CA2553499C - Surgical instrument with an articulating shaft locking mechanism - Google Patents

Surgical instrument with an articulating shaft locking mechanism Download PDF

Info

Publication number
CA2553499C
CA2553499C CA2553499A CA2553499A CA2553499C CA 2553499 C CA2553499 C CA 2553499C CA 2553499 A CA2553499 A CA 2553499A CA 2553499 A CA2553499 A CA 2553499A CA 2553499 C CA2553499 C CA 2553499C
Authority
CA
Canada
Prior art keywords
articulation
end effector
proximal
surgical instrument
distal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2553499A
Other languages
French (fr)
Other versions
CA2553499A1 (en
Inventor
Kenneth S. Wales
Chad P. Boudreaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Endo Surgery Inc
Original Assignee
Ethicon Endo Surgery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo Surgery Inc filed Critical Ethicon Endo Surgery Inc
Publication of CA2553499A1 publication Critical patent/CA2553499A1/en
Application granted granted Critical
Publication of CA2553499C publication Critical patent/CA2553499C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • A61B2017/2929Details of heads or jaws the angular position of the head being adjustable with respect to the shaft with a head rotatable about the longitudinal axis of the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2946Locking means

Abstract

A surgical instrument particularly suited to endoscopic use articulates an end effector by including a laterally sliding member in a proximal portion of a shaft that pivots the end effector to a selected side. Differentially opposing actuating forces (e.g., hydraulic, fluidic, mechanical) act against the laterally sliding member without binding by incorporating guidance mechanisms between the laterally sliding member and a frame of the shaft. A locking member advantageously unlocks automatically as articulation is commanded by resists backdriving of the mechanism.

Description

SURGICAL INSTRUMENT WITH AN ARTICULATING SHAFT
LOCKING MECHANISM
Field of the Invention i000li The present invention relates in general to surgical instruments that are suitable for endoscopically inserting an end effector (e.g., endocutter, grasper, cutter, staplers, clip applier, access device, drug/gene therapy delivery device, and an energy device using ultrasound, RF, laser, etc.) to a surgical site, and more particularly to such surgical instruments with an articulating shaft.
Background of the Invention 100021 Endoscopic surgical instruments are often preferred over traditional open surgical devices since a smaller incision tends to reduce the post-operative recovery time and complications. Consequently, significant development has gone into a range of endoscopic surgical instruments that are suitable for precise placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors engage the tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, staplers, clip applier, access device, drug/gene therapy delivery device, and energy device using ultrasound, RF, laser, etc.).
100031 Positioning the end effector is constrained by the trocar.
Generally, these endoscopic surgical instruments include a long shaft between the end effector and a handle portion manipulated by the clinician. This long shaft enables insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby positioning the end effector to a degree. With judicious placement of the trocar and use of graspers, for instance, through another trocar, often this amount of positioning is sufficient. Surgical stapling and severing instruments, such as described in U.S. Pat. No.
5,465,895, are an example of an endoscopic surgical instrument that successfully positions an end effector by insertion and rotation.
100041 Depending upon the nature of the operation, it may be desirable to further adjust the positioning of the end effector of an endoscopic surgical instrument. In particular, it is often desirable to orient the end effector at an axis transverse to the longitudinal axis of the shaft of the instrument. The transverse movement of the end effector relative to the 1.

instrument shaft is conventionally referred to as "articulation". This is typically accomplished by a pivot (or articulation) joint being placed in the extended shaft just proximal to the staple applying assembly. This allows the surgeon to articulate the staple applying assembly remotely to either side for better surgical placement of the staple lines and easier tissue manipulation and orientation. This articulated positioning permits the clinician to more easily engage tissue in some instances, such as behind an organ. In addition, articulated positioning advantageously allows an endoscope to be positioned behind the end effector without being blocked by the instrument shaft.
[0005] Approaches to articulating a surgical stapling and severing instrument tend to be complicated by integrating control of the articulation along with the control of closing the end effector to clamp tissue and fire the end effector (i.e., stapling and severing) within the small diameter constraints of an endoscopic instrument. Generally, the three control motions are all transferred through the shaft as longitudinal translations.
For instance, U.S. Pat. No. 5,673,840 discloses an accordion-like articulation mechanism ("flex-neck") that is articulated by selectively drawing back one of two connecting rods through the implement shaft, each rod offset respectively on opposite sides of the shaft centerline.
The connecting rods ratchet through a series of discrete positions.
[0006] Another example of longitudinal control of an articulation mechanism is U.S. Pat.
No. 5,865,361 that includes an articulation link offset from a camming pivot such that pushing or pulling longitudinal translation of the articulation link effects articulation to a respective side. Similarly, U.S. Pat. No. 5,797,537 discloses a similar rod passing through the shaft to effect articulation.
[0007] In U.S. Pat. No. 5,673,841, certain deficiencies were recognized for then known articulating surgical instruments for endosurgical stapling, cutting, clip applying, and grasping. Specifically, when the surgical articulating instruments are loaded, the articulating head on the instrument tends to move. This movement is usually a combination of piece part deflection and slop (or backlash) in the articulation mechanism.
High loads on the distal tip of the instrument (e.g., tissue clamping and staple firing) are reflected through the articulation device into the articulation control near the handle and can move (or rotate) the articulation control mechanism. In the past, articulation joints were designed with the articulation device performing double duty as the means for both
2.

positioning and locking the articulated head of the instrument. An examination of the force application points for the load (tip of the instrument) and the articulation device (near the articulation joint) reveals a mechanical disadvantage for the articulating device.
This disadvantage manifests itself as a magnification of tolerances or clearances in the articulating device, resulting in significant head movements.
[0008] In response to this recognized deficiency, several locking mechanisms were proposed. In particular, a locking mechanism locks a head at an angle of articulation at all times except when it is desired to articulate the head with respect to the shaft. Upon actuation of the articulation device, for example by pulling an articulation band toward the proximal end of the instrument, the locking mechanism releases, unlocking the head and allowing articulation thereof. Discontinuation of the articulation step, for example, by stoppage of pulling forces on the articulation band, causes the locking mechanism to reengage, locking the head of the instrument in its new angle of articulation.
In another version, a pair of fluid bladders on each side allow fluid flow to shift side to side to allow pivoting of the head with a pinch blade blocking the fluid flow to "lock" the articulating pivot.
[0009] While the articulation band effectively achieved articulation and simultaneous unlocking of the articulation joint, it is believed that in certain applications a direct linkage between control and the articulation joint may be desirable. Achieving proper dimensioning of bands without slippage or breakage may be deemed difficult. A
degree of slop in tactile response given by the articulation control may also be undesirable.
100101 Consequently, a significant need exists for an articulating joint of a surgical instrument that is directly linked to an articulation control that advantageously incorporates automatic locking of the articulation joint for resisting backdriving of the end effector.
Brief Summary of the Invention 100111 The invention overcomes the above-noted and other deficiencies of the prior art by providing a surgical instrument whose elongate shaft pivotally articulates in response to an articulation linkage mechanism. Inadvertent change in this articulation angle and/or damage to the articulation linkage mechanism is avoided by an articulation joint lock that
3.

resists backloading of the end effector. Thereby, the articulation linkage mechanism may have a desirably small cross section.
100121 In one aspect of the invention, a surgical instrument has an articulation control that a user actuates to cause pivoting of an end effector about an articulation joint of an elongate shaft. In particular, an articulation member extends a distal end from the elongate shaft into engagement with the end effector, being laterally deflected in response to the articulation control to effect articulation. In cooperation with this movement, a locking actuator is drawn proximally from the articulation joint, disengaging from an arcing braking surface attached to the end effector and radiating proximally about an articulation axis of the articulation joint. Thereby, a direct control of the articulation control is assisted by an articulation lock that maintains the end effector at a selected articulation angle without having to increase the size and strength of the articulation control to resist such backloading.
100131 In another aspect of the invention, a surgical instrument incorporates an articulation joint that is controlled by lateral movement of a slide bar in an elongate shaft.
A proximally directed gear segment attached to the end effector and aligned about an articulation axis of the articulation joint engages a distally directed rack on the slide bar.
A locking member in the elongate shaft also translates longitudinally and distally into engagement with the gear segment to lock the articulation joint in position.
Various advantages afforded by differentially moving a slide bar to effect articulation, such as various forms of motive power, are thus realized with the assurance of maintaining a desired articulation angle by means of the articulation lock.
100141 In yet another aspect of the invention, a surgical instrument has an articulating shaft that is controlled by a slide bar received for lateral movement in the elongate shaft.
A locking mechanism attached to the slide bar is advantageously moved into engagement with the elongate shaft in response to a backdriving force on the end effector.
100151 These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof
4.

Brief Description of the Figures [0016] The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
[0017] FIGURE 1 is a front top perspective view of a surgical stapling and severing instrument shown with an open end effector, or staple applying assembly, and with the staple cartridge removed.
[0018] FIGURE 2 is a front top perspective view of the surgical stapling and severing instrument of FIG. 1 with an articulation mechanism actuated by a fluidic actuation control.
[0019] FIGURE 3 is a perspective disassembled view of an elongate shaft and articulation mechanism of the surgical stapling and severing instrument of FIG. 1.
[0020] FIGURE 4 is a perspective disassembled view of distal portions of an implement portion of the surgical stapling and severing instrument of FIG. 1, including the staple applying assembly and articulation mechanism.
[0021] FIGURE 5 is a top perspective view of the staple applying assembly of FIGS. 1 and 4 with a lateral half of a staple cartridge removed to expose components driven by a firing motion.
100221 FIGURE 6 is a front perspective view of an implement portion of the surgical instrument of FIG. 1 with a double pivot closure sleeve assembly and end effector removed to expose a single pivot frame ground articulated by a fluidic articulation mechanism.
[0023] FIGURE 7 is perspective detail view of an alternative articulation joint for the surgical instrument of FIG. 1 depicting a double pivoting closure sleeve assembly at a proximal position with a single pivot frame ground.
[0024] FIGURE 8 is a bottom right perspective exploded view of the alternative articulation joint of FIG. 7 including a double pivoting fixed-wall dog bone link and a frame ground incorporating rail guides for a lateral moving member (T-bar).
5.

[0025] FIGURE 9 is top left perspective exploded view of a further alternative articulation joint for the surgical instrument of FIG. 1, including an alternate solid wall support plate mechanism incorporated into a lower double pivot link to support a firing bar and includes a rail guided laterally moving member (T-bar).
[0026] FIGURE 10 is a top diagrammatic view of an alternate articulation locking mechanism for the surgical instrument of FIG. 1 with a closure sleeve assembly removed to expose a backloading disengaged T-bar for automatic articulation lock engagement and disengagement.
[0027] FIGURE 11 is a top diagrammatic view of an additional alternative articulation mechanism for the surgical instrument of FIG. 1, a spring biased rack on a T-bar with locking features that engage due to backloading from an end effector.
[0028] FIGURE 12 is an alternative T-bar and frame ground incorporating lateral guidance for the surgical instrument of FIG. 1.
[0029] FIGURE 13 is yet an additional alternative T-bar and frame ground incorporating lateral guidance for the surgical instrument of FIG. 1.
[0030] FIGURE 14 is a left top perspective disassembled view of an alternative articulation mechanism including a double pivoting frame assembly and single pivoting closure sleeve assembly for the surgical instrument of FIG. 1.
100311 FIGURE 15 is a left bottom perspective view of the alternative articulation mechanism of FIG. 14.
[0032] FIGURE 16 is a diagram of a laterally moving fluidic articulation mechanism with rack and gear segment pivoting depicted in a nonarticulated state.
[0033] FIGURE 17 is cross section front view in elevation of the fluidic articulation mechanism of FIG. 16 taken along lines 17-17.
[0034] FIGURE 18 is a diagram of the laterally moving fluidic articulation mechanism with a rack and gear segment pivoting depicted in an articulated state.
[0035] FIGURE 19 is cross section front view in elevation of the fluidic articulation mechanism of FIG. 18 taken along lines 19-19.
6.

[0036] FIGURE 20 is a top diagrammatic view of a surgical instrument articulated by at least one longitudinally moving member that laterally cams a slide bar, which in turn articulates an end effector.
[0037] FIGURE 21 is a top diagrammatic view of the surgical instrument of FIG. 20 in an articulated state.
[0038] FIGURE 22 is front cross section view in elevation of an alternative rotary link mechanical control system for a surgical instrument of FIGS. 16 or 20 for laterally translating respectively a T-bar or slide bar, depicted in an unarticulated state.
[0039] FIGURE 23 is a front cross section view in elevation of the alternative rotary link mechanical control system of FIG. 22 in an articulated state.
[0040] FIG. 24 depicts a perspective, exploded view of an alternative lateral articulation control mechanism for the alternative rotary link mechanical control system of FIG. 22.
[0041] FIG. 25 depicts a front elevation view in section of the lateral articulation control mechanism of FIG. 24.
[0042] FIG. 26 depicts a detail view of a locking block in an engaged state of the lateral articulation control mechanism of FIG. 24.
[0043] FIG. 27 depicts a detail view of the lateral articulation control mechanism of FIG.
24 in a disengaged state.
Detailed Description of the Invention Overview of articulating shaft.
[0044] Turning to the Drawings, wherein like numerals denote like components throughout the several views, FIG. 1 depicts a surgical instrument, which in the illustrative versions is more particularly a surgical stapling and severing instrument 10, that is capable of practicing the unique benefits of the present invention. In particular, the surgical stapling and severing instrument 10 is sized for insertion, in a nonarticulated state as depicted in FIG. 1, through a trocar cannula passageway to a surgical site in a patient (not shown) for performing a surgical procedure. Once an implement portion 12 is inserted through a cannula passageway, an articulation mechanism 14 incorporated into a
7.

distal portion of an elongate shaft 16 of the implement portion 12 may be remotely articulated, as depicted in FIG. 2, by an articulation control 18. An end effector, depicted in the illustrative version as a staple applying assembly 20, is distally attached to the articulation mechanism 14. Thus, remotely articulating the articulation mechanism 14 thereby articulates the staple applying assembly 20 from a longitudinal axis of the elongate shaft 16. Such an angled position may have advantages in approaching tissue from a desired angle for severing and stapling, approaching tissue otherwise obstructed by other organs and tissue, and/or allowing an endoscope to be positioned behind and aligned with the staple applying assembly 20 for confirming placement.
Handle.
100451 The surgical and stapling and severing instrument 10 includes a handle portion 22 proximally connected to the implement portion 12 for providing positioning, articulation, closure and firing motions thereto. The handle portion 22 includes a pistol grip 24 toward which a closure trigger 26 is pivotally and proximally drawn by the clinician to cause clamping, or closing, of the staple applying assembly 20. A firing trigger 28 is farther outboard of the closure trigger 26 and is pivotally drawn by the clinician to cause the stapling and severing of tissue clamped in the staple applying assembly 20.
Thereafter, a closure release button 30 is depressed to release the clamped closure trigger 26, and thus the severed and stapled ends of the clamped tissue. The handle portion 22 also includes a rotation knob 32 coupled for movement with the elongate shaft 16 to rotate the shaft 16 and the articulated staple applying assembly 20 about the longitudinal axis of the shaft 16.
The handle portion 22 also includes a firing retraction handle 34 to assist in retracting a firing mechanism (not depicted in FIGS. 1-2) should binding occur, so that opening of the staple applying assembly 20 may occur thereafter.
100461 It will be appreciated that the terms "proximal" and "distal" are used herein with reference to a clinician gripping a handle of an instrument. Thus, the surgical stapling assembly 20 is distal with respect to the more proximal handle portion 22. It will be further appreciated that for convenience and clarity, spatial terms such as "vertical" and "horizontal" are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
8.

[0047] An illustrative multi-stroke handle portion 22 for the surgical stapling and severing instrument 10 of FIGS. 1-2 is described in greater detail in the co-pending and commonly-owned U.S. patent application entitled "SURGICAL STAPLING
INSTRUMENT INCORPORATING A MULTISTROKE FIRING POSITION
INDICATOR AND RETRACTION MECHANISM" to Swayze and Shelton IV, Ser. No.
10/674,026 with additional features and variation as described herein. While a multi-stroke handle portion 22 advantageously supports applications with high firing forces over a long distance, applications consistent with the present invention may incorporate a single firing stroke, such as described in co-pending and commonly owned U.S.
patent application "SURGICAL STAPLING INSTRUMENT HAVING SEPARATE
DISTINCT CLOSING AND FIRING SYSTEMS" to Frederick E. Shelton IV, Michael E.
Setser, and Brian J. Hemmelgam, Ser. No. 10/441,632.
Implement Portion (Articulating Elongate Shaft And Staple Applying Assembly).
100481 In FIGS. 1-5, the implement portion 12 advantageously incorporates the multiple actuation motions of longitudinal rotation, articulation, closure and firing within a small diameter suitable for endoscopic and laparoscopic procedures. The staple applying assembly 20 ("end effector") has a pair of pivotally opposed jaws, depicted as an elongate channel 40 with a pivotally attached anvil 42 (FIGS. 1-2, 4-5). Closure and clamping of the anvil 42 to the elongate channel 40 is achieved by longitudinally supporting the elongate channel 40 with a frame assembly 44 (FIG. 3) rotatingly attached to the handle portion 22 over which a double pivot closure sleeve assembly 46 longitudinally moves to impart a closing and opening respectively to a distal and proximal motion to the anvil 42, even with the staple applying assembly 20 articulated as in FIG. 2.
[0049] With particular reference to FIG. 3, the frame assembly 44 includes a single pivot frame ground 48 whose proximal end is engaged to the rotation knob 32, with a right half shell 50 thereof shown in FIG. 3. It should be appreciated that a proximal end of the closure sleeve assembly 46, specifically of a closure straight tube 52, with one end encompassing the proximal end of the frame ground 48 and the other end passing into the handle portion 22, engages closure components (not shown) that longitudinally translate
9.

the closure sleeve assembly 46. A circular lip 54 at the proximal end of the closure straight tube 52 provides a rotating engagement to such components. Engaging components of the rotation knob 32 pass through a longitudinal slot 56 on a proximal portion of the straight closure tube 52 to engage an aperture 58 which is proximally positioned on the frame ground 48. The longitudinal slot 56 is of sufficient length to allow the longitudinal closure translation of the closure sleeve assembly 46 even at various rotational angles set by the rotation knob 32 of the closure sleeve assembly 46 and the frame ground 48.
[0050] The elongate shaft 16 supports the firing motion by receiving a firing rod 60 that rotatingly engages firing components of the handle portion 22 (not shown). The firing rod 60 enters a proximal opening 62 along the longitudinal centerline of the frame ground 48.
The distal portion of the frame ground 48 includes a firing bar slot 64 along its bottom that communicates with the proximal opening 62. A firing bar 66 longitudinally translates in the firing bar slot 64 and includes an upwardly projecting proximal pin 68 that engages a distal end 70 of the firing rod 60.
100511 The elongate shaft 16 supports articulation by incorporating a rectangular reservoir cavity 72, one lateral portion depicted in a distal portion of the rotation knob 32.
A bottom compat __ tment 74 that resides within the rectangular reservoir cavity 72 has laterally spaced apart left and right baffles 76, 78. An articulation actuator 80 slides laterally overtop of the bottom compaitment 74, its downward laterally spaced left and right flanges 82, 84, which are outboard of the baffles 76, 78, each communicating laterally to left and right push buttons 86, 88 that extend outwardly from the respective shell halves of the rotation knob 32. The lateral movement of the articulation actuator 80 draws left and right flanges 82, 84 nearer and farther respectively to the left and right baffles 76, 78, operating against left and right reservoir bladders 90, 92 of a fluidic articulation system 94, each reservoir bladder 90, 92 communicating respectively and distally to left and right fluid conduits or passageways 96, 98 that in turn communicate respectively with left and right actuating bladders 100, 102. The latter oppose and laterally pivot a T-bar 104 of the articulation mechanism 14.
100521 The frame assembly 44 constrains these fluidic actuations by including a top and distal recessed table 106 of the frame ground 48 upon which resides the fluid passages 96,
10.

98 and actuating bladders 100, 102. The T-bar 104 also slidingly resides upon the recessed table 106 between the actuating bladders 100, 102. Proximal to the T-bar 104, a raised barrier rib 108 is aligned thereto, serving to prevent inward expansion of the fluid passages 96, 98. The frame assembly 44 has a rounded top frame cover (spacer) 110 that slides overtop of the frame ground 48, preventing vertical expansion of the fluid passages 96, 98 and actuating bladders 100, 102, as well as constraining any vertical movement of the T-bar 104. In particular, the frame cover 110 includes features that enable it to also provide an articulation locking member 111, described in greater detail below as part of an articulation locking mechanism 113.
100531 A distal end ("rack") 112 of the T-bar 104 engages to pivot a proximally directed gear segment 115 of an articulated distal frame member 114 of the articulation mechanism 14. An articulated closure tube 116 encompasses the articulated distal frame member 114 and includes a horseshoe aperture 118 that engages the anvil 42. A
double pivoting attachment is formed between the closure straight tube 52 and articulating closure ring 116 over the articulating mechanism 14, allowing longitudinal closure motion even when the articulating mechanism 14 is articulated. In particular, top and bottom distally projecting pivot tabs 118, 120 on the closure straight tube 52 having pin holes 122, 124 respectively are longitudinally spaced away from corresponding top and bottom proximally projecting pivot tabs 126, 128 on the articulating closure ring 116 having pin holes 130, 132 respectively. An upper double pivot link 134 has longitudinally spaced upwardly directed distal and aft pins 136, 138 that engage pin holes 130, 122 respectively and a lower double pivot link 140 has longitudinally spaced downwardly projecting distal and aft pins 142, 144 that engage pin holes 132, 124 respectively. A
vertical pin hole 169 distally positioned through the frame ground 48 receives a frame pivot pin 171 that pivots in an underside of the distal frame member 114.
100541 With particular reference to FIG. 4, the articulating closure ring 116 is shown for enhanced manufacturability to include a short tube 146 attached to an articulating attachment collar 148 that includes the proximally projecting pivot tabs 126, 128.
Similarly, the straight closure tube 52 is assembled from a long closure tube 150 that attaches to an aft attachment collar 152 that includes the distally projecting pivot tabs 119, 120. The horseshoe aperture 118 in the short closure tube 146 engages an upwardly
11.

projecting anvil feature 154 slightly proximal to lateral pivot pins 156 that engage pivot recesses 158 inside of the elongate channel 40.
100551 The alternative version of FIG. 4 includes a dog bone link 160 instead of a frame pivot pin 171 whose proximal pin 157 pivotally attaches to the frame ground 48 in a frame hole 161 and whose distal pin 159 rigidly attaches to a proximal undersurface 162 of the articulating distal frame member 114, thereby providing pivotal support there between. A bottom longitudinal knife slot 163 in the dog bone link 160 guides an articulating portion of the firing bar 66. The articulating distal frame member 114 also includes a bottom longitudinal slot 164 for guiding a distal portion of the firing bar 66.
Staple Applying Apparatus (End Effector).
100561 With reference to FIGS 4-5, the firing bar 66 distally terminates in an E-beam 165 that includes upper guide pins 166 that enter an anvil slot 168 in the anvil 42 to verify and assist in maintaining the anvil 42 in a closed state during staple formation and severing.
Spacing between the elongate channel 40 and anvil 42 is further maintained by the E-beam 165 by having middle pins 170 slide along the top surface of the elongate channel 40 while a bottom foot 172 opposingly slides along the undersurface of the elongate channel 40, guided by a longitudinal opening 174 in the elongate channel 40. A
distally presented cutting surface 176 of the E-beam 165, which is between the upper guide pins 166 and middle pins 170, severs clamped tissue while the E-beam 165 actuates a replaceable staple cartridge 178 by distally moving a wedge sled 180 that causes staple drivers 182 to cam upwardly driving staples 184 out of upwardly open staple holes 186 in a staple cartridge body 188, forming against a staple forming undersurface 190 of the anvil 42. A staple cartridge tray 192 encompasses from the bottom the other components of the staple cartridge 178 to hold them in place. The staple cartridge tray 192 includes a rearwardly open slot 194 that overlies the longitudinal opening 174 in the elongate channel 40, thus the middle pins 170 pass inside of the staple cartridge tray 192.
100571 The staple applying assembly 20 is described in greater detail in co-pending and commonly-owned U.S. Patent Application Ser. No. 10/955,042, "ARTICULATING
SURGICAL STAPLING INSTRUMENT INCORPORATING A TWO-PIECE E-BEAM
FIRING MECHANISM" to Frederick E. Shelton IV, et al., filed 30 September 2004.
12.

Articulation Locking Mechanism.
= 100581 In FIGS. 3-4, and 6-8, an articulation lock mechanism 200 is advantageously incorporated to maintain the staple applying assembly 20 at a desired articulation angle.
The articulation lock mechanism 200 reduces back driven loads on the left and right actuating bladders 100, 102. In particular, a compression spring 202 (FIG. 3) is proximally positioned between a proximal end 204 of the articulation locking member 111 and the handle portion 22, biasing the articulation locking member 111 distally. With particular reference to FIG. 4, two parallel slots 206, 208 at a distal end 210 of the articulation locking member 111 receive respectively upwardly projecting guide ribs 212, 214 on the frame ground 48. The guide ribs 212, 214 are longitudinally shorter than the parallel slots 206, 208 allowing a range of relative longitudinal travel.
Thereby, with particular reference to FIG. 8, selective abutting engagement of a distal frictional surface, depicted as a toothed recess 216 distally projecting from the articulation locking member 111 is engaged to a corresponding locking gear segment 217 in a brake plate 218 received into a top proximal recess 220 (FIG. 4) of the articulating frame member 114.
Distal and proximal holes 221, 222 in the brake plate 218 receive distal and proximal pins 223, 224 that upwardly project from the top proximal recess 220.
100591 With particular reference to FIG. 6, the elongate shaft 16 is depicted in an articulated position with the closure sleeve assembly 46 removed from around the frame assembly 44 and without the elongate channel 40 and anvil 42. Articulation actuator 80 is shown moved laterally to the left to compress right proximal reservoir bladder 92 and expand distal right actuation bladder 102 moving T-bar 104 to the position shown. Thus, lateral movement of the articulation actuator 80 articulates the distal frame 114 clockwise about the single pivot frame ground 48 as viewed from above. The articulation actuator 80 advantageously also automatically engages and disengages the articulation lock mechanism 200. In particular, a toothed detent surface 225 along a proximal top surface of the articulation actuator 80 receives a downwardly projecting locking pin 226 from the proximal end 204 of the articulation locking member 111 (not shown in FIG. 6).
The engagement of the locking pin 226 within the root of the toothed detent surface 225 provides sufficient distal movement of the articulation locking member 111 for locking engagement of the locking gear segment 217 in the brake plate 218. Lateral movement by an operator of the articulation member 80 proximally urges the locking pin 226
13.

, .
proximally, and thus disengages the articulation locking member 111 from the brake plate 218. When the operator releases the articulation actuator 80, the locking pin 226 is urged by the compression spring 202 into the adjacent detent in detent surface 225 to lock the locking mechanism 111, and thereby the staple applying assembly 20, constraining the articulation mechanism 14 at a desired articulation position by constraining and expanding the inflated shape of the proximal left and right reservoir bladders 90, 92.
100601 Alternatively or additionally, an orifice may be provided within parallel fluid conduits 96, 98 to control the flow rate between the distal actuating bladders 100,102 and proximal reservoir bladders 90, 92.
100611 In FIG. 10, an alternate locking mechanism 2000 of an articulation mechanism 2002 of a surgical instrument 2004, is normally unlocked and is activated by cocking a laterally moving T-bar 2006 due to back loading. A slot 2008 is located in a frame ground 2010 to receive and guide a rib 2012 extending down from the T-bar 2006. A
slender longitudinal section 2014, which is orthogonally attached to the rib 2012 deflects if an end effector 2016 is backloaded. For instance, as the end effector 2016 is forced to the right as depicted at arrow 2018, for instance, its proximal gear segment 2020 acts upon a rack 2022 of the T-bar 2006, imparting a nonorthogonal backdriving force, as depicted at arrow 2024. Thus, the slender longitudinal section 2014 bends, cocking rib 2012 in slot 2008. This cocking produces opposing binding forces, as depicted by arrows 2026, 2028, that lock the T-bar 2006 and prevent further articulation. Unlocking occurs when actuation of the articulation bladders uncocks the laterally moving T-bar 2006.
Thereafter, the rib 2012 may assist in guiding the T-bar 2006.
[0062] In FIG. 11, yet an additional articulation locking mechanism 2100 for a surgical instrument 2102 is depicted that is normally unlocked and activated by the proximal force vector from the twenty (20) degree pressure angle from gear teeth 2104 of an end effector 2106 and rack teeth 2108 of a T-bar 2110. When the end effector 2106 is backloaded, as depicted by nonorthogonal arrow 2112, the longitudinal vector of the pressure angle, depicted as arrow 2114, moves the T-bar 2110 proximally. This longitudinal force vector is applied to a stiff spring 2118 behind a rack 2120 of the T-bar 2110. When the spring 2118 deflects as T-bar 2110 moves proximally, locking teeth 2126 projecting proximally from the rack 2120 are brought into engagement with locking elements 2122 distally
14.

projecting and laterally aligned on a ground frame 2124. The locking teeth 2126 and locking elements 2122 disengage when the proximal force vector 2014 is reduced or eliminated by removing the back loading of the end effector 2106 and allowing T-bar 2110 to move distally from urging from spring 2118.
Double Pivot Closure Sleeve and Single Pivot Frame Ground Combination.
[0063] With reference to FIGS. 3-4 and 7, the implement portion 12 advantageously incorporates the double pivot closure sleeve assembly 46 that longitudinally translates over and encompasses a single pivot frame ground 48. These mechanisms and their operation will now be described in further detail. With particular reference to FIG. 7, the articulation mechanism 14 is depicted in an articulated state with the closure sleeve assembly 46 retracted proximally to an anvil open state. With the anvil 42 open (not shown in FIG. 7), actuation of the articulation control 18 causes the articulated closure ring 116 to pivot about the upwardly directed distal pin 136 and downwardly directed distal pin 142 (not shown in FIG. 7) respectively of the upper and lower double pivot closure links 134, 140. The frame ground 48 pivots around a single pin, depicted as the frame pivot pin 171 (FIG. 3) that joins frame ground 48 to distal frame member 114. With the anvil 42 open, the frame pivot pin 171 of frame ground 48 is aligned with the distal most position of upper and lower double pivot links 134, 140 of the closure sleeve assembly 46. This positioning allows easy pivoting and rotation of the staple applying assembly 20 while the anvil 42 is open. When the closure sleeve assembly 46 is moved distally to pivot anvil 42 closed, the closure straight tube 52 moves distally about frame ground 48 and the articulated closure ring 116 moves distally along the articulated distal frame member 114 axis as urged by pivot links 134, 140. Dual pivoting pins 136, 138 and 142, 144 on links 134, 140 facilitate engagement with closure straight tube 52 and articulated closure ring 116 as they are urged towards the distal closure position when the device is articulated (not shown). At the distal closure position, the frame pivot pin 171 is vertically aligned with proximal pivot pins 138, 144 at full articulation or may fall at any point between distal pins 136, 142 and proximal pins 138, 144 while working effectively.
Solid Firing Bar Support.
[0064] In FIG. 8, the articulation mechanism 14 of FIG. 7 is partially exploded and viewed from the bottom, showing a solid wall firing bar support design (dog bone link
15.

160) of FIG. 4 that offers advantages over conventional flexible support plates. Support plates are used to bridge the gap and guide and support the firing bar 66 through a single frame ground pivot articulation joint 1801. Flexible firing bars are known, but the incorporation of solid wall firing bars such as those shown in FIGS. 4, 8 and 9 offer unique advantages. Referring now to FIG. 8, frame ground 48 includes a frame knife slot 1802 that runs along the bottom of frame ground 48 and a distal knife slot 164 runs along the bottom of the articulating distal frame member 114 for the sliding reception of the firing bar 66 (not shown) therein. Frame ground 48 is described above and includes a direct single pivotal connection at frame pivot pin 171 with the distal frame member 114.
The fixed wall dog bone link 160 that is rotatably connected on proximal pin end 157 and movably connected on distal pin end 159 includes left and right lateral guides 1818, 1820, defining therebetween a guidance slot 1822 for sliding passage of a firing bar 66 (FIG. 4).
[0065] Thus, to bridge the gap between frame ground 48 and the distal frame member 114, the fixed wall pivoting dog bone link 160 is pivotally attached to frame ground 48 and is slidingly attached to frame member 114. Proximal pin 157 of the pivoting dog bone 160 is pivotally received in a bore 1824 in frame ground 48 enabling pivotal dog bone 160 to pivot about pocket 1824. A distal pin 159 extends upwards from pivotal dog bone 160 and is slidingly received in a slot 1826 in distal frame member 114.
Articulation of staple applying assembly 20 to an angle such as 45 degrees from the longitudinal axis pivots pivoting dog bone 116 in bore 1824 at its proximal pin 157 and distal pin 159 slides into slot 1826 formed in the distal frame member 114 to bend firing bar 66 to two spaced-apart angles that are half of the angle of the staple applying assembly 20. Unlike previously referenced flexible support plates that bend the firing bar 66 to a 45 degree angle, the fixed wall pivoting dog bone 160 bends the firing bar 66 to two spaced-apart angles such as 22.5 degrees each. Bending the flexible firing bar or bars 66 to half the angle cuts the bend stress in the firing bars 66 to one-half of that found in conventional articulation supports. Reducing the bending stress in the firing bars 66 reduces the possibility of permanently bending or placing a set in the firing bars, reduces the possibility of firing jams, ensures lower firing bar retraction forces, and provides smoother operation of the firing system.
100661 In FIG. 9, a surgical instrument 1900 includes double closure pivot.
Single frame pivot articulation joint 1902 shows an alternate solid wall support plate mechanism 1904
16.

that replaces the lower double pivot link 140 and dog bone link 1812 of FIG.
8. Left and right firing bar supports 1906, 1908 extend upwardly from a lower double pivot link 1910 of a closure sleeve assembly 1912. Clearance 1914 is provided in a frame ground 1916 for the firing bar supports 1906, 1908 to travel as the closure sleeve assembly 1912 moves distally to close the anvil 42 (not shown in FIG. 9) and proximally to open anvil 42. Like the above described pivoting dog bone 160, the alternate lower double pivoting link 1910 also bends and supports the firing bar 66 (not shown in FIG. 9) creating two spaced apart bend angles that are up to one-half of the bend angle of the staple applying assembly 20.
Lateral Member Guide Mechanisms.
100671 With further reference to FIG. 9, left and right upward flanges 1918, 1920 on the frame ground 1916 include distal and proximal lateral pin guides 1921, 1922, 1923, 1924 that pass laterally through holes 1923, 1924 in a T-bar 1926 assisting in minimizing binding in an articulation mechanism 1928. These pin guides 1921, 1922 are also incorporated into the frame ground 48 of FIG. 7. As another example, in FIG.
7, the T-bar 104 advantageously includes a dovetail lateral guide 1930 that laterally slides within a dovetail channel 1932 formed in the frame ground 48. As yet a further example, in FIG.
12, a raised rib 1934 on a frame ground 1936 is received within a rectangular slot 1938 formed in a T-bar 1940. To further facilitate non-binding lateral translation, distal and proximal lateral bearing tracks 1942, 1944 each include a respective plurality of ball bearings 1946, 1948. As yet a further example, in FIG. 13, a plurality of frame lateral grooves 1950-1954 are formed in a frame ground 1956 with corresponding T-bar lateral grooves 1958-1962 in a T-bar 1964. Slide rollers 1966-1970 reside trapped within respective pairs of lateral grooves 1950/1958, 1952/1960, 1954/1962. These are by no means an exhaustive list of lateral guidance members that prevent unwanted cocking or rotation of the T-bar 1964.
Double Pivot Frame Ground and Single Pivot Closure Combination.
100681 In FIGS. 14-15, an alternate frame ground and closure mechanism 2200 is incorporated into a surgical instrument 2202 that includes double pivoting frame assembly 2204. In particular, a frame ground 2206 is connected to distal frame member 2208 by a dual pivot frame dog bone 2210 having a proximal pivot pin 2212 pivotally engaging a proximal bore 2214 in frame ground 2206 and a distal pivot pin 2216
17.

engaging a distal bore 2218 of distal frame member 2208. A guidance slot 2220 is located on the underside of dog bone 2210 for the guidance of a firing bar 66 (not shown in FIGS.
14-15) therein. Knife slot 2222 is located in distal frame member 2208. As shown, articulation of a closure ring 2230 of a closure sleeve assembly 2224 to a forty-five (45) degree angle articulates distal frame member 2208 to a forty-five (45) degree angle and articulates frame dog bone 2210 to half that angle. Consequently, firing bar 66 is subjected to the two shallow half bends that are spaced apart and obtains all the benefits listed above.
100691 Outermost closure sleeve assembly 2224 is different in that only one pivot axis of the double pivoting design of the frame assembly 2204 accommodates its longitudinal closure motion. As shown, a closure tube shaft 2226 has a clevis 2228 at a distal end.
Clevis 2228 is pivotally engaged with the closure ring 2230. Closure ring 2230 has a proximal gear 2232 formed at a distal end. A pin 2234 passes through the proximal gear 2232 and pivotally engages an upper tang 2236 of clevis 2228. A lower arm 2238 is pivotally engaged to a lower tang 2240 of clevis 2228 by an aligned pin 2241.
Holes 2242 in the clevis 2228 receive lateral guides pins 2243 and slidably attach a T-bar 2244 therein to engage proximal gear 2232 of the closure ring 2230. Thus, this alternate mechanism 2200 uses a reversed single/dual pivot alternate concept from the previously described mechanism. That is, the alternate closure mechanism 2200 has a single pivot and the alternate frame ground has a dual pivot, unlike the previously described dual pivot closure mechanism with a single pivot frame ground.
Laterally Moving Articulation Mechanism [0070] In FIGS. 16-19, a laterally moving articulation mechanism 230 is depicted schematically to show lateral motion being used to effect articulation of an end effector 232. Lateral motion is the movement of at least one element toward or away from the longitudinal axis of a surgical device 234. This motion is generally at right angles to the longitudinal axis, which is a horizontal line bisecting the mechanism 230, and does not involve rotational motion or longitudinal motion. Laterally moving articulation mechanisms can be fluid actuated as shown in FIGS. 16-19 or mechanically actuated as shown in FIGS. 20-23.
18.

Laterally Moving Fluid Articulation Mechanism [0071] The laterally moving articulation mechanism 230 is shown schematically in FIGS.
16-19 and includes a fluid control system 235 having fluid-filled parallel left and right fluid bladders 236, 238 extending longitudinally therein that move a lateral member or T-bar 240 laterally by the movement of fluids 242. All directions are in reference to the longitudinal axis. Referring to the unarticulated view of FIGS. 16 and 17, the distally located end effector 232 pivots about pin 244 and has a gear segment 246 at a proximal end. Pivot pin 244 is attached to a frame (not shown). A rack 248 at a distal end of the T-bar 240 operably engages gear segment 246. T-bar 240 and rack 248 are laterally moveable along axis A-A. Respective distal portions of the long left and right fluid bladders 236, 238 lie laterally to the laterally moveable T-bar 240 and are laterally constrained within a closure sleeve 250 and vertically constrained by a frame 252 below and a spacer 254 above. In particular, left actuating fluid bladder 236 has left distal actuating bladder 256, left fluid passageway 258, and a left proximal reservoir bladder 260. Right fluid bladder 238 has a right distal actuating bladder 262, right fluid passageway 264, and right proximal reservoir bladder 266. A fixed divider 270 extends from the frame 252 and separates the bladders 260, 266 and the fluid passageways 258, 264. The fixed divider 270 and the closure sleeve 250 constrain the fluid passageways 258, 264 and prevent expansion in the fluid passage sections 258, 264 of the bladders 236, 238. A laterally moveable "C" shaped compression member 272 is included in articulation control mechanism 273 for the compression of one of the proximal reservoir bladders 260, 266 and the articulation of the end effector 232. In addition, other components such as a firing bar 274 passing through a firing bar slot 276 in the frame 252 may be incorporated (FIGS. 17, 19).
10072] As shown in FIGS. 8-19, lateral movement of C-shaped compression member 272 to the left compresses right proximal reservoir bladder 266 forcing fluid 242 into right fluid passageway 264 and right distal actuating bladder 262. As right distal actuating bladder 262 moves T-bar 240 laterally to the left, the left distal actuating bladder 256 is compressed and the end effector 232 is articulated to the right (clockwise as viewed from the top as shown). Compression of the left distal actuating bladder 256 causes fluid 242 to flow proximally through the left fixed fluid passageway 258 and into left proximal reservoir bladder 260. In particular, an attached right wall 280 of the C
shaped
19.

compression member 272 moves to the left causing compression of the right proximal reservoir bladder 266. A corresponding movement left of an attached left wall 278 of the C shaped compression member 272 provides space for the fluid from compressed left actuator bladder 256 as the fluid flows into the expanding left proximal reservoir bladder 260.
100731 This fluid control system 235 for the articulation mechanism 230 offers at least several advantages. First, the orientation of the actuating bladders 256, 262, proximal to the articulation joint or mechanism 230, allows the use of long bladders 236, 238 and longer T-bars 240 within the surgical device 234. As a fluid-driven system, increasing the output force of the fluid control system 235 may be accomplished in two ways.
First, for a fixed fluid area on the T-bar 240, the fluid pressure onto the fixed area may be increased.
Second, for a fixed fluid pressure, the fluid contact area on the T-bar 240 may be increased. The first method results in a more compact design and higher system pressures.
The second method results in a larger design and lower system pressures. To decrease cost, simplify the design, reduce system stress, and reduce risk of bladder rupture, the illustrative version depicts long distal actuating bladders 256, 262 in an advantageous position proximal to the articulation mechanism 230 within an elongate shaft of the surgical device 234. It is this placement of the bladders 256, 262 that enable the bladders 256, 262 to be long and the articulation output force to be high for a low input pressure.
100741 Thus, the output force of the articulation mechanism 230 can be increased (for the same input pressure) simply by increasing the pressure contact area of the distal actuating bladders (balloons) 256, 262 on T-bar 240. Pressure contact area increases are restricted to height and length. Since the diameter of conventional endoscopic surgical instruments are fixed at certain diameters to pass through insufflation ports, this limits the height change. Changing the length of the pressure contact area has the greatest effect and enables the lateral output force of the device to be advantageously tuned (by changing length) to meet whatever output force the system requires.
100751 Fluids used in a laterally moving device can be either compressible or incompressible. As used herein, the term "fluid" comprises liquids, gases, gels, microparticles, and any other material which can be made to flow between a pressure
20.

gradient. While any fluid can be used, sterilized solutions such as saline, mineral oil or silicone are especially preferred.
Laterally Moving Mechanical Articulation Mechanism 100761 Whereas fluid mechanisms are described above to cause lateral movement and articulation, mechanical mechanisms may accomplish a similar lateral motion as produced by fluid bladders 236, 238. In FIGS. 20-21, an alternate laterally moving articulation mechanism 300 employs a mechanical control system, in particular a longitudinally moving member, to affect lateral motion and articulation for a surgical instrument 301. In the illustrative version, with particular reference to FIG.
20, a laterally moving slide bar 302 has at least one pair of angled left and right cam surfaces 304, 306 extending laterally therefrom on opposite sides of an elongate longitudinal shaft 308. In the illustrative version, another pair of proximal left and right angled cam surfaces 310, 312 are also included. A right longitudinally moving link 314 includes corresponding inwardly directed distal and proximal counter ramped surfaces 316, 318 that register and slidingly engage to distal and proximal right cam surfaces 306, 312 such that distal longitudinal movement of the moving link 314 causes leftward lateral movement of the slide bar 302. It should be appreciated that this ramping contact may be reversed such that distal movement causes rightward movement respectively.
100771 It should be appreciated that a spring bias (not shown) may be included on the slide bar 302 to urge the slide bar 302 rightward into engagement with the right longitudinally moving link 314 so that the opposite proximal movement of the right longitudinal moving link 314 allows leftward movement of the slide bar 302.
Alternatively, in the illustrative version, a left longitudinally moving link 320 includes corresponding inwardly directed distal and proximal counter ramped surfaces 322, 324 that register and slidingly engage to distal and proximal right cam surfaces 304, 310, the latter ramp distally and the former ramp proximally so that distal longitudinal movement of the left longitudinally moving link 320 causes rightward lateral movement of the slide bar 302. It should be appreciated that this ramping contact may be reversed such that proximal movement causes leftward movement. It should be appreciated that the right and left longitudinally moving links 314, 320 and sliding bar 302 are supported within the
21.

elongate shaft 308 that allows this longitudinal movement of the former and lateral movement of the latter.
100781 A distal end of the slide bar 302, depicted as a socket ball 328, is received within a V-shaped cam groove 330 proximally aligned and proximal to a pivot pin 332 of an end effector 334. Thus, in FIG. 21, proximal movement of the right longitudinally moving link 314 and distal movement of the left longitudinally moving link 320 causes rightward movement of the sliding bar 302 with a corresponding rightward movement of the socket ball 328. Thus the V-shaped cam groove 330 is driven rightward, pivoting its most distal end 336 to the left. Alternatively, lateral movement of the slide bar 302 may be converted to articulation of the end effector 334 by the rack and gear engagement described above with respect to FIGS. 16-19. Thus, mechanical systems that use longitudinal movement can be used to provide lateral articulation for the surgical instrument 301.
Rotatable Link.
100791 In FIGS. 22 and 23, a further alternate articulation mechanism 400 uses a rotatable link 402 to move a lateral member, depicted as laterally moving slide bar 404, to cause articulation for a surgical instrument 406. The laterally moving slide bar 404 may operably engage with a rotary gear or a cammed groove as described above for FIGS. 16 and 20 at a proximal end of an end effector (not shown). Rotatable link 402 may be located below the slide bar 404 with at least one arm 408 extending rotatably transverse to the longitudinal axis therefrom to engage within a socket 410 within the slide bar 404.
The slide bar 404 is vertically constrained between a top spacer 412 and a bottom frame 414, the later having a longitudinal trough 416 that receives the rotatable link 402 and accommodates rotation of the arm 408. The spacer 412 and frame 414 are encompassed by a tubular sleeve 418. Rotation of the rotary link 402 moves the arm 408 in an arc and thereby moves the slide bar 404 laterally in the direction of rotation.
Lateral-to-Rotary One-Way Control Actuator.
100801 In FIGS. 24-27. it is desirable to provide an automatic locking feature that resists backdriving of the rotatable link 402. To that end, the rotatable link 402 is coupled to a lateral articulation control 500 that was described for use with different articulation joints in a co-pending and commonly-owned U.S. Pat. Appin. No. 10/615,972 entitled
22.

"SURGICAL INSTRUMENT WITH A LATERAL-MOVING ARTICULATION
CONTROL". The lateral articulation control 500 may be adapted for use in the articulation control 18 for an alternative articulating surgical instrument 502 similar to that described for FIGS. 1-6. In particular, the lateral articulation control 500 converts a lateral motion into a rotational motion transferred by an articulation drive tube 504 to an articulation mechanism (not shown in FIGS. 24-27). Adapting this to the previously mentioned articulation control 18 may entail acting as a one-way clutch between two laterally moving surfaces. Returning to FIGS. 24-27, a downward projecting gear rack 506 is coupled to a lower side 508 of a lateral control actuator 510 for engaging with longitudinally aligned grooves 512 on a top face of the articulation drive tube 504.
[0081] An articulation backdrive lockout 516 is advantageously incorporated into the lateral articulation control 500 to prevent a force upon the end effector (not depicted in FIGS. 24-27) from changing the amount of articulation. In particular, interposed between the articulation control actuator 510 and the gear rack 506 is a rack plate 518 that includes a central opening 520 containing a flexible X-shaped locking member 522. The articulation control actuator 510 includes two deflection blades 524, 526 that downwardly project into the central opening 520 of the rack plate 518 and are positioned respectively in a distal and a proximal quadrant defined by the X-shaped locking member 522 with respect to a top view depicted in FIGS. 26-27. The gear rack 506 includes two drive blades 532, 534 that upwardly project into the central opening 520 of the rack plate 518 and are positioned respectively in the left and right quadrants 536, 538 defined by the X-shaped locking member 522. The central opening 520 of the rack plate 518 is shown as being generally rectangular in shape, but with ramped teeth 540, each presenting an abutting surface 542 inwardly facing and longitudinally aligned. These ramped teeth 540 are placed along a right and left portion 544, 546 of a distal edge 548 to ratchedly contact right and left distal arms 550, 552 respectively of the X-shaped locking member 522. The ramped teeth 540 are also placed along a right and left portion 554, 556 of a proximal edge 558 of the rectangular window 520 to ratchedly contact right and left proximal arms 560, 562 of the X-shaped locking member 522.
(00821 With particular reference to FIG. 25, the gear rack 518 is illustrated as attached to a knob 564 and thus does not laterally translate with the articulation control actuator 510
23.

. , or the gear rack 506. Lateral movement of the articulation control actuator 510 is transferred through the articulation backdrive lockout 516 formed inside the rectangular window 520 of the rack frame 518. By contrast, a backdriven lateral movement of the articulation drive tube 504 and hence the gear rack 506 is reacted by the articulation backdrive lockout 516 into the rack frame 518 and into the knob 560. Thus movement of the articulation drive tube 504 is arrested.
100831 In use, as depicted in FIG. 26, the lateral articulation control 500 is centered.
Thereby, a visual indication is given to the clinician by the equally extended right and left ends 566, 568 of the articulation control actuator 510. The deflection blades 524, 526 are centered on the X-shaped lockout member 522, exerting no force on the arms 550, 552, 560, 562, which are thereby allowed to extend toward their uncompressed state into abutting contact with the ramped teeth 540, preventing lateral movement of the X-shaped lockout member 522. The drive blades 532, 534 of the gear rack 506 are in opposing contact on each side of the X-shaped lockout member 522. Any lateral force transferred from the articulation drive tube 504 into the gear rack 506 through the drive blades 532, 534 is reacted through the X-shaped lockout member 522 into the gear rack 506, preventing movement.
[00841 By contrast, as depicted in FIG. 27, when a clinician moves the articulation control actuator 510 to one lateral side, the deflection blades 524, 526 contact a pair of proximal and distal arms (the left ones 552, 562 in FIG. 27) compressing the pair away from contact with the rectangular window 520. Thus, the X-shaped lockout member 522 is allowed to move in that direction with the trailing pair of arms (e.g., right ones 550, 560 in FIG. 27) ratcheting along. This lateral movement is allowed to continue until the leading arms 552, 562 encounter the lateral extent of the rectangular window 520 as depicted. The drive blades 532, 534 of the gear rack 506 move with the X-shaped lockout member 522 and thus ultimately the end effector (not shown in FIG. 27) also articulates in response.
100851 While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the
24.

appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art.
[0086] For instance, a single fluid transfer approach may be incorporated wherein a single fluid actuator expands and compresses to effect articulation, perhaps assisted by a resilient opposing member that is not in fluid or pneumatic communication to the handle.
An application consistent with such a design, for instance, could include just one bladder attached to a T-bar so that when compressed by the withdrawal of fluid, it pulls the T-bar with it.
[0087] What is claimed is:
25.

Claims (8)

Claims
1. A surgical instrument, comprising:
a proximal portion configured for manipulation external to a patient;
an elongate shaft attached to the proximal portion;
an end effector;
an articulation joint pivotally attaching the end effector to the elongate shaft;
an arcing braking surface attached to the end effector and radiating proximally about an articulation axis of the articulation joint;
an articulation control attached to the proximal portion;
an articulation member extending a distal end from the elongate shaft into engagement with the end effector, the distal end laterally deflected in response to the articulation control to effect articulation;
a locking actuator guided by the elongate shaft, proximally coupled to the articulation control, distally terminating in a locking surface positioned to selectively engage the braking surface;
a slide bar constrained for lateral movement within the elongate shaft;
a distal end of the slide bar positioned in the articulation joint; and a proximal surface of the end effector engaged to the distal end of the articulation movement for converting a lateral motion of the slide bar to a pivoting motion of the end effector.
2. A surgical instrument, comprising:
a proximal portion configured for manipulation external to a patient;
an elongate shaft attached to the proximal portion;
an end effector;
an articulation joint pivotally attaching the end effector to the elongate shaft;
a gear segment proximally directed and attached to the end effector aligned to rotate about an articulation axis of the articulation joint;
a slide bar constrained for lateral movement within the elongate shaft;
a distally directed rack attached to the slide bar positioned in the articulation joint in engagement with the gear segment of the end effector;

a proximal surface of the end effector engaged to the distal end of the articulation movement for converting a lateral motion of the slide bar to a pivoting motion of the end effector; and a locking member in the elongate shaft selectively, distally and longitudinally translating to engage the gear segment of the end effector locking articulation joint.
3. The surgical instrument of claim 2, wherein the locking member is distally biased and includes a proximal pin, the articulation control including a toothed surface positioned to cam the pin proximally during actuation and to allow the proximal pin to distally move into a corresponding tooth root of the toothed surface when the articulation control stops.
4. The surgical instrument of claim 2, further comprising differential articulation actuators positioned on opposing sides of the slide bar.
5. The surgical instrument of claim 4, wherein the articulation actuators comprise fluidic actuators.
6. The surgical instrument of claim 4, wherein the articulation actuators comprise electromagnetic actuators.
7. The surgical instrument of claim 4, wherein the articulation actuators comprise longitudinally translating camming actuators.
8. The surgical instrument of claim 4, wherein the articulation actuators comprise buckling members with positionable proximal ends.
CA2553499A 2005-08-01 2006-07-26 Surgical instrument with an articulating shaft locking mechanism Expired - Fee Related CA2553499C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/194,437 2005-08-01
US11/194,437 US20070027468A1 (en) 2005-08-01 2005-08-01 Surgical instrument with an articulating shaft locking mechanism

Publications (2)

Publication Number Publication Date
CA2553499A1 CA2553499A1 (en) 2007-02-01
CA2553499C true CA2553499C (en) 2016-01-19

Family

ID=37309366

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2553499A Expired - Fee Related CA2553499C (en) 2005-08-01 2006-07-26 Surgical instrument with an articulating shaft locking mechanism

Country Status (7)

Country Link
US (1) US20070027468A1 (en)
EP (1) EP1749485A1 (en)
JP (1) JP5073240B2 (en)
CN (1) CN1911183B (en)
AU (1) AU2006202972B2 (en)
BR (1) BRPI0603089A (en)
CA (1) CA2553499C (en)

Families Citing this family (639)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
EP1635717B1 (en) * 2003-06-20 2010-02-17 Interventional & Surgical Innovations, LLC A device for grasping and/or severing
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US7654431B2 (en) * 2005-02-18 2010-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument with guided laterally moving articulation member
US7559452B2 (en) * 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument having fluid actuated opposing jaws
US7780054B2 (en) * 2005-02-18 2010-08-24 Ethicon Endo-Surgery, Inc. Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint
US20060289602A1 (en) * 2005-06-23 2006-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with double pivot closure and single pivot frame ground
US7784662B2 (en) * 2005-02-18 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
US7559450B2 (en) * 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating a fluid transfer controlled articulation mechanism
US8409175B2 (en) * 2005-07-20 2013-04-02 Woojin Lee Surgical instrument guide device
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US7481348B2 (en) * 2006-10-06 2009-01-27 Tyco Healthcare Group Lp Surgical instrument with articulating tool assembly
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7669747B2 (en) 2007-03-15 2010-03-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8800837B2 (en) * 2007-04-13 2014-08-12 Covidien Lp Powered surgical instrument
US7549564B2 (en) * 2007-06-22 2009-06-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulating end effector
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7624902B2 (en) * 2007-08-31 2009-12-01 Tyco Healthcare Group Lp Surgical stapling apparatus
US7703653B2 (en) * 2007-09-28 2010-04-27 Tyco Healthcare Group Lp Articulation mechanism for surgical instrument
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7861906B2 (en) * 2008-02-14 2011-01-04 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with articulatable components
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8398673B2 (en) * 2008-02-15 2013-03-19 Surgical Innovations V.O.F. Surgical instrument for grasping and cutting tissue
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US20130153641A1 (en) 2008-02-15 2013-06-20 Ethicon Endo-Surgery, Inc. Releasable layer of material and surgical end effector having the same
EP2630923B1 (en) 2008-06-19 2015-02-11 Boston Scientific Scimed, Inc. Hemostatic clipping devices
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) * 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8485413B2 (en) * 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
EP2393430A1 (en) 2009-02-06 2011-12-14 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
JP5892593B2 (en) * 2009-03-27 2016-03-23 国立大学法人滋賀医科大学 Medical treatment tool
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US20110295260A1 (en) * 2009-08-20 2011-12-01 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Knee reconstruction procedure and surgical implement particularly useful for such knee reconstruction procedure
US9474540B2 (en) 2009-10-08 2016-10-25 Ethicon-Endo-Surgery, Inc. Laparoscopic device with compound angulation
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US9039695B2 (en) 2009-10-09 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9259275B2 (en) 2009-11-13 2016-02-16 Intuitive Surgical Operations, Inc. Wrist articulation by linked tension members
EP3381397B1 (en) 2009-11-13 2020-01-08 Intuitive Surgical Operations Inc. Motor interface for parallel drive shafts within an independently rotating member
KR102077004B1 (en) 2009-11-13 2020-02-13 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 End effector with redundant closing mechanisms
US8852174B2 (en) 2009-11-13 2014-10-07 Intuitive Surgical Operations, Inc. Surgical tool with a two degree of freedom wrist
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8562592B2 (en) 2010-05-07 2013-10-22 Ethicon Endo-Surgery, Inc. Compound angle laparoscopic methods and devices
US20110275901A1 (en) * 2010-05-07 2011-11-10 Ethicon Endo-Surgery, Inc. Laparoscopic devices with articulating end effectors
US9226760B2 (en) 2010-05-07 2016-01-05 Ethicon Endo-Surgery, Inc. Laparoscopic devices with flexible actuation mechanisms
WO2011151828A2 (en) * 2010-06-01 2011-12-08 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Surgical implement particularly useful for knee reconstruction surgery
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9877720B2 (en) 2010-09-24 2018-01-30 Ethicon Llc Control features for articulating surgical device
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
BR112013007414B1 (en) * 2010-09-30 2021-07-13 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT AND END ACTUATOR
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US8746535B2 (en) 2010-09-30 2014-06-10 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising detachable portions
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9216019B2 (en) 2011-09-23 2015-12-22 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
EP2621356B1 (en) 2010-09-30 2018-03-07 Ethicon LLC Fastener system comprising a retention matrix and an alignment matrix
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8906019B2 (en) 2011-01-07 2014-12-09 Covidien Lp Ferrofluidic lock
US8858590B2 (en) 2011-03-14 2014-10-14 Ethicon Endo-Surgery, Inc. Tissue manipulation devices
US8857693B2 (en) * 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US8444664B2 (en) * 2011-05-16 2013-05-21 Covidien Lp Medical ultrasound instrument with articulated jaws
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US8574263B2 (en) 2011-07-20 2013-11-05 Covidien Lp Coaxial coil lock
US8568390B2 (en) 2011-07-20 2013-10-29 Covidien Lp Articulating surgical apparatus
US8603135B2 (en) 2011-07-20 2013-12-10 Covidien Lp Articulating surgical apparatus
US9028478B2 (en) 2011-07-20 2015-05-12 Covidien Lp Articulating surgical apparatus
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
CN102366955B (en) * 2011-10-21 2013-12-18 奇瑞汽车股份有限公司 Gear rack type locking device used for mechanical arm
US8968312B2 (en) * 2011-11-16 2015-03-03 Covidien Lp Surgical device with powered articulation wrist rotation
US9271749B2 (en) 2011-12-20 2016-03-01 Specialty Surgical Instrumentation Inc. System and method for an articulating grasper end-effector
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
RU2639857C2 (en) 2012-03-28 2017-12-22 Этикон Эндо-Серджери, Инк. Tissue thickness compensator containing capsule for medium with low pressure
MX358135B (en) 2012-03-28 2018-08-06 Ethicon Endo Surgery Inc Tissue thickness compensator comprising a plurality of layers.
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
EP2866686A1 (en) 2012-06-28 2015-05-06 Ethicon Endo-Surgery, Inc. Empty clip cartridge lockout
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9408622B2 (en) * 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9872724B2 (en) * 2012-09-26 2018-01-23 Aesculap Ag Apparatus for tissue cutting and sealing
WO2014052181A1 (en) 2012-09-28 2014-04-03 Ethicon Endo-Surgery, Inc. Multi-function bi-polar forceps
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9867615B2 (en) * 2013-02-28 2018-01-16 Ethicon Llc Surgical instrument with articulation lock having a detenting binary spring
US9186142B2 (en) 2013-02-28 2015-11-17 Ethicon Endo-Surgery, Inc. Surgical instrument end effector articulation drive with pinion and opposing racks
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US9358003B2 (en) 2013-03-01 2016-06-07 Ethicon Endo-Surgery, Llc Electromechanical surgical device with signal relay arrangement
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
RU2672520C2 (en) 2013-03-01 2018-11-15 Этикон Эндо-Серджери, Инк. Hingedly turnable surgical instruments with conducting ways for signal transfer
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9254161B2 (en) 2013-06-10 2016-02-09 Keith A. Easter Radiolucent handle system
CN103315789B (en) * 2013-06-27 2015-04-15 常州市康迪医用吻合器有限公司 Executing assembly of cutting anastomat applicable to minimally invasive surgery
US9402659B2 (en) 2013-08-06 2016-08-02 Warsaw Orthopedic, Inc. Spinal implant system
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
US10561417B2 (en) 2013-12-09 2020-02-18 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
ES2755485T3 (en) 2013-12-09 2020-04-22 Covidien Lp Adapter assembly for the interconnection of electromechanical surgical devices and surgical load units, and surgical systems thereof
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US20150173756A1 (en) * 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9763662B2 (en) 2013-12-23 2017-09-19 Ethicon Llc Fastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9839424B2 (en) 2014-01-17 2017-12-12 Covidien Lp Electromechanical surgical assembly
CN104783868B (en) * 2014-01-20 2018-08-10 北京安和加利尔科技有限公司 A kind of ultrasonic surgical blade knife bar with interchangeable cutter head
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9707005B2 (en) 2014-02-14 2017-07-18 Ethicon Llc Lockout mechanisms for surgical devices
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
JP6612256B2 (en) 2014-04-16 2019-11-27 エシコン エルエルシー Fastener cartridge with non-uniform fastener
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
CN103908320B (en) * 2014-04-25 2016-08-24 张世君 A kind of laparoscopic surgery nipper
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
BR112016030400B1 (en) * 2014-06-25 2022-07-19 Ethicon Endo-Surgery, Llc DEVICE
US9693774B2 (en) 2014-06-25 2017-07-04 Ethicon Llc Pivotable articulation joint unlocking feature for surgical stapler
US10292701B2 (en) * 2014-06-25 2019-05-21 Ethicon Llc Articulation drive features for surgical stapler
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US20160066913A1 (en) 2014-09-05 2016-03-10 Ethicon Endo-Surgery, Inc. Local display of tissue parameter stabilization
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
CN105496483B (en) * 2014-09-25 2017-06-23 瑞奇外科器械(中国)有限公司 The drive device and surgical operating instrument of surgical operating instrument
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
CN104306053A (en) * 2014-10-22 2015-01-28 广州新诚生物科技有限公司 Direction-controllable puncture sheath
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10507038B2 (en) * 2014-11-12 2019-12-17 Civco Medical Instruments Co., Inc. Needle guide devices for mounting on imaging transducers or adaptors on imaging transducer, imaging transducers for mounting needle guide devices and adaptors for imaging transducers for mounting needle guide devices thereon
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10117649B2 (en) * 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US20160249910A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Surgical charging system that charges and/or conditions one or more batteries
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
BR112017027281B1 (en) 2015-06-18 2022-12-13 Ethicon Llc SURGICAL INSTRUMENT
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
EP3331455B1 (en) * 2015-08-06 2019-10-09 Applied Medical Resources Corporation Surgical stapler having locking articulation joint
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
BR112018003693B1 (en) 2015-08-26 2022-11-22 Ethicon Llc SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
US10342520B2 (en) * 2015-08-26 2019-07-09 Ethicon Llc Articulating surgical devices and loaders having stabilizing features
MX2022009705A (en) 2015-08-26 2022-11-07 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue.
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10251648B2 (en) 2015-09-02 2019-04-09 Ethicon Llc Surgical staple cartridge staple drivers with central support features
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10349937B2 (en) * 2016-02-10 2019-07-16 Covidien Lp Surgical stapler with articulation locking mechanism
US10420559B2 (en) * 2016-02-11 2019-09-24 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10856867B2 (en) 2016-04-01 2020-12-08 Ethicon Llc Surgical stapling system comprising a tissue compression lockout
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US11191540B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
CN110099628B (en) * 2016-12-21 2022-10-25 爱惜康有限责任公司 Laterally actuatable articulation locking arrangement for locking an end effector of a surgical instrument in an articulated configuration
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
BR112019012528A2 (en) * 2016-12-21 2019-11-19 Ethicon Llc pivot lock arrangements for locking an end actuator in a pivot position in response to the actuation of a jaw closure system
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
CN110114005B (en) * 2016-12-21 2022-08-09 爱惜康有限责任公司 Shaft assembly including first and second articulation latches
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US20190000461A1 (en) 2017-06-28 2019-01-03 Ethicon Llc Surgical cutting and fastening devices with pivotable anvil with a tissue locating arrangement in close proximity to an anvil pivot axis
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
BR112019027695A2 (en) * 2017-06-28 2020-09-15 Ethicon Llc surgical instruments with constricted claws to rotate around a geometric axis through contact with a closing member that is parked in close proximity to the pivot geometric axis
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11337691B2 (en) 2017-12-21 2022-05-24 Cilag Gmbh International Surgical instrument configured to determine firing path
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11051841B2 (en) * 2018-04-12 2021-07-06 Ethicon Llc Mechanical lockout for ultrasonic surgical instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
CN111134751A (en) * 2018-11-02 2020-05-12 上海逸思医疗科技有限公司 Surgical instrument with bendable actuator
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11076850B2 (en) 2019-11-26 2021-08-03 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11291446B2 (en) 2019-12-18 2022-04-05 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US20210196362A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical end effectors with thermally insulative and thermally conductive portions
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US20210196349A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with flexible wiring assemblies
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11883024B2 (en) 2020-07-28 2024-01-30 Cilag Gmbh International Method of operating a surgical instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
CN117295455A (en) * 2021-05-13 2023-12-26 柯惠有限合伙公司 Articulating mechanism for surgical device
CN113208678A (en) * 2021-05-27 2021-08-06 天津瑞奇外科器械股份有限公司 Surgical instrument and operation method thereof
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506005A (en) * 1967-02-23 1970-04-14 Arthur S Gilio Pressure infusion device for medical use
US3726134A (en) * 1971-02-22 1973-04-10 B Grabovac Dial torque wrench
US4331277A (en) * 1980-05-23 1982-05-25 United States Surgical Corporation Self-contained gas powered surgical stapler
US4794912A (en) * 1987-08-17 1989-01-03 Welch Allyn, Inc. Borescope or endoscope with fluid dynamic muscle
GB8800909D0 (en) * 1988-01-15 1988-02-17 Ethicon Inc Gas powered surgical stapler
US4921482A (en) * 1989-01-09 1990-05-01 Hammerslag Julius G Steerable angioplasty device
US5632746A (en) * 1989-08-16 1997-05-27 Medtronic, Inc. Device or apparatus for manipulating matter
US5478320A (en) * 1989-11-29 1995-12-26 Cordis Corporation Puncture resistant balloon catheter and method of manufacturing
US5179934A (en) * 1990-02-20 1993-01-19 Olympus Optical Co., Ltd. Endoscope
US5005754A (en) * 1990-04-04 1991-04-09 Ethicon, Inc. Bladder and mandrel for use with surgical stapler
US5219111A (en) * 1991-03-11 1993-06-15 Ethicon, Inc. Pneumatically actuated linear stapling device
US5275608A (en) * 1991-10-16 1994-01-04 Implemed, Inc. Generic endoscopic instrument
US5289963A (en) * 1991-10-18 1994-03-01 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5312023A (en) * 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US5356064A (en) * 1991-10-18 1994-10-18 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5326013A (en) * 1991-10-18 1994-07-05 United States Surgical Corporation Self contained gas powered surgical apparatus
US6250532B1 (en) * 1991-10-18 2001-06-26 United States Surgical Corporation Surgical stapling apparatus
US5197649A (en) * 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
US5383880A (en) * 1992-01-17 1995-01-24 Ethicon, Inc. Endoscopic surgical system with sensing means
US5250056A (en) * 1992-02-04 1993-10-05 Hasson Harrith M Forceps-type surgical instrument
US5271543A (en) * 1992-02-07 1993-12-21 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
US5514157A (en) * 1992-02-12 1996-05-07 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5314466A (en) * 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
US5250074A (en) * 1992-07-14 1993-10-05 Wilk Peter J Surgical instrument assembly and associated technique
US5411519A (en) * 1992-09-23 1995-05-02 United States Surgical Corporation Surgical apparatus having hinged jaw structure
US5485952A (en) * 1992-09-23 1996-01-23 United States Surgical Corporation Apparatus for applying surgical fasteners
US5381943A (en) * 1992-10-09 1995-01-17 Ethicon, Inc. Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
US5431323A (en) * 1992-10-09 1995-07-11 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
US5662662A (en) * 1992-10-09 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical instrument and method
US5330502A (en) * 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5409498A (en) * 1992-11-05 1995-04-25 Ethicon, Inc. Rotatable articulating endoscopic fastening instrument
US5792165A (en) * 1993-07-21 1998-08-11 Charles H. Klieman Endoscopic instrument with detachable end effector
US5441494A (en) * 1993-07-29 1995-08-15 Ethicon, Inc. Manipulable hand for laparoscopy
US5339723A (en) * 1993-09-30 1994-08-23 Ethicon, Inc. Pressurized fluid actuation system for amplifying operator input force in a surgical instrument
US5405344A (en) * 1993-09-30 1995-04-11 Ethicon, Inc. Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor
US5487499A (en) * 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
DE4340707C2 (en) * 1993-11-30 1997-03-27 Wolf Gmbh Richard manipulator
US5743456A (en) * 1993-12-16 1998-04-28 Stryker Corporation Hand actuable surgical handpiece
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
CA2145723A1 (en) * 1994-03-30 1995-10-01 Steven W. Hamblin Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
US5901895A (en) * 1994-10-05 1999-05-11 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
US5752973A (en) * 1994-10-18 1998-05-19 Archimedes Surgical, Inc. Endoscopic surgical gripping instrument with universal joint jaw coupler
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5530502A (en) * 1995-03-13 1996-06-25 Eastman Kodak Company Camera autowind gear mechanism
US5860995A (en) * 1995-09-22 1999-01-19 Misener Medical Co. Inc. Laparoscopic endoscopic surgical instrument
US6010054A (en) * 1996-02-20 2000-01-04 Imagyn Medical Technologies Linear stapling instrument with improved staple cartridge
US5725536A (en) * 1996-02-20 1998-03-10 Richard-Allen Medical Industries, Inc. Articulated surgical instrument with improved articulation control mechanism
US5762255A (en) * 1996-02-20 1998-06-09 Richard-Allan Medical Industries, Inc. Surgical instrument with improvement safety lockout mechanisms
US5797537A (en) * 1996-02-20 1998-08-25 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved firing mechanism
US5779727A (en) * 1997-02-18 1998-07-14 Orejola; Wilmo C. Hydraulically operated surgical scissors
TW473600B (en) * 1997-04-15 2002-01-21 Swagelok Co Tube fitting, rear ferrule for a two ferrule tube fitting and ferrule for a tube fitting and a non-flared tube fitting
US5865361A (en) * 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
US6756094B1 (en) * 2000-02-28 2004-06-29 Scimed Life Systems, Inc. Balloon structure with PTFE component
US6527782B2 (en) * 2000-06-07 2003-03-04 Sterotaxis, Inc. Guide for medical devices
US6506202B1 (en) * 2000-07-10 2003-01-14 Advanced Cardiovascular Systems, Inc. Expandable stent dimensional retention system and method
US6357490B1 (en) * 2000-08-22 2002-03-19 Advanced Inhalation Research, Inc. System, method and apparatus for filling containers
US6830174B2 (en) * 2000-08-30 2004-12-14 Cerebral Vascular Applications, Inc. Medical instrument
US6773438B1 (en) * 2000-10-19 2004-08-10 Ethicon Endo-Surgery Surgical instrument having a rotary lockout mechanism
DE60238178D1 (en) * 2001-01-16 2010-12-16 Cytyc Surgical Products Palo A DEVICE AND METHOD FOR TREATING THE VENOUS REFLUX
JP2003090877A (en) * 2001-07-12 2003-03-28 Murata Mfg Co Ltd Radar device
US6755338B2 (en) * 2001-08-29 2004-06-29 Cerebral Vascular Applications, Inc. Medical instrument
US20030111507A1 (en) * 2001-12-14 2003-06-19 George Nunez Balloon actuator for use in a resectioning device
US7112357B2 (en) * 2002-01-23 2006-09-26 Boston Scientific Scimed, Inc. Medical devices comprising a multilayer construction
US8287561B2 (en) * 2002-06-28 2012-10-16 Boston Scientific Scimed, Inc. Balloon-type actuator for surgical applications
AU2003237588A1 (en) * 2002-07-11 2004-02-02 Sightline Technologies Ltd. Piston-actuated endoscopic steering system
ES2355297T3 (en) * 2002-10-04 2011-03-24 Tyco Healthcare Group, Lp SURGICAL STAPLER WITH UNIVERSAL ARTICULATION AND DEVICE FOR PREVIOUS FASTENING OF THE FABRIC.
EP2228017A1 (en) * 2002-10-04 2010-09-15 Tyco Healthcare Group LP Tool assembly for a surgical stapling device
TW566349U (en) * 2003-03-11 2003-12-11 Lite On Technology Corp Multi-functional office appliance
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7159750B2 (en) * 2003-06-17 2007-01-09 Tyco Healtcare Group Lp Surgical stapling device
US6964363B2 (en) * 2003-07-09 2005-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having articulation joint support plates for supporting a firing bar
US6981628B2 (en) * 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
US7111769B2 (en) * 2003-07-09 2006-09-26 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis
US7213736B2 (en) * 2003-07-09 2007-05-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint
US6786382B1 (en) * 2003-07-09 2004-09-07 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an articulation joint for a firing bar track
US7259750B2 (en) * 2003-09-15 2007-08-21 Intel Corporation Extended stand computer system with non-retractable carrying handle
US7364061B2 (en) * 2003-09-29 2008-04-29 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism
US6905057B2 (en) * 2003-09-29 2005-06-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
US7166077B2 (en) * 2004-02-03 2007-01-23 Pharma-Smart, Llc Cuff for measurement of blood pressure
US7404509B2 (en) * 2004-07-28 2008-07-29 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for linear stapler
US7487899B2 (en) * 2004-07-28 2009-02-10 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP complete firing system lockout mechanism
US8057508B2 (en) * 2004-07-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation locking mechanism
US8905977B2 (en) * 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US7407074B2 (en) * 2004-07-28 2008-08-05 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for multi-fire surgical fastening instrument
US8317074B2 (en) * 2004-07-28 2012-11-27 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for circular stapler
US7857183B2 (en) * 2004-07-28 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
US7143925B2 (en) * 2004-07-28 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP blocking lockout mechanism
JP2006073171A (en) * 2004-08-06 2006-03-16 Konica Minolta Opto Inc Optical element for monitor, manufacturing method therefor, and optical pickup
US7559450B2 (en) * 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating a fluid transfer controlled articulation mechanism
US7481824B2 (en) * 2005-12-30 2009-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument with bending articulation controlled articulation pivot joint

Also Published As

Publication number Publication date
CA2553499A1 (en) 2007-02-01
JP2007038003A (en) 2007-02-15
JP5073240B2 (en) 2012-11-14
BRPI0603089A (en) 2007-03-13
EP1749485A1 (en) 2007-02-07
US20070027468A1 (en) 2007-02-01
CN1911183A (en) 2007-02-14
AU2006202972B2 (en) 2012-05-24
CN1911183B (en) 2011-04-06
AU2006202972A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
CA2553499C (en) Surgical instrument with an articulating shaft locking mechanism
US7654431B2 (en) Surgical instrument with guided laterally moving articulation member
CA2553183C (en) Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint
CA2540902C (en) Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
US7481824B2 (en) Surgical instrument with bending articulation controlled articulation pivot joint
US7455208B2 (en) Surgical instrument with articulating shaft with rigid firing bar supports
AU2006202051B2 (en) Surgical instrument with articulation shaft with double pivot closure and single pivot frame ground
JP2006289090A5 (en)
MXPA06008663A (en) Surgical instrument with an articulating shaft locking mechanism
MXPA06003855A (en) Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20220301

MKLA Lapsed

Effective date: 20200831