CA2553993A1 - Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength - Google Patents

Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength Download PDF

Info

Publication number
CA2553993A1
CA2553993A1 CA002553993A CA2553993A CA2553993A1 CA 2553993 A1 CA2553993 A1 CA 2553993A1 CA 002553993 A CA002553993 A CA 002553993A CA 2553993 A CA2553993 A CA 2553993A CA 2553993 A1 CA2553993 A1 CA 2553993A1
Authority
CA
Canada
Prior art keywords
group
substituted
tetrakis
independently
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002553993A
Other languages
French (fr)
Other versions
CA2553993C (en
Inventor
Michael D. Jensen
Joel L. Martin
Max P. Mcdaniel
Qing Yang
Matthew G. Thorn
Elizabeth A. Benham
Ted H. Cymbaluk
Ashish M. Sukhadia
Rajendra K. Krishnaswamy
Mark E. Kertok
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron Phillips Chemical Co LP
Original Assignee
Chevron Phillips Chemical Company Lp
Michael D. Jensen
Joel L. Martin
Max P. Mcdaniel
Qing Yang
Matthew G. Thorn
Elizabeth A. Benham
Ted H. Cymbaluk
Ashish M. Sukhadia
Rajendra K. Krishnaswamy
Mark E. Kertok
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Phillips Chemical Company Lp, Michael D. Jensen, Joel L. Martin, Max P. Mcdaniel, Qing Yang, Matthew G. Thorn, Elizabeth A. Benham, Ted H. Cymbaluk, Ashish M. Sukhadia, Rajendra K. Krishnaswamy, Mark E. Kertok filed Critical Chevron Phillips Chemical Company Lp
Priority to CA2736014A priority Critical patent/CA2736014C/en
Publication of CA2553993A1 publication Critical patent/CA2553993A1/en
Application granted granted Critical
Publication of CA2553993C publication Critical patent/CA2553993C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/07Catalyst support treated by an anion, e.g. Cl-, F-, SO42-
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/941Synthetic resins or natural rubbers -- part of the class 520 series having the transition metal bonded directly to carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Abstract

This invention relates to catalyst compositions comprising a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. This invention also relates to methods to prepare and use the catalyst compositions and new polyolefins.
The compositions and methods disclosed herein provide ethylene polymers and copolymers with lower MI, increased melt strength, and good MD tear properties.

Claims (41)

1. A catalyst composition comprising a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound, wherein:
a) the first metallocene compound has the following formula:

(X1)(X2)(X3)(X4)Zr;

wherein (X1) and (X2) axe independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof;
wherein each substituent on (X1) and (X2) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, ally one of which having from 1 to 20 carbon atoms;
wherein (X3), (X4), and any substituent on the substituted aliphatic group on (X1) and (X2) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
b) wherein the second metallocene compound has the following formula:

(X5)(X6)(X7)(X8)M; wherein 1) M is Zr;
(X5) and (X6) are independently a substituted cyclopentadienyl, a substituted indenyl, a substituted fluorenyl, or a substituted, partially saturated analog thereof, wherein at least one of (X5) and (X6) is at least disubstituted; and each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;
2) M is Zr;
(X5) and (X6) are independently a cyclopentadienyl, an indenyl, a fluoroenyl, a partially saturated analog thereof, or a substituted analog thereof; and (X5) and (X6) are connected by a substituted or unsubstituted bridging group comprising from 3 to 5 contiguous ansa carbon atoms in a chain, one end of which is bonded to (X5) and the other end of which is bonded to (X6); or
3) M is Hf;
(X5) and (X6) are independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof; and each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms; and wherein (X7), (X8), any substituent on (X5), any substituent on (X6), any substituent on the substituted aliphatic group on (X5) and (X6), and any substituent on the substituted bridging group connecting (X5) and (X6) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
c) the chemically-treated solid oxide comprises a solid oxide treated with an electron-withdrawing anion; and d) the organoaluminum compound has the following formula:
Al(X9)n(X10)3-n;
wherein (X9) is a hydrocarbyl having from 1 to 20 carbon atoms; (X10) is an alkoxide or aryloxide having from 1 to 20 carbon atoms, halide, or hydride; and n is a number from 1 to 3, inclusive.
2. The catalyst composition of Claim 1, wherein the second metallocene compound has the following formula:
(X5)(X6)(X7)(X8)Zr;
wherein (X5) and (X6) are independently a substituted cyclopentadienyl, a substituted indenyl, a substituted fluorenyl, or a substituted, partially saturated analog thereof, wherein at least one of (X5) and (X6) is at least disubstituted;

wherein each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;
wherein (X7), (X8), and any substituent on the substituted aliphatic group on (X5) and (X6) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen.
3. The catalyst composition of Claim 2, wherein both (X5) and (X6) are at least disubstituted.
4. The catalyst composition of Claim 2, wherein:
a) the first metallocene compound has the formula (.eta.5-C5H4R1)2ZrX11 2, wherein R1 in each instance is independently a linear or branched aliphatic group having from 1 to 20 carbon atoms, and wherein X11 in each instance is independently F, Cl, Br, I, OMe, OEt, O-n-Pr, O-i-Pr, O-n-Bu, O-t-Bu, NMe2, or NEt2;
b) the second metallocene compound has the formula (.eta.5-C5H3R1 2)2ZrX11 2, wherein R1 in each instance is independently a linear or branched aliphatic group having from 1 to 20 carbon atoms, and X11 in each instance is independently F, Cl, Br, I, OMe, OEt, O-n-Pr, O-i-Pr, O-n-Bu, O-t-Bu, NMe2, or NEt2;
c) the chemically-treated solid oxide is fluorided alumina, chlorided alumina, bromided alumina, sulfated alumina, fluorided silica-alumina, chlorided silica-alumina, bromided silica-alumina, sulfated silica-alumina, fluorided silica-zirconia, chlorided silica-zirconia, bromided silica-zirconia, sulfated silica-zirconia, or any combination thereof; and d) the organoaluminum compound is trimethylaluminum, triethylaluminum, tri-n-propylaluminum, diethylaluminum ethoxide, tri-n-butylaluminum, disobutylaluminum hydride, triisobutylaluminum, diethylaluminum chloride, or any combination thereof.
5. The catalyst composition of Claim 2, wherein:
a) the first metallocene compound has the formula (.eta.5-C5H4 11Bu)2ZrCl2;
b) the second metallocene compound has the formula (.eta.5-C5H3 11BuR2)2ZrCl2, wherein R2 is Me, Et, n-Pr, I-Pr, n-Bu, s-Bu, i-Bu, or t-Bu;

c) the chemically treated solid oxide is fluorided alumina, chlorided alumina, sulfated alumina, fluorided silica-alumina, or any combination thereof; and d) the organoaluminum compound is trimethylaluminum, triethylaluminum, tri-n-propylaluminum, diethylaluminum ethoxide, tri-n-butylaluminum, disobutylaluminum hydride, triisobutylaluminum, diethylaluminum chloride, or any combination thereof.
6. The catalyst composition of Claim 2, wherein:
a) the first metallocene compound has the formula (.eta.5-C5H4n Bu)2ZrCl2;
b) the second metallocene compound has the formula (.eta.5-C5H3n BuMe)2ZrCl2;
c) the chemically-treated solid oxide is fluorided alumina, chlorided alumina, sulfated alumina, fluorided silica-alumina, or any combination thereof; and d) the organoaluminum compound is triethylaluminum or triisobutylaluminum.
7. The catalyst composition of Claim 1, wherein the second metallocene compound is an ansa-metallocene having the following formula:
(X5)(X6)(X7)(X8)Zr;
wherein (X5) and (X6) are independently a cyclopentadienyl, an indenyl, a fluorenyl, a partially saturated analog thereof, or a substituted analog thereof; wherein (X5) and (X6) are connected by a substituted or unsubstituted bridging group comprising from 3 to 5 contiguous ansa carbon atoms in a chain, one end of which is bonded to (X5) and the other end of which is bonded to (X6);
wherein (X7), (X8), any substituent on the substituted bridging group connecting (X5) and (X6), any substituent on (X5), and any substituent on (X6) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen.
8. The catalyst composition of Claim 7, wherein a) the first metallocene compound has the formula (.eta.5-C5H4R1)2ZrCl2, wherein R1 in each instance is independently a linear or branched aliphatic group having from 1 to 20 carbon atoms;

b) the second metallocene compound is [µ-CH2(CH2)n CH2](.eta.5-9-C13H8)2ZrX12 2, [µ-CH2(CH2)n CH2](.eta.5-9-C13H16)2ZrX12, [µ-CH2(CH2)n CH2](.eta.5-1-C9H6)2ZrX12 2, [µ-CH2(CH2)n CH2](.eta.5-1-C9H10)2ZrX12 2, or any combination thereof, wherein n is from 1 to 3, and wherein X12, in each occurrence, is independently an aliphatic group, an aromatic group, an alkoxide group, an aryloxide group, an alkylamide group, an arylamide group, a dialkylamide group, a diarylamide group, an alkyl arylamide group, an alkylthiolate group, an arylthiolate group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
c) the chemically-treated solid oxide is fluorided alumina, chlorided alumina, bromided alumina, sulfated alumina, fluorided silica-alumina, chlorided silica-alumina, bromided silica-alumina, sulfated silica-alumina, fluorided silica-zirconia, chlorided silica-zirconia, bromided silica-zirconia, sulfated silica-zirconia, or any combination thereof; and d) the organoaluminum compound is trimethylaluminum, triethylaluminum, tri-n-propylaluminum, diethylaluminum ethoxide, tri-n-butylaluminum, disobutylaluminum hydride, triisobutylaluminum, diethylaluminum chloride, or any combination thereof.
9. The catalyst composition of Claim 8, wherein X12 is independently F, Cl, Br, I, OMe, OEt, O-n-Pr, O-i-Pr, O-n-Bu, O-t-Bu, NMe2, or NEt2.
10. The catalyst composition of Claim 7, wherein:
a) the first metallocene compound has the following formula (.eta.5-C5H4R1)2ZrCl2, wherein R1 in each instance is independently a linear or branched aliphatic having from 1 to 20 carbon atoms; and b) the second metallocene compound is:
1,3-propanediylbis(.eta.5-9-fluorenyl)zirconium dichloride;
1,4-butanediylbis(.eta.5-9-fluorenyl)zirconium dichloride;
1,5-pentanediylbis(.eta.5-9-fluorenyl)zirconium dichloride;
1,3-propanediylbis(.eta.5-1-indenyl)zirconium dichloride;
1,4-butanediylbis(.eta.5-1-indenyl)zirconium dichloride;
1,5-pentanediylbis(.eta.5-1-indenyl)zirconium dichloride;
1,3-propanediylbis(.eta.5-9-fluorenyl)di-n-butoxyzirconium;
1,4-butanediylbis(.eta.5-9-fluorenyl)di-n-butoxyzirconium;
1,5-pentanediylbis(.eta.5-9-fluorenyl)di-n-butoxyzirconium;

1,3-propanediylbis(.eta.-1-indenyl)di-n-butoxyzirconium;
1,4-butanediylbis(.eta.5-1-indenyl)di-n-butoxyzirconium;
1,5-pentanediylbis(.eta.5-1-indenyl)di-n-butoxyzirconium;
1,3-propanediylbis(.eta.5-9-fluorenyl)zirconium dimethyl;
1,4-butanediylbis(.eta.5-9-fluorenyl)zirconium dimethyl;
1,5-pentanediylbis(.eta.5-9-fluorenyl)zirconium dimethyl;
1,3-propanediylbis(.eta.5-1-indenyl)zirconium dimethyl;
1,4-butanediylbis(.eta.5-1-indenyl)zirconium dimethyl;
1,5-pentanediylbis(.eta.5-1-indenyl)zirconium dimethyl;
or any combination thereof;
c) the chemically-treated solid oxide is fluorided alumina, chlorided alumina, sulfated alumina, fluorided silica-alumina, or any combination thereof; and d) the organoaluminum compound is triethylaluminum or triisobutylaluminum.
11. The catalyst composition of Claim 1, wherein the second metallocene compound has the following formula:
(X5)(X6)(X7)(X8)Hf;
wherein (X5) and (X6) are independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof;
wherein each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;
wherein (X7), (X8), and any substituent on the substituted aliphatic group on (X5) and (X6) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen.
12. The catalyst composition of Claim 11, wherein:
a) the first metallocene compound has the following formula (.eta.5-C5H4R1)2ZrX11 2, wherein R1 in each instance is independently a linear or branched aliphatic group having from 1 to 20 carbon atoms, and X is independently F, Cl, Br, I, OMe, OEt, O-n-Pr, O-i-Pr, O-n-Bu, O-t-Bu, NMe2, or NEt2;
b) the second metallocene compound has the following formula (.eta.5-C5H4R1)2HfX11 2, wherein R1 in each instance is independently a linear or branched aliphatic group having from 1 to 20 carbon atoms, and X11 is independently F, Cl, Br, I, OMe, OEt, O-n-Pr, O-i-Pr, O-n-Bu, O-t-Bu, NMe2, or NEt2;
c) the chemically-treated solid oxide is fluorided alumina, chlorided alumina, sulfated alumina, fluorided silica-alumina, chlorided silica-alumina, sulfated silica-alumina, or any combination thereof; and d) the organoaluminum compound is trimethylaluminum, triethylaluminum, tri-n-propylaluminum, diethylaluminum ethoxide, tri-n-butylaluminum, disobutylaluminum hydride, triisobutylaluminum, diethylaluminum chloride, or any combination thereof.
13. The catalyst composition of Claim 11, wherein:
a) the first metallocene compound has the formula (.eta.5-C5H4n Bu)2ZrCl2;
b) the second metallocene compound has the formula (.eta.5-C5H4n Bu)2HfCl2;
c) the chemically-treated solid oxide is fluorided alumina, chlorided alumina, sulfated alumina, fluorided silica-alumina, or any combination thereof; and d) the organoaluminum compound is trimethylaluminum, triethylaluminum, tri-n-propylaluminum, diethylaluminum ethoxide, tri-n-butylaluminum, disobutylaluminum hydride, triisobutylaluminum, diethylaluminum chloride, or any combination thereof.
14. The catalyst composition of Claim 1, wherein the chemically-treated solid oxide comprises a solid oxide treated with an electron-withdrawing anion, wherein the solid oxide is silica, alumina, silica-alumina, aluminum phosphate, heteropolytungstates, titania, zirconia, magnesia, boria, zinc oxide, mixed oxides thereof, or mixtures thereof; and the electron-withdrawing anion is fluoride, chloride, bromide, phosphate, triflate, bisulfate, sulfate, or any combination thereof.
15. The catalyst composition of Claim 1, wherein the chemically-treated solid oxide is fluorided alumina, chlorided alumina, bromided alumina, sulfated alumina, fluorided silica-alumina, chlorided silica-alumina, bromided silica-alumina, sulfated silica-alumina, fluorided silica-zirconia, chlorided silica-zirconia, bromided silica-zirconia, sulfated silica-zirconia, or any combination thereof.
16. The catalyst composition of Claim 1, wherein the chemically-treated solid oxide further comprises a metal or metal ion comprising zinc, nickel, vanadium, silver, copper, gallium, tin, tungsten, molybdenum, or any combination thereof.
17. The catalyst composition of Claim 1, wherein the chemically-treated solid oxide further comprises a metal or metal ion and is zinc-impregnated chlorided alumina, zinc-impregnated fluorided alumina, zinc-impregnated chlorided silica-alumina, zinc-impregnated fluorided silica-alumina, zinc-impregnated sulfated alumina, or any combination thereof.
18. The catalyst composition of Claim 1, wherein the weight ratio of the organoalumium compound to the chemically-treated solid oxide is from 10:1 to 1:1,000.
19. The catalyst composition of Claim 1, wherein the organoaluminum compound is trimethylaluminum, triethylaluminum, tripropylaluminum, diethylaluminum ethoxide, tributylaluminum, disobutylaluminum hydride, triisobutylaluminum, or diethylaluminum chloride.
20. The catalyst composition of Claim 1, further comprising an optional cocatalyst comprising at least one aluminoxane, at least one organozinc compound, at least one organoboron compound, at least one ionizing ionic compound, or any combination thereof.
21. The catalyst composition of Claim 1, further comprising an optional cocatalyst comprising at least one aluminoxane compound, wherein the aluminoxane comprises a cyclic aluminoxane having the formula:
; wherein R is a linear or branched alkyl having from 1 to 10 carbon atoms, and n is an integer from 3 to 10;
a linear aluminoxane having the formula:

; wherein R is a linear or branched alkyl having from 1 to 10 carbon atoms, and n is an integer from 1 to 50;
a cage aluminoxane having the formula R t5m+.alpha. R b m-.alpha. Al4m O3m, wherein m is 3 or 4 and .alpha.
is = .eta. Al(3)- .eta. O(2)+ .eta. O(4); wherein .eta. Al(3) is the number of three coordinate aluminum atoms, .eta.O(2) is the number of two coordinate oxygen atoms, .eta.O(4) is the number of 4 coordinate oxygen atoms, R t represents a terminal alkyl group, and R b represents a bridging alkyl group; wherein R is a linear or branched alkyl having from 1 to 10 carbon atoms; or any combination thereof.
22. The catalyst composition of Claim 21, wherein the molar ratio of the aluminum in the aluminoxane to the combined first metallocene compound and second metallocene compound in the catalyst composition is from 1:10 to 100,000:1.
23. The catalyst composition of Claim 21, wherein the aluminoxane compound is methylaluminoxane, ethylaluminoxane, n-propylaluminoxane, iso-propylaluminoxane, n-butylaluminoxane, t-butylaluminoxane, sec-butylaluminoxane, iso-butylaluminoxane, 1-pentyl-aluminoxane, 2-pentylaluminoxane, 3-pentylaluminoxane, iso-pentylaluminoxane, neopentylaluminoxane, or a combination thereof.
24. The catalyst composition of Claim 1, further comprising an optional cocatalyst comprising at least one organozinc compound, wherein the organozinc compound has the following formula:
Zn(X13)(X14);
wherein (X13) is a hydrocarbyl having from 1 to 20 carbon atoms; (X14) is a hydrocarbyl, an alkoxide or an aryloxide having from 1 to 20 carbon atoms, halide, or hydride;
25. The catalyst composition of Claim 1, further comprising an optional cocatalyst comprising at least one organozinc compound, wherein the organozinc compound is dimethylzinc, diethylzinc, dipropylzinc, dibutylzinc, dineopentylzinc, di(trimethylsilymethyl)zinc, or any combination thereof.
26. The catalyst composition of Claim 1, further comprising an optional cocatalyst comprising at least one organoboron compound, wherein the organoboron compound is tris(pentafluorophenyl)boron, tris[3,5-bis(trifluoromethyl)phenyl]boron, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, triphenylcarbenium tetrakis(pentafluorophenyl)borate, lithium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis[3,5-bis(trifluoro-methyl)phenyl]borate, triphenylcarbenium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, or a combination thereof.
27. The catalyst composition of Claim 26, wherein the molar ratio of the organoboron compound to the combined first metallocene compound and second metallocene compound in the catalyst composition is from 0.1:1 to 10:1.
28. The catalyst composition of Claim 1, further comprising an optional cocatalyst comprising at least one ionizing ionic compound, wherein the ionizing ionic compound is tri(n-butyl)ammonium tetrakis(p-tolyl)borate, tri(n-butyl)ammonium tetrakis(m-tolyl)borate, tri(n-butyl)ammonium tetrakis(2,4-dimethyl)borate, tri(n-butyl)ammonium tetrakis(3,5-dimethylphenyl)borate, tri(n-butyl)ammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, tri(n-butyl)ammonium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(p-tolyl)borate, N,N-dimethylanilinium tetrakis(m-tolyl)borate, N,N-dimethylanilinium tetrakis(2,4-dimethylphenyl)borate, N,N-dimethylanilinium tetrakis(3,5-dimethylphenyl)borate, N,N-dimethylanilinium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, triphenylcarbenium tetrakis(p-tolyl)borate, triphenylcarbenium tetrakis(m-tolyl)borate, triphenylcarbenium tetrakis(2,4-dimethylphenyl)borate, triphenylcarbenium tetrakis(3,5-dimethylphenyl)borate, triphenylcarbenium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, triphenylcarbenium tetrakis(pentafluorophenyl)borate, tropylium tetrakis(p-tolyl)borate, tropylium tetrakis(m-tolyl)borate, tropylium tetrakis(2,4-dimethylphenyl)borate, tropylium tetrakis(3,5-dimethylphenyl)borate, tropylium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, tropylium tetrakis(pentafluorophenyl)borate, lithium tetrakis(pentafluorophenyl)borate, lithium tetrakis(phenyl)borate, lithium tetrakis(p-tolyl)borate, lithium tetrakis(m-tolyl)borate, lithium tetrakis(2,4-dimethylphenyl)borate, lithium tetrakis(3,5-dimethylphenyl)borate, lithium tetrafluoroborate, sodium tetrakis(pentafluorophenyl)borate, sodium tetrakis(phenyl) borate, sodium tetrakis(p-tolyl)borate, sodium tetrakis(m-tolyl)borate, sodium tetrakis(2,4-dimethylphenyl)borate, sodium tetrakis(3,5-dimethylphenyl)borate, sodium tetrafluoroborate, potassium tetrakis(pentafluorophenyl)borate, potassium tetrakis(phenyl)borate, potassium tetrakis(p-tolyl)borate, potassium tetrakis(m-tolyl)borate, potassium tetrakis(2,4-dimethyl-phenyl)borate, potassium tetrakis(3,5-dimethylphenyl)borate, potassium tetrafluoroborate, tri(n-butyl)ammonium tetrakis(p-tolyl)aluminate, tri(n-butyl)ammonium tetrakis(m-tolyl)aluminate, tri(n-butyl)ammonium tetrakis(2,4-dimethyl)aluminate, tri(n-butyl)ammonium tetrakis(3,5-dimethylphenyl)aluminate, tri(n-butyl)ammonium tetrakis(pentafluorophenyl)aluminate, N,N-dimethylanilinium tetrakis(p-tolyl)aluminate, N,N-dimethylanilinium tetrakis(m-tolyl)aluminate, N,N-dimethylanilinium tetrakis(2,4-dimethylphenyl)aluminate, N,N-dimethylanilinium tetrakis(3,5-dimethylphenyl)aluminate, N,N-dimethylanilinium tetrakis (pentafluorophenyl)aluminate, triphenylcarbenium tetrakis(p-tolyl)aluminate, triphenylcarbenium tetrakis(m-tolyl)aluminate, triphenylcarbenium tetrakis(2,4-dimethylphenyl)aluminate, triphenylcarbenium tetrakis(3,5-dimethylphenyl)aluminate, triphenylcarbenium tetrakis(pentafluorophenyl)aluminate, tropylium tetrakis(p-tolyl)aluminate, tropylium tetrakis(m-tolyl)aluminate, tropylium tetrakis(2,4-dimethylphenyl)aluminate, tropylium tetrakis(3,5-dimethylphenyl)aluminate, tropylium tetrakis(pentafluoro-phenyl)aluminate, lithium tetrakis(pentafluorophenyl)aluminate, lithium tetrakis-(phenyl)aluminate, lithium tetrakis(p-tolyl)aluminate, lithium tetrakis(m-tolyl)aluminate, lithium tetrakis(2,4-dimethylphenyl)aluminate, lithium tetrakis(3,5-dimethylphenyl)aluminate, lithium tetrafluoroaluminate, sodium tetrakis(pentafluorophenyl)aluminate, sodium tetrakis(phenyl)aluminate, sodium tetrakis(p-tolyl)aluminate, sodium tetrakis(m-tolyl)aluminate, sodium tetrakis(2,4-dimethylphenyl)aluminate, sodium tetrakis(3,5-dimethylphenyl)aluminate, sodium tetrafluoroaluminate, potassium tetrakis(pentafluorophenyl)aluminate, potassium tetrakis(phenyl)aluminate, potassium tetrakis(p-tolyl)aluminate, potassium tetrakis(m-tolyl)-aluminate, potassium tetrakis(2,4-dimethylphenyl)aluminate, potassium tetrakis (3,5-dimethylphenyl)aluminate, potassium tetrafluoroaluminate, or any combination thereof.
29. A catalyst composition consisting essentially of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound, wherein:
a) the first metallocene compound has the following formula:
(X1)(X2)(X3)(X4)Zr;
wherein (X1) and (X2) are independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof;

wherein each substituent on (X1) and (X2) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;
wherein (X3), (X4), and any substituent on the substituted aliphatic group on (X') and (X2) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
b) wherein the second metallocene compound has the following formula:
(X5)(X6)(X7)(X8)M; wherein 1) M is Zr;
(X5) and (X6) are independently a substituted cyclopentadienyl, a substituted indenyl, a substituted fluorenyl, or a substituted, partially saturated analog thereof, wherein at least one of (X5) and (X6) is at least disubstituted; and each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;
2) M is Zr;
(X5) and (X6) are independently a cyclopentadienyl, an indenyl, a fluorenyl, a partially saturated analog thereof, or a substituted analog thereof; and (X5) and (X6) are connected by a substituted or unsubstituted bridging group comprising from 3 to 5 contiguous ansa carbon atoms in a chain, one end of which is bonded to (X5) and the other end of which is bonded to (X6); or 3) M is Hf;
(X5) and (X6) are independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof; and each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms; and wherein (X7), (X8), any substituent on (X5), any substituent on (X6), any substituent on the substituted aliphatic group on (X5) and (X6), and any substituent on the substituted bridging group connecting (X~) and (X~) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
c) the chemically-treated solid oxide comprises a solid oxide treated with an electron-withdrawing anion; and d) the organoaluminum compound has the following formula:

Al(X9)n(X10)3-n;

wherein (X9) is a hydrocarbyl having from 1 to 20 carbon atoms; (X10) is alkoxide or aryloxide having from 1 to 20 carbon atoms, halide, or hydride; and n is a number from 1 to 3, inclusive.
30. A catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound, wherein:
a) the first metallocene compound has the following formula:

(X1)(X2)(X3)(X4)Zr;

wherein (X1) and (X2) are independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof;
wherein each substituent on (X1) and (X2) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;
wherein (X3), (X4), and any substituent on the substituted aliphatic group on (X1) and (X2) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
b) wherein the second metallocene compound has the following formula:

(X5)(X6)(X7)(X8)M; wherein 1) M is Zr;

(X~) and (X~) are independently a substituted cyclopentadienyl, a substituted indenyl, a substituted fluorenyl, or a substituted, partially saturated analog thereof, wherein at least one of (X5) and (X6) is at least disubstituted; and each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;
2) M is Zr;
(X5) and (X6) are independently a cyclopentadienyl, an indenyl, a fluorenyl, a partially saturated analog thereof, or a substituted analog thereof; and (X5) and (X6) are connected by a substituted or unsubstituted bridging group comprising from 3 to 5 contiguous ansa carbon atoms in a chain, one end of which is bonded to (X5) and the other end of which is bonded to (X6); or 3) M is Hf;
(X5) and (X6) are independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof; and each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms; and wherein (X7), (X8), any substituent on (X5), any substituent on (X6), any substituent on the substituted aliphatic group on (X5) and (X6), and any substituent on the substituted bridging group connecting (X5) and (X6) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
c) the chemically-treated solid oxide comprises a solid oxide treated with an electron-withdrawing anion; and d) the organoaluminum compound has the following formula:

Al(X9)n(X10)3-n;

wherein (X9) is a hydrocarbyl having from 1 to 20 carbon atoms; (X10) is alkoxide or aryloxide having from 1 to 20 carbon atoms, halide, or hydride; and n is a number from 1 to 3, inclusive.
31. A process to produce a catalyst composition comprising contacting a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound, wherein:
a) the first metallocene compound has the following formula:

(X1)(X2)(X3)(X4)Zr;

wherein (X1) and (X2) are independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof;
wherein each substituent on (X1) and (X2) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;
wherein (X3), (X4), and any substituent on the substituted aliphatic group on (X1) and (X2) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
b) wherein the second metallocene compound has the following formula:

(X5)(X6)(X7)(X8)M; wherein 1) M is Zr;
(X5) and (X6) are independently a substituted cyclopentadienyl, a substituted indenyl, a substituted fluorenyl, or a substituted, partially saturated analog thereof, wherein at least one of (X5) and (X6) is at least disubstituted; and each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;
2) M is Zr;
(X5) and (X6) are independently a cyclopentadienyl, an indenyl, a fluorenyl, a partially saturated analog thereof, or a substituted analog thereof; and (X5) and (X6) are connected by a substituted or unsubstituted bridging group comprising from 3 t0 5 contiguous ansa carbon atoms in a chain, one end of which is bonded to (X5) and the other end of which is bonded to (X6); or 3) M is Hf;

(X) and (X') are independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof; and each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms; and wherein (X7), (X8), any substituent on (X5), any substituent on (X6), any substituent on the substituted aliphatic group on (X5) and (X6), and any substituent on the substituted bridging group connecting (X5) and (X6) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
c) the chemically-treated solid oxide comprises a solid oxide treated with an electron-withdrawing anion; and d) the organoaluminum compound has the following formula:

Al(X9)n(X10)3-n;

wherein (X9) is a hydrocarbyl having from 1 to 20 carbon atoms; (X10) is alkoxide or aryloxide having from 1 to 20 carbon atoms, halide, or hydride; and n is a number from 1 to 3, inclusive.
32. A process for polymerizing olefins in the presence of a catalyst composition, comprising contacting the catalyst composition with at least one type of olefin monomer, wherein the catalyst composition comprises a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound, wherein:
a) the first metallocene compound has the following formula:

(X1)(X2)(X3)(X4)Zr;

wherein (X1) and (X2) are independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof;
wherein each substituent on (X1) and (X2) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;

wherein (X3), (X4), and any substituent on the substituted aliphatic group on (X1) and (X2) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
b) wherein the second metallocene compound has the following formula:

(X5)(X6)(X7)(X8)M; wherein 1) M is Zr;
(X5) and (X6) are independently a substituted cyclopentadienyl, a substituted indenyl, a substituted fluorenyl, or a substituted, partially saturated analog thereof, wherein at least one of (X5) and (X6) is at least disubstituted; and each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms;
2) M is Zr;
(X5) and (X6) are independently a cyclopentadienyl, an indenyl, a fluorenyl, a partially saturated analog thereof, or a substituted analog thereof; and (X5) and (X6) are connected by a substituted or unsubstituted bridging group comprising from 3 to 5 contiguous ansa carbon atoms in a chain, one end of which is bonded to (X5) and the other end of which is bonded to (X6); or 3) M is Hf;
(X5) and (X6) are independently a monosubstituted cyclopentadienyl, a monosubstituted indenyl, a monosubstituted fluorenyl, or a monosubstituted, partially saturated analog thereof; and each substituent on (X5) and (X6) is independently a linear or branched aliphatic group, wherein the aliphatic group is unsubstituted or substituted, any one of which having from 1 to 20 carbon atoms; and wherein (X7), (X8), any substituent on (X5), any substituent on (X6), any substituent on the substituted aliphatic group on (X5) and (X6), and any substituent on the substituted bridging group connecting (X5) and (X6) are independently an aliphatic group, an aromatic group, a cyclic group, a combination of aliphatic and cyclic groups, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted derivative thereof, any one of which having from 1 to 20 carbon atoms; a halide; or hydrogen;
c) the chemically-treated solid oxide comprises a solid oxide treated with an electron-withdrawing anion; and d) the organoaluminum compound has the following formula:

Al(X9)n(X10)3-n;

wherein (X9) is a hydrocarbyl having from 1 to 20 carbon atoms; (X10) is alkoxide or aryloxide having from 1 to 20 carbon atoms, halide, or hydride; and n is a number from 1 to 3, inclusive.
33. The process of Claim 32, wherein the catalyst composition is contacted with ethylene and at least one other olefin comprising 1-butene, 2-butene, 3-methyl-1-butene, isobutylene, 1-pentene, 2-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 2-hexene, .3-hexene, 3-ethyl-1-hexene, 1-heptene, 2-heptene, or 3-heptene.
34. The process of Claim 32, wherein the catalyst composition is contacted with ethylene and 1-hexene.
35. The process of Claim 32, wherein the catalyst composition is contacted with ethylene.
36. A polymer or copolymer of ethylene, wherein the melt index is from 0.3 to 2.0 dg/min;
the density from 0.94 to 0.91 g/cm3; the CY-a parameter is from 0.45 to 0.70;
the polydispersity index (M w/M n) is from 2 to 6; the HLMI/MI ratio is from 16.5 to 25; the Elmendorf MD tear resistance is greater than 150 g for 1 mil blown film; the Elmendorf TD tear resistance is greater than 350 g for a 1 mil blown film; the film haze is less than 25% for a 1 mil blown film; the Dart impact strength is greater than 600 g for a 1 mil blown film; and the Spencer impact strength is greater than 0.7 J for a 1 mil blown film.
37. A polymer or copolymer of ethylene, wherein the melt index is from 0.5 to 1.5 dg/min;
the density is from 0.935 to 0.915 g/cm3; the CY-a parameter is from 0.50 to 0.65; the polydispersity index (M w/M n) is from 2.2 to 5.0; the HLMI/MI ratio is from 17 to 24; the Elmendorf MD tear resistance is greater than 200 g for a 1 mil blown film; the Elmendorf TD
tear resistance is greater than 380 g for a 1 mil blown film; the film haze is less than 15% for a 1 mil blown film; the Dart impact strength is greater than 800 g for a 1 mil blown film; and the Spencer impact strength is greater than 0.9 J for a 1 mil blown film.
38. A polymer or copolymer of ethylene, wherein the melt index is from 0.8 to 1.3 dg/min;
the density is from 0.925 to 0.915 g/cm3; the CY-a parameter is from 0.55 to 0.62; the polydispersity index (M w/M n) is from 2.6 to 4.0; the HLMI/MI ratio is from 17.5 to 23; the Elmendorf MD tear resistance is greater than 250 g for a 1 mil blown film; the Elmendorf TD
tear resistance is greater than 450 g for a 1 mil blown film; the film haze is less than 10% for a 1 mil blown film; the Dart impact strength is greater than 1200 g for a 1 mil blown film; and the Spencer impact strength is greater than 1.00 J for a 1 mil blown film.
39. A polymer produced by a process as defined in any of Claims 32 to 35.
40. A catalyst composition produced by a process as defined in Claim 31 or 32.
41. Use of a catalyst composition as defined in any of Claims 1 to 30 or 40, or as produced by a process as defined in Claim 31 or 32, in an olefin polymerization reaction.
CA2553993A 2004-01-21 2005-01-20 Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength Expired - Fee Related CA2553993C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2736014A CA2736014C (en) 2004-01-21 2005-01-20 Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/762,056 US7119153B2 (en) 2004-01-21 2004-01-21 Dual metallocene catalyst for producing film resins with good machine direction (MD) elmendorf tear strength
US10/762,056 2004-01-21
PCT/US2005/002100 WO2005070977A1 (en) 2004-01-21 2005-01-20 Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2736014A Division CA2736014C (en) 2004-01-21 2005-01-20 Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength

Publications (2)

Publication Number Publication Date
CA2553993A1 true CA2553993A1 (en) 2005-08-04
CA2553993C CA2553993C (en) 2011-06-14

Family

ID=34750321

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2736014A Expired - Fee Related CA2736014C (en) 2004-01-21 2005-01-20 Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength
CA2553993A Expired - Fee Related CA2553993C (en) 2004-01-21 2005-01-20 Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA2736014A Expired - Fee Related CA2736014C (en) 2004-01-21 2005-01-20 Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength

Country Status (13)

Country Link
US (2) US7119153B2 (en)
EP (1) EP1706437B1 (en)
JP (3) JP2007518871A (en)
CN (2) CN100562532C (en)
AU (2) AU2005206563B2 (en)
BR (1) BRPI0507047A (en)
CA (2) CA2736014C (en)
EG (1) EG26673A (en)
ES (1) ES2563165T3 (en)
MX (1) MXPA06008322A (en)
RU (1) RU2382793C2 (en)
SG (1) SG134326A1 (en)
WO (1) WO2005070977A1 (en)

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2430207T3 (en) * 1998-05-18 2013-11-19 Chevron Phillips Chemical Company Lp Catalytic composition to polymerize monomers
US6300271B1 (en) * 1998-05-18 2001-10-09 Phillips Petroleum Company Compositions that can produce polymers
US7041617B2 (en) 2004-01-09 2006-05-09 Chevron Phillips Chemical Company, L.P. Catalyst compositions and polyolefins for extrusion coating applications
US7205363B2 (en) * 2003-06-11 2007-04-17 Exxon Mobil Chemical Patents Inc. Polymerization processes using antistatic agents
US7148298B2 (en) * 2004-06-25 2006-12-12 Chevron Phillips Chemical Company, L.P. Polymerization catalysts for producing polymers with low levels of long chain branching
PL1791875T3 (en) * 2004-08-27 2013-11-29 Chevron Phillips Chemical Co Lp Energy efficient polyolefin producction process
EP1659136A1 (en) * 2004-11-19 2006-05-24 Total Petrochemicals Research Feluy Solid state properties of polyethylene prepared with tetrahydroindenyl-based catalyst system
EP1674504A1 (en) * 2004-12-22 2006-06-28 Total Petrochemicals Research Feluy Geo-membrane applications
DE102005019393A1 (en) * 2005-04-25 2006-10-26 Basell Polyolefine Gmbh Molding material, useful for the preparation of injection-molded body and screw valve, comprises ethylene monomer
US7625982B2 (en) * 2005-08-22 2009-12-01 Chevron Phillips Chemical Company Lp Multimodal polyethylene compositions and pipe made from same
US7226886B2 (en) * 2005-09-15 2007-06-05 Chevron Phillips Chemical Company, L.P. Polymerization catalysts and process for producing bimodal polymers in a single reactor
US7312283B2 (en) * 2005-08-22 2007-12-25 Chevron Phillips Chemical Company Lp Polymerization catalysts and process for producing bimodal polymers in a single reactor
JP4940649B2 (en) * 2005-12-19 2012-05-30 東ソー株式会社 Catalyst for producing ethylene polymer and method for producing ethylene polymer
EP1964860B1 (en) * 2005-12-19 2017-07-05 Tosoh Corporation Ethylene polymer, catalyst for production of ethylene polymer, and process for production of ethylene polymer
JP5124938B2 (en) * 2005-12-19 2013-01-23 東ソー株式会社 Olefin polymerization catalyst and process for producing olefin polymer
US7517939B2 (en) 2006-02-02 2009-04-14 Chevron Phillips Chemical Company, Lp Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching
US7619047B2 (en) * 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
US20070255022A1 (en) * 2006-04-28 2007-11-01 Fina Technology, Inc. Fluorinated transition metal catalysts and formation thereof
US20070255026A1 (en) * 2006-04-28 2007-11-01 Fina Technology, Inc. Process for polyolefin production using fluorinated transition metal catalysts having a low pH
US20070254800A1 (en) * 2006-04-28 2007-11-01 Fina Technology, Inc. Fluorinated transition metal catalysts and formation thereof
US7632907B2 (en) * 2006-06-28 2009-12-15 Chevron Phillips Chemical Company Lp Polyethylene film having improved mechanical and barrier properties and method of making same
DE102006031960A1 (en) * 2006-07-11 2008-01-17 Oxeno Olefinchemie Gmbh Process for the preparation of polymers of 3-methylbut-1-ene
DE102007017903A1 (en) 2007-04-13 2008-10-16 Basell Polyolefine Gmbh Polyethylene and catalyst composition and process for its preparation
EP2058337A1 (en) * 2007-11-06 2009-05-13 Total Petrochemicals Research Feluy Process for preparing a polyethylene resin in a double loop reactor with a mixture of bis-indenyl and bis-tetrahydroindenyl catalyst components
WO2009082546A2 (en) * 2007-12-18 2009-07-02 Exxonmobil Chemical Patents Inc. Polyethylene films and process for production thereof
US20090297810A1 (en) * 2008-05-30 2009-12-03 Fiscus David M Polyethylene Films and Process for Production Thereof
US8012900B2 (en) * 2007-12-28 2011-09-06 Chevron Phillips Chemical Company, L.P. Nano-linked metallocene catalyst compositions and their polymer products
US7863210B2 (en) * 2007-12-28 2011-01-04 Chevron Phillips Chemical Company Lp Nano-linked metallocene catalyst compositions and their polymer products
US8080681B2 (en) 2007-12-28 2011-12-20 Chevron Phillips Chemical Company Lp Nano-linked metallocene catalyst compositions and their polymer products
US7884163B2 (en) 2008-03-20 2011-02-08 Chevron Phillips Chemical Company Lp Silica-coated alumina activator-supports for metallocene catalyst compositions
US11208514B2 (en) 2008-03-20 2021-12-28 Chevron Phillips Chemical Company Lp Silica-coated alumina activator-supports for metallocene catalyst compositions
EP2328906A1 (en) 2008-08-25 2011-06-08 Basell Polyolefine GmbH Preparation of ansa metallocene compounds
US7816478B2 (en) * 2008-09-03 2010-10-19 Equistar Chemicals, Lp Polyethylene thick film and process for preparing polyethylene
US8435911B2 (en) * 2008-10-16 2013-05-07 Basell Polyolefine Gmbh Hybrid catalyst composition for polymerization of olefins
CN102257014B (en) * 2008-12-17 2014-06-04 巴塞尔聚烯烃股份有限公司 Catalyst system for olefin polymerization, its production and use
SG173101A1 (en) * 2009-01-23 2011-08-29 Evonik Oxeno Gmbh Film
JP5611237B2 (en) * 2009-01-23 2014-10-22 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH PE MIB slurry polymerization
US8536391B2 (en) 2009-06-16 2013-09-17 Chevron Phillips Chemical Company Lp Oligomerization of alpha olefins using metallocene-SSA catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends
US7919639B2 (en) * 2009-06-23 2011-04-05 Chevron Phillips Chemical Company Lp Nano-linked heteronuclear metallocene catalyst compositions and their polymer products
US8329834B2 (en) * 2009-06-29 2012-12-11 Chevron Phillips Chemical Company Lp Dual metallocene catalyst systems for decreasing melt index and increasing polymer production rates
EP2448977B1 (en) 2009-06-29 2015-08-19 Chevron Phillips Chemical Company LP The use of hydrogen scavenging catalysts to control polymer molecular weight and hydrogen levels in a polymerization reactor
WO2011044150A1 (en) * 2009-10-06 2011-04-14 Chevron Phillips Chemical Company Lp Oligomerization of olefin waxes using metallocene-based catalyst systems
RU2634720C1 (en) * 2010-02-22 2017-11-03 Юнивейшн Текнолоджиз, Ллк Catalyst systems and methods for use thereof to produce polyolefin products
US8383754B2 (en) 2010-04-19 2013-02-26 Chevron Phillips Chemical Company Lp Catalyst compositions for producing high Mz/Mw polyolefins
US8288487B2 (en) 2010-07-06 2012-10-16 Chevron Phillips Chemical Company Lp Catalysts for producing broad molecular weight distribution polyolefins in the absence of added hydrogen
US8396600B2 (en) 2010-07-23 2013-03-12 Chevron Phillips Chemical Company Lp Prediction and control solution for polymerization reactor operation
US8399580B2 (en) 2010-08-11 2013-03-19 Chevron Philips Chemical Company Lp Additives to chromium catalyst mix tank
US8932975B2 (en) 2010-09-07 2015-01-13 Chevron Phillips Chemical Company Lp Catalyst systems and methods of making and using same
US8637616B2 (en) * 2010-10-07 2014-01-28 Chevron Philips Chemical Company Lp Bridged metallocene catalyst systems with switchable hydrogen and comonomer effects
US8629292B2 (en) 2010-10-07 2014-01-14 Chevron Phillips Chemical Company Lp Stereoselective synthesis of bridged metallocene complexes
US8609793B2 (en) 2010-10-07 2013-12-17 Chevron Phillips Chemical Company Lp Catalyst systems containing a bridged metallocene
CA2734167C (en) * 2011-03-15 2018-03-27 Nova Chemicals Corporation Polyethylene film
TWI460221B (en) 2011-07-08 2014-11-11 Total Res & Technology Feluy Metallocene-catalyzed polyethylene
US9284391B2 (en) * 2011-09-02 2016-03-15 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
US9089831B2 (en) 2011-10-25 2015-07-28 Chevron Phillips Chemical Company Lp System and method for blending polymers
US8501882B2 (en) 2011-12-19 2013-08-06 Chevron Phillips Chemical Company Lp Use of hydrogen and an organozinc compound for polymerization and polymer property control
EP2834281A1 (en) * 2012-04-02 2015-02-11 Chevron Phillips Chemical Company LP Catalyst systems containing a bridged metallocene reference to related application
US9115233B2 (en) 2012-06-21 2015-08-25 Nova Chemicals (International) S.A. Ethylene copolymer compositions, film and polymerization processes
US8940842B2 (en) 2012-09-24 2015-01-27 Chevron Phillips Chemical Company Lp Methods for controlling dual catalyst olefin polymerizations
US8865846B2 (en) 2012-09-25 2014-10-21 Chevron Phillips Chemical Company Lp Metallocene and half sandwich dual catalyst systems for producing broad molecular weight distribution polymers
US8895679B2 (en) 2012-10-25 2014-11-25 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8937139B2 (en) 2012-10-25 2015-01-20 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
CN104781319B (en) * 2012-11-07 2018-04-10 切弗朗菲利浦化学公司 Low density polyolefin resin and the film from its manufacture
US8912285B2 (en) 2012-12-06 2014-12-16 Chevron Phillips Chemical Company Lp Catalyst system with three metallocenes for producing broad molecular weight distribution polymers
US9034991B2 (en) 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
US8877672B2 (en) 2013-01-29 2014-11-04 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8680218B1 (en) * 2013-01-30 2014-03-25 Chevron Phillips Chemical Company Lp Methods for controlling dual catalyst olefin polymerizations with an organozinc compound
US9181369B2 (en) 2013-03-11 2015-11-10 Chevron Phillips Chemical Company Lp Polymer films having improved heat sealing properties
US9840570B2 (en) 2013-03-11 2017-12-12 Chevron Phillips Chemical Company, Lp Medium density polyethylene compositions
US8957168B1 (en) * 2013-08-09 2015-02-17 Chevron Phillips Chemical Company Lp Methods for controlling dual catalyst olefin polymerizations with an alcohol compound
US9181370B2 (en) * 2013-11-06 2015-11-10 Chevron Phillips Chemical Company Lp Low density polyolefin resins with low molecular weight and high molecular weight components, and films made therefrom
ES2858098T3 (en) * 2014-02-11 2021-09-29 Univation Tech Llc Production of catalyst compositions
EP3274381B1 (en) * 2015-04-20 2019-05-15 ExxonMobil Chemical Patents Inc. Catalyst composition comprising fluorided support and processes for use thereof
SG10201911996RA (en) 2015-05-11 2020-02-27 Grace W R & Co Process to produce modified clay, modified clay produced and use thereof
CN107889472B (en) 2015-05-11 2021-09-07 格雷斯公司 Process for preparing modified clay supported metallocene polymerization catalysts, the catalysts prepared and their use
US9861955B2 (en) 2015-06-11 2018-01-09 Chevron Phillips Chemical Company, Lp Treater regeneration
US9289748B1 (en) 2015-06-11 2016-03-22 Chevron Phillips Chemical Company Lp Treater regeneration
CN106632778B (en) * 2015-10-30 2018-12-25 中国石油天然气股份有限公司 The preparation method of metallocene transparent membrane resin
CN106632782B (en) * 2015-10-30 2018-12-25 中国石油天然气股份有限公司 Metallocene transparent membrane resin and preparation method thereof and film
KR102074510B1 (en) * 2015-12-23 2020-02-06 주식회사 엘지화학 Supported hybrid catalyst and method for preparing olefin polymer using the same
WO2017115927A1 (en) * 2015-12-31 2017-07-06 한화케미칼 주식회사 Hybrid supported metallocene catalyst, method for preparing olefin polymer by using same, and olefin polymer having improved melt strength
KR101711788B1 (en) 2016-03-09 2017-03-14 한화케미칼 주식회사 Hybride catalyst compositon, preparation method thereof, and manufactured polyolefin using the same
KR102064990B1 (en) 2016-03-11 2020-03-02 주식회사 엘지화학 Supported hybrid catalyst system for ethylene slurry polymerization and method for preparing ethylene polymer with the catalyst system
KR101706073B1 (en) * 2016-04-27 2017-02-13 한화케미칼 주식회사 High density ethylene polymer with excellent processability using supported hybrid metallocene catalyst and methods for producing the same
KR101725004B1 (en) * 2016-04-27 2017-04-18 한화케미칼 주식회사 Supported hybrid metallocene catalyst and good processability polyolefin using the same
US10000594B2 (en) 2016-11-08 2018-06-19 Chevron Phillips Chemical Company Lp Dual catalyst system for producing LLDPE copolymers with a narrow molecular weight distribution and improved processability
WO2018151903A1 (en) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
US10723819B2 (en) 2017-02-20 2020-07-28 Exxonmobil Chemical Patents, Inc. Supported catalyst systems and processes for use thereof
CA3060058C (en) 2017-05-03 2020-07-14 Chevron Phillips Chemical Company Lp Regeneration of a desiccant in an off-line treater of a polyolefin production process
SG11202000942TA (en) * 2017-08-04 2020-02-27 Exxonmobil Chemical Patents Inc Mixed catalysts with unbridged hafnocenes with -ch2-sime3 moieties
US10844150B2 (en) 2017-08-04 2020-11-24 Exxonmobil Chemical Patents Inc. Mixed catalysts with 2,6-bis(imino)pyridyl iron complexes and bridged hafnocenes
US11274196B2 (en) 2017-08-04 2022-03-15 Exxonmobil Chemical Patents Inc. Polyethylene compositions and films prepared therefrom
CN109401025B (en) * 2017-08-16 2021-04-20 中国石油化工股份有限公司 Polyethylene composition for film, preparation method thereof and polymer film
US10435527B2 (en) 2017-09-26 2019-10-08 Chevron Phillips Chemical Company Lp Dual component LLDPE copolymers with improved impact and tear resistance
CN109647520B (en) * 2017-10-10 2022-04-01 中国石油化工股份有限公司 Catalyst for preparing polyformaldehyde dimethyl ether
CN109647516B (en) * 2017-10-10 2021-12-28 中国石油化工股份有限公司 Catalyst for preparing polyformaldehyde dimethyl ether
WO2019083608A1 (en) 2017-10-23 2019-05-02 Exxonmobil Chemical Patents Inc. Catalyst systems and polymerization processes for using the same
US10703838B2 (en) 2017-10-31 2020-07-07 Exxonmobil Chemical Patents Inc. Mixed catalyst systems with four metallocenes on a single support
US10927203B2 (en) 2017-11-13 2021-02-23 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
US10927202B2 (en) 2017-11-13 2021-02-23 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
US11130827B2 (en) 2017-11-14 2021-09-28 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
CN111511781B (en) 2017-11-28 2023-07-11 埃克森美孚化学专利公司 Catalyst system and polymerization process using the same
WO2019108314A1 (en) 2017-11-28 2019-06-06 Exxonmobil Chemical Patents Inc. Polyethylene compositions and films made therefrom
EP3717522A1 (en) 2017-12-01 2020-10-07 ExxonMobil Chemical Patents Inc. Catalyst systems and polymerization processes for using the same
US10926250B2 (en) 2017-12-01 2021-02-23 Exxonmobil Chemical Patents Inc. Catalyst systems and polymerization processes for using the same
US10865258B2 (en) 2018-01-31 2020-12-15 Exxonmobil Chemical Patents Inc. Mixed catalyst systems containing bridged metallocenes with a pendant group 13 element, processes for making a polymer product using same, and products made from same
US10851187B2 (en) 2018-01-31 2020-12-01 Exxonmobil Chemical Patents Inc. Bridged metallocene catalysts with a pendant group 13 element, catalyst systems containing same, processes for making a polymer product using same, and products made from same
US10792609B2 (en) 2018-05-07 2020-10-06 Chevron Phillips Chemical Company Lp Nitrogen conservation in polymerization processes
WO2020046406A1 (en) 2018-08-30 2020-03-05 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
US10899860B2 (en) 2018-08-30 2021-01-26 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
US10927205B2 (en) 2018-08-30 2021-02-23 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
WO2020078932A1 (en) * 2018-10-15 2020-04-23 Total Research & Technology Feluy Polyethylene resins
KR102272245B1 (en) * 2018-12-18 2021-07-02 한화솔루션 주식회사 Catalyst for polymerizing an olefin and polyolefin prepared using the same
CN109851701B (en) * 2018-12-28 2021-12-14 万华化学集团股份有限公司 Dinuclear metallocene catalyst and preparation method and application thereof
KR102512380B1 (en) * 2019-02-20 2023-03-22 주식회사 엘지화학 Catalyst composition and method for preparing polyolefin using the same
US11427703B2 (en) 2019-03-25 2022-08-30 Chevran Phillips Chemical Company LP Dual component LLDPE copolymers with improved impact and tear resistance, and methods of their preparation
US11028258B2 (en) 2019-08-19 2021-06-08 Chevron Phillips Chemical Company Lp Metallocene catalyst system for producing LLDPE copolymers with tear resistance and low haze
KR102616697B1 (en) * 2019-10-11 2023-12-21 주식회사 엘지화학 Polyethylene and method for preparing the same
KR102547232B1 (en) * 2019-10-24 2023-06-26 한화솔루션 주식회사 Process for Preparing a Catalyst for Polymerizing an Olefin
KR102564398B1 (en) * 2019-11-20 2023-08-07 주식회사 엘지화학 Hybride supported metallocene catalyst and method for preparing polyethylene copolymer using the same
EP3936543A4 (en) * 2019-11-20 2022-08-31 Lg Chem, Ltd. Supported hybrid metallocene catalyst and method for preparing polyethylene copolymer by using same
BR112022018846A2 (en) * 2020-08-12 2023-03-07 Lg Chemical Ltd METHOD FOR PREPARING SUPPORTED METALLOCENE CATALYST, SUPPORTED METALLOCENE CATALYST AND METHOD FOR PREPARING POLYOLEFIN USING THE SAME
KR102611798B1 (en) * 2020-11-23 2023-12-12 한화솔루션 주식회사 Polyolefin, Film Prepared Therefrom, and Processes for Preparing the Same
KR102608612B1 (en) * 2020-11-23 2023-12-04 한화솔루션 주식회사 Polyolefin and Process for Preparing the Same
KR102608616B1 (en) * 2020-11-23 2023-12-04 한화솔루션 주식회사 Polyolefin, Film Prepared Therefrom, and Processes for Preparing the Same
EP4255942A1 (en) 2020-12-02 2023-10-11 ExxonMobil Chemical Patents Inc. Medium density polyethylene compositions with broad orthogonal composition distribution
KR102652274B1 (en) * 2020-12-08 2024-03-29 한화솔루션 주식회사 Polyolefin and Processes for Preparing the Same
WO2022124694A1 (en) * 2020-12-08 2022-06-16 한화솔루션 주식회사 Olefin-based polymer, film prepared therefrom, and preparation methods therefor
EP4261238A1 (en) * 2020-12-08 2023-10-18 Hanwha Solutions Corporation Olefin polymer and preparation method therefor
KR102611764B1 (en) * 2020-12-17 2023-12-11 한화솔루션 주식회사 Polyolefin and Process for Preparing the Same
KR102611686B1 (en) * 2020-12-17 2023-12-08 한화솔루션 주식회사 Polyolefin and Process for Preparing the Same
US11845826B2 (en) * 2021-08-26 2023-12-19 Chevron Phillips Chemical Company Lp Processes for preparing metallocene-based catalyst systems for the control of long chain branch content
KR20230036257A (en) * 2021-09-07 2023-03-14 한화솔루션 주식회사 Process for Preparing a Polyolefin and Polyolefin Prepared Using the Same
WO2023076818A1 (en) 2021-10-26 2023-05-04 Exxonmobil Chemical Patents Inc. Highly oriented linear low density polyethylene films with outstanding processability and mechanical properties

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US621394A (en) * 1899-03-21 Siding-square
US3334119A (en) 1964-01-17 1967-08-01 Glidden Co Triorganometalloxy titanium, zirconium and hafnium trialkoxyamines
US3361775A (en) 1964-11-10 1968-01-02 Scm Corp Triorganostannoxy zirconiumtrialcoholates and derivatives
US3952105A (en) * 1972-03-27 1976-04-20 Scm Corporation Organometallic agricultural fungicidal compositions and methods for making and using same
US4198401A (en) * 1976-12-30 1980-04-15 Pegel Karl H Active plant extracts of hypoxidaceae and their use
US4937299A (en) 1983-06-06 1990-06-26 Exxon Research & Engineering Company Process and catalyst for producing reactor blend polyolefins
US5324800A (en) * 1983-06-06 1994-06-28 Exxon Chemical Patents Inc. Process and catalyst for polyolefin density and molecular weight control
US5580939A (en) * 1983-06-06 1996-12-03 Exxon Chemical Patents Inc. Process and catalyst for polyolefin density and molecular weight control
US4530914A (en) * 1983-06-06 1985-07-23 Exxon Research & Engineering Co. Process and catalyst for producing polyethylene having a broad molecular weight distribution
US4564647A (en) * 1983-11-14 1986-01-14 Idemitsu Kosan Company Limited Process for the production of polyethylene compositions
US4594211A (en) 1984-11-05 1986-06-10 Dietrich Mohnhaupt Preparing polyolefine based opaque film
US4897455A (en) * 1985-06-21 1990-01-30 Exxon Chemical Patents Inc. Polymerization process
US5198401A (en) 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US5384299A (en) * 1987-01-30 1995-01-24 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US4939217A (en) 1987-04-03 1990-07-03 Phillips Petroleum Company Process for producing polyolefins and polyolefin catalysts
ATE133690T1 (en) * 1987-04-03 1996-02-15 Fina Technology METALLOCENE CATALYST SYSTEMS FOR THE POLYMERSATION OF OLEFINS, WITH A SILICON-HYDROCARBYL BRIDGE.
US5196490A (en) * 1987-06-17 1993-03-23 The Dow Chemical Company Process for preparation of syndiotactic polystyrene
US4851478A (en) 1988-09-09 1989-07-25 Mobil Oil Corporation Anti-blocking LLDPE films
IT8919252A0 (en) * 1989-01-31 1989-01-31 Ilano CATALYSTS FOR THE POLYMERIZATION OF OLEFINS.
DE69026907T2 (en) * 1989-10-10 1996-10-10 Fina Technology Metallocene catalyst with Lewis acid and alkyl aluminum
MY107639A (en) 1990-04-18 1996-05-30 Mitsui Chemicals Incorporated Process for the preparation of an ethylene copolymer and an olefin polymer, and catalyst for olefin polymeri -zation
KR940009020B1 (en) 1990-07-24 1994-09-29 미쓰이 도오아쓰 가가쿠 가부시키가이샤 CATALYST FOR Ñß-OLEFIN POLYMERIZATION AND PRODUCTION OF POLY Ñß-OLEFIN THEREWITH
US5369196A (en) * 1990-11-30 1994-11-29 Idemitsu Kosan Co., Ltd. Production process of olefin based polymers
US5631335A (en) 1991-05-09 1997-05-20 Phillips Petroleum Company Process of polymerizing olefins using diphenylsilyl or dimethyl tin bridged 1-methyl fluorenyl metallocenes
US5466766A (en) * 1991-05-09 1995-11-14 Phillips Petroleum Company Metallocenes and processes therefor and therewith
US5258475A (en) 1991-07-12 1993-11-02 Mobil Oil Corporation Catalyst systems for polymerization and copolymerization of olefins
US5710224A (en) * 1991-07-23 1998-01-20 Phillips Petroleum Company Method for producing polymer of ethylene
US5250612A (en) 1991-10-07 1993-10-05 The Dow Chemical Company Polyethylene films exhibiting low blocking force
US5281679A (en) 1991-11-07 1994-01-25 Exxon Chemical Patents Inc. Catalyst and method of broadening polymer molecular weight distribution and increasing polymer tensile impact strength and products made thereof
US5359015A (en) 1991-11-07 1994-10-25 Exxon Chemical Patents Inc. Metallocene catalysts and their production and use
GB9125934D0 (en) * 1991-12-05 1992-02-05 Exxon Chemical Patents Inc Process for polymerising olefinic feeds under pressure
US6143854A (en) * 1993-08-06 2000-11-07 Exxon Chemical Patents, Inc. Polymerization catalysts, their production and use
BE1005957A5 (en) * 1992-06-05 1994-04-05 Solvay Preparation method of catalyst system, process (co) polymerization of olefins and (co) polymer at least one olefine.
ES2190567T3 (en) * 1992-07-01 2003-08-01 Exxonmobil Chem Patents Inc PRECURSORS OF TRANSITION METAL CATALYSTS OF GROUPS 5 AND 6.
EP0588208A3 (en) * 1992-09-12 1994-07-06 Hoechst Ag Polyolefin moulding composition with broad melt range, process and use therefore
US5326837A (en) * 1992-11-20 1994-07-05 Mobil Oil Corporation Catalyst systems for syndiospecific polymerization of styrenes
KR100311244B1 (en) 1993-02-22 2001-12-15 가지와라 야스시 Process for producing ethylene / α-olefin copolymer
BE1006880A3 (en) * 1993-03-01 1995-01-17 Solvay Precurseur solid system of a catalyst for olefin polymerization, method of preparation, catalytic system including the solid precursor and method for polymerization of olefins in the presence of this system catalyst.
ES2163404T3 (en) 1993-04-07 2002-02-01 Atofina Res PROCEDURE FOR THE PRODUCTION OF POLYOLEFINS AND POLYOLEFINAL CATALYST.
JP2902784B2 (en) 1993-05-25 1999-06-07 エクソン・ケミカル・パテンツ・インク Novel polyolefin fibers and their fabrics
US6139930A (en) * 1993-06-15 2000-10-31 Comer; Annette Marie Films
DE4330667A1 (en) 1993-09-10 1995-03-16 Basf Ag Process for the preparation of multiphase homo- or copolymers of C¶2¶-C¶1¶¶0¶-Alk-1-enes in one reaction zone
US5422325A (en) * 1993-09-17 1995-06-06 Exxon Chemical Patents Inc. Supported polymerization catalysts, their production and use
US5576259A (en) 1993-10-14 1996-11-19 Tosoh Corporation Process for producing α-olefin polymer
US5817590A (en) 1993-10-14 1998-10-06 Tosoh Corporation Catalyst for αE --olefin polymerization containing a Lewis base
US6245705B1 (en) * 1993-11-18 2001-06-12 Univation Technologies Cocatalysts for metallocene-based olefin polymerization catalyst systems
JP3553957B2 (en) * 1994-02-14 2004-08-11 ユニベーション・テクノロジーズ・エルエルシー Polymerization catalyst systems, their production and use
WO1995026814A1 (en) * 1994-03-31 1995-10-12 Exxon Chemical Patents Inc. Supported lewis acid catalysts derived from superacids useful for hydrocarbon conversion reactions
US6153716A (en) * 1994-06-01 2000-11-28 Phillips Petroleum Company Polyethylenes containing a unique distribution of short chain branching
ATE207085T1 (en) 1994-06-24 2001-11-15 Exxonmobil Chem Patents Inc POLYMERIZATION CATALYST SYSTEM, PRODUCTION AND USE THEREOF
GB9413976D0 (en) 1994-07-11 1994-08-31 Exxon Chemical Patents Inc Multigrade lubricating compositions
JP3511681B2 (en) * 1994-08-08 2004-03-29 東ソー株式会社 Catalyst for producing olefin polymer and method for polymerizing olefin
DE69500763T2 (en) * 1994-10-13 1998-03-26 Japan Polyolefins Co Ltd Catalyst component for olefin polymerization, the catalyst containing the same and process for olefin polymerization in the presence of this catalyst
US5792534A (en) 1994-10-21 1998-08-11 The Dow Chemical Company Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus
US6300451B1 (en) 1994-10-24 2001-10-09 Exxon Chemical Patents Inc. Long-chain branched polymers and their production
WO1996018655A1 (en) 1994-12-12 1996-06-20 The Dow Chemical Company Hydrogenation of unsaturated polymers using monocyclopentadienyl group iv metal catalysts
EP0727443B1 (en) 1995-02-20 2001-01-17 Tosoh Corporation Catalyst for olefin polymerization and process for producing olefin polymers
DE69600892T2 (en) 1995-02-21 1999-04-01 Mitsubishi Chem Corp Catalysts for olefin polymerization and process for producing olefin polymers obtained therewith
EP0735060B1 (en) 1995-03-29 2002-10-23 Univation Technologies LLC Ethylene polymers having a narrow polydispersity and process for their preparation
UA47394C2 (en) 1995-05-16 2002-07-15 Юнівейшн Текнолоджіз, Ллс Ethylene polymer with improved processability and an article containing the ethylene polymer
US5585418A (en) 1995-06-15 1996-12-17 At Plastics Inc. Greenhouse film having variable light diffusion properties
ES2154417T3 (en) 1995-08-22 2001-04-01 Basf Ag ETHYLENE POLYMERS WITH A HIGH RESISTANCE TO VOLTAGE FISURATION AND A CATALYST SYSTEM FOR OBTAINING.
US5726332A (en) 1995-09-21 1998-03-10 Witco Gmbh Synthesis of novel organometallics and their use in olefin polymerization
KR100201228B1 (en) * 1995-10-17 1999-06-15 박찬구 Process for hydrogenating living polymers
EP0863920B1 (en) * 1995-11-28 2001-02-07 LG Chemical Limited Process for the preparation of olefinic polymers using metallocene catalyst
DE19606166A1 (en) * 1996-02-20 1997-08-21 Basf Ag Process for the preparation of polymers of alkenes by suspension polymerization
US5786291A (en) 1996-02-23 1998-07-28 Exxon Chemical Patents, Inc. Engineered catalyst systems and methods for their production and use
IT1283282B1 (en) 1996-03-21 1998-04-16 Enichem Spa PROCEDURE FOR THE PREPARATION OF CRYSTALLINE VINYLAROMATIC POLYMERS WITH A PREDOMINANTLY SYNDIOTACTIC STRUCTURE
KR100437238B1 (en) 1996-03-27 2004-08-16 다우 글로벌 테크놀로지스 인크. Highly soluble olefin polymerization catalyst activator
AU3339197A (en) * 1996-07-04 1998-02-02 Basf Aktiengesellschaft Process for preparing carrier-borne transition metal catalysts
JP3968800B2 (en) * 1996-08-06 2007-08-29 三井化学株式会社 Irrigation tube
US6262200B1 (en) * 1996-08-19 2001-07-17 Northwestern University (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon
US6583227B2 (en) * 1996-09-04 2003-06-24 Exxonmobil Chemical Patents Inc. Propylene polymers for films
WO1998009996A1 (en) 1996-09-06 1998-03-12 Hyundai Petrochemical Co., Ltd. Catalyst system for (co)polymerization of olefins and process for the preparation of olefin (co)polymers using the catalyst system
US6271322B1 (en) 1996-10-02 2001-08-07 Mccullough Laughlin Gerard Monocyclopentadienyl transition metal catalyst and olefin polymerization process
US6340652B1 (en) 1996-12-09 2002-01-22 Mitsubishi Chemical Corporation Catalysts for polymerization of α-olefins, process for producing α-olefin polymers, novel transition metal compounds and catalyst components for polymerization of α-olefin
US5847059A (en) * 1996-12-20 1998-12-08 Fina Technology, Inc. Catalyst yield from supported metallocene catalysts
US5906955A (en) 1996-12-20 1999-05-25 Tosoh Corporation Catalyst for polymerization of an olefin, and method for producing an olefin polymer
CA2277292A1 (en) * 1997-01-08 1998-07-16 Laura M. Babcock Solid acids as catalysts for the preparation of hydrocarbon resins
US5912202A (en) * 1997-01-10 1999-06-15 Union Carbide Chemicals & Plastics Technology Corporation Olefin polymerization catalyst composition having increased activity
WO1998030603A1 (en) * 1997-01-14 1998-07-16 Dsm N.V. A process for polymerizing olefins
GB9700945D0 (en) * 1997-01-17 1997-03-05 Bp Chem Int Ltd Catalyst activators
DE19703502A1 (en) * 1997-01-31 1998-08-06 Basf Ag Non-flammable solid
US6255426B1 (en) 1997-04-01 2001-07-03 Exxon Chemical Patents, Inc. Easy processing linear low density polyethylene
JPH10298223A (en) * 1997-04-25 1998-11-10 Nippon Polyolefin Kk Olefin polymerization catalyst
JP3458656B2 (en) 1997-05-27 2003-10-20 東ソー株式会社 Olefin polymerization catalyst and method for producing olefin polymer
US5895771A (en) * 1997-06-05 1999-04-20 Akzo Nobel Nv Fluorinated alkoxy and/or aryloxy aluminates as cocatalysts for metallocene-catalyzed olefin polymerizations
US6103657A (en) * 1997-07-02 2000-08-15 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers
FR2769245B1 (en) * 1997-10-02 1999-10-29 Atochem Elf Sa SOLID SUPPORT ACTIVATOR OF METALLOCENE CATALYZERS IN OLEFINS POLYMERIZATION, ITS PREPARATION PROCESS, CORRESPONDING CATALYTIC SYSTEM AND POLYMERIZATION PROCESS
US6242545B1 (en) * 1997-12-08 2001-06-05 Univation Technologies Polymerization catalyst systems comprising substituted hafinocenes
US6159889A (en) 1997-12-09 2000-12-12 Union Carbide Chemicals & Plastics Technology Corporation Unbridged monocyclopentadienyl metal complex catalyst and a process for polyolefin production
US5962362A (en) 1997-12-09 1999-10-05 Union Carbide Chemicals & Plastics Technology Corporation Unbridged monocyclopentadienyl metal complex catalyst and a process for polyolefin production
GB9800245D0 (en) * 1998-01-07 1998-03-04 Bp Chem Int Ltd Novel polymers
AU747914B2 (en) * 1998-03-20 2002-05-30 Chevron Phillips Chemical Company Lp Continuous slurry polymerization volatile removal
KR100358225B1 (en) * 1998-04-09 2003-01-24 주식회사 엘지화학 Polymerization method using metallocene enabling cocatalyst to be recirculated
US6207606B1 (en) 1998-05-15 2001-03-27 Univation Technologies, Llc Mixed catalysts and their use in a polymerization process
US6300271B1 (en) 1998-05-18 2001-10-09 Phillips Petroleum Company Compositions that can produce polymers
ES2430207T3 (en) * 1998-05-18 2013-11-19 Chevron Phillips Chemical Company Lp Catalytic composition to polymerize monomers
US6165929A (en) * 1998-05-18 2000-12-26 Phillips Petroleum Company Compositions that can produce polymers
US6107230A (en) * 1998-05-18 2000-08-22 Phillips Petroleum Company Compositions that can produce polymers
US6245868B1 (en) * 1998-05-29 2001-06-12 Univation Technologies Catalyst delivery method, a catalyst feeder and their use in a polymerization process
US6069109A (en) 1998-07-01 2000-05-30 Union Carbide Chemicals & Plastics Technology Corporation Process for the production of half-sandwich transition metal based catalyst precursors
US6632901B2 (en) * 1998-08-21 2003-10-14 Univation Technologies, Llc Polymerization process using an improved bulky ligand metallocene-type catalyst system
JP2000086717A (en) * 1998-09-14 2000-03-28 Idemitsu Petrochem Co Ltd Catalyst for polymerizing olefin or styrene, and production of polymer
US6037442A (en) * 1998-12-10 2000-03-14 E. I. Du Pont De Nemours And Company Preparation of olefin copolymers of sulfur dioxide or carbon monoxide
US6258903B1 (en) * 1998-12-18 2001-07-10 Univation Technologies Mixed catalyst system
KR100359881B1 (en) * 1999-01-30 2002-11-04 주식회사 엘지화학 Method for olefin polymerization with recycling cocatalyst
US6300432B1 (en) * 1999-03-30 2001-10-09 Eastman Chemical Company Process for producing polyolefins
DE19915108A1 (en) * 1999-04-01 2000-10-05 Bayer Ag Supported catalysts with a donor-acceptor interaction
US6417299B1 (en) * 1999-06-07 2002-07-09 Eastman Chemical Company Process for producing ethylene/olefin interpolymers
CN1174008C (en) * 1999-06-25 2004-11-03 伊斯曼化学公司 Process for the polymerization of olefins, polyolefins, and films and articles produced therefrom
US6303718B1 (en) * 1999-09-17 2001-10-16 Bayer Aktiengesellschaft Composition based on fluorine-containing metal complexes
US6319995B2 (en) * 1999-08-30 2001-11-20 Equistar Chemicals, Lp Method of feeding dry catalyst to a polymerization reactor
US6355594B1 (en) 1999-09-27 2002-03-12 Phillips Petroleum Company Organometal catalyst compositions
US6376415B1 (en) * 1999-09-28 2002-04-23 Phillips Petroleum Company Organometal catalyst compositions
US6395666B1 (en) * 1999-09-29 2002-05-28 Phillips Petroleum Company Organometal catalyst compositions
US6380328B1 (en) * 1999-12-10 2002-04-30 Univation Technologies, Llc Catalyst systems and their use in a polymerization process
US6417304B1 (en) * 1999-11-18 2002-07-09 Univation Technologies, Llc Method of polymerization and polymer produced therefrom
US6399722B1 (en) * 1999-12-01 2002-06-04 Univation Technologies, Llc Solution feed of multiple catalysts
US6346586B1 (en) * 1999-10-22 2002-02-12 Univation Technologies, Llc Method for preparing a supported catalyst system and its use in a polymerization process
US6391816B1 (en) * 1999-10-27 2002-05-21 Phillips Petroleum Organometal compound catalyst
US6559090B1 (en) * 1999-11-01 2003-05-06 W. R. Grace & Co.-Conn. Metallocene and constrained geometry catalyst systems employing agglomerated metal oxide/clay support-activator and method of their preparation
WO2001032758A1 (en) * 1999-11-04 2001-05-10 Exxon Chemical Patents Inc. Propylene copolymer foams and their use
US6395847B2 (en) * 1999-11-19 2002-05-28 Exxonmobil Chemical Patents Inc. Supported organometallic catalysts and their use in olefin polymerization
KR100348761B1 (en) * 1999-11-26 2002-08-13 금호석유화학 주식회사 Method for the selective hydrogenation of the conjugated diene containing polymer
WO2001044308A2 (en) * 1999-12-16 2001-06-21 Phillips Petroleum Company Organometal compound catalyst
EP1250362B1 (en) * 1999-12-20 2008-05-14 ExxonMobil Chemical Patents Inc. Processes for the preparation polyolefin resins using supported ionic catalysts
WO2001046274A1 (en) * 1999-12-21 2001-06-28 Basell Polyolefine Gmbh Partly crystalline propylene polymerisate composition for production of biaxial-stretched polypropylene films
US6524987B1 (en) * 1999-12-22 2003-02-25 Phillips Petroleum Company Organometal catalyst compositions
US7041617B2 (en) * 2004-01-09 2006-05-09 Chevron Phillips Chemical Company, L.P. Catalyst compositions and polyolefins for extrusion coating applications
US6576583B1 (en) * 2000-02-11 2003-06-10 Phillips Petroleum Company Organometal catalyst composition
US6528448B1 (en) * 2000-04-28 2003-03-04 Phillips Petroleum Company Polymerization catalyst compositions and processes to produce polymers and bimodal polymers
US6359083B1 (en) * 2000-05-02 2002-03-19 Eastman Chemical Company Olefin polymerization process
US6388017B1 (en) * 2000-05-24 2002-05-14 Phillips Petroleum Company Process for producing a polymer composition
US6720396B2 (en) * 2000-11-30 2004-04-13 Univation Technologies, Llc Polymerization process
AU2002246517A1 (en) * 2001-01-16 2002-08-12 Exxonmobil Chemical Patents Inc. Catalysts with at least two transition metal compounds and polymerization processes using them
US6433103B1 (en) * 2001-01-31 2002-08-13 Fina Technology, Inc. Method of producing polyethylene resins for use in blow molding
US6911515B2 (en) * 2001-03-23 2005-06-28 University Of Pennsylvania Aqueous room temperature living radical polymerization of vinyl halides
BR0211288A (en) 2001-07-19 2004-08-10 Univation Tech Llc Mixed metallocene catalyst systems containing a weak comonomer incorporator and a good comonomer incorporator
JP2003105029A (en) * 2001-07-25 2003-04-09 Japan Polychem Corp Olefin polymer and its production process
JP2003096125A (en) * 2001-09-27 2003-04-03 Sumitomo Chem Co Ltd Addition polymerization catalyst component, production method for addition polymerization catalyst and addition polymer, and use of metallocene transition metal compound
US6875828B2 (en) * 2002-09-04 2005-04-05 Univation Technologies, Llc Bimodal polyolefin production process and films therefrom
US6753390B2 (en) * 2002-09-04 2004-06-22 Univation Technologies, Llc Gas phase polymerization process
DE60313362T2 (en) 2002-12-17 2007-08-16 Ineos Europe Ltd., Lyndhurst SUPPORTED OLEFIN POLYMERIZATION CATALYST
US6982306B2 (en) * 2003-11-26 2006-01-03 Chevron Phillips Chemical Company, L.P. Stannoxy-substituted metallocene catalysts for olefin and acetylene polymerization

Also Published As

Publication number Publication date
JP5623315B2 (en) 2014-11-12
AU2010246340B2 (en) 2012-07-26
RU2382793C2 (en) 2010-02-27
ES2563165T3 (en) 2016-03-11
MXPA06008322A (en) 2007-01-26
BRPI0507047A (en) 2007-06-12
JP2011140658A (en) 2011-07-21
CN101475654B (en) 2013-01-02
US20060229420A1 (en) 2006-10-12
EP1706437A1 (en) 2006-10-04
US20050159300A1 (en) 2005-07-21
WO2005070977A1 (en) 2005-08-04
AU2005206563A1 (en) 2005-08-04
SG134326A1 (en) 2007-08-29
CN100562532C (en) 2009-11-25
RU2006129936A (en) 2008-02-27
CN101475654A (en) 2009-07-08
JP2007518871A (en) 2007-07-12
CA2736014A1 (en) 2005-08-04
JP5952870B2 (en) 2016-07-13
US7572875B2 (en) 2009-08-11
US7119153B2 (en) 2006-10-10
CA2553993C (en) 2011-06-14
AU2005206563B2 (en) 2010-12-16
JP2014210937A (en) 2014-11-13
CA2736014C (en) 2012-11-27
CN1930196A (en) 2007-03-14
EP1706437B1 (en) 2016-01-20
AU2010246340A1 (en) 2010-12-09
EG26673A (en) 2014-05-13

Similar Documents

Publication Publication Date Title
CA2553993A1 (en) Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength
CA2552748A1 (en) Catalyst compositions and polyolefins for extrusion coating applications
EP0994132B1 (en) Metallocene catalysts for olefin polymerization and method of polymerizing olefins using the metallocene catalysts
EP0927201B1 (en) Catalyst system for (co)polymerization of olefins and process for the preparation of olefin (co)polymers using the catalyst system
US7163906B2 (en) Organochromium/metallocene combination catalysts for producing bimodal resins
KR960010689A (en) Catalyst system and polyolefin production method
US20080281063A9 (en) Ethylene polymers and copolymers with high optical opacity and methods of making the same
AU2004324873B2 (en) Organochromium/ metallocene combination catalyst for producing bimodal resins
US7094857B2 (en) Ethylene polymers and copolymers with high optical opacity
US6933353B2 (en) Olefin polymerization process
EP4038111A1 (en) Catalyst composition and method for preparing polyethylene
EP2305719A2 (en) Olefin polymerization catalyst and olefin polymerization method using the same
US20240043588A1 (en) Olefinic polymer, and method for preparing same
CA2337255A1 (en) Heterogeneous catalyst systems comprising kaolin as support for the polymerization of olefins
KR100417037B1 (en) Method for preparing cycloolefin copolymer having desirable material properties
KR100248437B1 (en) Catalyst for olefin polymerization and method of olefin polymerization
EP2679594A1 (en) Metallocene compound, catalyst composition including the same, and olefin polymerization process using the same
JPH0782309A (en) Olefin polymerization catalyst and production of polyolefin
RU2007120767A (en) CATALYSTS FOR PRODUCING BIMODAL RESINS BASED ON THE COMBINATION OF CHROMORGANIC COMPOUND AND METAL PRICE

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20200120