CA2562096A1 - Surgical implants and related methods - Google Patents

Surgical implants and related methods Download PDF

Info

Publication number
CA2562096A1
CA2562096A1 CA002562096A CA2562096A CA2562096A1 CA 2562096 A1 CA2562096 A1 CA 2562096A1 CA 002562096 A CA002562096 A CA 002562096A CA 2562096 A CA2562096 A CA 2562096A CA 2562096 A1 CA2562096 A1 CA 2562096A1
Authority
CA
Canada
Prior art keywords
implant
polymeric
rivet
support portion
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002562096A
Other languages
French (fr)
Inventor
Mark S. Bouchier
Robert E. Lund
James A. Gohman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMS Research LLC
Original Assignee
Ams Research Corporation
Mark S. Bouchier
Robert E. Lund
James A. Gohman
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34968501&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2562096(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ams Research Corporation, Mark S. Bouchier, Robert E. Lund, James A. Gohman filed Critical Ams Research Corporation
Publication of CA2562096A1 publication Critical patent/CA2562096A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06004Means for attaching suture to needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0004Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
    • A61F2/0031Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra
    • A61F2/0036Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra implantable
    • A61F2/0045Support slings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0483Hand-held instruments for holding sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00805Treatment of female stress urinary incontinence

Abstract

The invention relates to implantable surgical articles, particularly those useful for pelvic health, and related methods of making and using the articles, wherein the implantable articles include a rivet to attach materials together. The implant comprises implant materials joined by a polymeric rivet (14), the polymeric rivet being located within apertures of the materials and extending from a surface of the implant through of at least one of the materials.

Description

SURGICAL IMPLANTS AND RELATED METHODS
The present non-provisional patent Application claims priority under 35 USC ~ 120 from United States Provisional Patent Application having serial number 60/583,146, filed on June 25, 2004, by Bouchier et al., entitled POLYMER
ATTACHMENT METHOD FOR IMPLANTABLE ARTICLES, IMPLANTABLE
ARTICLES, AND METHODS, and from United States Provisional Patent Application having serial number 60/567,601, filed on May 3, 2004, by Bouchier et al.,~entitled ATTACHMENT METHODS FOR CONNECTING BIOLOGIC
TISSUE TO SYNTHETIC MESH USED IN FEMALE PELVIC HEALTH; both of these provisional patent applications are commonly owned by the owner of the present patent.
Field of the Invention The invention relates to implantable surgical articles, particularly those useful for pelvic health, and related methods of making and using the articles.
Background A very large number of medical conditions can be treated by the surgical installation of a synthetic or biologic implant, e.g., to affect or support internal tissue.
Pelvic floor disorders, for example, include conditions that may result from weakness or damage to normal pelvic support systems. The conditions may affect pelvic floor support tissues of the bladder, vagina, rectum, and urethra, and may result in symptoms ranging from general or specific discomfort, sexual dysfunction, fecal or urinary incontinence, or organ prolapse.
Forms of treatment of many surgical conditions, including but not limited to pelvic conditions such as prolapse and urinary or fecal incontinence, involve the use of surgical implants that are surgically installed to contact and correct the condition of the tissue. For treatment of pelvic conditions, an implant can be placed in the pelvic region to support pelvic tissue such as the urethra, rectum, or vagina.
Other conditions, outside of the pelvic region, also can be treated by surgical implants installed at the relevant portion of anatomy. The implant products may be formed from pieces of synthetic or non-synthetic (biologic) materials, with the final shape and size of an implant being dependent on the type of condition that the implant is used to treat.
Many currently commercial implant products that are formed from two or more pieces of biologic or synthetic materials secure the pieces together by glues or sutures. These methods of assembling the implant do not always result in a secure joint or connection of the pieces of the implant. Further, different types of joints or connections such as sutures or glues may possibly be the cause of biological rejection of the implant following surgery, or even infection.
Some currently available implant products that are formed from two attached portions of material are not pre-assembled at the site of manufacture, and must be assembled by a surgeon prior to surgery. This attachment method can be both cumbersome to the surgeon and can be an unnecessary use of a surgeon's time.
Summary The invention relates to surgical devices (e.g., implants) that include two materials joined together using a rivet, e.g., a polymeric rivet. A rivet joins the materials together by being located within holes or interstices of the materials; at a surface of at least one of the materials (i.e., at a surface of the implant);
and extending from the surface through the thickness of at least one of the materials. A
rivet may optionally extend through the entire thickness of two or more implant materials or through a full thickness of an implant. A rivet may include a rivet shaft (e.g., a cylindrical shaft) extending through a thickness of implant material.
Optionally, a rivet may include one or more rivet heads at either or both surfaces of the implant, a rivet head having a cross- sectional area that extends beyond the cross section of the shaft, e.g., that has a surface area that is greater than the cross-sectional surface area of the shaft.
The rivet material may be any useful material, such as a polymeric material.
Examples of polymeric materials that can be used as a polymeric rivet material include polymeric thermoplastics; curable polymers such as air, chemical, and moisture curable materials; polymeric materials that can be join materials of an implant by mechanical manipulation, e.g., by being threaded, screwed, snapped, or crimped; and polymeric materials that can be joined by other processing techniques, such as mechanical welding.
The materials of a surgical implant that are joined together by the rivet can be materials from a single piece of an implant (i.e., the same piece of material folded together and joined). Alternately, the materials may be two separate pieces of the same, similar, or different types of materials.
The implant itself may be useful for use with any type of implant surgery that treats any particular condition, including but not limited to general and specific conditions relating to pelvic tissue prolapse. Many implant products are presently available commercially that include two materials joined together by adhesives or sutures, e.g., from American Medical Systems Inc., of Minnetonka Minnesota.
Examples of such products that join biologic tissue to a synthetic mesh material include: products from the BIOARCTM line of products such as BIOARC SP and BIOARC TO, available from American Medical Systems, Inc., for treating stress 1 S urinary incontinence; the PERIGEETM product for treatment of cystocele, also from American Medical Systems, Inc.; the APOGEETM product for treating enterocele, rectocele, and vaginal vault prolapse, also available from American Medical Systems Inc.; as well as products for CAPS procedures (combined-prolapse-repair-with sling) for treating cystocele and stress urinary incontinence. Examples of implant products that join two dissimilar synthetic materials include PERIGEETM
products having INTEPROTM large pore polypropylene mesh attached to a polypropylene mesh of a different knit, for treating cystocele, available from American Medical Systems, Inc.; APOGEE products having INTEPRO large pore polypropylene mesh attached to a polypropylene mesh of a different knit, for treating enterocele, rectocele, and vaginal prolapse; and products useful for CAPS
(combination prolapse repair with sling) procedures that include INTEPRO large pore polypropylene, for combination treatment of cystocele and stress urinary incontinence.
Still other products available from American Medical Systems include joining two polymeric materials to produce a "Y-mesh" joint that includes one material sandwiched between two pieces of another material. These products include, for example, the BIOARCTM SP & TO products and the Sacrocopoplexy Y
Mesh (STRAIGHT-INTM) products, as well as other graft-augmented repair procedures and implantable surgical devices.
In general, surgical implant devices such as those identified above may include a support portion that is sized and shaped to attach to internal tissue, connected (e.g., by a polymeric rivet as described) to extension portions (also referred to as, e.g., end portions or appendages) that may be shaped and sized to extend from the support portion to another location of the anatomy.
In some embodiments, a surgical implant may include additional features such as an anchoring suture that may be joined to a synthetic portion or a biologic portion, also attached by a polymeric rivet. For example, one or more of anchoring sutures could be joined to a thermoplastic (e.g., polypropylene) mesh material using, e.g., a thermoplastic or curable a polymeric rivet material. This could be accomplished by causing the polymeric rivet material to flow to contact both the suture and the mesh, and then the polymeric rivet material may be solidified or cured.
Still other examples of surgical implants could include other features, including, e.g., tips of extension portions that are adapted to fit a tool, such as an end of a needle, to allow the tool to push or pull the extension during a surgical installation procedure. Examples of such tips are sometimes referred to as dilators.
Optionally or additionally, an implant may include a plastic sheath that covers an extension portion for use during a surgical installation procedure.
The use of a rivet, e.g., a polymeric rivet, to attach materials of an implant can allow for certain advantages in preparing or using the implant. For implants that include a biologic material, the biologic material can be lyophilized or hydrated when attached. For particular embodiments, attachment forces by use of a polymeric rivet can be more consistent (e.g., compared to forces produced using a suture), or, attachment forces may be stronger and may approach or exceed the strength of a biologic or mesh implant material. Further, when a suture is used to secure implant materials, the head of the knot may produce tissue irritation when the implant is installed. A rivet, on the other hand, would not include a knot head and may reduce inflammatory tissue response.
Further, surgical implants that include a rivet as described herein can be pre-assembled and then sold or otherwise supplied to a surgeon, meaning that the device is assembled to a condition where only minimal preparation (if any at all) needs to be performed by the surgeon prior to implantation. Minimal preparation may include modification to size or shape, or removing loose material, but does not include any significant step of assembly such as attaching one part of a device (e.g., a mesh) to another (e.g., biologic material), e.g., by use of sutures.
The invention additionally relates to methods of preparing these surgical devices, and methods of using these devices in surgical procedures.
In general methods of preparing a surgical implant can be accomplished by contacting implant materials in a manner by which apertures of the materials can be aligned to allow a rivet material to be inserted into or through the apertures. The rivet material may be a solid material or a fluid (e.g., flowable or liquid), when inserted into the apertures. The rivet material is then processed to join the materials together. Processing a rivet material that is fluid (e.g., a fluid polymeric rivet material) when inserted into the interstices may include causing the fluid polymeric material to solidify, e.g., based on reducing the temperature of the material or causing the flowable polymeric material to cure or harden due to, e.g., exposure to chemical treatment, moisture, catalyst, or radiation. Processing a rivet material that is solid when inserted into interstices of an implant material may include, e.g.,:
mechanical manipulation by screwing, forming, crimping, folding, or sonic welding.
The invention additionally relates to apparatus for producing implants, such as an insert mold, optionally in combination with an injector for injecting a fluid rivet material into interstices of implant materials. An example of an insert mold can include closeable surfaces adapted to contain materials of a surgical implant. A
surface of the mold includes an injection port. One or more gaskets located to define a space within the mold, near the injection port, can define a space within which a rivet can be formed from a flowable rivet material.
The implants may be used to treat any medical condition that is treatable by installation of a surgical implant of the type described herein, including material joined together by a rivet (e.g., a polymeric rivet). Examples of medical conditions that mat be treated include conditions of pelvic tissue prolapse, but other medical conditions may also be treated by implants as described, that include a rivet to attach implant materials together.
An aspect of the invention relates to a surgical implant that includes implant materials joined by a polymeric rivet. The polymeric rivet is located within apertures of the materials and extends from a surface of the implant through a thickness of at least one of the materials.
Another aspect of the invention relates to a surgical kit that includes a surgical implant and an insertion tool, the implant includes materials joined by a rivet, e.g., a polymeric rivet.
Another aspect of the invention relates to a method of preparing a surgical implant. The method includes: providing portions of implant material, each portion comprising an aperture, contacting the portions of implant material with the apertures aligned, inserting a rivet (e.g., a polymeric rivet) from a surface of either implant material, the rivet extending into the apertures, and processing the rivet to join the implant materials.
Another aspect of the invention relates to a method of preparing a surgical implant. The method includes: providing a support portion comprising a support portion aperture, providing an extension portion comprising an extension portion aperture, contacting the extension portion and the support portion with aligned extension portion aperture and support portion aperture, inserting a rivet material (e.g., a polymeric rivet material) from a surface of either the extension portion or the support portion, the rivet material extending into the extension portion aperture and the support portion aperture, and processing the rivet material to attach the extension portion to the support portion.
Another aspect of the invention relates to an insert mold adapted to assemble materials of a medical implant. The comprising includes: closeable surfaces sized to contain portions of implant material, each portion including an aperture; a surface that includes an injection port that can be aligned with the apertures; the mold further including a gasket, wherein when the closeable surfaces are closed to contain the implant material with aligned apertures, the gasket partially defines a space that contains the aligned apertures.

Yet another aspect of the invention relates to an insertion mold in combination with an injector. The injector operates at a temperature in the range from 350 to 500 degrees Fahrenheit; produces a single injection volume of injected material in the range from about 0.001 cubic centimeters to about 0.1 cubic centimeters, and includes an injection barrel having a diameter in the range from about 0.125 to 0.5 inches, and an injector nozzle having a diameter in the range from about range from about 0.01 to about 0.10 inches.
Yet another aspect of the invention relates to a method of producing a surgical implant. The method includes: providing an extension portion of an implant that includes an extension portion aperture; providing a support portion of an implant that includes a support portion aperture, using an insert mold such as described herein to contact the extension portion and the support portion with aligned extension portion aperture and support portion aperture; and using an injector assembly as described herein to inject flowable polymeric material into the extension portion aperture and the support portion aperture.
Yet another aspect of the invention relates to a surgical implant comprising implant materials joined by a rivet, the rivet extending from a surface of a the implant through apertures of at least two portions of implant material.
Brief Summary of the Drawings Figure 1 a is a schematic, cross-sectional, cut-away side view of an embodiment of a portion of a surgical implant that includes a polymeric rivet.
Figure lb is a top view of an embodiment of a portion of a surgical implant that includes a polymeric rivet.
Figure 2a is a schematic, cross-sectional, cut-away side view of an embodiment of a portion of a surgical implant that includes a polymeric rivet.
Figure 2b is a top view of an embodiment of a portion of a surgical implant that includes a polymeric rivet.
Figure 3a is a schematic, cross-sectional, cut-away side view of an embodiment of a portion of a surgical implant that includes a polymeric rivet.
Figure 4a is a schematic, cross-sectional, cut-away side view of an embodiment of a portion of a surgical implant that includes a polymeric rivet.

_g_ Figure 4b is a top view of an embodiment of a portion of a surgical implant that includes a polymeric rivet.
Figure 4c is a schematic, perspective side view of an embodiment of an ultrasonically weldable coupler.
Figure Sa is a schematic top perspective view of a polymeric rivet and implant according to the invention.
Figure Sb is a schematic top view of a polymeric rivet and implant according to the invention.
Figure Sc is a schematic top view of an implant of the invention that includes materials connected by a polymeric rivet.
Figure 6 is a schematic top view of a pelvic implant of the invention that includes materials connected by a polymeric rivet.
Figure 6a is a schematic side view of a pelvic implant of the invention that includes materials connected by a polymeric rivet.
Figure 7 is a schematic top view of a pelvic implant of the invention that includes materials connected by a polymeric rivet.
Figure 8a illustrates an embodiment of an injector for use according to the invention.
Figure 8b illustrates an embodiment of an injection mold for use according to the invention.
Figure 8c illustrates an embodiment of an injection mold for use according to the invention.
Detailed Description The invention involves surgical implants that include a rivet, e.g., a polymeric rivet, to attach or join materials of an implant together, e.g., one piece or portion of the implant to another piece or portion of the implant, or a single piece of an implant to itself, e.g., by folding.
The implants can be used to treat medical conditions including but not limited to conditions of the pelvic region. Implants can be installed into a patient to affect or to support tissue to treat various conditions such as any of a variety of pelvic prolapse conditions, as well as non-pelvic conditions. Examples of pelvic conditions that can be treated include urinary or fecal incontinence for men and women; prolapsed organs, e.g., vaginal prolapse in women such as cystocele, enterocele, rectocele and vaginal vault prolapse; among others.
Some examples of surgical implants useful for treating pelvic conditions include supportive implants such as vaginal supports to treat vaginal prolapse;
urethral slings to treat male or female incontinence; and rectal supports to treat fecal incontinence. Some such examples and related methods are described, for example, in Assignee's copending patent applications, including US application number 2004/0039453 "Pelvic Health Implants and Methods," having serial number 10/423,662, and filed on April 25, 2003; US application "Method and Apparatus for Treating Pelvic Organ Prolapse," having serial number 10/834,943, and filed on April 30, 2004; and US application number 2003/0171664 "Transobturator Surgical Articles and Methods," having serial number 10/306,179, and filed on November 27, 2002.
Various examples of surgical implants are known and commercially available for treatment of pelvic conditions including those sold by American Medical Systems, Inc., of Minnetonka Minnesota, under the trade names APOGEETM, PERIGEETM, SPARC~, MONARCTM, and BIOARCTM. The attachment methods described herein can be used with these and other medical implants.
A material of an implant, attached using a rivet, may be a biocompatible material such as a biologic material or a synthetic material such as a polymeric or other non-biologic material. The materials that are joined may be, e.g., two different portions of the a single piece of an implant (e.g., a single piece of material folded so that two portions contact each other); or the materials may be two portions different pieces of material that can be the same material, similar types of different materials (e.g., two different polymeric mesh materials), or two different materials such as a polymeric mesh or film and a biologic material.
A synthetic implant material can be any synthetic material that can be useful in an implantable surgical device, such as a biocompatible polymeric material or a biocompatible non-polymeric synthetic material. Examples of useful polymeric materials include thermoplastic polymeric materials such as polyolefins (e.g., polypropylenes), polyurethanes, acetel materials, Teflon~ materials, and the like;

thermoset materials such as silicones; and materials that are otherwise curable, e.g., that can be cured by ultraviolet radiation or chemical reactions, including curable materials such as curable urethanes, epoxies, acrylates, cyanoacrylates, and the like.
Any of these materials may be homopolymers, copolymers, or a blend or other combination of homopolymers, copolymers, or both. Other suitable synthetic materials include metals (e.g. silver filigree, tantalum gauze mesh, and stainless steel mesh).
A synthetic implant material may be in any form, such as a continuous, solid, or semi-continuous (e.g., perforated) film; or in the form of combined fibers or strands, e.g., a braided, knit, tied, mesh, woven, non-woven, or fabric-type of material; or combinations of these. Certain embodiments of implants include a synthetic implant portion in the form of a polymeric mesh material. The mesh material includes one or more woven, knitted or inter-linked polymeric filaments or fibers that form multiple fiber junctions throughout the mesh. The fiber junctions may be formed via weaving, knitting, braiding, joining, ultrasonic welding or other junction forming techniques, including combinations thereof, leaving openings or pores ("interstices") between elements of the fibers. The size of the interstices mesh may be sufficient to allow tissue in-growth and fixation within surrounding tissue.
Many different types of synthetic film and mesh materials are known and may be suitable for use as a portion or piece of an implant. These materials may be prepared from biocompatible materials that may be bioabsorbable or non-bioabsorbable, e.g., in the form of mesh materials. Suitable materials include cotton, linen, silk, polyamides (polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), polycapramide (nylon 6), polydodecanamide (nylon 12), and polyhexamethylene isophthalamide (nylon 61 ), and copolymers and blends thereof), polyesters (e.g., polyethylene terephthalate, polybutyl terephthalate, copolymers and blends thereof), fluoropolymers (e.g., polytetrafluoroethylene and polyvinylidene fluoride), polyolefins (e.g., polypropylene, including isotactic and syndiotactic polypropylene and blends thereof, as well as blends composed predominantly of isotactic or syndiotactic polypropylene blended with heterotactic polypropylene, and polyethylene), silicone, polygalactin, Silastic, polycaprolactone, polyglycolic acid, poly-L-lactic acid, poly-D-L-lactic acid and polyphosphate esters.
Commercial examples of non-absorbable polymeric materials for use in an implant include MARLEX (polypropylene) available from Bard of Covington, RI;
PROLENE (polypropylene) and PROLENE Soft Polypropylene Mesh or Gynemesh (nonabsorbable synthetic surgical mesh), both available from Ethicon, of New Jersey; MERSILENE (polyethylene terephthalate) hernia mesh also available from Ethicon; GORE-TEX (expanded polytetrafluoroethylene) available from W. L. Gore and Associates, Phoenix, Ariz.; INTEPROTM polypropylene materials, and the polypropylene material used in the commercially available SPARC~ sling system, each available from American Medical Systems, Inc. of Minnetonka, Minn.
Commercial examples of absorbable materials include DEXON (polyglycolic acid) available from Davis and Geck of Danbury, Conn., and VICRYL available from Ethicon.
Suitable non-synthetic (biologic) implant materials include allografts, homografts, heterografts, autologous tissues, cadaveric fascia, autodermal grafts, dermal collagen grafts, autofascial heterografts, whole skin grafts, porcine dermal collagen, lyophilized aortic homografts, preserved dural homografts, bovine pericardium, and fascia lata. A biologic material may be in any form desired based on the type of surgical implant. Examples include sheet-like pieces that can form a portion of a surgical implant such as a sling.
According to the invention, materials of an implant are joined together using a rivet. The rivet can be used to join together two different materials, two of the same materials, or portions of the same single piece of implant material;
e.g., to join a synthetic material to a biologic material or to join two synthetic materials together.
A "rivet" is a material that connects implant materials, e.g., pieces or portions of an implant, together, by being located within holes or interstices of the materials and extending through the thickness of at least one of the materials, e.g., through the entire thickness of two or more pieces of an implant, or through the full thickness of an implant. A rivet may include a shaft located within interstices of implant materials and extending through the full thickness or thicknesses of one or more implant material or materials. A shaft may be cylindrical or of another useful shape. A rivet may optionally include one or more rivet heads at either or both surfaces of an implant, a rivet head having a cross-sectional surface that extends beyond the cross-sectional surface of a shaft of the rivet, e.g., a rivet head surface that has a greater cross-sectional surface area (e.g., from 2 to 5 times greater) compared to cross-sectional surface area of the rivet shaft.
An "aperture" of an implant material is a hole or interstice present in a material of the implant. Exemplary apertures include the interstitial spaces between a mesh, as well as a formed aperture or hole that may be formed in a film or a mesh material by any method, such as by the use of a punch, drill, cutting tool, etc. A
rivet may be placed by various methods within holes or interstices of the materials, e.g., depending on the nature of the holes or interstices or depending on the manner of formation of a rivet. For example, a polymeric rivet may be place to fill and extend through a hole that has been pre-formed (e.g., punched) in a solid or semi-solid film material. Alternately, a polymeric rivet material may be placed in the space of more than a single interstice of a mesh material, and may cover or coat one or multiple strands of a mesh material, optionally without completely filling in an interstice of a material.
A rivet may be prepared from any material that can be formed to be located in holes or interstices of implant materials, such as a polymeric material. A
rivet material can be a biocompatible polymeric material that is, e.g., a thermoplastic polymer material; a curable polymer such as a chemically curable, energy-curable, or heat-setting (thermosetting) polymer; a room temperature solid plastic material that can be ultrasonically welded; or a room temperature plastic material that can be mechanically secured or fastened (e.g., snapped or threaded together, crimped, bent, or otherwise formed to produce a mechanical polymeric rivet attachment). A
material used for a rivet may the same or different from a polymeric material of the implant itself.
Examples of useful polymeric thermoplastic materials include polyolefins (e.g., polypropylenes), polyurethanes, acetels, Teflon~ materials, and the like. For thermoplastic materials, the processing temperature can be selected to provide a secure riveted joint between materials of an implant, but to also avoid damage to implant material during processing the polymeric rivet. Particularly useful materials (e.g., thermoplastic materials) useful as polymeric rivet materials can be have a processing temperature that does not damage material or materials of an implant. A
"processing temperature" is a temperature at which a polymeric rivet material must achieve during processing of the polymeric rivet to attach the materials of the implant. A processing temperature may refer to an elevated temperature at which, e.g., a thermoplastic material may become sufficiently flowable to be formed into a rivet. Typically, a thermoplastic rivet material may have a processing temperature that will allow for flow of the thermoplastic material, and injection of the material into interstices of implant materials. A thermoset (e.g., chemically or otherwise curable) may have a processing temperature that is about room temperature, e.g., the thermosetting polymer is sufficiently fluid at room temperature to be injected into interstices of implant material.
For thermoplastic rivet materials, desirable ranges for processing temperatures above room temperature may differ depending on the materials of an 1 S implant that are being joined together, e.g., synthetic materials, biologic materials, etc. To use a thermoplastic rivet material to join materials of an implant that include a biologic material, while preventing damage or degradation of a biologic material, a thermoplastic rivet material can have a processing temperature that does not denature proteins contained in the biologic material. A temperature that is sufficiently low to avoid denaturing of proteins of a biologic material will depend on factors such as the relative amount of material applied to an amount of biologic material and the heat capacities of each of the biologic material and the thermoplastic rivet material. Generally speaking, for polypropylene rivet materials, a desired temperature range can be from 350 degrees F to about S00 degrees F, e.g., below about 410 degrees F, or from about 380 degrees F to about 440 degrees F.
For an implant that includes a synthetic polymeric material, a polymeric rivet material may be used that has a processing temperature that is below a temperature that will damage the synthetic polymeric material, and, optionally, that is below a temperature that would cause the polymeric material to melt. Optimally, when a thermoplastic rivet material is applied to a polymeric mesh, the polymeric mesh can be exposed to a heated thermoplastic rivet material without suffering any degradation, but the thermoplastic rivet material can be melted to flow between interstices of the polymeric mesh material to contact strands of the mesh and produce a mechanical join upon solidifying. The rivet may fill an interstice or may flow around strands to, e.g., cover, coat, or encase one or more strands of a polymeric mesh to produce a mechanical join, and may or may not necessarily fill the space of an interstice or hole.
Examples of chemically curable and thermosettable polymeric materials include materials that are understood to cure based on the presence of moisture, air, or catalyst. Examples include homopolymers, copolymers, and blends of one or more acrylates, cyanoacrylates, epoxies, silicones, and the like. These materials may be homopolymers, copolymers, or a blend or other combination of homopolymers or copolymers. Thermosettable polymeric rivet materials may be flowable (e.g., liquid) at room temperature, and can be chemically cured or may be cured by exposure to heat or other energy, such as electromagnetic energy, UV
energy, e-beam energy.
Examples of ultrasonically weldable plastic materials may include polyolefins (e.g., polypropylene), polycarbonates, nylons, and the like. These materials are generally rigid plastic at room temperature and can be shaped and sized to fit together to form a mechanical bond. For example, two portions of an ultrasonically weldable rivet coupler can contain opposing frames members that fit against opposing surfaces of an implant, while one or multiple opposing posts extend from the frame, through interstices of implant material. The opposing posts can include, e.g., channels, holes, or other features having sizes and shapes to engage an opposing post to produce a mechanical bond such that the frames contact the surfaces of the implant materials to secure the materials together. As an example, a post may include a channel or hole into which an opposing post fits to produce a mechanical, frictional attachment. The rigid plastic of the ultrasonically weldable rivet coupler can be placed together in frictional contact, with the posts extending through interstices of implant material, and then exposed to ultrasonic energy upon which exposure the plastic will experience melting and contacting pieces of the weldable plastic material (e.g., posts) will be welded together to attach the materials of the implant together.

Another type of polymeric rivet is a mechanical plastic fastener that can be used to join materials of an implant together based on mechanical interaction of elements of the mechanical fastener. Examples of mechanical plastic fastener are plastic pieces that can be solid (e.g., rigid) materials at room temperature, for insertion into interstices of implant material. The mechanical fastener can include one or two or more pieces or portions that are shaped to fit together and secure to each other, with material of the implant located between pieces or portions of the fastener. The mechanical fastener may secure implant materials based on mechanical interactions such as friction produced between two threaded pieces;
by friction between two pieces that mechanically snap together; by mechanically crimping or bending a polymeric material; or by otherwise forming a polymeric mechanical rivet to join together implant materials.
The attached figures illustrated examples of rivets as described. Figure 1 a shows implant 10 (e.g., a urethral sling, vaginal support, or other pelvic tissue support) that includes synthetic "Y-mesh" piece 12 attached to biologic material 8.
Y-mesh piece 12 includes portions 2, 4, and 6. Portions 4 and 6 overlap opposing surfaces of a portion of biologic material 8 that includes aperture 16 that has been previously punched or drilled through the biologic material. Polymeric rivet 14, e.g., of a thermoplastic polymeric rivet material such as a polypropylene, has been melted and solidified in a manner whereby polymeric rivet 14 extends from surfaces of each portion 4 and 6 of mesh materials, and through aperture 16 of biologic material 8. As such, polymeric rivet 14 is located within interstices of Y-mesh portion 4, extends continuously through aperture 14 of biologic material 8, and then further extends to interstices of Y-mesh portion 6. Rivet 14 includes two polymeric rivet heads formed at each opposing surface of implant 20. By this construction, polymeric rivet 14 connects both of Y-mesh portions 4 and 6 to biologic material 8.
Still referring to figures 1 a and 1 b, Y-mesh portions 2 and 4 of device 10 are illustrated as a continuous strip of mesh to which Y-mesh portion 6 is attached.
Portion 6 can be attached to portions 2 and 4 by any technique, such as by use of a suture material to stitch and tie the portions together, an adhesive, or, by use of a polymeric rivet such as a thermoplastic material as described herein (none of these is shown in figures la and lb). Combinations of suture materials, adhesives, and joining by use of a polymeric rivet as described, can also be useful.
Figure lb schematically illustrates a top view of the portion of the implant of figure la. Figure lb illustrates polymeric rivet 14 at an approximately central location of an end of biologic material 8, whereby polymeric rivet 14 connects top Y-mesh portion 4, through aperture 12 in biologic 8, to bottom Y-mesh portion (not visible from this top view).
Figures 2a and 2b (side, cross-sectional view and top view, respectively) schematically illustrate another embodiment of a polymeric rivet, which is illustrated to join materials of implant 20. Implant 20 may be any implant for use to treat a pelvic tissue conditions. Figures 2a and 2b show a synthetic "Y-mesh" 30 that includes portions 22, 24, and 26. Portions 24 and 26 overlap opposing surfaces of a portion biologic material 28 that includes four (4) apertures 32. Polymeric rivets 34, e.g., of thermoplastic polymeric material such as a polypropylene, have been melted and solidified in a manner whereby the polymeric material is located within interstices of mesh portion 24, extends continuously through apertures 32 of biologic material 28, and extend into interstices of mesh portion 26. Rivets 34 do are illustrated to not include rivet heads, but rivet heads may optionally be included if desired. By this construction, polymeric rivets 34 act to connect portions 24 and 26 of Y-mesh 30 to biologic material 28.
Still referring to figures 2a and 2b, Y-mesh portions 22 and 24 are illustrated as a continuous strip of mesh to which Y-mesh portion 26 is attached. Portion can be attached to continuous portion 22 and 24 of Y-mesh 30 by any bonding or joining technique, such as by use of a suture material to stitch and tie the portions together, an adhesive, or, according to the present description, by use of a synthetic (e.g., polymeric) polymeric rivet material such as a thermoplastic material.
Combinations of suture materials, adhesives, and joining by use of a polymeric rivet as described, can also be useful.
As shown in figures 2a and 2b, device 20 includes bonds 36 that attach an end of portion 26 to continuous portions 22 and 24. Bonds 36 are shown as extending laterally, discontinuously, from one side to the other of the device 20. As illustrated, Y-mesh 30 can be considered to be made of thermoplastic (e.g., polypropylene) mesh material. Bonds 36 may be formed by heating the thermoplastic (e.g., polypropylene) material of Y-mesh 30 to melt the material, while placing pressure on the melted materials, then allowing the materials to cool.
According to alternate embodiments, a flowable polymeric rivet material (thermoplastic, thermoset, or otherwise) could be inserted into apertures of mesh materials of Y-mesh 30, and then solidified, cured, or otherwise processed, to join the materials together. If desired, a suture or other stitched, sewn, or woven material may optionally or additionally be used to join portions of mesh materials to assemble Y-mesh 30.
Figure 2b schematically illustrates a top view of the implant 30 of figure 2a.
Figure 2b illustrates polymeric rivets 34 within apertures 32 spaced over an area of biologic 28, whereby polymeric rivets 34 connect top portion 24 of Y-mesh 30, through apertures 32 of biologic material 28, to bottom portion 26 of Y-mesh 30.
Figure 3 illustrates another embodiment of a surgical implant that includes a polymeric rivet. Figure 3 is a side, cross-sectional view of implant 38, having mesh portion 40 joined to biologic portion 42 by polymeric rivet 44. Implant 38 may be an implant for use to treat a pelvic tissue conditions. Polymeric rivet 44, e.g., a flowable thermoplastic (e.g., polypropylene) or thermosetting polymeric material, has been injected into interstices of biologic material 42 (aperture 46) and into interstices of mesh 40. Following injection into interstices, the flowable polymeric material was solidified in a manner whereby the polymeric rivet is located within interstices of mesh portion 40 and extends continuously through aperture 46 of biologic material 42. Rivet 44 includes a rivet shaft located within interstices of implant materials 40 and 42, and two rivet heads located at opposing exterior surfaces of implant 38. By this construction, polymeric rivet 44 secures mesh 40 to biologic material 42.
Figures 4a, 4b, and 4c, illustrate implant 50 that includes biologic material 52 joined to Y-mesh 54 by polymeric rivets in the form of ultrasonic weld coupler 58. Implant 50 may be any form of surgical implant such as a pelvic implant.
Implant 50 includes biologic portion 52 between two portions 60 and 62 of synthetic mesh. Ultrasonic weld coupler 58 includes top and bottom frames 64 and 66, which are "E" shaped when viewed from the top. Each of frames 64 and 66 also includes posts 68 and 70 extending perpendicular from the frame and sized and shaped to insert through interstices of biologic material 52 and mesh portions 60 and 62, and then to mechanically fit together in frictional contact. According to the illustrated example, posts 68 of upper frame 64 are circular interior posts having length and diameter to fit within apertures of exterior posts 70 of lower frame 66. These posts are an illustrative polymeric rivet configuration, and other configurations of various post sizes, shapes, arrangements on frames, and numbers will be appreciated.
For instance, while 6 opposing posts are illustrated to produce 6 polymeric rivets, more or fewer than 6 posts or rivets may be desired or useful.
When "E" shaped frames 64 and 66 are brought together to contact mesh portions 60 and 62, posts 68 and 70 extend between apertures of mesh portions and 62, and biologic material 52. Frames 64 and 66 contact exterior surfaces of mesh portions 60 and 62, to mechanically join mesh portions 60 and 62 with biologic material 52 between.
Figure 4b, a top view of implant 50, illustrates frame 64 in contact with mesh portion 60. The locations of posts 70 are also illustrated.
Figure 4c is a side perspective view of frames 64 and 66 of ultrasonic weld coupler 58, which includes interior rivets or "shafts" 68 and exterior rivets or "posts" 70. As show in figure 4c, top frame 64 includes six shafts or inner rivets 68 extending generally in a perpendicular fashion from frame 64. Each of inner rivets 68 fit into apertures of outer rivets or "posts 70, which extend from frame 66 in opposition to frame 64. In general, posts 70 can function as polymeric rivets to secure implant materials together by inserting inner rivet 68 through apertures of implant material and also inserting outer rivet 70 through apertures of implant material, optionally with additional pieces of implant material in-between.
Inner posts 68 enter apertures of outer posts 70 to produce a frictional bond.
Optionally, ultrasonic energy can be applied to the polymeric rivet material of inner posts and outer posts 68 and 70 to cause the polymeric material to melt and become welded together in position.
Figure Sa illustrates details of an embodiment of a polymeric rivet according to the invention, polymeric rivet 80, joining polymeric mesh portions 72 and 74 of a surgical implant 76 to biologic portion 78. Referring to figure Sa, biologic material 78 includes a punched aperture (not specifically illustrated) at a central location of material 78. Synthetic (polymeric, such as polypropylene) mesh material portions 72 and 74 overlap opposing surfaces of biologic material 78, including the aperture.
Polymeric material forms rivet 80 between interstices of mesh portions 72 and 74, and the aperture of biologic material 78. The material of polymeric rivet 80 can the same material as mesh the material of mesh portions 72 and 74, e.g.
polypropylene, or may be different.
Rivet 80 can be formed using a flowable polymeric rivet material such as a thermoplastic polymer, thermosetting polymer, or otherwise curable polymer.
For example, a thermoplastic synthetic polymeric rivet material may be made flowable at an elevated temperature, and the flowable material may be injected to flow into interstices of mesh materials 72 and 74, through the aperture (not specifically shown) of biologic material 78. Alternately, polymeric rivet 80 can be formed from a non-thermoplastic curable polymeric rivet material, e.g., at room temperature, by causing the flowable polymeric rivet material to flow into interstices of mesh materials 72 and 74, and through the aperture (not shown) in biologic material 78, followed by curing the polymeric material, e.g., by exposure to heat, radiation, catalyst, air, or moisture, etc.
Figure Sb shows implant 82 that includes polypropylene mesh 84 joined to biologic material 86 by three polymeric rivets 88. Polymeric rivets 88 may be any polymeric rivet material as described herein, and as illustrated may be considered to be prepared from thermosettable silicone material. Polymeric mesh 84 is joined to biologic material 86, and to another mesh material (not shown) at the other side of biologic material 86, by rivets 88 that contact mesh on both sides of biologic material 86 and extend through three apertures (represented as dashed lines 89) in biologic material 86. The polymeric rivet material is located at the surface of mesh material 84, within interstices (not shown) of mesh material 84, and within apertures 89 (dashed lines) of biologic material 86. Rivets 88 can be prepared from silicone polymeric rivet material by applying the flowable silicon material at room temperature to a surface of mesh 84 to cause the silicone polymer material to flow into the interstices of mesh 84 materials and the apertures of biologic tissue material 86. The polymeric rivet material was cured, e.g., using high temperature, radiation, etc.
Figure Sc shows implant 90 that includes polymeric mesh 92 (e.g., polypropylene) joined to a different polymeric mesh, mesh 94 (e.g., polypropylene), by polymeric rivet 96. Mesh 92 has relatively smaller interstices compared to mesh 94, e.g., due to factors such as a more tightly knit pattern of mesh 92 versus mesh 94. Rivet 96 joins different mesh materials 92 and 94 together by contacting each and penetrating interstices of both mesh materials. (The interstices of the mesh materials that contain rivet material are not specifically shown.) The polymeric material of rivet 96 can be any useful polymeric rivet material as described herein, e.g., a thermoplastic or thermosettable polymer. As illustrated, the material of polymeric rivet 96 can be a curable silicone polymeric material that can be prepared to form rivet 96 by being applied to mesh materials 92 and 94 in a manner whereby the polymeric rivet material (e.g., silicone) flows into the interstices of the mesh 1 S materials and is then cured or solidified as desired.
Examples of implants that can incorporate a rivet as described include various implants useful to treat conditions of the male and female pelvic floor.
These implants may be used to support pelvic tissue such as the rectum, urethra, vagina, etc., to treat a condition such as male or female urinary or fecal incontinence, vaginal prolapse, enterocele, rectocele, cystocele, vaginal vault prolapse, and other pelvic tissue disorders. Many implants useful to treat a pelvic condition can include two pieces of the same or different types of biocompatible materials, joined together, often including a support portion to support or contact a pelvic tissue attached to an extension portion (e.g., an "appendage" or "extension") that extends from the support portion to connect the support portion to a different component of the patient's anatomy. Many examples are described, e.g., in US
application number 2004/0039453 "Pelvic Health Implants and Methods," having serial number 10/423,662, and filed on April 25, 2003; US application "Method and Apparatus for Treating Pelvic Organ Prolapse," having serial number 10/834,943, and filed on April 30, 2004; and US application number 2003/0171664 "Transobturator Surgical Articles and Methods," having serial number 10/306,179, and filed on November 27, 2002.

In some embodiments of the invention, and as illustrated at figure Sd, implant materials may involve a suture joined to synthetic or non-synthetic material.
As an advantage of such a use of a polymeric rivet, the suture can be attached without the need to tie a knot. In general, a flowable (e.g., thermoplastic or curable) polymeric rivet material could be caused to flow to contact both the suture and an implant material, with flow of the polymeric rivet material between interstices or holes of the implant material. The polymeric rivet material may then be solidified or cured. A suture could be attached using a polymeric rivet to any of various commercially available surgical implants, such as those useful to treat pelvic conditions, e.g., commercially available products from American Medical Inc., of Minnetonka Minnesota, including SPARC~, MONARCTM, BIOARCTM, PERIGEETM, and APOGEETM products; Sacrocopoplexy Y-Mesh (SRAIGHT-INTM) products (e.g., surgical devices); as well as other graft-augmented implantable surgical devices.
Figure Sd shows an embodiment of an implant, implant 98, which includes polymeric rivet 106 that joins suture 102 to an implant material illustrated as mesh 100. In this illustration, dashed lines are indicated within rivet 106 to show how strands of polymeric mesh 100 define interstices that contain polymeric rivet material that makes up rivet 106. Implant 98 is illustrated as only including mesh 100, suture 102, and rivet 106. Optionally, implant 100 could include another implant material such as another synthetic (e.g., mesh) or a biologic material, e.g., joined to mesh 100 and suture 102 by rivet 106. Polymeric rivet 106 was formed by applying a flowable polymer to mesh 100 and suture 102 in a manner that caused the polymeric rivet material to flow into the interstices of the mesh material while also contacting the suture. The polymeric rivet material solidified, e.g., if thermoplastic, the melted, flowable polymeric rivet material, after application, was cooled;
and if otherwise curable, the flowable polymeric rivet material, after application, was exposed to a condition to cause cure, such as elevated temperature or radiation.
Exemplary implants useful for treating pelvic conditions may include the same or different materials attached using a polymeric rivet, e.g., any of synthetic mesh, a suture, or a biologic material, attached together. Many pelvic implants generally include a support portion having a size and shape to attach to a location proximal to a pelvic tissue (e.g., urethra, bladder, rectum, or vagina). The support portion may be of a biologic material or a synthetic (e.g., mesh) material.
Attached to the support portion can be one or two extensions (or "extension portions"
or "end portions"), the extensions shaped and sized to extend from the point of attachment with the support portion of the implant to another location to be secured.
Each extension may be an elongate material that is biologic or synthetic, e.g., an elongate synthetic mesh attached directly to the support portion. Each of the materials can include some form of hole or aperture sized to receive a polymeric rivet material, to join the extension portion to the support portion.
According to certain embodiments of implants, various additional components and features can be incorporated into a useful implant, such as components and features that facilitate installation of a device during a surgical procedure. For instance, a suture, as mentioned above, may be attached to an implants for use in adding tension or in positioning the implant or a portion (e.g., extension) of the implant. Alternately or in addition, an exemplary implant may include a removable sheath such as a plastic, transparent elongate tube, that can cover extension portions of an implant to facilitate installation by allowing a surgeon to apply tension or pressure on the sheath to indirectly apply pressure or tension to the extension portion. Additionally or alternately, extension members of an implant may include a connector or "dilator" tip at the end of the extension member distal from the support member, the connector being able to cooperate with an insertion tool during a surgical procedure to either push or pull the connector using the end of the insertion tool. For example, a tip may be a rigid plastic tip constructed to attach to an end of an elongate tool by snapping or otherwise securing to the end of the tool. The tool can then be used to push or pull the connector through a tissue passage to also bring the extension portion of the implant through the tissue passage.
Illustrations of an exemplary pelvic implant are at figures 6 and 6a, which depict an implant useful as a prolapse support device, e.g., for treating vaginal prolapse. Figure 6 is a front view and figure 6a is a side view. Implant 110 includes end portions 114 and I 16 connected to central support portion 118 by polymeric rivets 112. Sutures 118 extend along the lengths of each of extension 114 and and are connected to central support portion 118 and extensions 114 and 116 by the same rivets 112. Not shown as included with implant 110 are optional features of a pelvic implant such as tips at each of the non-attached ends of extension portions 114 and 116, which optional tips could be adapted to connect to an end of an installation device or tool such as a needle, and protective flexible covers or sheaths that could extend over and contain extensions 114 and 116.
An illustration of another exemplary pelvic implant is at figure 7, showing implant 120 that can be useful as a pelvic implant, e.g., for treating urinary incontinence. Implant 120 includes end portions 124 and 126 connected to central support portion 128 by polymeric rivets 122. Sutures 128, which are optional and not required, extend along the lengths of each of extension 124 and 126 and are connected to central support portion 128 and extensions 124 and 126 by the same rivets 122. Also shown in this exemplary embodiment are certain optional features of a pelvic implant. Optional tips 130 are attached at each of the non-attached ends of extension portions 124 and 126. Tips 130 can be, e.g., rigid plastic tips that are shaped to connect to an end of an implantation device or tool such as a needle. Also shown are optional sheaths or covers 132, which can be flexible, e.g., transparent covers that extend over the lengths of each of extensions 114 and 116 from rivet 122 to the dilator 130, which is crimped over covers 132. Covers 132 can be useful, e.g., as protection for extensions 124 and 126, and also for installation of implant 120, by being sufficiently stiff and non-elastomeric to allow the extensions to be pulled through a tissue path by pulling on cover 132.
The invention also relates to methods of preparing a surgical implant to include a rivet, such as a polymeric rivet. The methods involve aligning apertures of implant materials and inserting a rivet material from a surface of one of the materials, into interstices or holes of both materials. The rivet material is then processed to join the materials together. Processing a rivet material may involve any type of chemical or mechanical processing, such as a step to cure a chemically or thermally curable polymeric rivet material (e.g., by exposure to heat, radiation, etc.);
a temperature change to cure a thermoplastic polymeric rivet material; a step of producing an ultrasonic weld; or a mechanical step such as bending, crimping, turning, twisting, screwing, folding, or otherwise forming a mechanical bond from a rivet material, e.g., to mechanically attach rivet materials to form a rivet.

In general, during the step of inserting a rivet material into holes or interstices of an implant material, a rivet material may be in the form of a solid material or a flowable (e.g., liquid) material. Examples of materials that can be in a solid form when inserted include room temperature solid polymeric materials such as plastics that can be placed together to form a mechanical attachment such as an ultrasonic weld. Examples of materials that are in a flowable (e.g., fluid or liquid) form when inserted include room temperature fluid materials that may be thermosettable or otherwise chemically curable polymeric materials, and room temperature solid thermoplastic polymeric materials that can be heated above room temperature to become flowable, then re-solidified by a temperature reduction.
As an example of a step of inserting a flowable polymeric material into interstices of implant material, a flowable polymeric rivet material (e.g., a curable polymer or a thermoplastic polymer) may be provided in a liquid form. A
thermoplastic polymer may require heating to above room temperature, while a chemically or heat curable polymer can be at room temperature. Separately, implant materials are provided that include interstices. The materials may be contacted together with aligned interstices and the flowable polymeric rivet material may be injected or inserted from a surface of a material to flow into the interstices and through a thickness of at least one material, optionally through the total thickness of two or more implant materials to form a rivet shaft. Optionally, the rivet material may be shaped to form one or two rivet heads at one or more exterior surfaces of the implant.
Various modes of inserting a rivet material into interstices of implant material will be appreciated, using various equipment and processing techniques that are presently known or that may be developed in the future. For example, a flowable polymeric rivet material can be pressurized and injected into interstices of implant materials with the use of equipment that causes pressurized flow of the material, e.g., a device such as a glue gun, hot glue dispenser, extruder, etc. A
polymeric rivet material may be injected into interstices of implant material then be solidified (e.g., cured or allowed to cool) to mechanically join the material.

The invention also relates to apparatus for making an implant having a polymeric rivet, such as a mold, an injector or "microinjector," and combinations of a mold and injector.
Generally, a useful mold may include closeable surfaces sized to contain pieces or portions of surgical implant material such as an extension portion to be joined to a support portion, each portion having apertures through which polymeric rivet material will be placed. The apertures can be aligned when the closable surfaces are closed to contain the material. One of the closeable surfaces includes a port that also aligns with the apertures.
Molds of the invention can optionally include one or more gaskets located within the mold to define a portion of space used to form a rivet. A gasket can be included, e.g., circumferentially around an injection port, to contact material of the implant when the implant material is contained by the closed mold. A gasket can be used to control the flow and positioning (i.e., placement) of a fluid rivet material as the rivet material is being applied to (e.g., injected into) implant material.
For example, a mold could include a grommet, gasket, or other type of insert or flow-control structure that, when the mold is closed over material of a surgical implant, would control the flow of flowable polymeric rivet material. The flowable polymeric rivet material could be isolated to a specific area or space of implant material to which the flowable material is applied. Optionally, the same insert or flow-control structure may function to compress one or more materials of the surgical implant during formation of the polymeric rivet. For example, a gasket used to compress an annular surface of mesh material against a biologic material could seal off an area of the mesh within the annular gasket, to prevent flow of polymeric rivet material outside of that area, such as to prevent lateral flow of polymeric rivet material through interstices of the mesh over a larger than desired area, which may not necessarily add to the strength of the polymeric rivet.
Control of the flow of the polymeric rivet material in this way could allow the polymeric rivet to be formed into a desired shape and size, e.g., in a generally cylindrical shape, in a way that would increase the strength of attachment between implant materials and minimize the amount of rivet material required.

A gasket may desirably be of any useful material. Examples of desirable gasket materials may include elastomeric or compliant material such as a "soft durometer" material. Exemplary soft durometer materials can include polymeric materials such as natural or synthetic rubbers, silicones, curable polymeric materials such as polyurethanes, and the like. The polymeric material may be a homopolymer, copolymer, or blends or mixtures of homopolymers and copolymers.
Materials that are considered to exhibit a soft durometer include materials (e.g., polymeric materials) that exhibit a hardness that falls within the Shore A
hardness range, such as a hardness of, e.g., 15 to 30 durometer, e.g., 20 durometer.
Considered by function, a useful gasket material can be of a hardness that, when the closeable surfaces of the mold are closed to contain implant material or materials, gasket and implant material will contact each other and in combination will conform to form a substantially sealed space within which a liquid polymeric material can be injected to form the polymeric material into a polymeric rivet.
Figures 8a and 8b illustrate embodiments of equipment for use in preparing some embodiments of implants described herein, by injecting a flowable polymeric rivet material into interstices of implant material. These specialized apparatus include features such as an insert mold (for holding pieces or portions of an implant for joining), an injection assembly for injecting a flowable polymeric material into interstices of implant material or materials, and related structures and appurtenances such as a linear slide, air cylinder, nozzle, etc.
Particular injection assembly apparatus for use in injecting polymeric material as a polymeric rivet may include features that make the injector especially suitable for assembling implants as described herein, e.g., on a relatively small or relative low-speed commercial scale as opposed to high-speed commercial injection scale. Injection apparatus of the invention can avoid high temperatures based on the desire to avoid damage or degradation of synthetic or non-synthetic implant materials, while still obtaining a solid rivet attachment between two implant materials.
To avoid degradation or damage to implant material, injection apparatus of the invention can operate at relatively low temperature, such as below 500 degrees Fahrenheit, e.g., below 450 degrees Fahrenheit, such as between about 350 degrees Fahrenheit and 450 degrees Fahrenheit.
Also useful to prepare an implant as described herein is precise control of the speed (flow rate) and amount (i.e., total volume) of a flowable polymeric material injected as a polymeric rivet. Flow rate and total volume can also affect whether implant material becomes damaged during injection of a heated thermoplastic material. Further, precise control of flow rate and total volume can allow for precise formation in terms of size and shape of a polymeric rivet prepared from a flowable polymeric rivet material. Injection apparatus of the invention can allow for high precision control of flow rate and total injected volume of flowable polymeric material, in forming a polymeric rivet.
Useful total injected volume of flowable rivet material can be any volume useful to form a rivet as described. Exemplary rivet dimensions may include a height that is the same as the total thickness of the implant materials being bonded together, or slightly greater to produce a rivet head if desired. Optionally, a rivet head may extends above or below the thickness of the implant material, e.g., by a distance of up to 0.03 inches, e.g., up to 0.01 inches. A width of a rivet (e.g., shaft) may be as desired, and may depend on factors such as the number of rivets used, e.g., a single rivet or multiple rivets. Generally, a rivet shaft may have a width in the range from about 0.01 to about 0.10 inches in diameter, e.g., from about 0.04 to about 0.08 inches in diameter. If a rivet head is included, an exemplary size of a rivet head may be from about 2 to about S times the diameter of the rivet shaft.
An exemplary range of total volume of flowable polymeric material required to form a polymeric rivet, can depend on the number and size of rivets, and whether a rivet head is formed. For a rivet that joins mesh to mesh, a rivet head may not be necessary and a smaller total volume of polymeric material may be used compared to embodiments of implants that include a rivet head, e.g., to secure a biologic material to a mesh. Exemplary amounts of rivet material useful to form a rivet (optionally including a rivet head or heads) can be amounts in the range from about 0.001 cubic centimeters to about 0.1 cubic centimeters, e.g., from about 0.003 cubic centimeters to about 0.05 cubic centimeter.

High precision of flow rate and volume during rivet formation can be accomplished, for example, by use of an injector unit with a small diameter injection barrel (e.g., 0.125 to 0.5 inch diameter, such as 0.25 inch diameter) and a small injector nozzle (0.060 inch diameter) that delivers less than about 0.1 cubic centimeters, e.g., up to about 0.05 cubic centimeters of material, with injection relatively low injection forces, e.g., injection forces in the range from about 20 to 60 pounds, such as from about 35 to about 40 pounds.
Referring to figure 8b, there is illustrated an insert mold 150 specially designed to produce a polymeric rivet from a flowable polymeric rivet material.
Mold 150 includes base 152 and hinged gate 154. Hinged gate 154 is closeable relative to base 152 such that gate 154 can be closed over base 152 while implant material (not shown) is located within channel 156 of base 152 and opposing channel 158 of gate 154. Optional mesh holding pins 160 are shown within channel 156. Pins 160 can be inserted into or through interstices of a mesh material located within channel 156 to maintain a desired position of a mesh material during injection of a polymeric rivet material. Base 152 includes round depression 162, which aligns with injection port 164 of gate 154. Depression 162 is shown to be round but may be any shape desired to form a portion (e.g., head) of a polymeric rivet.
Gasket 168 is located around the periphery of port 164, of gate 154.
Refernng to figure 8c, there is illustrated another embodiment of an insert mold, mold 200. Mold 200 includes base 202 and hinged gates 204 and 205.
Hinged gates 204 and 205 are closeable relative to base 202 such that gates 204 and 205 can be closed over base 202 while implant material (not shown) is located within channel 216 of base 202. Optional holding orifices 210 are shown within channel 216. Orifices 210 can be aligned with interstices of implant material and pinned or otherwise secured to a desired location within channel 216 to maintain a desired position of an implant material during injection of a polymeric rivet material.
Space 212 is defined in part by gasket 213 and in part circumferentially by a surface of based 202. Space 212 aligns with injection port 214 of gate 205, and with orifice 217 inside of gasket 218 of gate 204. Space 212 may optionally include a depression within the surface of base 202. In use, one or two pieces or portions of implant material (not shown) can be placed in channel 216 of base 202.
Apertures of implant material can be aligned and the aligned apertures can be placed over space 212 such that when gates 204 and 205 are closed, the implant material apertures also align with apertures 214 and 217 of gates 205 and 204. A
flowable polymeric rivet material can then be injected through injection port 214 and flow S through aperture 217, with the implant material being positioned to receive the polymeric rivet material at a desired location for polymeric rivet formation.
A flowable polymeric rivet material can be injected to form a polymeric rivet, using a mold such as mold 150 or 200, by use of any desired injection or extrusion apparatus, for example an apparatus as illustrated in any of figure 8a, or similar or different but otherwise useful apparatus. Figure 8a shows an example of an injector useful to inject a polymeric material, e.g., through aperture 164 of injection gate 154 of mold 150, to form a polymeric rivet. Figure 8a illustrates a microinjection molding machine ("microinjector") 140. Microinjector 140 is referred to as a "microinjector" because the apparatus operates at a scale useful to hand assemble surgical devices by injection of flowable polymeric material, with precisely controlled flow rates and total volumes. Microinjector 120 operates at one or a combination of operating parameters selected from a temperature in the range from 350 to 500 degrees Fahrenheit, e.g., from 400 to 450 degrees Fahrenheit;
a single injection volume of injected material in the range from about 0.001 cubic centimeters to about 0.10 cubic centimeters, e.g., from about 0.003 cubic centimeters to about 0.05 cubic centimeter; and can include a small diameter injection barrel (e.g., 0.125 to 0.5 inch diameter, such as 0.25 inch diameter) and a small injector nozzle (e.g., having a diameter the range from about 0.01 to about 0.10 inches in diameter, e.g., from about 0.04 to about 0.08 inches in diameter, or about 0.060 inch diameter) that delivers less than 0.1 cubic centimeters of material with an injection force of less than 50 pounds.
Referring to figure 8a, microinjector 140 includes linear slide 142 that can be driven (e.g., pneumatically, hydraulically, or electrically, etc.) up and down along supports 144 to raise or lower slide 142. Attached to slide 142 is injector assembly 146 and injector head/nozzle 148.
End of nozzle 148 is shaped and sized to fit against a mold, e.g., mold 150 (alternately mold 200) at gate 154, to align with aperture 164 (i.e., at the outside surface of gage 154 when gate 154 is closed) and to inject polymer from nozzle end 148 through aperture 164 and into mold 150 to form a polymeric rivet. The size and shape of the polymeric rivet will be defined by features of the mold such as the size and shape of depression 162 and gasket 168, and the total volume of polymeric rivet material injected from the injector 140.
An example of a method of joining a two-piece mesh (e.g., a "Y-mesh") material to a biologic material by a molding process that can include the mold of figure 8b, can include steps such as the following:
1. Punch hole in a piece of biologic tissue material 2. Place the punched end of the biologic material strip between pieces of the "Y-mesh" and center the punched end at a location that will be beneath the injection gate aperture 164.
3. While placing the assembled "Y-mesh" and biologic materials into the injection mold, locate and secure the mesh portion using mesh holding pins 160.
4. Close the mold top 154 with the hole in the biologic material centered beneath the injection gate aperture 164.
5. Place the mold into an injection molding machine that dispenses a flowable polymeric rivet material, with aperture 164 centered under an injector nozzle of the injection molding machine. Load the injector assembly with a polymeric rivet material (e.g., a thermoplastic polypropylene).
6. Cycle press:
~ The linear slide advances down so the heated nozzle locates into the mold injection gate ~ The thermoplastic polymeric rivet material is injected into the mold ~ The linear slide returns to the up position 7. Remove the mold from the molding machine, open the gate, and remove the assembly that includes the mesh material joined to the biologic material by a polymeric rivet Trim the assembly as needed The methods and devices described herein could be used for various surgical procedures, as will be understood by those of skill, including any of various methods relating to pelvic prolapse repair, such as treatment of specific prolapse and incontinent conditions. As will also be appreciated by those of skill, the invention will be useful with other general and specific surgical procedures and surgical implants that involve joining one material to another (e.g., a biologic tissue material to a polymeric material), including devices and methods useful for hernia repair, cosmetic surgery, and others.

Claims (31)

1. A surgical implant comprising implant materials joined by a polymeric rivet, the polymeric rivet being located within apertures of the materials and extending from a surface of the implant through a thickness of at least one of the materials.
2. The implant of claim 1, wherein the implant is a support for pelvic tissue.
3. The implant of claim 1, wherein the implant is selected from a urethral support, a rectal support, and a vaginal prolapse support.
4. The implant of claim 1, wherein the polymeric rivet comprises material selected from the group consisting of a thermoplastic polymeric material, a cured polymeric material, an ultrasonically welded polymeric coupler, and a mechanical coupler.
5. The implant of claim 1, comprising a support portion and an extension portion.
6. The implant of claim 5, wherein the support portion comprises biologic material and the extension portion comprises synthetic mesh material.
7. The implant of claim 6, wherein the support portion comprises biologic material having a formed aperture, the extension portion comprises synthetic mesh material, and the polymeric rivet extends from a surface of the synthetic mesh material through interstices in the synthetic mesh material and through the formed aperture.
8. The implant of claim 7, wherein the extension portion comprises two aligned pieces of synthetic mesh material, and the formed aperture of the biologic material is located between the two aligned pieces of synthetic mesh, and the polymeric rivet extends from a surface of a first piece of synthetic mesh material, through interstices in the first piece, through the formed aperture, and through interstices of a second piece of synthetic mesh material.
9. The implant of claim 1, wherein the polymeric rivet comprises a thermoplastic polyolefin material.
10. The implant of claim 1, wherein the polymeric rivet comprises thermoplastic polypropylene having a processing temperature in the range from to 450 degrees Fahrenheit.
11. The implant of claim 1, wherein the polymeric rivet comprises a thermoset polymeric material.
12. The implant of claim 1, comprising a support portion two extension portions attached to the support portion by polymeric rivets, a dilator at ends of each of the extension portions, and insertion sheaths covering each extension portion.
13. The implant of claim 12, wherein the support portion comprises biologic material and the extension portions comprise synthetic mesh material.
14. The implant of claim 1, wherein the polymeric rivet extends from one surface of the implant, through a full thickness of the implant, and to another surface of the implant.
15. The implant of claim 14 wherein the polymeric rivet include two rivet heads at opposing surfaces of the implant.
16. A surgical kit comprising the implant of claim 1 and an insertion tool.
17. The kit of claim 16, wherein the implant is selected from a urethral support, a rectal support, and a vaginal prolapse support.
18. A method of forming or assembling a surgical implant, the method comprising providing portions of implant material, each portion comprising an aperture, contacting the portions of implant material with the apertures aligned, inserting a polymeric rivet material from a surface of either implant material, the polymeric rivet material extending into the apertures, and processing the polymeric rivet material to attach the implant materials.
19. A method of forming or assembling a surgical implant, the method comprising providing a support portion comprising a support portion aperture, providing an extension portion comprising an extension portion aperture, contacting the extension portion and the support portion with aligned extension portion aperture and support portion aperture, inserting a polymeric rivet material from a surface of either the extension portion or the support portion, the polymeric rivet material extending into the extension portion aperture and the support portion aperture, and processing the polymeric rivet material to attach the extension portion to the support portion.
20. The method of claim 19, wherein the polymeric rivet material is a thermoplastic polymeric material, the method further comprising inserting the polymeric rivet material as heated flowable polymeric rivet material and allowing the inserted polymeric rivet material to solidify to attach extension portion to support portion.
21. The method of claim 20, further comprising using a mold to maintain contact between extension portion and support portion, wherein the mold defines a space for injecting flowable polymeric rivet material into interstices of the extension portion and the support portion.
22. The method of claim 19, wherein the polymeric rivet material is a curable polymeric material, the method further comprising inserting the curable polymeric rivet material as room temperature liquid and curing the polymeric rivet material to attach extension portion to support portion.
23. The method of claim 22, comprising using a mold to maintain contact between extension portion and support portion, wherein the mold defines a space for injecting curable polymeric material into interstices of extension portion and support portion.
24. The method of claim 19, wherein the polymeric rivet material comprises a sonic weld coupler and the method comprises inserting the sonic weld coupler and ultrasonically welding the coupler.
25. An insert mold adapted to assemble materials of a medical implant, the mold comprising closeable surfaces sized to contain portions of implant material, each portion comprising an aperture, a surface comprising an injection port adapted to be aligned with the apertures, a gasket, wherein when the closeable surfaces are closed to contain the implant material with aligned apertures, the gasket partially defines a space that contains the aligned apertures.
26. An insert mold according to claim 25, comprising closeable surfaces sized to contain surgical implant material comprising and end portion and a support portion, the end portion comprising an end portion aperture and the support portion comprising a support portion aperture, a surface comprising an injection port adapted to be aligned with the end portion aperture and the support portion aperture, a gasket, wherein when the closeable surfaces are closed to contain the end portion and the support portion, with aligned apertures, the gasket partially defines a space that contains the aligned apertures.
27. The mold of claim 25, wherein the gasket has a hardness in the Shore A range.
28. Apparatus comprising, in combination, the insert mold of claim 25 and a microinjector, the microinjector:

operating at a temperature in the range from 350 to 500 degrees Fahrenheit;
producing a single injection volume of injected material in the range from about 0.001 cubic centimeters to about 0.1 cubic centimeters, and including an injection barrel having a diameter in the range from about 0.125 to 0.5 inches, and an injector nozzle having a diameter in the range from about range from about 0.01 to about 0.10 inches.
29. A method of producing a surgical implant according to claim 1, the method comprising providing an extension portion of an implant comprising an extension portion aperture, providing a support portion of an implant comprising a support portion aperture, using an insert mold according to claim 25 to contact the extension portion and the support portion with aligned extension portion aperture and support portion aperture, and using an injector assembly to inject flowable polymeric material into the extension portion aperture and the support portion aperture.
30. The method of claim 29, wherein one or more of the extension portion and the support portion comprises a synthetic mesh material, and wherein the method comprises compressing the synthetic mesh material by contacting the mesh material with the gasket.
31. A surgical implant comprising implant materials joined by a rivet, the rivet extending from a surface of the implant, through apertures of at least two portions of implant material.
CA002562096A 2004-05-03 2005-04-26 Surgical implants and related methods Abandoned CA2562096A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US56760104P 2004-05-03 2004-05-03
US60/567,601 2004-05-03
US58314604P 2004-06-25 2004-06-25
US60/583,146 2004-06-25
PCT/US2005/014376 WO2005110243A2 (en) 2004-05-03 2005-04-26 Surgical implants and related methods

Publications (1)

Publication Number Publication Date
CA2562096A1 true CA2562096A1 (en) 2005-11-24

Family

ID=34968501

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002562096A Abandoned CA2562096A1 (en) 2004-05-03 2005-04-26 Surgical implants and related methods

Country Status (6)

Country Link
US (1) US7722527B2 (en)
EP (1) EP1744679A2 (en)
AU (1) AU2005244221B2 (en)
BR (1) BRPI0510550A (en)
CA (1) CA2562096A1 (en)
WO (1) WO2005110243A2 (en)

Families Citing this family (735)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US8968178B2 (en) 2002-03-07 2015-03-03 Ams Research Corporation Transobturator surgical articles and methods
US6961612B2 (en) 2003-02-19 2005-11-01 Zoll Medical Corporation CPR sensitive ECG analysis in an automatic external defibrillator
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
EP2543341B1 (en) 2004-06-14 2016-07-20 Boston Scientific Limited A soft tissue anchor
US7946984B2 (en) 2004-07-13 2011-05-24 Dexcom, Inc. Transcutaneous analyte sensor
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7901346B2 (en) * 2004-10-05 2011-03-08 Ams Research Corporation Method for supporting vaginal cuff
JP5009159B2 (en) 2004-10-08 2012-08-22 エシコン・エンド−サージェリィ・インコーポレイテッド Ultrasonic surgical instrument
US7938307B2 (en) * 2004-10-18 2011-05-10 Tyco Healthcare Group Lp Support structures and methods of using the same
US7794385B2 (en) * 2004-12-20 2010-09-14 Ams Research Corporation System and method for treatment of anal incontinence and pelvic organ prolapse
US8172745B2 (en) * 2004-12-20 2012-05-08 Ams Research Corporation Treatment of anal incontinence and defecatory dysfunction
US9566370B2 (en) * 2004-12-23 2017-02-14 Novus Scientific Ab Mesh implant for use in reconstruction of soft tissue defects
US9717825B2 (en) 2004-12-23 2017-08-01 Novus Scientific Ab Mesh implant for use in reconstruction of soft tissue defects
KR101354189B1 (en) 2005-02-04 2014-01-20 에이엠에스 리서치 코포레이션 Surgical implants and related methods and systems
US7914437B2 (en) * 2005-02-04 2011-03-29 Ams Research Corporation Transobturator methods for installing sling to treat incontinence, and related devices
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
EP1871281B1 (en) 2005-04-06 2014-01-08 Boston Scientific Limited Assembly for sub-urethral support
US20060282084A1 (en) * 2005-06-03 2006-12-14 Ken Blier System and method for sealing tissue
WO2007008209A1 (en) 2005-07-13 2007-01-18 Boston Scientific Scimed Inc. Snap fit sling anchor system and related methods
WO2007011341A1 (en) * 2005-07-15 2007-01-25 Boston Scientific Scimed, Inc. A tension-adjustable surgical sling assembly
EP3533416A1 (en) 2005-07-25 2019-09-04 Boston Scientific Limited Pelvic floor repair system
US8535217B2 (en) 2005-07-26 2013-09-17 Ams Research Corporation Methods and systems for treatment of prolapse
CA2617317A1 (en) * 2005-08-04 2007-02-15 C.R. Bard, Inc. Systems for introducing implants
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070194079A1 (en) 2005-08-31 2007-08-23 Hueil Joseph C Surgical stapling device with staple drivers of different height
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
ES2470338T3 (en) 2005-11-14 2014-06-23 C.R. Bard, Inc. Sling anchor system
AU2006332514B2 (en) * 2005-12-28 2013-01-17 C.R. Bard, Inc. Apparatus and method for introducing implants
US8388513B2 (en) * 2006-01-10 2013-03-05 Roger D. Beyer Apparatus for posterior pelvic floor repair
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8059625B2 (en) * 2006-02-03 2011-11-15 Motorola Mobility, Inc. Distributed architecture and methods for broadcast/multicast service
EP2407095A1 (en) 2006-02-22 2012-01-18 DexCom, Inc. Analyte sensor
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
EP2015681B1 (en) 2006-05-03 2018-03-28 Datascope Corp. Tissue closure device
WO2007137226A2 (en) 2006-05-19 2007-11-29 Ams Research Corporation Method and articles for treatment of stress urinary incontinence
CA2654966A1 (en) 2006-06-16 2007-12-27 Ams Research Corporation Surgical implants and tools for treating pelvic conditions
WO2007149555A2 (en) 2006-06-22 2007-12-27 Ams Research Corporation Adjustable tension incontinence sling assemblies
US8083755B2 (en) 2006-06-22 2011-12-27 Novus Scientific Pte. Ltd. Mesh implant for use in reconstruction of soft tissue defects
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US9119582B2 (en) 2006-06-30 2015-09-01 Abbott Diabetes Care, Inc. Integrated analyte sensor and infusion device and methods therefor
US8480559B2 (en) 2006-09-13 2013-07-09 C. R. Bard, Inc. Urethral support system
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
CA2665554A1 (en) * 2006-10-18 2008-04-24 Coloplast A/S Implantable devices for the treatment of incontinence and methods of using the same
US7828854B2 (en) * 2006-10-31 2010-11-09 Ethicon, Inc. Implantable repair device
EP2097041A1 (en) * 2006-11-30 2009-09-09 Bioring SA Biodegradable prosthesis with suburethral positioning for surgical treatment of female urinary incontinence
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8016841B2 (en) * 2007-06-11 2011-09-13 Novus Scientific Pte. Ltd. Mesh implant with an interlocking knitted structure
BRPI0721737B8 (en) * 2007-06-12 2021-06-22 Promedon Do Brasil Produtos Medico Hospitalares Ltda micro-sling and implantation tool for the treatment of urinary incontinence and fecal incontinence
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
JP5535070B2 (en) 2007-07-30 2014-07-02 ボストン サイエンティフィック サイムド,インコーポレイテッド Apparatus and method for treatment of stress urinary incontinence
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US8206280B2 (en) 2007-11-13 2012-06-26 C. R. Bard, Inc. Adjustable tissue support member
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9078728B2 (en) * 2007-12-28 2015-07-14 Boston Scientific Scimed, Inc. Devices and methods for delivering female pelvic floor implants
US8430807B2 (en) 2007-12-28 2013-04-30 Boston Scientific Scimed, Inc. Devices and methods for treating pelvic floor dysfunctions
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9034002B2 (en) 2008-02-18 2015-05-19 Covidien Lp Lock bar spring and clip for implant deployment device
US8808314B2 (en) 2008-02-18 2014-08-19 Covidien Lp Device and method for deploying and attaching an implant to a biological tissue
AU2009215269B2 (en) 2008-02-18 2013-01-31 Covidien Lp A device and method for deploying and attaching a patch to a biological tissue
US8317808B2 (en) 2008-02-18 2012-11-27 Covidien Lp Device and method for rolling and inserting a prosthetic patch into a body cavity
US9833240B2 (en) 2008-02-18 2017-12-05 Covidien Lp Lock bar spring and clip for implant deployment device
US8758373B2 (en) 2008-02-18 2014-06-24 Covidien Lp Means and method for reversibly connecting a patch to a patch deployment device
US9393002B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9398944B2 (en) 2008-02-18 2016-07-26 Covidien Lp Lock bar spring and clip for implant deployment device
US9301826B2 (en) 2008-02-18 2016-04-05 Covidien Lp Lock bar spring and clip for implant deployment device
US9393093B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9044235B2 (en) 2008-02-18 2015-06-02 Covidien Lp Magnetic clip for implant deployment device
CA2728240C (en) 2008-06-10 2016-11-15 Cook Biotech Incorporated Quilted implantable graft
US9295757B2 (en) * 2008-06-10 2016-03-29 Cook Biotech Incorporated Quilted implantable graft
US8727963B2 (en) 2008-07-31 2014-05-20 Ams Research Corporation Methods and implants for treating urinary incontinence
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
WO2010027796A1 (en) 2008-08-25 2010-03-11 Ams Research Corporation Minimally invasive implant and method
US9017243B2 (en) 2008-08-25 2015-04-28 Ams Research Corporation Minimally invasive implant and method
US7857186B2 (en) 2008-09-19 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical stapler having an intermediate closing position
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
EP2792307B1 (en) 2008-10-20 2017-10-04 Covidien LP A device for attaching a patch to a biological tissue
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US9125716B2 (en) 2009-04-17 2015-09-08 Boston Scientific Scimed, Inc. Delivery sleeve for pelvic floor implants
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
EP3508144B1 (en) 2009-08-17 2021-04-07 Covidien LP Patch deployment device
WO2011021083A1 (en) 2009-08-17 2011-02-24 PolyTouch Medical, Inc. Articulating patch deployment device and method of use
US8734471B2 (en) * 2009-10-01 2014-05-27 Coloplast A/S Method of implanting a fabric to repair a pelvic floor
DK200970135A (en) * 2009-09-30 2011-03-31 Coloplast As Body implantable fabric
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8986302B2 (en) 2009-10-09 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9060837B2 (en) * 2009-11-23 2015-06-23 Ams Research Corporation Patterned sling implant and method
DE10832374T8 (en) * 2009-11-23 2013-04-25 Ams Research Corporation PATTERNED IMPLANT AND METHOD THEREFOR
WO2011079222A2 (en) 2009-12-23 2011-06-30 Boston Scientific Scimed, Inc. Less traumatic method of delivery of mesh-based devices into human body
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US9364308B2 (en) 2009-12-30 2016-06-14 Astora Women's Health, Llc Implant systems with tensioning feedback
WO2011082220A1 (en) 2009-12-30 2011-07-07 Ams Research Corporation Elongate implant system and method for treating pelvic conditions
DK201070036A (en) 2010-02-03 2011-08-04 Coloplast As Body implantable fabric having closed loop knit
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
ES2881798T3 (en) 2010-03-24 2021-11-30 Abbott Diabetes Care Inc Medical device inserters and medical device insertion and use procedures
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
IT1399972B1 (en) * 2010-04-19 2013-05-09 Herniamesh S R L MININVASIVE WANDER FOR THE SURGICAL TREATMENT OF FEMININE URINARY INCONTINENCE FROM EFFORT
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US9005199B2 (en) 2010-06-10 2015-04-14 Ethicon Endo-Surgery, Inc. Heat management configurations for controlling heat dissipation from electrosurgical instruments
US10028813B2 (en) 2010-07-22 2018-07-24 Boston Scientific Scimed, Inc. Coated pelvic implant device and method
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9414838B2 (en) * 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US20220338870A1 (en) * 2010-09-30 2022-10-27 Cilag Gmbh International Tissue thickness compensator comprising a reservoir
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
EP2621356B1 (en) 2010-09-30 2018-03-07 Ethicon LLC Fastener system comprising a retention matrix and an alignment matrix
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US20120080478A1 (en) * 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with detachable support structures and surgical stapling instruments with systems for preventing actuation motions when a cartridge is not present
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9517063B2 (en) * 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9211120B2 (en) * 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US9572648B2 (en) 2010-12-21 2017-02-21 Justin M. Crank Implantable slings and anchor systems
US9474610B2 (en) 2010-12-21 2016-10-25 Boston Scientific Scimed, Inc. Adjustable length rear tip extender for penile prosthesis
US9044229B2 (en) * 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8808162B2 (en) 2011-03-28 2014-08-19 Ams Research Corporation Implants, tools, and methods for treatment of pelvic conditions
US10034735B2 (en) 2011-03-28 2018-07-31 Boston Scientific Scimed, Inc. Implants, tools, and methods for treatments of pelvic conditions
US9089393B2 (en) 2011-03-28 2015-07-28 Ams Research Corporation Implants, tools, and methods for treatment of pelvic conditions
US9492259B2 (en) 2011-03-30 2016-11-15 Astora Women's Health, Llc Expandable implant system
ITTO20110038U1 (en) * 2011-04-26 2012-10-27 Dipro Medical Devices S R L PROSTHESIS, IN PARTICULAR FOR URO-GYNECOLOGICAL AND ANDROLOGICAL TREATMENTS
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9113991B2 (en) 2011-05-12 2015-08-25 Boston Scientific Scimed, Inc. Anchors for bodily implants and methods for anchoring bodily implants into a patient's body
US9636201B2 (en) 2011-05-12 2017-05-02 Boston Scientific Scimed, Inc. Delivery members for delivering an implant into a body of a patient
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9333062B2 (en) * 2011-06-10 2016-05-10 Boston Scientific Scimed, Inc. Bodily implants and methods of treating fecal incontinence using bodily implants
US10058240B2 (en) 2011-06-29 2018-08-28 Boston Scientific Scimed, Inc. Systems, implants, tools, and methods for treatments of pelvic conditions
US9351723B2 (en) 2011-06-30 2016-05-31 Astora Women's Health, Llc Implants, tools, and methods for treatments of pelvic conditions
EP2734148B1 (en) 2011-07-22 2019-06-05 Boston Scientific Scimed, Inc. Pelvic implant system
US9414903B2 (en) 2011-07-22 2016-08-16 Astora Women's Health, Llc Pelvic implant system and method
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US8579924B2 (en) * 2011-07-26 2013-11-12 Covidien Lp Implantable devices including a mesh and a pivotable film
WO2013016316A2 (en) * 2011-07-26 2013-01-31 Covidien Lp System and methods for connecting tissue patches
US9492191B2 (en) 2011-08-04 2016-11-15 Astora Women's Health, Llc Tools and methods for treatment of pelvic conditions
US20130035555A1 (en) 2011-08-05 2013-02-07 Alexander James A Systems, implants, tools, and methods for treatment of pelvic conditions
US9492170B2 (en) * 2011-08-10 2016-11-15 Ethicon Endo-Surgery, Inc. Device for applying adjunct in endoscopic procedure
US9402704B2 (en) 2011-08-30 2016-08-02 Boston Scientific Scimed, Inc. Fecal incontinence treatment device and method
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
US10098721B2 (en) 2011-09-01 2018-10-16 Boston Scientific Scimed, Inc. Pelvic implant needle system and method
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US10265152B2 (en) 2011-10-13 2019-04-23 Boston Scientific Scimed, Inc. Pelvic implant sizing systems and methods
US9314292B2 (en) 2011-10-24 2016-04-19 Ethicon Endo-Surgery, Llc Trigger lockout mechanism
US9084678B2 (en) 2012-01-20 2015-07-21 Ams Research Corporation Automated implantable penile prosthesis pump system
US9192458B2 (en) 2012-02-09 2015-11-24 Ams Research Corporation Implants, tools, and methods for treatments of pelvic conditions
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
US20130256373A1 (en) * 2012-03-28 2013-10-03 Ethicon Endo-Surgery, Inc. Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9775699B2 (en) * 2012-04-13 2017-10-03 Boston Scientific Scimed, Inc. Adjustable implant for the treatment of urinary incontinence
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
BR112015007010B1 (en) 2012-09-28 2022-05-31 Ethicon Endo-Surgery, Inc end actuator
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9241779B2 (en) 2012-11-02 2016-01-26 Coloplast A/S Male incontinence treatment system
US10111651B2 (en) 2012-11-02 2018-10-30 Coloplast A/S System and method of anchoring support material to tissue
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US20140246475A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Control methods for surgical instruments with removable implement portions
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US10376351B2 (en) * 2013-03-13 2019-08-13 Boston Scientific Scimed, Inc. Medical device and method of delivering the medical device
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
CN103340701B (en) * 2013-06-06 2015-03-04 宋红娟 Quantitative adjustable urethra middle section suspension device
US9480546B2 (en) 2013-08-05 2016-11-01 Coloplast A/S Hysteropexy mesh apparatuses and methods
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
MX2016003615A (en) 2013-09-24 2016-10-26 Giner Inc System for gas treatment of a cell implant.
US9522000B2 (en) 2013-11-08 2016-12-20 Coloplast A/S System and a method for surgical suture fixation
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
WO2015077356A1 (en) 2013-11-19 2015-05-28 Wheeler William K Fastener applicator with interlock
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
BR112016019374A8 (en) * 2014-02-24 2021-05-18 Ethicon Endo Surgery Llc deployable layer sets
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10172617B2 (en) * 2015-03-25 2019-01-08 Ethicon Llc Malleable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
JP6828018B2 (en) 2015-08-26 2021-02-10 エシコン エルエルシーEthicon LLC Surgical staple strips that allow you to change the characteristics of staples and facilitate filling into cartridges
US10130738B2 (en) * 2015-08-31 2018-11-20 Ethicon Llc Adjunct material to promote tissue growth
US10569071B2 (en) 2015-08-31 2020-02-25 Ethicon Llc Medicant eluting adjuncts and methods of using medicant eluting adjuncts
US10245034B2 (en) * 2015-08-31 2019-04-02 Ethicon Llc Inducing tissue adhesions using surgical adjuncts and medicants
MX2022006192A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
EP3429493A4 (en) * 2016-03-14 2020-02-26 Lyra Medical Ltd. Pelvic implants and methods of making and using thereof
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US11160647B2 (en) * 2016-04-20 2021-11-02 Boston Scientific Scimed, Inc. Implants and methods for treatments of pelvic conditions
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
JP6993003B2 (en) 2016-11-15 2022-01-13 ガイナー ライフ サイエンシズ,インク. Percutaneous gas diffuser suitable for use with subcutaneous implants
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10555734B2 (en) * 2017-02-17 2020-02-11 Ethicon Llc Methods and systems for mating constrictable adjunct materials with end effectors
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
CN110831656A (en) * 2017-05-04 2020-02-21 吉纳生命科学公司 Robust implantable gas delivery devices and methods, systems, and devices including the same
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11653928B2 (en) 2018-03-28 2023-05-23 Datascope Corp. Device for atrial appendage exclusion
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US20210196361A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with monopolar and bipolar energy capabilities
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
US11766261B2 (en) * 2020-09-16 2023-09-26 Cilag Gmbh International Apparatus and method to apply buttress to end effector of surgical stapler via fixed base
US11559306B2 (en) 2020-09-16 2023-01-24 Cilag Gmbh International Apparatus and method to detect full seating of buttress applicator in end effector of surgical stapler
US11419605B2 (en) 2020-09-16 2022-08-23 Cilag Gmbh International Apparatus and method to close end effector of surgical stapler onto buttress
US11452523B2 (en) 2020-09-16 2022-09-27 Cilag Gmbh International Apparatus and method to apply buttresses separately to jaws of end effector of surgical stapler
US11564683B2 (en) 2020-09-16 2023-01-31 Cilag Gmbh International Apparatus and method to apply buttress to end effector of surgical stapler via driven member
US11660093B2 (en) * 2020-09-16 2023-05-30 Cilag Gmbh International Method of applying buttress to end effector of surgical stapler
US11413040B2 (en) 2020-09-16 2022-08-16 Cilag Gmbh International Apparatus and method to apply buttress to end effector of surgical stapler with authentication
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11931026B2 (en) 2021-06-30 2024-03-19 Cilag Gmbh International Staple cartridge replacement
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2871207A (en) 1953-12-24 1959-01-27 Iowa State College Res Found Process of polymerizing a mixture of furfural, a secondary aromatic amine and a lignin compound and product obtained thereby
US5163960A (en) * 1990-06-28 1992-11-17 Bonutti Peter M Surgical devices assembled using heat bondable materials
US5167665A (en) 1991-12-31 1992-12-01 Mckinney William W Method of attaching objects to bone
US5326205A (en) 1992-05-27 1994-07-05 Anspach Jr William E Expandable rivet assembly
US5972000A (en) 1992-11-13 1999-10-26 Influence Medical Technologies, Ltd. Non-linear anchor inserter device and bone anchors
US5464424A (en) * 1994-06-27 1995-11-07 O'donnell, Jr.; Francis E. Laser adjustable suture
US5997554A (en) * 1995-06-14 1999-12-07 Medworks Corporation Surgical template and surgical method employing same
US5662683A (en) * 1995-08-22 1997-09-02 Ortho Helix Limited Open helical organic tissue anchor and method of facilitating healing
EP1230902A1 (en) * 1996-11-15 2002-08-14 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
US6050936A (en) * 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6039686A (en) 1997-03-18 2000-03-21 Kovac; S. Robert System and a method for the long term cure of recurrent urinary female incontinence
US6248118B1 (en) 1997-06-30 2001-06-19 Eva Corporation Heat activated surgical fastener
US6382214B1 (en) 1998-04-24 2002-05-07 American Medical Systems, Inc. Methods and apparatus for correction of urinary and gynecological pathologies including treatment of male incontinence and female cystocele
US6260552B1 (en) * 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
FR2785521B1 (en) 1998-11-10 2001-01-05 Sofradim Production SUSPENSION DEVICE FOR THE TREATMENT OF PROLAPSUS AND URINARY INCONTINENCES
US7387634B2 (en) 1998-11-23 2008-06-17 Benderev Theodore V System for securing sutures, grafts and soft tissue to bone and periosteum
US6728565B2 (en) 2000-02-25 2004-04-27 Scimed Life Systems, Inc. Diagnostic catheter using a vacuum for tissue positioning
US6592515B2 (en) 2000-09-07 2003-07-15 Ams Research Corporation Implantable article and method
US6582443B2 (en) 2000-12-27 2003-06-24 Ams Research Corporation Apparatus and methods for enhancing the functional longevity and for facilitating the implantation of medical devices
US7229453B2 (en) 2001-01-23 2007-06-12 Ams Research Corporation Pelvic floor implant system and method of assembly
US7070556B2 (en) 2002-03-07 2006-07-04 Ams Research Corporation Transobturator surgical articles and methods
US20020147382A1 (en) 2001-01-23 2002-10-10 Neisz Johann J. Surgical articles and methods
US6641525B2 (en) 2001-01-23 2003-11-04 Ams Research Corporation Sling assembly with secure and convenient attachment
US6755781B2 (en) * 2001-07-27 2004-06-29 Scimed Life Systems, Inc. Medical slings
US7070558B2 (en) * 2001-07-27 2006-07-04 Boston Scientific Scimed, Inc. Medical slings
US7407480B2 (en) 2001-07-27 2008-08-05 Ams Research Corporation Method and apparatus for correction of urinary and gynecological pathologies, including treatment of incontinence cystocele
US6648921B2 (en) 2001-10-03 2003-11-18 Ams Research Corporation Implantable article
JP3855809B2 (en) * 2002-03-14 2006-12-13 日本電気株式会社 Route control method and route control device
CA2492630C (en) * 2002-08-02 2009-01-13 C.R. Bard, Inc. Self anchoring sling and introducer system
WO2004096088A2 (en) * 2003-04-25 2004-11-11 Boston Scientific Limited Systems and methods for sling delivery and placement
US7497864B2 (en) * 2003-04-30 2009-03-03 Marctec, Llc. Tissue fastener and methods for using same
US7500945B2 (en) * 2004-04-30 2009-03-10 Ams Research Corporation Method and apparatus for treating pelvic organ prolapse

Also Published As

Publication number Publication date
BRPI0510550A (en) 2007-11-20
AU2005244221A1 (en) 2005-11-24
US20050267325A1 (en) 2005-12-01
US7722527B2 (en) 2010-05-25
WO2005110243A2 (en) 2005-11-24
EP1744679A2 (en) 2007-01-24
WO2005110243A3 (en) 2006-04-20
AU2005244221B2 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
AU2005244221B2 (en) Surgical implants and related methods
US8109866B2 (en) Method and apparatus for prolapse repair
KR101354189B1 (en) Surgical implants and related methods and systems
JP4971367B2 (en) Surgical article and method for treating pelvic disease
KR102234626B1 (en) Surgical implant
KR101694742B1 (en) Patterned implant and method
JP6584536B2 (en) Patterned sling implant
JP2010514538A (en) Stool attachment method for fecal incontinence and related devices
CA2904415A1 (en) Surgical implant
JP2006515774A (en) Surgical clasp to treat cellular tissue
US20100191038A1 (en) Devices and tools for treatment of urinary incontinence
EP2849676B1 (en) Adjustable implant for the treatment of urinary incontinence
US20120174380A1 (en) Apparatus for the Joining of Tissue Having Integral Penetrating End

Legal Events

Date Code Title Description
FZDE Dead