CA2520508A1 - Hybrid interlocking proximal femoral fracture fixation - Google Patents

Hybrid interlocking proximal femoral fracture fixation Download PDF

Info

Publication number
CA2520508A1
CA2520508A1 CA002520508A CA2520508A CA2520508A1 CA 2520508 A1 CA2520508 A1 CA 2520508A1 CA 002520508 A CA002520508 A CA 002520508A CA 2520508 A CA2520508 A CA 2520508A CA 2520508 A1 CA2520508 A1 CA 2520508A1
Authority
CA
Canada
Prior art keywords
tubular member
screw
screws
bone
bores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002520508A
Other languages
French (fr)
Inventor
Marc Waisman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORTHOMEDITEC Ltd
Original Assignee
Orthomeditec Ltd.
Marc Waisman
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orthomeditec Ltd., Marc Waisman filed Critical Orthomeditec Ltd.
Publication of CA2520508A1 publication Critical patent/CA2520508A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/74Devices for the head or neck or trochanter of the femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/74Devices for the head or neck or trochanter of the femur
    • A61B17/742Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/64Devices extending alongside the bones to be positioned
    • A61B17/645Devices extending alongside the bones to be positioned comprising a framework
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/64Devices extending alongside the bones to be positioned
    • A61B17/6416Devices extending alongside the bones to be positioned with non-continuous, e.g. hinged, pin-clamp connecting element

Abstract

A novel internal fixation for fixing an intracapsular fracture of a femoral neck using a minimally invasive procedure is provided. The fixation apparatu s (Figure 1) includes a tubular member (12) having sharp end (16) and a blunt end (18) that is adapted to be implanted while slightly crossing the fractur e line. Three lag screws (20) are adapted to pass through passages (56) in the tubular member (12) and extend outwardly beyond the sharp end (16) while threads (24) in the lag screws (2) allow for compression of bone fragments. In extracapsular and subtrochanteric fractures, the internal fixation can be incorporated with external- interlocking apparatus (100) that comprises pin screws (104) that are adapted to be inserted through bores (58) laterally provided on the tubular member (12), so as to interlock the tubular member (12), and additional pin screws (106) that are nailed to a distal bone fragment (102). A connecting member (114) is adapted to secure the pin screw s together and allows reduction, correction and fixation in the intra and post - operative period.

Description

HYBRID INTERLOCKING PROXIMAL FEMORAL
FRACTURE FIXATION
FIEL~ OF THE INVEI~TfON
The present invention relates to fraciure fixation. f'Ulore particularly, the present invention relates to hybrid interlocking proximal femoral fracture fixation.

BACKGROUND OF THE INVENTION
Internal fixation with nails and plates is a well-known surgical procedure used in orthopaedics and traumatology for stabilization of proximal femoral fractures. This procedure is considered as a classical open major surgery carrying out several possibilities of serious complications. It was considered in the past that rigidity of the fracture fixation site is advantageous, therefore, many of the available internal fixation devices are built so as to eliminate all movements (except of sliding possible motion) at the fracture site. It is now generally accepted that some micro-movements at the fracture site are essential for better fracture healing and even for stimulating callus formatio~~a:
However, this conception is not valid for intracapsular femoral neck fractures.
Internal fixation bears many disadvantages including the fact that the surgery is highly expensive and complex, which may be complicated by significant blood loss and infection. There is a lack of ability to perform post-operative re-fixati~n, the morbidity and mortality rates are high and as a consequence of the surgery, there is a prolonged hospitalization related to peri-operative complications. The death rates following internal fixation in
2 cases of subcapital (intracapsular) fractures are intimidating: 3% in the hospital, 25% at one year and additional 40% at two years following the surgery. 30% experience avascular necrosis, 43% non-union and 50%
experience peri-operative - postoperative local and systemic complications.
The data is collected from Clinical Grthopaedics and Related Research 343:22-23, 1993; Clinical ~rthopaedics and Related Research 399:119-123, 2002. These papers are incorporated herein as references; however, similar results were established and published in many other scientific reviewed publications. The consequences of interkrochanteric-pertrochanteric (extracapsular) fractures are no less frightening. 15% experience fixation failure, 10% dies at one year; 20% at two year, 20% complicated with infection, and 30% with mal-union. Similar consequences are found in subtrochanteric fractures.
External fixation using nails and screws connected to the femoral head, neck, and shaft through an external device provides the possibility to stabilize the fracture. This procedure is done using minimal invasive interventional surgery.
Clinical evidences clearly indicate that stabilization of a peritrochanteric femoral neck fracture by external fixation markedly reduces mortality, reduces the incidence of severe complications and improve fracture outcomes at the immediate postoperative time in comparison with the classical internal fixation.
External fixation has other advantages such as decreased length of hospitalization and medical costs, reduces post-operative fracture pain, facilitates the access to the patient nursering care, reduces need for forced recumbency as well as risk of pressure sores, pulmonary embolism, pulmonary infection etc. External fixation is a safe and reliable method of achieving osseous stability in trochanteric femoral fractures. Generally, external fixation imparts versatility, ease to apply with minimal operative time, bleeding and tissue injury.
A percutaneous connection of a fractured upper part of the femur is disclosed in US patent no. 5,429,641. Another example of an external trochanter splint is disclosed in US patent no. 5,723,096. European patent application EP 0940124A1 teaches an external fixation device with changeable angle for trochanteric fractures. The devices that are disclosed
3 herein as references as well as other similar devices for external fixation of trochanteric femoral fractures have many disadvantages and complications.
One of the dangerous occurrences is the penetration of the neck screws into the acetabulum due to severe osteoporosis. Other disadvantages are hardware failure, the device is fiaced in a lateral posterior bulging position that is uncomfortable, and there is an immense difficulty in the supine or sitting position of the patient.
It is a long felt need to provide an external device that eliminates the severe disadvantages of the available devices for eazternal fixation of peritrochanteric fractures, which is one of the fixations that results in several complications.
As for the internal fixation, specially designed screws were developed, for example a screw member that is disclosed in PCT application published as WO00/67653, an intramedullary cavity nail disclosed in EP 0853923, or an anchor that is disclosed in US patent application 2002/0143333. Another commercially available fixation is sold by Fixano s.a. by the commercial name osteosynthesis of unstable femoral neck fractures by D.S.S. system (double sliding screws).
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a hybrid interlocking proximal femoral fracture fixation that enables minimal invasive fracture fixation. In this way, early callus formation in extracapsular fractures occurs.
It is another object of the present invention to provide an internal fixation for femoral neck intracapsular fractures that exhibits continuous compression by sliding properties.
It is yet another object of the present invention to provide a hybrid interlocking proximal femoral fracture fixation that combines a new and unique internal nail and an external non-rigid fixator, for extracapsular fractures.
An additional object of the present invention is to provide a fixation technique that is easy to use, and requires relatively short and minimal procedure for the surgeon.
4 It is therefore provided in accordance with one aspect of the present invention, an internal fixation for fixing an intracapsular fracture of a femoral neck, comprising:
a tubular member having a sharp end and a blunt end;
at least one passage provided in said t~abLrlar member wherein said at least one passage extends from said sharp end to said blunt end;
at least one screw adapted to pass through said at least one passa~c~e and e~ztend outwardly beyond said sharp end;
thread provided in a portion of said at least one screw that is adapted to extend beyond said sharp end;
screw head is provided in said at least one screw so as to prevent said at least one screw from being fully inserted into said at least one passage;
Whereby after said tubular member is implanted in the bone crossing in about 1 or 2 milimeters the fracture line, said at least one screw is inserted through said at least one passage so that compression of fragments of the bone is maintained in order to facilitate the healing process.
Furthermore, in accordance with another preferred embodiment of the present invention, said tubular member is a hollow tube.
Furthermore, in accordance with another preferred embodiment of the present invention, said hollow tube is provided with a profile such as a circular, oval, triangular, or rectangular profile.
Furthermore, in accordance with another preferred embodiment of the present invention, said hollow tube is provided with holes.
Furthermore, in accordance with another preferred embodiment of the present invention, said hollow tube can be filled with bone grafting materials so as to promote bone healing.
Furkhermore, in accordance with another preferred embodiment of the present invention, said tubular member combined with said at least one screw perform compression and sliding motion.

Furthermore, in accordance with another preferred embodiment of the present invention, three lag screws are provided to correspond three passages that are provided in said tubular member.
Furthermore, in accordance with another preferred embodiment of the
5 present invention, said tubular member is inserted to the femoral neclz in an angle of about 95-1 ~ 0 degrees in respect with an axial line of the femoral shaft so that an inferior screw of said three lag screws is positioned in a direction of an the inferior quadrant of the femoral head so as to slightly touch a the strong cortical bone of a calcar femori of the femoral neck.
Furthermore, in accordance with another preferred embodiment of the presenfi invention, said three screws are adapted to penetrate an inferior quadrant of the femoral head, preferable distally of the teres ligament vascularity.
Furthermore, in accordance with another preferred embodiment of the present invention, wherein said tubular member is provided with bone substitutes allowing bone grafting into said tubular member.
Furthermore, in accordance with another preferred embodiment of the present invention, said fixation is further interlocked with external fixator.
It is further provided in accordance with another aspect of the present invention, a hybrid interlocking fixation apparatus for fixating a fracture in the femoral neck or the peritrochanteric region, the apparatus comprising:
a tubular member having a sharp end and a blunt end;
at least one passage provided in said tubular member wherein said at least one passage extends from said sharp end to said blunt end;
at least one screw adapted to pass through said at least one passage and extend outwardly beyond said sharp end;
at least two bores are laterally provided on said tubular member wherein said at least two bores are provided on opposite sides of said tubular member;
at least four pin screws wherein at least two pin screws are adapted to interlock said tubular member and said at least two pin screws and at least two pin screw are nailed in a distal bone
6 fragment so as to assure stability of the tubular member within the bone;
a connecting member adapted to secure said at least two pin screws together;
whereby said tubular member is implanted in the femoral neck, said at least one screw is inserted through said at least one passage so that compression and sliding of the fractured fragments is maintained, at least one pin screw is nailed through said tubular member through said at least two bores and at least two pin screw is pined in said distal bone fragment wherein the pin screws are interconnected by said connecting member in order to facilitate the healing process and wherein said connecting member's connections can be corrected post-operatively.
Furthermore, in accordance with another preferred embodiment of the present invention, three passages are provided in said tubular member.
Furthermore, in accordance with another preferred embodiment of the present invention, three screws are provided to pass through said three passages.
Furthermore, in accordance with another preferred embodiment of the present invention, six bores are provided in said tube wherein said six bores are organized so that three of the six bores are provided opposite other three of said six bores and wherein three pin screws are adapted to be inserted through said six bores from one side of said tubular member to another side.
Furthermore, in accordance with another preferred embodiment of the present invention, said connecting member comprises two clamps and rotating screwing rods, and wherein one clamp clamps the screw pins that are nailed to the distal bone fragment and a second clamp clamps the screw pins that are screwed into said tubular member.
Furthermore, in accordance with another preferred embodiment of the present invention, a distance between said one clamp and said second clamp is changeable by rotation of said rotating screwing rods that are connected to each clamp by two bolts having spherical head wherein said rotating screwing rods are screwed onto said two bolts.
7 Furthermore, in accordance with another preferred embodiment of the present invention, malpositioning of the hybrid interlocking fixation is corrected in intra and post-operative period.
Furthermore, in accordance with another preferred embodiment of the present invention, said tubular member is pr~vided with a plurality ~f small wall holes.
Furthermore, in accordance with another preferred embodiment of the present invention, the apparatus is provided with radiolucent materials or other metals.
Furthermore, in accordance with another preferred embodiment of the present invention, the apparatus can be disposable.
Furthermore, in accordance with another preferred embodiment of the present invention, said tubular member is provided with bone substitutes allowing bone grafting into said tubular member.
And in accordance with yet another aspect of the present invention, it is provided a method for fixing an intracapsular fracture of a femoral neck, the method comprising:
providing an internal fixator comprising a tubular member having a sharp end and a blunt end;
at least one passage provided in said tubular member wherein said at least one passage extends from said sharp end to said blunt end;
at least one screw adapted to pass through said at least one passage and extend outwardly beyond said sharp end;
thread provided in a portion of said at least one screw that is adapted to extend beyond said sharp end;
screw head is provided in said at least one screw so as to prevent said at least one screw from being fully inserted into said a~fi least one passage;
perForming 2-3 cm long skin incision at the trochanter region;
inserting said tubular member to the femoral neck in an angle of about 95-110 degrees in respect with an axial line of the femoral shaft so that an inferior screw of said at least one lag screws is
8 adapted to be positioned in a direction of an inferior quadrant of the femoral head so as to slightly touch a strong cortical bone of the calcar femori, wherein said tubular member is crossing in about 1 or 2 milimeters the fracture line;
screwing said at least one lag screw.
Furkhermore, in accordance with another preferred embodiment of the present invention, the method further comprising:
providing at least two bores on said tubular member wherein said at least two bores are provided on opposite sides of said tubular member;
interlocking at least two pin screws in said at least two bores;
nailing at least two pin screws in a distal bone fragment;
providing a connecting member adapted to secure the pin screws together.
Additionally, in accordance with another preferred embodiment of the present invention, the method further comprising correction, reduction and fixation in intro and post-operative period.
BRIEF DESCRIPTION OF THE FIGURES
In order to better understand the present invention and appreciate its practical applications, the following Figures are attached and references herein. Like components are denoted by like reference numerals.
It should be noted that the figures are given as examples and preferred embodiments only and in no way limit the scope of the present invention as defined in the appending Description and Claims.
Figure 1 illustrates an isometric view of a hybrid interlocking proximal femoral fracture fiazation in accordance with a preferred embodiment of the present invention, and its positioning in a femoral bone.
9 Figures 2a-c illustrate views of a nail-cage implant in accordance with a preferred embodiment of the present invention.
Figure 3 illustrates an isometric view of a nail cage implant in accordance with another preferred embodiment of the present invention.
Figure 4 illustrates an isometric view of a connecting member in accordance with a preferred embodiment of the present invention, connecting the external fia~ation.
Figure 5 illustrates an exploded view of the hybrid interlocking proximal femoral fracture fixation shown in Figure 1.
Figure 6 illustrates an isometric view of the nail-cage implant fixed in an internal fixation in accordance with a preferred embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION AND THE FIGURES
The present invention provides a new and unique femoral fracture fixation that comprises an internal fixator and an external fixator.
Basically, the internal fixator for an intracapsular fracture of a femoral neck comprises a tubular member having a sharp end and a blunt end. The tubular member can be a hollow member or a solid member. At least one passage extending from the sharp end to the blunt is provided in the tubular member wherein the passages are adapted to accommodate lag screws. The screws are adapted to extent outwardly beyond said sharp end and into the bone so that compression of the fracture is maintained in order to facilitate the healing process, therefore, the portion of the screws that extend beyond the sharp end is provided with a thread. It is preferable to provide 3 passages and corresponding lag screws. The tubular member will be referred in this text also as a nail-cage. The nail-cage and the lag screws can be used as "stand alone" as a novel and unique internal fixator of intracapsular femoral neck fractures and as an alternative for the classic cannulated screws, allowing bone grafting into the nail-cage. The nail-cage and the lag screws are mainly intended for Garden 1-2 and 3 subcapital femoral fractures.
The nail-cage is inserted into the bone in a minimal invasive surgery. The 5 nail-cage is inserted preferably through a 2-3 cm lone shin incision. The external parks of the fixator are suitable to be removed in the out-patient follow up, without anesthesia. The external parts of the device are preferably made of titanium or other radiolucent materials such as aluminum 70 that is approved by F~~ and are optionally disposable.
10 Reference is now made to Figure 1 illustrating an isometric view of a hybrid interlocking proximal femoral fracture fixation in accordance with a preferred embodiment of the present invention, and its positioning in a femoral bone. The femoral bone and especially its neck are subjected to severe injuries that are difficult to fixate. Generally, the fracture fixation device of the present invention is a combination of internal and external fixation by interlocking system that connects the fractured upper fragment to the femoral shaft by a modular fixator. It is possible to correct the postoperative positioning in any case of varus or valgus deformity, rotation angulation shortening by distraction, compression, rotation, angulation, or translation.
Causes for malpositioning can be related to unskilled operative technique as well as to low bone quality.
Hybrid device 10 comprises a nail-cage 12 that is adapted to be implanted inside the femoral neck 14.. Nail-cage 12 is preferably a hollow tubular member having a sharp end 16 and a blunt end 18. Optionally,. the member can be a full structure instead of hollow. The hollow in nail-cage 12 allows drainage through the center hole of the nail so as to reduce the high pressure intracapsular hemarthrosis that develops from the fracture hemorrhage. The drainage reduces damage to the poor remaining vascularity and consequently reduces one of the common causes of avascular necrosis in the femoral head. Nail-cage 12 is inserted while crossing the fracture line by about 1-2 mm and allows bone grafting into the cage with autograft, allograft or other bone substitute.
Preferably three compression screws 20 (lag screws) are adapted to pass through nail-cage 12 from its blunt end 18 to its sharp end 16 so that the
11 screws are extended proximally through the sharp end and screwed inside the bone. The extension of the screws beyond nail-cage 12 provides minimal metal volume penetration to the femoral head using only the three lag screws up to the subchondral bone. iVlinimal metal volume penetration prevents or avoids further damage to the vascularity in the femoral head. Each compression screw 20 is provided with a screw head 22 that prevents the screw from totally advancing into nail-cage 12. Compression screws 20 are used to compress the fracture so as to assure fast healing. The nail cage combined with the compression screws are adapted to perform sliding motion as well as compression. The compression is performed from blunt end 18 of the nail and the screw heads, anchoring the lateral trochanteric cortical bone around the blunt end of the nail-cage. The extended portion of compression screws 20 is provided with thread 24 so as to facilitate the compression process. Nail-cage 12 and compression screws 20 provide the possibility to introduce chip bone grafting up to the fracture line due to the nail's unique and special structure. In the case the nail-cage is hollow, the interior of nail-cage
12 can be filled with bone grafting materials so as to promote rapid bone healing.
Nail-cage 12 is inserted into the femoral neck by minimal invasive procedure. The optimal angle of penetration of the nail-cage and the screws is between 100 to 110 degrees in respect of the femoral axis.. In this way, the inferior screw of compression screws 20 is positioned so that it slightly touches the strong cortical bone of the calcar femori. All three compression screws 20 penetrate only the inferior half of the femoral head, preferable distally of the teres ligament vascularity, avoiding damage to the capilar spongeous intraosseous circulation and further reduce the possibility of avascular necrosis.
External fixator 100 connects nail-cage 12 to the distal bone fragment 102. External fixator 100 comprises preferably six pin-screws from which three pin-screws 104. are pined into nail-cage 12 and additional three pin screws 106 are pined in distal bone fragment 102. All six pin-screws, 104 and 106, are interconnected in a connecting member 108 comprising an upper clamp 110, which clamps pin-screws 104, and a lower clamp 112, which clamps pin-screws 106. Connecting member 108 further comprises preferably two rotating screwing rods 114 that connect upper clamp 110 and lower clamp 112. rotating screwing rods 114 have changeable length and connect the clamps in a manner that allows a certain degree of freedom in the positioning of the clamps in respect with each other. .4 comprehensive description is provided herein after.
Deference is now made to Figures 2a-c illustrating views of a nail-cage implant in accordance with a preferred embodiment of the present invention.
The nail cage implant is adapted to be incorporated in the hybrid infierlocking fiazation of the present invention. bail-cage 12 is a hollow tubular member having a triangular profile that is provided with sharp end 16 and blunt end and a hollow 55 that passes through the nail. Nail-cage 12 is adapted to be inserted to the femoral neck by forcing it into the bone through sharp end 18.
Nail-cage 12 is preferably made of a biocompatible metal such as titanium.
The nail-cage can be left in place in case of bone grafting or removed after the bone is healed; however, the nail-cage as well as the compression screws that pass through it may be made from a biodegradable material.
It is preferable to provide the wall of nail-cage 12 with a plurality of relatively small holes 54 so as to allow the bone to grow into the nail-cage in order to allow contact and bone growing together with the grafting materials. It is optional to introduce autologous bone graft or osteoconductive-osteoinductive materials into nail-cage 12 (not shown in the Figures) so as to encourage bone grow.
Nail-cage 12 is provided with passages and preferably three passages 56 that pass through the wall of the tube and extend from sharp end 16 to blunt end 18. Passages 56 are provided with openings at both the sharp end and the blunt end through which compression lag screws 20 (shown in Figure 1 ) may be screwed after the implantation of nail-cage 12. The nail cage of the present invention has the properties of compression and sliding when it is combined with the three lag screws.
Deference is now made to Figure 6 illustrating illustrates an isometric view of the nail-cage implant fixed in an internal fixation in accordance with a preferred embodiment of the present invention. mail-cage 12 is implanted within a femoral bone 13 while three lag screws 20 are interlocked within nail-cage 12.

WO 2004/084761 , PCT/IL2004/000259
13 Returning to Figure 2, nail-cage 12 is further provided with bores, and preferably six bores wherein three bores 58 are provided in a row on one side of the tube while the other three bores (can not be seen in the Figures) are provided in a row opposite three bores 58. both opposite rows of bores are shifted in respect with each other, e.g. one row is closer to blunt end 18 and three bores 58 are closer t~ sharp end 16. Ail bores are provided with an external thread so as to allow compatible screws to be screwed through them.
The bores are adapted to receive three pin screws 104 of the external fixation (shown in Figure 1) to be screwed through them from one side to the other while maintaining a predetermined angle between the nail cage and the pin screws.
Reference is now made to figure 3 illustrating an isometric view of a nail cage implant in accordance with another preferred embodiment of the present invention. Nail-cage 200 is a hollow tubular member having a circular profile.
Similarly to the nail-cage shown herein before, nail-cage 200 is provided with a sharp end 16 adapted to be pushed into the bone and a blunt end 18.
preferably three passages 56 adapted to receive lag screws (the screws are not shown in the Figure).
Returning to Figure 7, it is clearly shown that three compression screws 20 are inserted through passages 56 and three pin screws 104 are inserted through six lateral bores 58 and 60. As mentioned herein before, pin screws 104 are interconnected to pin screws 106 that are nailed into distal bone fragment 102. Pin screws 104 are connected to nail-cage 12 in an angle that directs the external fixation to anterior and lateral directions. In this way, the external fixation protrudes in the anterolateral proximal part of the patient's thigh, without disturbing the hip flexion or the lying supine patient position.
It is important to notice that the nail-cage can be implanted in order to fixate a fracture in the femoral neck using the compression fag screws wifihout employing the external fixation as shown in Figure 6.
Reference is now made to Figure 4 an isometric view of a connecting member in accordance with a preferred embodiment of the present invention, connecting the external fixation. The connecting member is a part of the external fixation of the present invention. Connecting member 108 is adapted to externally fixate and support the nail-cage that is implanted within the
14 fiemoral neck. Connecting member 108 is designed so as to allow intra and post-operative corrections. Therefiore, connecting member 108 comprises an upper clamp 110, which clamps pin-screws 104, and a lower clamp 112, which clamps pin-screws 106 (the pin-screws are not shown in Figure 3).
S connecting menlber 108 further comprises prefierably two rotating screwing rods 114 that connect upper clamp 110 and lower clamp 112.
Upper clamp 710 is provided with three bores 150 that are compatible to allow pin screws 104 to pass through them. Pin screws 104 are fastened in bores 150 Casing three Allen screws 152 (the pin screws are not shown in Figure 3). 1n a similar manner, a portion of lower clamp 112 is provided with three bores 154 through which pin screws 106 (not shown in the figure) can be inserted and fiastened using three Allen screws 156.
rotating screwing rods 114 that connect upper clamp 110 and lower clamp 112 are preferably tubes provided with inner threads and preferably 1 S hexagonal aid 158 that facilitates rotation of rotating screwing rods 114 so as to adjust the distance and the angles between upper clamp 110 and lower clamp 112. rotating screwing rods 114 are provided with bolts 160 that are screwed inside the tubes through all four openings of the tubes. Each bolt 160 is provided with a spherical head 162 wherein the spherical head is firmly held in the corresponding clamp. Rotating screwing rods 114 about their elongated axis when the bolts heads are held in the clamps changes the distance between the two clamps so as to enable changes in the orientation of the external fixation post-operatively. Each bolt head 162 is held in the clamp in a recess that is adapted to be compressed onto the bolt head using Allen 2S screws 164. When the physician wants to change the angle of rotating screwing rods 114 in regard with the clamps, he releases Allen screws 164 so that the spherical heads can rotate in the clamp's recess. In the right position, the physician fastens Allen screws 164. It is important to notice the minimal use of parts so as to facilitate the work of the surgeon with the device of the present invention.
Reference is now made to Figure 4 illustrating an exploded view of the hybrid interlocking proximal femoral firacture fiixation shown in Figure 1. ft is clearly shown that the amount of parts that comprise the apparatus of the present invention is minimal and effective. Nail cage 12 is adapted to be implanted in the femoral neck and receive compression screws 20. There are cases in which the internal fixation is enough and there is no need in the external fixation. In cases the external fixation is required; pin screws 104 are inserked through nail cage 12 while pin screws 106 are nailed into the distal 5 bone fragment. The pins are interconnected in the connecting member that comprises clamps 110 and 106 as well as rotating screwing rods 11q.. ~ne of the important features of the connecting member of the present invention is in its versatility using only ~411en screws and length changes in the rotating screwing rods.
10 The device of the present invention is intended to be used for intracapsular and extracapsular (including subtrochanteric) femoral fractures.
One of the important features of the hybrid interlocking fixation apparatus of the present invention is that the procedure of the present invention is of minimal invasive surgery instrumentations, mainly based on using multiple
15 tissues penetrations by pin-screws. This fact facilitates the use of robotics for fast, exact, and controlled operative steps.
The external parts of the hybrid interlocking fixation apparatus are suitable for removal in the outpatient follow-up without anesthesia. The internal nail-cage and screws may be left in place. The nail-cage and screws can be made of bio-resorbable materials that are resorbed after some time.
The parts of the fixator that are inserted into the body can be made with radiolucent materials so as to facilitate the x-ray imaging follow-up of the bone healing process.
It is optional to provide the device of the present invention with disposable parts so as to reduce the costs.
It should be clear that the description of the embodiments and attached Figures set forth in this specification serves only for a better understanding of the invention, without limiting its scope as covered by the following Claims.
It should also be clear that a person skilled in the art, after reading the present specification can make adjustments or amendments to the attached Figures and above described embodiments that would still be covered by the following Claims.

Claims (25)

CLAIMS:
1. An internal fixation for fixing an intracapsular fracture of a femoral neck, comprising:
a tubular member having a sharp end and a blunt end;
at least one passage provided in said tubular member wherein said at least one passage extends from said sharp end to said blunt end;
at least one screw adapted to pass through said at least one passage and extend outwardly beyond said sharp end;
thread provided in a portion of said at least one screw that is adapted to extend beyond said sharp end;
screw head is provided in said at least one screw so as to prevent said at least one screw from being fully inserted into said at least one passage;
Whereby after said tubular member is implanted in the bone crossing in about 1 or 2 milimeters the fracture line, said at least one screw is inserted through said at least one passage so that compression of fragments of the bone is maintained in order to facilitate the healing process.
2. The internal fixation as claimed in Claim 1, wherein said tubular member is a hollow tube.
3. The internal fixation as claimed in Claim 2, wherein said hollow tube is provided with a profile such as a circular, oval, triangular, or rectangular profile.
4. The internal fixation as claimed in Claim 1, wherein said hollow tube is provided with holes.
5. The internal fixation as claimed in Claim 1, Wherein said hollow tube can be filled with bone grafting materials so as to promote bone healing.
6. The internal fixation as claimed in Claim 1, wherein said tubular member combined with said at least one screw perform compression and sliding motion.
7. The internal fixation as claimed in Claim 1, wherein three lag screws are provided to correspond three passages that are provided in said tubular member.
8. The internal fixation as claimed in Claim 7, wherein said tubular member is inserted to the femoral neck in an angle of about 95-110 degrees in respect with an axial line of the femoral shaft so that an inferior screw of said three lag screws is positioned in a direction of an the inferior quadrant of the femoral head so as to slightly touch a the strong cortical bone of a calcar femori of the femoral neck.
9. The internal fixation as claimed in Claim 6, wherein said three screws are adapted to penetrate an inferior quadrant of the femoral head, preferable distally of the teres ligament vascularity.
10. The internal fixation as claimed in Claim 1, wherein said tubular member is provided with bone substitutes allowing bone grafting into said tubular member.
11. The internal fixation as claimed in Claim 1, wherein said fixation is further interlocked with external fixator.
12. A hybrid interlocking fixation apparatus for fixating a fracture in the femoral neck or the peritrochanteric region, the apparatus comprising:
a tubular member having a sharp end and a blunt end;

at least one passage provided in said tubular member wherein said at least one passage extends from said sharp end to said blunt end;
at least one screw adapted to pass through said at least one passage and extend outwardly beyond said sharp end;
at least two bores are laterally provided on said tubular member wherein said at least two bores are provided on opposite sides of said tubular member;
at least four pin screws wherein at least two pin screws are adapted to interlock said tubular member and said at least two pin screws and at least two pin screw are nailed in a distal bone fragment so as to assure stability of the tubular member within the bone;
a connecting member adapted to secure said at least two pin screws together;
whereby said tubular member is implanted in the femoral neck, said at least one screw is inserted through said at least one passage so that compression and sliding of the fractured fragments is maintained, at feast one pin screw is nailed through said tubular member through said at least two bores and at least two pin screw is pined in said distal bone fragment wherein the pin screws are interconnected by said connecting member in order to facilitate the healing process and wherein said connecting member's connections can be corrected post-operatively.
13. The apparatus as claimed in Claim 12, wherein three passages are provided in said tubular member.
14. The apparatus as claimed in Claim 13, wherein three screws are provided to pass through said three passages.
15. The apparatus as claimed in Claim 12, wherein six bores are provided in said tube wherein said six bores are organized so that three of the six bores are provided opposite other three of said six bores and wherein three pin screws are adapted to be inserted through said six bores from one side of said tubular member to another side.
16. The apparatus as claimed in Claim 12, wherein said connecting member comprises two clamps and rotating screwing rods, and wherein one clamp clamps the screw pins that are nailed to the distal bone fragment and a second clamp clamps the screw pins that are screwed into said tubular member.
17. The apparatus as claimed in Claim 16, wherein a distance between said one clamp and said second clamp is changeable by rotation of said rotating screwing rods that are connected to each clamp by two bolts having spherical head wherein said rotating screwing rods are screwed onto said two bolts.
18. The apparatus as claimed in Claim 12, wherein malpositioning of the hybrid interlocking fixation is corrected in intra and post-operative period.
19. The apparatus as claimed in Claim 12, wherein said tubular member is provided with a plurality of small wall holes.
20. The apparatus as claimed in Claim 12, wherein the apparatus is provided with radiolucent materials or other metals.
21. The apparatus as claimed in Claim 12, wherein the apparatus can be disposable.
22. The apparatus as claimed in Claim 12, wherein said tubular member is provided with bone substitutes allowing bone grafting into said tubular member.
23. A method for fixing an intracapsular fracture of a femoral neck, the method comprising:

providing an internal fixator comprising a tubular member having a sharp end and a blunt end;
at least one passage provided in said tubular member wherein said at least one passage extends from said sharp end to said blunt end;
at least one screw adapted to pass through said at least one passage and extend outwardly beyond said sharp end;
thread provided in a portion of said at least one screw that is adapted to extend beyond said sharp end;
screw head is provided in said at least one screw so as to prevent said at least one screw from being fully inserted into said at least one passage;
performing 2-3 cm long skin incision at the trochanter region;
inserting said tubular member to the femoral neck in an angle of about 95-110 degrees in respect with an axial line of the femoral shaft so that an inferior screw of said at least one lag screws is adapted to be positioned in a direction of an inferior quadrant of the femoral head so as to slightly touch a strong cortical bone of the calcar femori, wherein said tubular member is crossing in about 1 or 2 milimeters the fracture line;
screwing said at least one lag screw.
24. The method as claimed in Claim 23, further comprising:
providing at least two bores on said tubular member wherein said at least two bores are provided on opposite sides of said tubular member;
interlocking at least two pin screws in said at least two bores;
nailing at least two pin screws in a distal bone fragment;
providing a connecting member adapted to secure the pin screws together.
25. The method as claimed in Claim 23, further comprising correction, reduction and fixation in intra and post-operative period.
CA002520508A 2003-03-25 2004-03-23 Hybrid interlocking proximal femoral fracture fixation Abandoned CA2520508A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US45721603P 2003-03-25 2003-03-25
US60/457,216 2003-03-25
US10/794,693 2004-03-05
US10/794,693 US7094236B2 (en) 2003-03-25 2004-03-05 Hybrid interlocking proximal femoral fracture fixation
PCT/IL2004/000259 WO2004084761A2 (en) 2003-03-25 2004-03-23 Hybrid interlocking proximal femoral fracture fixation

Publications (1)

Publication Number Publication Date
CA2520508A1 true CA2520508A1 (en) 2004-10-07

Family

ID=32994818

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002520508A Abandoned CA2520508A1 (en) 2003-03-25 2004-03-23 Hybrid interlocking proximal femoral fracture fixation

Country Status (9)

Country Link
US (1) US7094236B2 (en)
EP (1) EP1610699A4 (en)
JP (1) JP2006521163A (en)
KR (1) KR20050123111A (en)
AU (1) AU2004224580B2 (en)
BR (1) BRPI0408630A (en)
CA (1) CA2520508A1 (en)
RU (1) RU2359635C2 (en)
WO (1) WO2004084761A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313515B2 (en) 2007-06-15 2012-11-20 Rachiotek, Llc Multi-level spinal stabilization system
WO2010006195A1 (en) 2008-07-09 2010-01-14 Amei Technologies, Inc. Ankle arthrodesis nail and outrigger assembly
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
JP2011528957A (en) * 2008-07-23 2011-12-01 マイケル ジェー フォーア Hip fracture prevention device and method
US8764750B2 (en) 2008-09-11 2014-07-01 The Board Of Regents Of The University Of Texas System Foot, ankle and lower extremity compression and fixation system and related uses
US9089377B2 (en) 2009-02-23 2015-07-28 Orthopediatrics Corp. Bone screw
JP5567282B2 (en) * 2009-02-23 2014-08-06 昌 本城 Fracture fixation device
KR101176746B1 (en) * 2011-03-31 2012-08-23 가톨릭대학교 산학협력단 Pin guide for avascular necrosis of femoral head
US10314618B2 (en) * 2014-07-25 2019-06-11 The General Hospital Corporation System and method for an external hip fixator
CN106725820B (en) * 2017-01-11 2023-05-16 邓迎生 Femoral neck front torsion angle reference system-fixed point offset guide needle aiming hollow nail fixing system
TWI700073B (en) * 2018-05-02 2020-08-01 國立中山大學 Bone implant
RU2691329C1 (en) * 2018-07-12 2019-06-11 Олег Васильевич Сажников Method of combined osteosynthesis of fractures of long tubular bones
CN109106442A (en) * 2018-09-06 2019-01-01 绍兴市上虞中医医院 Fracture of neck of femur resets Kirschner wire positioning device
CN110301971A (en) * 2019-07-26 2019-10-08 中南大学湘雅二医院 A kind of femur auxiliary reset device
AU2021200320A1 (en) * 2020-01-22 2021-08-05 Howmedica Osteonics Corp. Femoral implant
KR102357527B1 (en) * 2020-03-03 2022-02-03 가톨릭대학교 산학협력단 femoral headless nephrotectomy apparatus

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530854A (en) * 1968-07-11 1970-09-29 John Kearney Fracture nail assembly
BE756717A (en) * 1969-10-03 1971-03-01 Fischer Arthur
US3996931A (en) * 1975-07-03 1976-12-14 Callender Jr George R Fractured bone setting fastener assembly
IL48826A (en) * 1976-01-13 1978-08-31 Aginsky Yacov Intramedullary compression nail for the treatment of bone fractures
US4657001A (en) * 1984-07-25 1987-04-14 Fixel Irving E Antirotational hip screw
US4612920A (en) * 1984-11-06 1986-09-23 Zimmer, Inc. Compression hip screw
LU85727A1 (en) * 1985-01-11 1986-08-04 Professeur Andre Vincent JOINT PROSTHESIS AND TOOL FOR MOUNTING CELLE-DI
US4711232A (en) * 1985-07-12 1987-12-08 Artur Fischer Bone fastener and method of installing same
US4759352A (en) * 1986-11-10 1988-07-26 Zimmer, Inc. Instrument for inserting a locking pin
CA2167293A1 (en) * 1993-07-16 1995-01-26 Gregg Stuart Baker Implant device and method of installing
IT1268282B1 (en) * 1994-08-23 1997-02-27 Orthofix Srl EXTERNAL TROCANTERIC FIXER
JP3077049B2 (en) * 1994-11-01 2000-08-14 有限会社エーアンドエフ Internal fixation member for treatment of rotational femoral head osteotomy and femoral neck fracture
FR2737968B1 (en) * 1995-08-23 1997-12-05 Biomat IMPLANT FOR OSTEOSYNTHESIS OF SUPERIOR FEMALE EPIPHYSIS
DE19633865A1 (en) * 1996-08-16 1998-02-19 Guenter Prof Dr Med Lob Endoprosthesis
IT1293934B1 (en) 1997-01-21 1999-03-11 Orthofix Srl ENDOMIDOLLAR NAIL FOR THE TREATMENT OF HIP FRACTURES
GR1003098B (en) 1998-03-06 1999-03-22 External fixation device with changeable angle for trochanteric fractures
US6139552A (en) * 1998-05-13 2000-10-31 K. K. Hollyx Bone jointer and a bone jointer fixing tool
IL132742A0 (en) 1999-05-11 2001-03-19 S I N A I Medical Technologies Osteosynthesis device for holding together in compression the parts of a fractured femur neck
US6517542B1 (en) * 1999-08-04 2003-02-11 The Cleveland Clinic Foundation Bone anchoring system
US6511481B2 (en) * 2001-03-30 2003-01-28 Triage Medical, Inc. Method and apparatus for fixation of proximal femoral fractures
ITTO20010854A1 (en) * 2001-09-07 2003-03-07 Biotek S R L OSTEOSYNTHESIS DEVICE FOR FEMORAL FRACTURES.
US6607561B2 (en) * 2001-10-02 2003-08-19 James Kevin Brannon Biaxial core compression

Also Published As

Publication number Publication date
JP2006521163A (en) 2006-09-21
US7094236B2 (en) 2006-08-22
US20040193156A1 (en) 2004-09-30
AU2004224580A1 (en) 2004-10-07
KR20050123111A (en) 2005-12-29
EP1610699A2 (en) 2006-01-04
EP1610699A4 (en) 2010-07-07
RU2005132831A (en) 2006-05-10
AU2004224580B2 (en) 2010-06-10
WO2004084761A2 (en) 2004-10-07
WO2004084761A3 (en) 2005-04-14
RU2359635C2 (en) 2009-06-27
BRPI0408630A (en) 2006-03-28

Similar Documents

Publication Publication Date Title
Apivatthakakul et al. Minimally invasive plate osteosynthesis (MIPO) in the treatment of the femoral shaft fracture where intramedullary nailing is not indicated
AU2004224580B2 (en) Hybrid interlocking proximal femoral fracture fixation
Lepore et al. Preliminary clinical and radiographic results with the Fixion intramedullary nail: an inflatable self-locking system for long bone fractures
US20080262498A1 (en) Double locked hip implant
EP2175790A2 (en) A bolt apparatus
Hamilton et al. Technical difficulty of metal removal after LISS plating
US20060247621A1 (en) Hybrid interlocking proximal femoral fracture fixation device and an operative technique of introducing the same
Endo et al. The minimally invasive plate osteosynthesis (MIPO) technique with a locking compression plate for femoral lengthening
US20040215194A1 (en) Osteosynthetic device
Al-Rashid et al. Principles of fracture fixation in orthopaedic trauma surgery
De Pablos et al. Progressive opening-wedge osteotomy for angular long-bone deformities in adolescents
US10314618B2 (en) System and method for an external hip fixator
Auer et al. Instrumentation and techniques in equine fracture fixation
Lewis et al. Circular external skeletal fixation
De Bastiani et al. Dynamic axial external fixation
Purushothaman et al. Functional outcome of flexible nailing in unstable fractures of both bones of forearm in paediatric population
WO2000027298A1 (en) Intramedullary device for fixation, compression and traction
CN115624377B (en) Intramedullary nail system of bionic outer side wall of proximal femoral fracture
Shetty et al. Pre fixation compression screw as a cutting-edge technique for varus correction during proximal femoral nailing for intertrochanteric fractures: A study on 46 cases
Rovesti Complications in external skeletal fixation
Fox et al. The use of the hybrid external fixator system in the foot and ankle
Egol Minimally invasive orthopaedic trauma surgery: a review of the latest techniques
Nork et al. Extreme nailing of the tibia
Banerjee et al. Orthopaedic Nails Versus Orthopaedic Plates: An Evolutionary Tale for Dominance and Relevance
Henry et al. Intramedullary fixation of subtrochanteric fractures with the Williams Y-nail: report of three cases

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued