Nv recording medium, and recording method and device for recording information about a recording medium
BRPI0507679A (en) * 2004-02-14 2007-07-17 Samsung Electronics Co Ltd single instance recording disc, data recording apparatus, data recording apparatus, method of writing data to a single instance recording disc, method of writing data to a single instance recording disc having a plurality of update areas used in a predetermined order and at least one access information area (aia), apparatus for writing data to a single instance recording disk having a plurality of update areas used in a predetermined order and at least minus one access information area (aia), and method of writing data to a single instance write disk
TWI381374B (en) * 2004-03-18 2013-01-01 Lg Electronics Inc Recording medium with overlapping segment information thereon and apparatus and methods for forming, recording, and reproducing the recording medium
TWI386923B (en) * 2004-03-18 2013-02-21 Lg Electronics Inc Recording medium with segment information thereon and apparatus and methods for forming, recording, and reproducing the recording medium
EP1735781B1 (en) * 2004-03-18 2013-07-17 LG Electronics, Inc. Apparatus and method for recording and/or reproducing data to/from recording medium
KR101024916B1 (en) 2004-03-19 2011-03-31 엘지전자 주식회사 Method for writing data in high density optical write once disc and Apparatus for the same
EP1726015B1 (en) * 2004-03-19 2013-08-28 LG Electronics Inc. Recording medium with physical access control (pac) information thereon and apparatus and methods for forming, recording, and reproducing the recording medium
US7970988B2 (en) * 2004-03-19 2011-06-28 Lg Electronics Inc. Recording medium with status information thereon which changes upon reformatting and apparatus and methods for forming, recording, and reproducing the recording medium
KR101049117B1 (en) 2004-06-08 2011-07-14 엘지전자 주식회사 Method and apparatus for recording management information on optical write once disc
KR101014727B1 (en) 2004-06-23 2011-02-16 엘지전자 주식회사 Method and Apparatus for managing a overwrite in Optical write once disc
WO2006031052A2 (en) 2004-09-14 2006-03-23 Lg Electronics Inc. Recording medium, and method and apparatus of recording and reproducing data on the same
JP4561299B2 (en) * 2004-10-14 2010-10-13 ソニー株式会社 Replacement processing method, recording apparatus, and recording system
JP4830426B2 (en) 2005-09-28 2011-12-07 ソニー株式会社 Optical recording medium, recording apparatus, recording or reproducing apparatus, recording method, recording or reproducing method
KR20070058291A (en) 2005-12-02 2007-06-08 엘지전자 주식회사 Recording medium, method and apparatus for recording management information on the recording medium
AU2008247329A1 (en) * 2007-05-07 2008-11-13 Accenture Global Services Limited Contact details service
WO2010004707A1 (en) * 2008-07-10 2010-01-14 パナソニック株式会社 Optical disk, optical disk device, optical disk defect registering method, optical disk recording method, and optical disk reproducing method

Family Cites Families (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194143A (en) 1982-05-07 1983-11-12 Hitachi Ltd Recording and reproducing system of data
US4498146A (en) * 1982-07-30 1985-02-05 At&T Bell Laboratories Management of defects in storage media
US5247494A (en) 1984-06-08 1993-09-21 Matsushita Electric Industrial Co. Ltd. Method for recording and reproducing information on and from an optical disk having a read-only recorded zone and a writable and readable zone using a spot laser light
JP2635023B2 (en) 1985-05-02 1997-07-30 株式会社日立製作所 Label writing method for file data
FR2591015B1 (en) 1985-11-29 1989-05-12 Picard Michel WRITING METHOD WITH UPDATING AND READING INFORMATION ON A NON-ERASABLE MEDIUM ORGANIZED IN AREAS
US5040110A (en) 1987-10-30 1991-08-13 Matsushita Electric Industrial Co., Ltd. Write once read many optical disc storage system having directory for storing virtual address and corresponding up-to-date sector address
JPH01128266A (en) * 1987-11-13 1989-05-19 Pioneer Electron Corp Method for controlling drive device for writable disk
EP0325823A1 (en) 1988-01-26 1989-08-02 Laserdrive Ltd. Data storage system
JPH0223417A (en) 1988-07-13 1990-01-25 Matsushita Electric Ind Co Ltd Information recording system and information recording medium
US4963866A (en) 1989-03-27 1990-10-16 Digital Recorders, Inc. Multi channel digital random access recorder-player
US5065388A (en) 1989-03-29 1991-11-12 U.S. Philips Corporation Method and apparatus for recording on a record carrier a table of contents identifying all the recorded data signals
JPH087981B2 (en) 1989-08-30 1996-01-29 日本ビクター株式会社 Additional type write-once information recording medium and information management method thereof
JPH0428061A (en) 1990-05-24 1992-01-30 Matsushita Electric Ind Co Ltd Information recording medium and information recording and reproducing device
JP2776006B2 (en) 1990-07-06 1998-07-16 松下電器産業株式会社 Information recording / reproducing device
US5043967A (en) 1990-08-20 1991-08-27 International Business Machines Corporation Structured data storage method and medium
US5319626A (en) 1990-08-27 1994-06-07 Mitsubishi Electric Corporation Method for rewriting defect management areas on optical disk according to ECMA standard
JP3315711B2 (en) 1990-09-17 2002-08-19 ヒューレット・パッカード・カンパニー Write management system and method for magneto-optical disk data storage device
US5303198A (en) 1990-09-28 1994-04-12 Fuji Photo Film Co., Ltd. Method of recording data in memory card having EEPROM and memory card system using the same
JPH04141867A (en) 1990-10-03 1992-05-15 Canon Inc File managing method
JP2887949B2 (en) 1991-06-27 1999-05-10 松下電器産業株式会社 Information recording / reproducing device, information reproducing device, DMA recording method and DMA verification method
US5448728A (en) 1991-08-08 1995-09-05 Sharp Kabushiki Kaisha Storage medium control system for controlling a write-once read-many storage medium
US5235585A (en) 1991-09-11 1993-08-10 International Business Machines Reassigning defective sectors on a disk
US6347051B2 (en) 1991-11-26 2002-02-12 Hitachi, Ltd. Storage device employing a flash memory
JP3039099B2 (en) 1992-02-14 2000-05-08 ソニー株式会社 Optical disk recording apparatus and method
JPH05313980A (en) 1992-05-07 1993-11-26 Olympus Optical Co Ltd Information recording method
CA2120352C (en) 1992-07-31 2002-10-29 Hideo Obata Disk recording method and apparatus for identifying and skipping defective clusters
US5473753A (en) 1992-10-30 1995-12-05 Intel Corporation Method of managing defects in flash disk memories
US5687397A (en) 1993-02-26 1997-11-11 Sony Corporation System for expansion of data storage medium to store user data
JPH06338139A (en) * 1993-05-31 1994-12-06 Olympus Optical Co Ltd Alternate processing method in information recording of writing once type information recording medium
SG144685A1 (en) 1993-06-08 2008-08-28 Matsushita Electric Ind Co Ltd Optical disk, and information recording/reproduction apparatus
JP3453843B2 (en) 1993-06-08 2003-10-06 ソニー株式会社 Disk unit
JPH0773602A (en) 1993-09-02 1995-03-17 Fujitsu Ltd Optical disk device
JP3333613B2 (en) 1993-12-07 2002-10-15 株式会社日立製作所 Optical information recording medium, optical information recording / reproducing method, and optical information recording / reproducing apparatus
US5495466A (en) 1994-01-10 1996-02-27 Eastman Kodak Company Write verification in an optical recording system by sensing mark formation while writing
JP3558306B2 (en) 1994-07-26 2004-08-25 パイオニア株式会社 Multilayer recording disk and recording / reproducing system using the same
JP3232945B2 (en) 1994-08-22 2001-11-26 セイコーエプソン株式会社 Preprocessing method and input / output device
US5650881A (en) 1994-11-02 1997-07-22 Texas Instruments Incorporated Support post architecture for micromechanical devices
US5740435A (en) 1994-10-31 1998-04-14 Sony Corporation Data management apparatus and method for managing data of variable lengths recorded on a record medium
JPH08147110A (en) 1994-11-18 1996-06-07 Sony Corp Method and device for data recording medium management and data recording medium
JPH08153858A (en) 1994-11-29 1996-06-11 Nec Corp Manufacture of semiconductor device
JP2915307B2 (en) 1994-12-19 1999-07-05 株式会社日立製作所 Information recording control method for optical disk
JPH08273162A (en) * 1995-03-31 1996-10-18 Ricoh Co Ltd Optical disk device
MY112041A (en) 1995-04-21 2001-03-31 Matsushita Electric Ind Co Ltd A method for managing defects in an information recording medium, and a device and information recording medium using said method
RU2182722C2 (en) 1995-11-10 2002-05-20 Сони Корпорейшн Data processing device and method thereof
US5900010A (en) 1996-03-05 1999-05-04 Sony Corporation Apparatus for recording magneto-optic disks
JPH09259576A (en) 1996-03-25 1997-10-03 Toshiba Corp Information recording disk with a plurality of control regions
JPH09259537A (en) 1996-03-25 1997-10-03 Toshiba Corp Information record disk having alternate area
JPH09270175A (en) * 1996-03-29 1997-10-14 Ricoh Co Ltd Direct read after write type optical disk device
US5805536A (en) 1996-11-07 1998-09-08 Eastman Kodak Company Method for bandwidth reduction in writeable optical data storage apparatus
JP3050375B2 (en) 1997-03-12 2000-06-12 インターナショナル・ビジネス・マシーンズ・コーポレイション Disk drive device and disk drive error recovery method
JPH10283653A (en) 1997-04-04 1998-10-23 Victor Co Of Japan Ltd Optical information recording and reproducing device and optical recording medium
JPH10289537A (en) 1997-04-11 1998-10-27 Sony Corp Digital data recording method and digital data recording medium
KR100239118B1 (en) 1997-05-21 2000-01-15 구자홍 Optical disk having variable margin region rate and variably setting method of margin region rate on disk
JP3855390B2 (en) 1997-09-16 2006-12-06 ソニー株式会社 Recording apparatus, recording method, and disk-shaped recording medium
JP3707222B2 (en) 1997-12-18 2005-10-19 三菱電機株式会社 Optical disc, optical disc processing apparatus, and optical disc processing method
JPH11242850A (en) 1998-02-25 1999-09-07 Hitachi Ltd Real time data recording system
KR100292093B1 (en) 1998-03-02 2001-06-01 구자홍 Method of generating defected area management data of recorded media and generation device and optical recorded media thereof
SG129225A1 (en) 1998-04-20 2007-02-26 Samsung Electronics Co Ltd Optical data storage medium
KR100354739B1 (en) 1998-04-20 2003-02-19 삼성전자 주식회사 Recording media storing defect menagement information for recording real time data and defect management method therefor
EP0957477A3 (en) 1998-05-15 2003-11-05 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus
JPH11338782A (en) 1998-05-27 1999-12-10 Oki Electric Ind Co Ltd Storage device and its defective sector substituting method
US6744713B1 (en) 1998-06-15 2004-06-01 Samsung Electronics Co., Ltd. Recording medium for storing write protection information and write protection method thereof
JP2000040305A (en) 1998-07-21 2000-02-08 Fujitsu Ltd Recording medium and storage device
WO2000007185A1 (en) 1998-07-28 2000-02-10 Lg Electronics Inc. Method and apparatus of recording data in the optical recording medium
KR100407931B1 (en) * 1998-07-29 2004-03-30 엘지전자 주식회사 File management method and real-time data recording method in real time recording / playback and its optical recording / playback medium
GB2356735B (en) 1998-08-05 2002-01-02 Mitsubishi Electric Corp Method of managing defects in an optical disk, an optical disk device and an optical disk
US6414923B1 (en) 1998-08-17 2002-07-02 Lg Electronics Inc. Recording/reproducing method of optical recording medium
KR100459161B1 (en) 1998-11-20 2005-01-15 엘지전자 주식회사 optical recording medium and method for assigning spare area and for managing defect area of optical recording medium
US6788631B1 (en) 1998-09-02 2004-09-07 Lc Electronics Inc. Optical recording medium having recording capacity information and method for indicating recording capacity
KR100442236B1 (en) 1998-09-07 2004-10-14 엘지전자 주식회사 Method for searching available good spare block of optical recording medium
AU5449799A (en) 1998-09-10 2000-04-03 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method of manufacture thereof, and method of recording and reproduction
JP3243220B2 (en) 1998-09-14 2002-01-07 株式会社東芝 Replacement processing method
JP2000099401A (en) 1998-09-22 2000-04-07 Sony Corp Recording medium, recording method and recorder
AU5758999A (en) 1998-09-25 2000-04-17 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording/reproducing method, and information recording/reproducing device
KR100421845B1 (en) 1998-09-26 2004-04-17 엘지전자 주식회사 optical recording medium and method for managing a defective area
KR100677066B1 (en) 1998-10-10 2007-02-01 삼성전자주식회사 Disc having spare area for defect management and method for allocating spare area
KR100606663B1 (en) 1998-10-20 2006-11-30 엘지전자 주식회사 Method for managing defect area and formating of optical recording medium
DE69927851T2 (en) 1998-10-22 2006-07-27 Matsushita Electric Industrial Co., Ltd., Kadoma An information recording medium and method and apparatus for error management thereon
JP2000195178A (en) 1998-10-22 2000-07-14 Matsushita Electric Ind Co Ltd Information recording medium, and method and device for managing defects
KR100667729B1 (en) * 1998-11-10 2007-01-11 삼성전자주식회사 Disc having spare area for defect management and management information thereof, allocationg method of spare area and defect management method
US6466532B1 (en) * 1998-11-10 2002-10-15 Samsung Electronics Co., Ltd. Recording medium having spare area for defect management and information on defect management, and method and apparatus of allocating spare area and managing defects
DE19964391B4 (en) 1998-11-11 2010-10-14 Lg Electronics Inc. A method of allocating a spare area in an optical recording medium
KR100451718B1 (en) * 1999-01-13 2004-10-08 엘지전자 주식회사 Optical recording medium and method for managing defect area and method for controlling record/playback of it
US6842580B1 (en) 1999-01-27 2005-01-11 Matsushita Electric Industrial Co., Ltd. Real-time recording/reproduction on an information recording medium including a defective region
MY118342A (en) 1999-02-01 2004-10-30 Matsushita Electric Ind Co Ltd Information recording medium, information recording method and information recording/reproducing system
JP2000293948A (en) * 1999-02-01 2000-10-20 Matsushita Electric Ind Co Ltd Medium and method for information recording and information recording and reproduction system
JP3206657B2 (en) 1999-02-05 2001-09-10 日本電気株式会社 Replacement processing method and information recording / reproducing device
MY122279A (en) 1999-03-03 2006-04-29 Sony Corp Nonvolatile memory and nonvolatile memory reproducing apparatus
US6160778A (en) 1999-03-08 2000-12-12 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording method, information recording apparatus and information reproducing apparatus
US6615363B1 (en) 1999-03-19 2003-09-02 Hitachi Maxell, Ltd. Optical disk and method of recording on the same
JP3856980B2 (en) 1999-03-31 2006-12-13 株式会社東芝 Information recording / reproducing device
KR100544175B1 (en) 1999-05-08 2006-01-23 삼성전자주식회사 Recording medium storing linking type information and method for processing defective area
JP2001023317A (en) 1999-07-02 2001-01-26 Nec Corp Optical disk recording and reproducing method, device therefor and medium storing optical disk recording and reproducing program
JP2003505813A (en) 1999-07-15 2003-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for recording information
EP1650750B1 (en) 1999-07-15 2009-07-01 Panasonic Corporation Recording method for optical recording medium
JP2001069440A (en) 1999-08-30 2001-03-16 Sanyo Electric Co Ltd Driver
AU781790B2 (en) 1999-09-23 2005-06-16 Koninklijke Philips Electronics N.V. Method of immediate writing or reading files on a disc like recording medium
JP2001110168A (en) 1999-10-13 2001-04-20 Ricoh Co Ltd Information recording and reproducing device, information recording and reproducing method, and recording medium readable by computer in which information recording and reproducing program is recorded
EP1923812A3 (en) 1999-12-28 2008-10-29 Mitsubishi Kagaku Media Co., Ltd. Data erase methods for use in an optical recording medium
US7340153B2 (en) 2000-01-11 2008-03-04 Hitachi, Ltd. Apparatus and method for recording and reproducing information
KR100647368B1 (en) 2000-01-26 2006-11-17 엘지전자 주식회사 Method for formatting of the optical disc
US7072256B2 (en) 2000-03-08 2006-07-04 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording method and information reproduction method
JP2001266464A (en) 2000-03-21 2001-09-28 Nippon Columbia Co Ltd Data recording and reproducing unit
JP3915368B2 (en) 2000-03-31 2007-05-16 株式会社日立製作所 Information recording / reproducing apparatus and recording / reproducing method thereof
US6804797B2 (en) 2000-04-08 2004-10-12 Samsung Electronics, Co., Ltd. Method of verifying defect management area information of disc and test apparatus for performing the same
US6714502B2 (en) * 2000-04-08 2004-03-30 Samsung Electronics Co., Ltd Method of verifying defect management area information of optical disc and apparatus for performing the same
US7236687B2 (en) 2000-04-21 2007-06-26 Sony Corporation Information processing apparatus and method, program, and recording medium
JP3835977B2 (en) 2000-04-25 2006-10-18 富士通株式会社 Disc type recording medium format processing method, disc type recording medium, and information recording / reproducing apparatus using the same
WO2001093035A2 (en) 2000-05-30 2001-12-06 Dataplay, Inc. Defect management system for write-once storage disk
EP1292947A2 (en) 2000-06-06 2003-03-19 Koninklijke Philips Electronics N.V. Method of immediate writing or reading files on a disc like recording medium
JP2001351334A (en) 2000-06-08 2001-12-21 Sony Corp Optical recording medium and data recorder-reproducer performing data recording-reproducing with respect to the recording medium
JP2001357623A (en) 2000-06-16 2001-12-26 Victor Co Of Japan Ltd Information processor
JP2002015507A (en) 2000-06-30 2002-01-18 Sony Corp Method for recording data and disk drive
JP2002042448A (en) 2000-07-26 2002-02-08 Pioneer Electronic Corp Device and method for information editing and information recording medium on which editing control program is recorded in computer readable manner
US6697306B2 (en) 2000-07-31 2004-02-24 Sony Corporation Data recording method, data outputting method, and data recording and/or reproducing method
JP2002056619A (en) 2000-08-08 2002-02-22 Sony Corp Disk drive device and data storing method
JP3898430B2 (en) 2000-09-18 2007-03-28 株式会社日立製作所 Optical recording apparatus and optical disk used therefor
TW497098B (en) 2000-11-04 2002-08-01 Li-Shin Jou Optical recording medium and recording method
JP3945165B2 (en) 2001-01-15 2007-07-18 セイコーエプソン株式会社 Text data processing device
US20020099950A1 (en) 2001-01-22 2002-07-25 Smith Kenneth K. Method of maintaining integrity of an instruction or data set
JP4407063B2 (en) * 2001-02-19 2010-02-03 パナソニック株式会社 Defect management information playback device
JP4037617B2 (en) 2001-03-16 2008-01-23 株式会社東芝 Defect search method
US7023775B2 (en) 2001-03-22 2006-04-04 Matsushita Electric Industrial Co., Ltd. Recording apparatus and method, and reproduction apparatus and method for recording data to or reproducing data from a write once type information recording medium, and write once type information recording medium
JP3971117B2 (en) 2001-03-22 2007-09-05 株式会社東芝 Information recording medium, information recording apparatus, information recording method, information reproducing apparatus, and information reproducing method
JP2002288937A (en) 2001-03-22 2002-10-04 Toshiba Corp Information recording medium, information recorder, information recording method, information reproducing device and information reproducing method
JP2002352522A (en) 2001-03-22 2002-12-06 Matsushita Electric Ind Co Ltd Recording method, reproducing method, recording device, reproducing device and information recording medium
JP2002298360A (en) 2001-03-30 2002-10-11 Canon Inc Method and device for recording information in information recording medium
US7092334B2 (en) 2001-04-12 2006-08-15 Hitachi-Lg Data Storage Korea, Inc. Method of detecting a defect area of a disk
TWI235927B (en) 2001-04-25 2005-07-11 Koninkl Philips Electronics Nv Methods and devices for recording or reading files on/from a sequential medium and sequential medium
JP2002329321A (en) 2001-04-27 2002-11-15 Sony Corp Recorder and player
US6766418B1 (en) 2001-04-30 2004-07-20 Emc Corporation Methods and apparatus for accessing data using a cache
JP2002334527A (en) 2001-05-11 2002-11-22 Matsushita Electric Ind Co Ltd Disk memory device, defect determination method for disk memory device, and recording medium
JP2003016737A (en) 2001-07-02 2003-01-17 Nec Microsystems Ltd Optical disk unit, program and method for managing data
JP3925144B2 (en) 2001-10-12 2007-06-06 株式会社日立製作所 Recording method and recording medium
JP2003151216A (en) 2001-11-12 2003-05-23 Hitachi Ltd Information recording method and information recorder
TWI245279B (en) 2001-11-20 2005-12-11 Lite On It Corp Method for dynamically adjusting the writing speed of a CD drive
JP4100913B2 (en) 2002-01-15 2008-06-11 株式会社リコー Information reproduction apparatus, data management information acquisition method, data management information acquisition program, storage medium, and reproduction system
WO2003060894A1 (en) 2002-01-18 2003-07-24 Koninklijke Philips Electronics N.V. Optical data storage medium and use of such medium
CN101281773A (en) 2002-01-22 2008-10-08 松下电器产业株式会社 Multi-layer information recording medium, recording apparatus, and recording method
US7123556B2 (en) 2002-01-22 2006-10-17 Matsushita Electric Industrial Co., Ltd. Multi-layered information recording medium with spare defect management areas
JP4078198B2 (en) 2002-01-31 2008-04-23 松下電器産業株式会社 Information recording medium and defect management area position determination method
US6835974B2 (en) 2002-03-14 2004-12-28 Jeng-Jye Shau Three dimensional integrated circuits using sub-micron thin-film diodes
CN101271716A (en) 2002-03-20 2008-09-24 松下电器产业株式会社 Information recording medium, recording apparatus, reproduction apparatus, recording method and reproduction method
KR20030082262A (en) 2002-04-17 2003-10-22 삼성전자주식회사 Apparatus and method for changing write speed of optical writing media during writing
US7027059B2 (en) 2002-05-30 2006-04-11 Intel Corporation Dynamically constructed rasterizers
JP2004014088A (en) * 2002-06-11 2004-01-15 Sony Corp Disk recording medium, recording method and disk drive system
JP4279515B2 (en) 2002-06-25 2009-06-17 株式会社日立グローバルストレージテクノロジーズ Recording / playback device
TWI248067B (en) 2002-07-04 2006-01-21 Mediatek Inc Method for managing spare blocks of optical disk
EP1540648A4 (en) 2002-08-03 2008-12-24 Samsung Electronics Co Ltd Information storage medium and method of recording and/or reproducing with respect to the medium
KR20040015425A (en) 2002-08-12 2004-02-19 삼성전자주식회사 High density recording medium for write-once adapting to a defect management, method of managing a defect and apparatus thereof
TWI294622B (en) 2002-08-12 2008-03-11 Samsung Electronics Co Ltd Disc with tdds and tdfl, and method and apparatus for managing defect in the same
US6826140B2 (en) 2002-08-26 2004-11-30 Bae Systems Information And Electronic Systems Integration Inc Multichannel digital recording system with multi-user detection
KR100891107B1 (en) 2002-09-10 2009-03-30 삼성전자주식회사 Method and apparatus for managing defect on disc
KR100888591B1 (en) 2002-09-10 2009-03-16 삼성전자주식회사 Method and apparatus for allotting adaptively spare area and disc thereof
US7487387B2 (en) * 2002-09-19 2009-02-03 Koninklijke Philips Electronics N.V. Recording medium defect management
TWI330831B (en) 2002-09-26 2010-09-21 Lg Electronics Inc Optical disc, method and apparatus for managing a defective area on an optical disc of write once type
US7233550B2 (en) 2002-09-30 2007-06-19 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
KR20040028469A (en) 2002-09-30 2004-04-03 엘지전자 주식회사 Method for managing a defect area on optical disc write once
JP2004127471A (en) * 2002-10-07 2004-04-22 Pioneer Electronic Corp Recording device and its control method, and reproducing device
KR100739673B1 (en) 2002-10-10 2007-07-13 삼성전자주식회사 Method for managing defect using temporary DFL and temporary DDS
KR100667749B1 (en) 2002-10-18 2007-01-11 삼성전자주식회사 Method and apparatus for managing defect using temporary DFL and temporary DDS, and disc thereof
JP4606693B2 (en) 2002-11-22 2011-01-05 ソニー株式会社 Optical disc, recording device, playback device, recording method, playback method
BRPI0317147B1 (en) 2002-12-11 2016-04-26 Lg Electronics Inc apparatus and method for recording data to a recording medium only once, apparatus and method for reproducing data from a recording medium only once and said recording medium only once
EP1579443A1 (en) 2002-12-11 2005-09-28 LG Electronics Inc. Method and apparatus for managing overwrite on an optical disc write once
JP4224391B2 (en) * 2002-12-25 2009-02-12 パナソニック株式会社 Write-once information recording medium, information recording method, information reproducing method, information recording apparatus, and information reproducing apparatus
US7330409B2 (en) 2003-01-13 2008-02-12 Samsung Electronics Co., Ltd. Disc with temporary defect management area, and disc defect management method and apparatus therefor
US7372788B2 (en) 2003-01-14 2008-05-13 Lg Electronics Inc. Method for managing defective area on write-once optical recording medium, and optical recording medium using the same
US7672204B2 (en) 2003-01-27 2010-03-02 Lg Electronics Inc. Optical disc, method and apparatus for managing a defective area on an optical disc
TWI314315B (en) 2003-01-27 2009-09-01 Lg Electronics Inc Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
JP4110000B2 (en) 2003-01-28 2008-07-02 株式会社ルネサステクノロジ Storage device
US20040160799A1 (en) 2003-02-17 2004-08-19 Park Yong Cheol Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc
KR101051000B1 (en) 2003-02-19 2011-07-26 엘지전자 주식회사 High Density Optical Discs and the Illegal Copy Determination Method
TWI335587B (en) 2003-02-21 2011-01-01 Lg Electronics Inc Write-once optical recording medium and defect management information management method thereof
US7188271B2 (en) 2003-02-25 2007-03-06 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
KR101068678B1 (en) 2003-03-03 2011-09-30 파우스, 스테판, 씨. Method and arrangement for searching for strings
US7385889B2 (en) 2003-03-03 2008-06-10 Samsung Electronics Co., Ltd. Method and apparatus for managing disc defect using temporary DFL and temporary DDS including drive and disc information disc with temporary DFL and temporary DDS
JP4658614B2 (en) 2003-03-04 2011-03-23 エルジー エレクトロニクス インコーポレイティド Recording method and apparatus for optical recording medium
BRPI0406181B1 (en) 2003-03-08 2016-04-26 Samsung Electronics Co Ltd method of preserving a state of recording data from a recording medium, method of recording data to a recording medium, recording and / or reproducing apparatus, method of finalizing a recording medium, recording media having an area lead-in area, a data area, and a lead-out area, and computer readable media encoded with processing instructions
JP4026518B2 (en) 2003-03-12 2007-12-26 ソニー株式会社 Recording medium, recording apparatus, and recording method
JP4026519B2 (en) 2003-03-12 2007-12-26 ソニー株式会社 Recording medium, recording apparatus, reproducing apparatus, recording method, reproducing method
JP4026517B2 (en) 2003-03-12 2007-12-26 ソニー株式会社 Recording medium, recording apparatus, and recording method
US7313066B2 (en) 2003-03-13 2007-12-25 Samsung Electronics Co., Ltd. Write once disc allowing management of data area, method of managing the data area, and method for reproducing data from write once disc
EP1602104B1 (en) 2003-03-13 2019-08-07 Samsung Electronics Co., Ltd. Apparatus for recording data on a write once disc
RU2005127337A (en) 2003-03-13 2006-02-10 Самсунг Электроникс Ко. Лтд. (Kr) ONE-TIME RECORDED DISC, METHOD FOR DISTRIBUTING A DATA AREA FOR ONE-RECORDED DISC, DEVICE AND METHOD FOR PLAYING DATA FROM SUCH A DISC
TWI328805B (en) 2003-03-13 2010-08-11 Lg Electronics Inc Write-once recording medium and defective area management method and apparatus for write-once recording medium
ES2366474T3 (en) 2003-03-17 2011-10-20 Pioneer Corporation WRITE TYPE REGISTRATION SUPPORT ONCE, REGISTRATION DEVICE AND REGISTRATION METHOD FOR A WRITE TYPE REGISTRATION SUPPORT ONLY ONCE AND REPRODUCTION DEVICE AND REPRODUCTION METHOD FOR THIS REGISTRATION TIME SUPPORT.
KR100739681B1 (en) 2003-03-24 2007-07-13 삼성전자주식회사 Method of overwriting in write-once information storage medium
KR101278495B1 (en) 2003-04-14 2013-07-02 코닌클리케 필립스 일렉트로닉스 엔.브이. Device for and method of recording information
US8184513B2 (en) 2003-04-15 2012-05-22 Samsung Electronics Co., Ltd. Recording/reproducing method, recording/reproducing apparatus, optical recording medium, and computer readable recording medium having recorded thereon program for the recording/reproducing method
WO2004093035A1 (en) 2003-04-15 2004-10-28 Ds Enterprise, Inc. An instruction plate and signage using photo luminescent porcelain enamel
KR100739675B1 (en) 2003-04-26 2007-07-13 삼성전자주식회사 Method of managing defect in recording medium, recording medium drive device and the recording medium therefor
KR20050119703A (en) 2003-05-09 2005-12-21 엘지전자 주식회사 Recording medium having data structure for managing at least a data area of the recording medium and recording and reproducing methods and apparatuses
RU2377667C2 (en) 2003-05-09 2009-12-27 Эл Джи Электроникс Инк. Recording medium with data structure for managing at least recording medium data area, and methods and devices for recording and playing back
JP3861856B2 (en) 2003-06-13 2006-12-27 ソニー株式会社 Recording / reproducing apparatus and recording / reproducing method
EP1647014B1 (en) 2003-07-04 2012-09-05 LG Electronics Inc. Method and apparatus for managing a overwrite recording on a write-once optical disc
CN102074258A (en) 2003-07-08 2011-05-25 松下电器产业株式会社 Manufacturing method of write-once recording medium, recording method, and reproduction apparatus
BRPI0412556A (en) 2003-07-14 2006-09-19 Lg Electronics Inc physical recording medium, method and apparatus for recording management information on the same
KR20050009031A (en) 2003-07-15 2005-01-24 엘지전자 주식회사 Method for recording management information on optical disc write once
US7313065B2 (en) * 2003-08-05 2007-12-25 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording/reproducing management information on/from optical disc
JP4145749B2 (en) * 2003-08-12 2008-09-03 パイオニア株式会社 Information recording medium, recording apparatus and recording method for information recording medium, reproducing apparatus and reproducing method for information recording medium, computer program for recording or reproduction control, and data structure including control signal
CA2536113A1 (en) 2003-08-21 2005-03-03 Koninklijke Philips Electronics N.V. Method for recording information on a multi layer record carrier, and record carrier for use by such method
CA2537888C (en) 2003-09-08 2015-03-03 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon
BRPI0414208A (en) 2003-09-08 2006-10-31 Lg Electronics Inc method and apparatus for recording management information, physical recording medium
MXPA06002622A (en) 2003-09-08 2006-06-05 Lg Electronics Inc Write-once optical disc, and method and apparatus for recording management information thereon.

Also Published As

Publication number Publication date
JP4838586B2 (en) 2011-12-14
AU2003265116A1 (en) 2004-09-09
CN101261867B (en) 2012-05-02
US20100085852A1 (en) 2010-04-08
CN1754206A (en) 2006-03-29
ES2329034T3 (en) 2009-11-20
JP2006514397A (en) 2006-04-27
CA2515435A1 (en) 2004-09-02
US7929391B2 (en) 2011-04-19
JP2007042279A (en) 2007-02-15
AU2003265116B2 (en) 2009-07-23
US20040193946A1 (en) 2004-09-30
EP2088598A3 (en) 2009-08-19
TW200416688A (en) 2004-09-01
US7643390B2 (en) 2010-01-05
CN101261867A (en) 2008-09-10
KR101067777B1 (en) 2011-09-28
RU2334289C2 (en) 2008-09-20
EP1573723B1 (en) 2009-07-08
WO2004075180A1 (en) 2004-09-02
RU2005125957A (en) 2006-06-10
BR0318116A (en) 2006-02-07
MXPA05008822A (en) 2005-10-18
EP1573723A1 (en) 2005-09-14
DE60328310D1 (en) 2009-08-20
ATE436069T1 (en) 2009-07-15
CN100385512C (en) 2008-04-30
EP2088598A2 (en) 2009-08-12
KR20050101345A (en) 2005-10-21
TWI335587B (en) 2011-01-01

Similar Documents

Publication Publication Date Title
CA2515435C (en) Write-once optical recording medium and defect management information management method thereof
EP1609135B1 (en) Write-once recording medium and defective area management method and apparatus for write-once recording medium
US7911905B2 (en) Write-once optical disc, and method and apparatus for recording/reproducing management information on/from optical disc
US7663991B2 (en) Write-once recording medium preserving data-recording status, method of preserving data-recording status of a write-once recording medium, medium including computer readable code for the same, and recording and/or reproducing apparatus therefor
JP2006512699A (en) Method and apparatus for recording management information on an optical disc that can be recorded only once and an optical disc that can be recorded only once
US7594147B2 (en) Method and apparatus for recording data on and reproducing data from a recording medium and the recording medium
KR100964683B1 (en) Method for recording management information on optical disc write once

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20231003