CA2622715A1 - Method of scaling navigation signals to account for impedance drift in tissue - Google Patents

Method of scaling navigation signals to account for impedance drift in tissue Download PDF

Info

Publication number
CA2622715A1
CA2622715A1 CA002622715A CA2622715A CA2622715A1 CA 2622715 A1 CA2622715 A1 CA 2622715A1 CA 002622715 A CA002622715 A CA 002622715A CA 2622715 A CA2622715 A CA 2622715A CA 2622715 A1 CA2622715 A1 CA 2622715A1
Authority
CA
Canada
Prior art keywords
impedance
electrodes
dipole
electrode
saving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002622715A
Other languages
French (fr)
Other versions
CA2622715C (en
Inventor
John A. Hauck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical Atrial Fibrillation Division Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2622715A1 publication Critical patent/CA2622715A1/en
Application granted granted Critical
Publication of CA2622715C publication Critical patent/CA2622715C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/063Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using impedance measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • A61B2034/2053Tracking an applied voltage gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part

Abstract

A method for scaling the impedance measured during the course of an electrophysiology study accounts for impedance drifts. By scaling the impedance there is greater assurance that previously recorded positional information can be used to accurately relocate an electrode at a prior visited position. The scale factor may be based upon a mean value across several sensing electrodes (e.g., 12, 14, 16, 17, 18, 19, or 22). Alternatively, the scale factor may be calculated specifically with respect to an orientation of a dipole pair of driven electrodes (e.g., 12, 14, 16, 17, 19, 19, 22).

Description

Method of scaling navigation signals to account for impedance drift in tissue CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims the benefit to U.S. Patent Application No.
11/227,580 ("the '580 application"), which was filed on 15 September 2005. The '580 application is hereby incorporated by reference as though fully set forth herein.

BACKGROUND OF THE INVENTION
1. Field of the Invention
[0002] This invention relates to systems for positioning and mapping electrophysiology catheters and ablation catheters in the heart of a patient.
The invention further relates to methods for error correction in electrocardiograph signals.

2. Description of the Related Art
[0003] U.S. Patent Nos. 5,697,377 (the '377 patent) and 5,983,126 (the '126 patent) to Wittkampf disclose a system for determining the position or location of a catheter in the heart. The '377 patent and the '126 patent are hereby incorporated herein by reference in their entirety. In the Wittkampf system, current pulses are applied to orthogonally placed patch electrodes placed on the surface of the patient. These surface electrodes are used to create axis specific electric fields within the patient. The Wittkampf references teach the delivery of small ainplitude, low current pulses supplied continuously at three different frequencies, one on each axis. Any measurement electrode placed in these electric fields (for example within the heart) measures a voltage that varies depending on the location of the measurement electrode between the various surface electrodes on each axis.
The voltage across the measurement electrode in the electric field in reference to a stable positional reference electrode indicates the position of the measurement electrode in the heart with respect to that reference. Measurement of the difference in voltage over the three separate axes gives rise to positional information for the measurement electrode in three dimensions.
[0004] Although the Wittkampf system is both safe and effective there are several factors that can result in errors in the position of the measurement electrode. Some factors previously identified as sources of impedance modulation include the cardiac cycle and respiration. Both of these sources also cause actual physical movement of an electrode in addition to direct impedance effects. Mitigations to, these modulators to enhance stability of electrode positional measurements include low pass filtering, cardiac cycle triggering, and respiration compensation. One factor not previously addressed is the tendency of biologic impedance to change over time. Changes in biologic impedance are attributable to changes in cell chemistry, for example, due to saline or other hydration drips in the patient, dehydration, or changes in body temperature.
[0005] If the biologic impedance changes over a longer term (i.e., minutes or hours), then apparent shifts of the measured locations of electrodes may occur. If an internal cardiac electrode is used as a reference electrode, these shifts may be negligible, since they are manifest as a scale factor change of only a few percent. For example, a 2 percent change with respect to a fixed reference 4.0 centimeters away will represent an error of 0.8 millimeters, which is generally considered acceptable. However, if it is desired to use an external body surface electrode as a fixed reference, and eliminate the requirement of a fixed intra-cardiac electrode reference, then 2 percent may represent an intolerable error source. For example, if the reference electrode is an "apparent" 40 cm from a mapping electrode, the error due to a 2% impedance drift would be 8 millimeters. The term "apparent" is used because while the actual distance to the reference electrode may be somewhat less, the intervening biologic of lung and muscle tissue is higher than that of blood, such that it scales to a larger distance.
[0006] The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention is to be bound.

SUMMARY OF THE INVENTION
[0007] The present invention addresses the problem of biologic impedance changes and the effect on measurement of the position of an electrode within a patient by continuously calculating a scale factor to apply to impedance measurements throughout the course of a procedure. Changes in biologic impedance attributable to changes in cell chemistry, for example, due to saline or other hydration drips in the patient, dehydration, or changes in body temperature, can thus be accounted for and a more accurate positional reading for a measurement electrode may be obtained.
[0008] In one form, the invention may be understood as a method for scaling impedance measurements in an electrophysiology study. A first dipole is driven along a first axis to create an electric field across a patient's body. A biologic impedance
9 PCT/US2006/035585 encountered by the electric field with respect to a surface sensor is measured. The mean of the absolute value of the measured biologic impedance is calculated continuously as a function of time Pm(t). An initial calculated mean of the absolute value of the at least one measured biologic impedance is saved as Pa. An impedance measurement between a measurement electrode and a reference electrode is then multiplied by the ratio of Pa/Pm(t) to scale the impedance measurement and account for any drift. This scaling calculation may be performed by software controlling an electrophysiology study or ablation system.
The invention may further break the scale factors into component scales with respect to a plurality of dipole axes that may be driven. In this instance, separate measurements for each axis are measured and the scale factor is represented by Pa(i)/Pm(t,i), where (i) indicates the axis of measurement.
Other features, details, utilities, and advantages of the present invention will be apparent from the following more particular written description of various embodiments of the invention as further illustrated in the accompanying drawings and defined in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Fig. 1 is a schematic diagram of a system for performing a cardiac electrophysiology examination or ablation procedure wherein the location of one or more electrodes can be determined and recorded.
[0010] Figs. 2A-2D are schematic diagrams of dipole pairs of driven surface electrodes.
[0011] Fig. 3 is a table indicating the surface electrodes used as sensors when a particular dipole pair of surface electrodes is driven.
[0012] Fig. 4 is a schematic diagram of biologic impedance drift portrayed as an electrical circuit.

DETAILED DESCRIPTION OF THE INVENTION
[0013] One of the primary goals of cardiac electrophysiology mapping is to locate with some certainty the position of an electrode within a cardiac cavity. An electric navigation field is created within a patient's body on each of the three principal axes by driving a constant current. If the impedances measured in the body are constant, then the potentials on each axis measured at a location, with respect to a reference electrode at a static location, will remain at a constant potential over time. Thus, if a location site is marked in the heart, one may return to that site with a catheter electrode in the future and be confident that if the measured navigation potentials, or impedance, are the same as before, the anatomic location is the same.
[0014] Fig. 1 depicts a schematic diagram of an exemplary electrophysiology mapping or ablation system. The patient 11 is depicted as an oval for clarity. Three sets of surface electrodes (e.g., patch electrodes) are shown applied to a surface of the patient 11 along an X-axis, a Y-axis, a.nd a Z-axis. The X-axis surface electrodes 12, 14 are applied to the patient along a first axis, such as on the lateral sides of the thorax region of the patient (e.g., applied to the patient's skin underneath each arm) and may be referred to as the Left and Right electrodes. The Y-axis electrodes 18, 19 are applied to the patient along a second axis generally orthogonal to the X-axis, such as along the sternum and spine of the patient in the thorax region and may be referred to as the Chest and Back electrodes. The Z-axis electrodes 16, 22 are applied along a third axis generally orthogonal to both the X-axis and the Y-axis, such as along the inner thigh and neck regions of the patient, and may be referred to as the Left Leg and Neck electrodes. The heart 10 lies between these pairs of surface electrodes. An additional surface reference electrode (e.g., a "belly patch") 21 provides a reference and/or ground electrode for the system 8. The belly patch electrode 21 is an alternative to a fixed intra-cardiac electrode 31. It should also be appreciated that in addition, the patient 11 will have most or all of the conventional electrocardiogram (ECG) system leads in place. This ECG information is available to the system although not illustrated in the Fig. 1.
[0015] A representative catheter 13 with a single, distal measurement electrode 17 is also depicted in Fig. 1. The catheter 13 may also have additional electrodes in addition to the measurement electrode 17. A fixed reference electrode 31 may be attached to a heart wall on an independent catheter 29. In many instances, a coronary sinus electrode or other fixed reference electrode 31 in the heart 10 can be used as a reference for measuring voltages and displacements. For calibration purposes the reference electrode 31 remains stationary on the wall of the heart during the course of the procedure.
[0016] Each surface electrode is independently connected to a multiplex switch 24.
Pairs of the surface electrodes are selected by software running on a computer 20, which couples the surface electrodes 12, 14, 16, 18, 19, 21, 22 to a signal generator 25. A first pair of surface electrodes, for example, the Z-axis electrodes 18, 19, is excited by the signal generator 25. The exited electrodes generate an electric field in the body of the patient 11 and the heart 10. This electrode excitation process occurs rapidly and sequentially as alternate sets of patch electrodes are selected and one or more of the unexcited surface electrodes are used to measure voltages. During the delivery of a current pulse, the unexcited surface electrodes 12, 14, 16, and 22 are referenced to either the reference electrode 31 or the belly patch 21 and respective voltages are measured across one or more of these unexcited electrodes. In this way, the surface electrodes are divided into driven and non-driven electrode sets.
[0017] While a pair of electrodes is driven by the current generator 25, the remaining, non-driven electrodes may be used as references to synthesize the orthogonal drive axes.
A low pass filter 27 processes the voltage measurements to remove electronic noise and cardiac motion artifact from the measurement signals. The filtered voltage measurements are transformed to digital data by the analog to digital converter 26 and transmitted to the computer 20 for storage under the direction of software. This collection of voltage measurements is referred to herein as the "patch data." The software has access to each individual voltage measurement made at each surface electrode during each excitation of each pair of surface electrodes. The patch data is used to determine a relative location in three dimensions (X, Y, Z) of the measurement electrode 17. Potentials across each of the six orthogonal surface electrodes may be acquired for all samples except when a particular surface electrode pair is driven. Sampling while a surface electrode acts as a source or sink in a driven pair is normally avoided as the potential measured at a driven electrode during this time will be skewed by the electrode impedance and the effects of high local current density.
[0018] Generally, three nominally orthogonal electric fields are generated by a series of driven and sensed electric dipoles in order to realize catheter navigation in a biological conductor. Alternately, these orthogonal fields can be decomposed and any pairs of surface electrodes can be driven as dipoles to provide effective electrode triangulation.
Additionally, such nonorthogonal methodologies add to the flexibility of the system and the ability to localize biologic impedance compensation. For any desired axis, the potentials measured across an intra-cardiac electrode 17 resulting from a predetermined set of drive (source-sink) configurations are combined algebraically to yield the same effective potential as would be obtained by simply driving a uniform current along the orthogonal axes.
[0019] Thus, any two of the surface electrodes 12, 14, 16, 18, 19, 22 may be selected as a dipole source and drain with respect to a ground reference, e.g., the belly patch 21, while the unexcited electrodes measure voltage with respect to the ground reference. The measurement electrode 17 placed in the heart 10 is exposed to the field from a current pulse and is measured with respect to ground, e.g., the belly patch 21. In practice the catheters within the heart may contain multiple electrodes and each electrode potential may be measured. As previously noted, at least one electrode may be fixed to the interior surface of the heart to form a fixed reference electrode 31, which is also measured with respect to ground. Data sets from each of the surface electrodes and the internal electrodes are all used to determine the location of the measurement electrode 17 within the heart 10.
After the voltage measurements are made, a different pair of surface electrodes is excited by the current source and the voltage measurement process of the remaining patch electrodes and internal electrodes takes place. The sequence occurs rapidly on the order of 100 times per second. To a first approximation the voltage on the electrodes within the heart bears a linear relationship with position between the patch electrodes that establish the field within the heart. Correction factors, e.g., to compensate for respiration, may be applied to the raw location information to improve the accuracy of the location value.
[0020] When operating with constant currents during an electrophysiology study, the potentials created with respect to any reference will be a function of the intervening impedance. This concept is represented schematically in Fig. 4. A catheter 13 with a distal measurement electrode 17 is placed within the heart 10 of the patient 11. A set of orthogonal surface electrodes 12, 14, 16, 18, 19, 22 are alternately paired as drive electrodes while the remaining, unexcited electrodes may function as sensor electrodes.
The electric potential generated by a dipole pair of electrodes may be measured at a measurement electrode in the body and the path of current through the body between the driven surface electrode and the distal measurement electrode 17 on the catheter may be understood simply as a circuit. For example, as shown in Fig. 4, when the Left Leg electrode 18 is driven as a source, a circuit 30 is created between the Left Leg electrode 18 and the measurement electrode 17 on the catheter 13 within the heart 10. The body tissue between the skin at the Left Leg electrode 12 and the heart 10 acts primarily as a resistive impedance and can be viewed functionally as a resistor 32. However, due to changes in body chemistry during a procedure, the value of this resistor 32 may drift.
Therefore, the resistor 32 may be more accurately viewed as a variable resistor as depicted.
It should be apparent that if the tissue impedance changes, then the voltage data and thus positional data for each electrode, including a reference electrode, e.g., the belly patch electrode 21, will similarly drift.
[0021] To the extent that intervening impedances change after a study begins and sites have been marked, attempts to place the measurement electrode at previously visited locations may not be consistent with earlier marlced sites. To the extent that the impedance change for a given pair of drive surface electrode dipoles is tracked by unexcited surface electrodes used as sensors, these data may be used to correct the drift on each driven dipole. This is best done by using the surface electrode patches as sensors in the time slices when they are un-driven. Two exemplary methods are discussed herein to account for and correct any potential drift. The first method assumes that the bio-impedance changes are essentially homogeneous. Thus all driven dipoles change by the same percentage and averaging of all the patch data returns a single impedance index. The second method does not make this assumption and computes an index for each axis.
[0022] A first method for biologic impedance scaling assumes that any biologic impedance changes are essentially homogenous within the body, that all dipoles change by the same percentage, and that averaging of all surface electrode data will provide a single, accurate impedance index. The method uses the Neck, Left, Right, Chest, and Back surface electrode patches as sensors when they are not being driven. The Left Leg electrode is not generally used for sensing because sensed potentials on it tend to be very small. For pairings of the driven surface electrode excluding the Left Leg, there are thus three potential sense patches that contribute data. In the case of driven pairings including the Left Leg, four surface electrode patches are available as sensors. The mean of the absolute values of the measured impedance at the surface electrode sensors is obtained continuously as a function of time. This mean value may be denoted as Pm(t).
Immediately after the a study begins, the initial value of Pm(t) is saved as an initial value Pa. On every subsequent sample, all of the measurement electrode data is multiplied by the ratio Pa/Pm(t). The three dimensional impedance measurements are thereby scaled to account for any drift over time.
[0023] To illustrate, a study begins and, assuming there are no errors due to unconnected surface electrodes, the surface electrodes are each sensed during their un-driven phases and averaged to yield a Pa of 10.0 ohms, which is saved in the software on the computer 20. Assume an important site is marked with a measurement electrode on a catheter in the heart at a site with the impedance coordinates of (1.0, 2.0, 10.0) ohms with respect to a belly patch reference electrode 21. These impedance coordinates are translated for the user using a nominal scale factor to yield positional coordinates of (25, 50, 400) millimeters. Suppose, due to a saline drip or other factors, an hour later the patient's biologic impedance has lowered by 2%. Without compensation, a return visit by a catheter electrode to the marked anatomic site would now show up at coordinates of (24.5, 49.0, 392.0) millimeters, a drift of 8 millimeters. However, the same biologic impedance drift will be registered on the data sensed by the surface electrodes. For example, Pm(t) will now read 9.8 ohms. Therefore, scaling the catheter electrode coordinate data by Pa/Pm(t), or 1.0204, will ensure the catheter electrode is positioned at its original and correct location.
[0024] A second method for scaling biologic impedance shifts according to the present invention is generally the same as in the prior embodiment, except that separate scale factors are maintained for each axis or pair of driven electrode dipoles.
While it is generally found that biologic impedance drifts are essentially homogeneous, this method may be preferred in the event that biologic impedance drifts are not homogeneous throughout the measurement space. In this instance a value, Pm(i,t), the mean of the absolute values of the measured impedance of each of the dipole combinations as a function of time, can be calculated. In this method, Pm(i,t) for each dipole pair are computed, where "i" is the dipole number, or "Impedance Number," by averaging the impedance measurements at the surface electrodes on a dipole basis. Notably, not all of the undriven surface electrodes need be averaged to optimally determine the axial impedance for each dipole. Thus, the initial value of patch impedance, Pa(i), and subsequent values of patch impedance, Pa(i,t), may be measured for each dipole by averaging only the electrode data per the table of Fig. 3 for that dipole.
[0025] As shown in Fig. 3, the measured impedance for a first dipole Xa-Ya (0) between the Left electrode and the Back electrode may be obtained by averaging the Right electrode (Xb) and the Neck electrode (Za) data. This dipole is depicted in Fig. 2A.
Similarly, the measured impedance for a second dipole Xa-Yb (1) between the Left electrode and the Chest electrode may also be obtained by averaging the Right electrode (Xb) and the Neck electrode (Za) data. This dipole is depicted in Fig. 2B. The measured impedance for a third dipole Xb-Ya (2) driven between the Right electrode and the Back electrode may be obtained by averaging the Left electrode (Xb) and the Chest electrode (Yb) data. This dipole is depicted in Fig. 2C. The measured impedance for a fourth dipole Xb-Yb (3) driven between the Right electrode and the Chest electrode may be obtained by averaging the Left electrode (Xb), the Back electrode (Ya) and the Neck electrode (Yb) data together. This dipole is depicted in Fig. 2D. The measured impedance for a fifth dipole Za-Ya (4) driven between the Neck electrode and the Back electrode may be obtained by averaging the Left electrode (Xa) and the Right electrode (Xb) data togetlier.
Finally, the measured impedance for a sixth dipole is Zb-Ya (5) driven between the left Leg electrode and the Back electrode may be optimally obtained by recoding date for the Chest electrode (Xa) only.
[0026] It should be noted that while biologic impedance scaling will have the greatest effect when correcting impedance changes when a body surface electrode is used as a reference electrode, such scaling may also be applied to cases where an intra-cardiac reference electrode is used. There is simply less error to correct for in the latter case.
[0027] Although various embodiments of this invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, front, back, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the basic elements of the invention as defined in the following claims.

Claims (19)

1. A method for scaling impedance measurements in an electrophysiology study, the method comprising driving a first dipole along a first axis to create an electric field across a patient's body;
measuring at least one biologic impedance encountered by the electric field with respect to at least one surface sensor;
calculating the mean of the absolute value of the at least one measured biologic impedance continuously as a function of time Pm(t);
saving an initial calculated mean of the absolute value of the at least one measured biologic impedance as Pa; and multiplying an impedance measurement between a measurement electrode and a reference electrode by the ratio of Pa/Pm(t).
2. The method of claim 1, wherein the at least one surface sensor comprises a plurality of surface sensors;
the step of calculating further comprises calculating the mean of the absolute values of the measured biologic impedance as a function of time at each of the plurality of surface sensors; and the step of saving further comprises saving the initial calculated mean of the absolute values of the of the measured biologic impedance at each of the plurality of surface sensors.
3. The method of claim 1, wherein the step of driving further comprises driving a second dipole along a second axis across the patient's body;
the step of calculating further comprises calculating means of the absolute values of the measured biologic impedance as a function of time at the at least one surface sensor with respect to both the first dipole and the second dipole separately as Pm(t,i);
the step of saving further comprises saving an initial calculated mean of the absolute values of the measured biologic impedance for each of the first dipole and the second dipole separately as Pa(i); and the step of multiplying further comprises multiplying an impedance measurement at the measurement electrode with respect to each of the first dipole and the second dipole by the respective ratio of Pa(i)/Pm(t,i).
4. The method of claim 3, wherein the at least one surface sensor comprises a plurality of surface sensors;
the step of calculating further comprises calculating the mean of the absolute values of the measured biologic impedance as a function of time at each of the plurality of surface sensors; and the step of saving further comprises saving the initial calculated mean of the absolute values of the of the measured biologic impedance at each of the plurality of surface sensors.
5. The method of claim 3, wherein the first axis and the second axis are generally orthogonal to each other.
6. The method of claim 3, wherein the step of driving further comprises driving a third dipole along a third axis across the patient's body;
the step of calculating further comprises calculating means of the absolute values of the measured biologic impedance as a function of time at the at least one surface sensor with respect to each of the first dipole, the second dipole, and the third dipole separately as Pm(t,i);
the step of saving further comprises saving an initial calculated mean of the absolute values of the measured biologic impedance for each of the first dipole, the second dipole, and the third dipole separately as Pa(i); and the step of multiplying further comprises multiplying an impedance measurement at the measurement electrode with respect to each of the first dipole, the second dipole, and the third dipole by the respective ratio of Pa(i)/Pm(t,i).
7. The method of claim 6, wherein the at least one surface sensor comprises a plurality of surface sensors;
the step of calculating further comprises calculating the mean of the absolute values of the measured biologic impedance as a function of time at each of the plurality of surface sensors; and the step of saving further comprises saving the initial calculated mean of the absolute values of the of the measured biologic impedance at each of the plurality of surface sensors.
8. The method of claim 6, wherein the first axis, the second axis, and the third axis are generally orthogonal to each other.
9. The method of claim 1, wherein the step of driving comprises electrically exciting a pair of surface electrodes on the patient's body to act as a source and a drain, respectively.
10. A method for determining a position of at least one measurement electrode within a patient's body, the method comprising positioning a plurality of surface electrodes on a surface of the patient's body;
electrically driving a first pair of the plurality of surface electrodes on the patient's body to act as a source and a drain;
sensing at least one impedance value at at least one of the plurality of surface electrodes that is not one of the driven pair of surface electrodes;
measuring an impedance between the at least one measurement electrode and a reference electrode;
repeating the steps of driving, sensing, and measuring for a second pair of the surface electrodes and a third pair of the surface electrodes;
scaling the impedance sensed at at least one of the surface electrodes for each step of sensing and measuring by calculating the mean of the absolute value of the at least sensed impedance continuously as a function of time Pm(t);
saving an initial calculated mean of the absolute value of the at least one sensed impedance as Pa; and multiplying the impedance measurement between the at least one measurement electrode and the reference electrode by the ratio of Pa/Pm(t);
and identifying the position of the at least one measurement electrode within the patient's body as a function of the scaled impedance.
11. The method of claim 10, wherein the step of calculating further comprises calculating means of the absolute values of
12 the measured biologic impedance as a function of time at the at least one surface sensor with respect to each of the first pair of the surface electrodes, the second pair of the surface electrodes, and the third pair of the surface electrodes separately as Pm(t,i);
the step of saving further comprises saving an initial calculated mean of the absolute values of the measured biologic impedance for each of separately as Pa(i); and the step of multiplying further comprises multiplying an impedance measurement at the measurement electrode with respect to each of the first pair of the surface electrodes, the second pair of the surface electrodes, and the third pair of the surface electrodes by the respective ratio of Pa(i)/Pm(t,i).

12. The method of claim 10, wherein respective axes between each of the first, second, and third pairs of surface electrodes are generally orthogonal to each other.
13. The method of claim 10, wherein the step of sensing further comprises sensing the impedance value at each of the plurality of electrodes that is not one of the driven pair of electrodes.
14. The method of claim 10, wherein the step of sensing further comprises sensing the impedance value at a subset of the plurality of electrodes that does not include one of the driven pair of electrodes.
15. The method of claim 10, wherein the reference electrode is within the patient's body.
16. The method of claim 10, wherein the reference electrode is on the surface of the patient's body.
17. The method of claim 10, wherein the step of positioning further comprises categorizing the plurality of electrodes into two or three pairs of electrodes orienting each pair of electrodes such that an axis between electrodes in each pair of electrodes is generally orthogonal to axes between electrodes in the other pairs of electrodes.
18. A computer-readable medium having computer-executable instructions for performing steps comprising saving at least one biologic impedance measurement encountered by at least one sensing electrode on the surface of a patient's body under the influence of a dipole driven electric field;
calculating the mean of the absolute value of the at least one measured biologic impedance continuously as a function of time Pm(t);
saving an initial calculated mean of the absolute value of the at least one measured biologic impedance as Pa; and multiplying an impedance measurement between a measurement electrode and a reference electrode by the ratio of Pa/Pm(t).
19. The computer readable medium of claim 18, wherein the step of calculating further comprises calculating means of the absolute values of the measured biologic impedance as a function of time at the at least one surface sensor with respect to a plurality of dipole driven electric fields separately as Pm(t,i);
the step of saving further comprises saving an initial calculated mean of the absolute values of the measured biologic impedance for each of the plurality of dipole driven electric fields separately as Pa(i); and the step of multiplying further comprises multiplying an impedance measurement at the measurement electrode with respect to each of the plurality of dipole driven electric fields by the respective ratio of Pa(i)/Pm(t,i).
CA2622715A 2005-09-15 2006-09-12 Method of scaling navigation signals to account for impedance drift in tissue Expired - Fee Related CA2622715C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/227,580 US7885707B2 (en) 2005-09-15 2005-09-15 Method of scaling navigation signals to account for impedance drift in tissue
US11/227,580 2005-09-15
PCT/US2006/035585 WO2007035339A2 (en) 2005-09-15 2006-09-12 Method of scaling navigation signals to account for impedance drift in tissue

Publications (2)

Publication Number Publication Date
CA2622715A1 true CA2622715A1 (en) 2007-03-29
CA2622715C CA2622715C (en) 2016-04-12

Family

ID=37856226

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2622715A Expired - Fee Related CA2622715C (en) 2005-09-15 2006-09-12 Method of scaling navigation signals to account for impedance drift in tissue

Country Status (9)

Country Link
US (2) US7885707B2 (en)
EP (1) EP1931254A4 (en)
JP (1) JP4966310B2 (en)
AU (1) AU2006292698B2 (en)
BR (1) BRPI0616562B8 (en)
CA (1) CA2622715C (en)
DE (1) DE202006020991U1 (en)
IL (1) IL190042A (en)
WO (1) WO2007035339A2 (en)

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10258285B2 (en) 2004-05-28 2019-04-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated creation of ablation lesions
US10863945B2 (en) 2004-05-28 2020-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system with contact sensing feature
US9782130B2 (en) * 2004-05-28 2017-10-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system
US8755864B2 (en) 2004-05-28 2014-06-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for diagnostic data mapping
US8528565B2 (en) 2004-05-28 2013-09-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated therapy delivery
US8155910B2 (en) * 2005-05-27 2012-04-10 St. Jude Medical, Atrial Fibrillation Divison, Inc. Robotically controlled catheter and method of its calibration
US7774051B2 (en) 2006-05-17 2010-08-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
US7988639B2 (en) * 2006-05-17 2011-08-02 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for complex geometry modeling of anatomy using multiple surface models
US7515954B2 (en) 2006-06-13 2009-04-07 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
US8265745B2 (en) 2006-12-29 2012-09-11 St. Jude Medical, Atrial Fibillation Division, Inc. Contact sensor and sheath exit sensor
US9220439B2 (en) 2006-12-29 2015-12-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US9585586B2 (en) 2006-12-29 2017-03-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US7825925B2 (en) * 2007-03-09 2010-11-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for repairing triangulated surface meshes
US9549689B2 (en) * 2007-03-09 2017-01-24 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for correction of inhomogeneous fields
US10433929B2 (en) * 2007-03-09 2019-10-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for local deformable registration of a catheter navigation system to image data or a model
WO2008134651A2 (en) * 2007-04-27 2008-11-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Apparatus and method for positioning and retention of catheter
US20080312521A1 (en) * 2007-06-14 2008-12-18 Solomon Edward G System and method for determining electrode-tissue contact using phase difference
US8160690B2 (en) * 2007-06-14 2012-04-17 Hansen Medical, Inc. System and method for determining electrode-tissue contact based on amplitude modulation of sensed signal
US9717501B2 (en) 2007-11-21 2017-08-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Methods and systems for occluding vessels during cardiac ablation including optional electroanatomical guidance
US8317744B2 (en) 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter manipulator assembly
US8684962B2 (en) 2008-03-27 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter device cartridge
US8641663B2 (en) 2008-03-27 2014-02-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system input device
US8343096B2 (en) 2008-03-27 2013-01-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US9241768B2 (en) 2008-03-27 2016-01-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Intelligent input device controller for a robotic catheter system
US9161817B2 (en) 2008-03-27 2015-10-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US8641664B2 (en) 2008-03-27 2014-02-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system with dynamic response
US8494608B2 (en) * 2008-04-18 2013-07-23 Medtronic, Inc. Method and apparatus for mapping a structure
US8532734B2 (en) * 2008-04-18 2013-09-10 Regents Of The University Of Minnesota Method and apparatus for mapping a structure
US8260395B2 (en) 2008-04-18 2012-09-04 Medtronic, Inc. Method and apparatus for mapping a structure
US8839798B2 (en) * 2008-04-18 2014-09-23 Medtronic, Inc. System and method for determining sheath location
US8167876B2 (en) 2008-10-27 2012-05-01 Rhythmia Medical, Inc. Tracking system using field mapping
US8400164B2 (en) * 2008-11-12 2013-03-19 Biosense Webster, Inc. Calibration and compensation for errors in position measurement
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US9439736B2 (en) 2009-07-22 2016-09-13 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for controlling a remote medical device guidance system in three-dimensions using gestures
US9330497B2 (en) 2011-08-12 2016-05-03 St. Jude Medical, Atrial Fibrillation Division, Inc. User interface devices for electrophysiology lab diagnostic and therapeutic equipment
US9888973B2 (en) 2010-03-31 2018-02-13 St. Jude Medical, Atrial Fibrillation Division, Inc. Intuitive user interface control for remote catheter navigation and 3D mapping and visualization systems
US9131869B2 (en) * 2010-05-11 2015-09-15 Rhythmia Medical, Inc. Tracking using field mapping
US8603004B2 (en) 2010-07-13 2013-12-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Methods and systems for filtering respiration noise from localization data
US9113807B2 (en) 2010-12-29 2015-08-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Dynamic adaptive respiration compensation with automatic gain control
US8517031B2 (en) 2010-12-29 2013-08-27 St. Jude Medical, Atrial Fibrillation Division, Inc. System for determining the position of a medical device within a body
US9901303B2 (en) * 2011-04-14 2018-02-27 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for registration of multiple navigation systems to a common coordinate frame
US10918307B2 (en) 2011-09-13 2021-02-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter navigation using impedance and magnetic field measurements
US10362963B2 (en) 2011-04-14 2019-07-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Correction of shift and drift in impedance-based medical device navigation using magnetic field information
US9833168B2 (en) 2011-06-06 2017-12-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Noise tolerant localization systems and methods
US10258255B2 (en) 2011-09-14 2019-04-16 St. Jude Medical International Holding S.àr.l. Method for producing a miniature electromagnetic coil using flexible printed circuitry
US10194885B2 (en) 2011-12-30 2019-02-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Automatic monitoring for and detection of tissue pop
US10082395B2 (en) 2012-10-03 2018-09-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Scaling of electrical impedance-based navigation space using inter-electrode spacing
US8849393B2 (en) * 2012-11-30 2014-09-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Correction of shift and drift in impedance-based medical device navigation using measured impedances at external patch electrodes
US9179971B2 (en) 2013-02-11 2015-11-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Printed electrode catheter
US10188314B2 (en) 2013-03-05 2019-01-29 St. Jude Medical, Cardiology Division, Inc. System and method for detecting sheathing and unsheathing of localization elements
US9026196B2 (en) 2013-03-05 2015-05-05 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for detecting sheathing and unsheathing of localization elements
US9724014B2 (en) 2013-03-12 2017-08-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Active detection of sensor transition from covered to exposed
US10049771B2 (en) 2013-03-15 2018-08-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Laplacian and Tikhonov regularization for voltage mapping with a medical device
WO2014152344A2 (en) 2013-03-15 2014-09-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Device for intravascular therapy and/or diagnosis
US9934617B2 (en) 2013-04-18 2018-04-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Systems and methods for visualizing and analyzing cardiac arrhythmias using 2-D planar projection and partially unfolded surface mapping processes
US10368760B2 (en) 2013-06-11 2019-08-06 St. Jude Medical, Atrial Fibrillation Divison, Inc. Multi-electrode impedance sensing
US20150057507A1 (en) * 2013-08-20 2015-02-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and Method for Generating Electrophysiology Maps
US9220435B2 (en) 2013-10-09 2015-12-29 St. Jude Medical, Cardiology Division, Inc. System and method for generating electrophysiology maps
JP6273355B2 (en) 2013-10-30 2018-01-31 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Cardiac mapping system and method for voltage-based assessment of electrograms
WO2015066113A1 (en) 2013-10-30 2015-05-07 St. Jude Medical, Cardiology Division, Inc. Cardiac mapping system and method for bi-directional activation detection of electrograms
US9717429B2 (en) 2013-10-31 2017-08-01 St. Jude Medical, Cardiology Division, Inc. System and method for analyzing biological signals and generating electrophyisology maps
WO2015095577A1 (en) 2013-12-20 2015-06-25 St. Jude Medical, Cardiology Division, Inc. Coaxial electrode catheters for extracting electrophysiologic parameters
EP3082588B8 (en) 2014-01-28 2018-12-19 St. Jude Medical International Holding S.à r.l. Elongate medical devices incorporating a flexible substrate, a sensor, and electrically-conductive traces
JP6419214B2 (en) 2014-01-28 2018-11-07 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Catheter shaft with conductive traces
EP3079580B1 (en) 2014-01-28 2017-11-22 St. Jude Medical International Holding S.à r.l. Medical device with a packaged electronic subassembly and method for fabricating the same
JP6246383B2 (en) 2014-02-06 2017-12-13 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Elongated medical device with chamfered ring electrode and variable shaft
US10568540B2 (en) 2014-09-26 2020-02-25 Cardioinsight Technologies, Inc. Localization of objects within a conductive volume
CN107072574B (en) 2014-10-15 2020-06-12 圣犹达医疗用品心脏病学部门有限公司 Method and system for mapping local conduction velocity
WO2016061387A1 (en) 2014-10-15 2016-04-21 St. Jude Medical, Cardiology Division, Inc. Methods and systems for generating integrated substrate maps for cardiac arrhythmias
WO2016109207A1 (en) 2014-12-31 2016-07-07 St. Jude Medical, Cardiology Division, Inc. Filter circuit for electrophysiology system
JP6633082B2 (en) 2015-01-07 2020-01-22 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド System, method, and apparatus for visualizing cardiac timing information using animation
US10105107B2 (en) 2015-01-08 2018-10-23 St. Jude Medical International Holding S.À R.L. Medical system having combined and synergized data output from multiple independent inputs
CN107205780B (en) 2015-02-13 2020-09-29 圣犹达医疗用品国际控股有限公司 Tracking-based 3D model enhancement
EP3261535B1 (en) 2015-05-07 2019-07-17 St. Jude Medical, Cardiology Division, Inc. System for detecting sheathing and unsheathing of localization elements
CN107750148B (en) 2015-06-19 2021-01-01 圣犹达医疗用品心脏病学部门有限公司 Impedance displacement and drift detection and correction
US11712171B2 (en) 2015-06-19 2023-08-01 St. Jude Medical, Cardiology Division, Inc. Electromagnetic dynamic registration for device navigation
WO2017040581A1 (en) 2015-09-02 2017-03-09 St. Jude Medical, Cardiology Division, Inc. Methods and systems for identifying and mapping cardiac activation wavefronts
US11033201B2 (en) 2015-09-04 2021-06-15 Biosense Webster (Israel) Ltd. Inconsistent field-based patch location coordinate correction
WO2017062247A1 (en) 2015-10-07 2017-04-13 St. Jude Medical, Cardiology Division, Inc. Methods and systems for mapping cardiac repolarization
CN108348186B (en) 2015-10-07 2021-06-18 圣犹达医疗用品心脏病学部门有限公司 Method and system for mapping cardiac restitution
US10980598B2 (en) 2015-11-20 2021-04-20 St. Jude Medical, Cardiology Division, Inc. Multi-electrode ablator tip having dual-mode, omni-directional feedback capabilities
CN108471975B (en) 2015-12-04 2020-11-17 圣犹达医疗用品心脏病学部门有限公司 Method and system for statistically analyzing electrograms of and mapping locally abnormal ventricular activity
EP3376952B1 (en) 2016-01-26 2020-01-22 St. Jude Medical International Holding S.à r.l. Magnetic field distortion detection and correction in a magnetic localization system
JP2019508127A (en) 2016-02-16 2019-03-28 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Method and system for electrophysiological mapping using medical images
WO2017151347A1 (en) 2016-03-01 2017-09-08 St. Jude Medical, Cardiology Division, Inc. Methods and systems for mapping cardiac activity
EP3432819B1 (en) * 2016-05-03 2020-10-14 St. Jude Medical, Cardiology Division, Inc. Lesion prediction based in part on tissue characterization
WO2017223552A1 (en) 2016-06-24 2017-12-28 Georgia Tech Research Corporation Systems and methods of iv infiltration detection
WO2018037372A1 (en) 2016-08-24 2018-03-01 St. Jude Medical International Holding S.À R.L. Composite planarity member with integrated tracking sensors
US11045109B2 (en) 2016-10-26 2021-06-29 St. Jude Medical, Cardiology Division, Inc. Navigational electrode with magnetic tracking coil
EP3500157B1 (en) 2016-11-11 2021-05-19 St. Jude Medical, Cardiology Division, Inc. System and method for generating electrophysiology maps
WO2018094063A1 (en) 2016-11-21 2018-05-24 St. Jude Medical, Cardiology Division, Inc. System and method for generating electrophysiology maps
CN110167432B (en) 2017-01-13 2023-03-10 圣犹达医疗用品心脏病学部门有限公司 System and method for generating an electrophysiology map of ventricular premature beats
EP3363354A1 (en) * 2017-02-21 2018-08-22 Koninklijke Philips N.V. An apparatus and method for measuring electrode impedance during electrophysiological measurements
WO2018160631A1 (en) 2017-03-02 2018-09-07 St. Jude Medical, Cardiology Division, Inc. System and method for differentiation of adipose tissue from scar tissue during electrophysiological mapping
WO2018204375A1 (en) 2017-05-04 2018-11-08 St. Jude Medical, Cardiology Division, Inc. System and method for determining ablation parameters
US10881482B2 (en) * 2017-05-09 2021-01-05 Boston Scientific Scimed, Inc. Operating room devices, methods, and systems
JP6883117B2 (en) 2017-05-17 2021-06-09 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Systems and methods for mapping local activity time (LAT)
US10610296B2 (en) * 2017-05-31 2020-04-07 Biosense Webster (Israel) Ltd. Cardiac electrophysiology machine including catheter stability while estimating impedance drop
US11298066B2 (en) 2017-07-07 2022-04-12 St. Jude Medical, Cardiology Division, Inc. System and method for electrophysiological mapping
WO2019018182A1 (en) 2017-07-19 2019-01-24 St. Jude Medical, Cardiology Division, Inc. System and method for electrophysiological mapping
EP3651636B1 (en) 2017-09-18 2022-04-13 St. Jude Medical, Cardiology Division, Inc. System and method for sorting electrophysiological signals from multi-dimensional catheters
EP3881788B1 (en) 2017-10-24 2022-11-16 St. Jude Medical, Cardiology Division, Inc. System for determining contact status of a medical device with tissue
EP3668381A1 (en) 2017-12-19 2020-06-24 St. Jude Medical, Cardiology Division, Inc. Methods of assessing contact between an electrode and tissue using complex impedance measurements
CN111557034B (en) 2018-01-09 2023-12-29 圣犹达医疗用品心脏病学部门有限公司 System and method for classifying electrophysiological signals on a virtual catheter
US11399763B2 (en) 2018-02-12 2022-08-02 St. Jude Medical, Cardiology Division, Inc. System and method for mapping cardiac muscle fiber orientation
US11103177B2 (en) 2018-04-18 2021-08-31 St, Jude Medical, Cardiology Division, Inc. System and method for mapping cardiac activity
CN112004463B (en) 2018-04-26 2024-03-22 圣犹达医疗用品心脏病学部门有限公司 Systems and methods for mapping arrhythmia driver sites
US11071486B2 (en) 2018-06-01 2021-07-27 St. Jude Medical, Cardiology Division, Inc. System and method for generating activation timing maps
WO2019241079A1 (en) 2018-06-14 2019-12-19 St. Jude Medical, Cardiology Division, Inc. System and method for mapping cardiac activity
US11185274B2 (en) 2018-06-18 2021-11-30 Biosense Webster (Israel) Ltd. Identifying orthogonal sets of active current location (ACL) patches
US11369306B2 (en) 2018-09-10 2022-06-28 St. Jude Medical, Cardiology Division, Inc. System and method for displaying electrophysiological signals from multi-dimensional catheters
US11547492B2 (en) 2018-11-07 2023-01-10 St Jude Medical International Holding, Sa.R.L. Mechanical modules of catheters for sensor fusion processes
EP3852623A1 (en) 2018-11-07 2021-07-28 St. Jude Medical International Holding S.à r.l. Method for medical device localization based on magnetic and impedance sensors
US11918334B2 (en) 2018-11-07 2024-03-05 St Jude Medical International Holding, Sa.R.L. Impedance transformation model for estimating catheter locations
EP3846684B1 (en) 2019-01-03 2023-02-01 St. Jude Medical, Cardiology Division, Inc. System and method for mapping cardiac activation wavefronts
US20210401492A1 (en) 2019-02-21 2021-12-30 St. Jude Medical, Cardiology Division, Inc. Systems and methods for assessing ablation lesions
US20220142545A1 (en) 2019-03-08 2022-05-12 St. Jude Medical, Cardiology Division, Inc. High density electrode catheters
US20220142553A1 (en) 2019-03-12 2022-05-12 St. Jude Medical, Cardiology Division, Inc. System and method for cardiac mapping
US20220167899A1 (en) 2019-04-04 2022-06-02 St. Jude Medical Cardiology Division, Inc. System and method for cardiac mapping
EP3923793B1 (en) 2019-04-18 2023-10-18 St. Jude Medical, Cardiology Division, Inc. System and method for cardiac mapping
US20200333409A1 (en) 2019-04-19 2020-10-22 St. Jude Medical, Cardiology Division, Inc. Magnetic reference sensor with reduced sensitivity to magnetic distortions
US20220211292A1 (en) 2019-04-19 2022-07-07 St. Jude Medical, Cardiology Division, Inc. Magnetic field distortion detection and correction in a magnetic localization system
EP3948825A1 (en) 2019-04-24 2022-02-09 St. Jude Medical, Cardiology Division, Inc. System, method, and apparatus for visualizing cardiac activation
EP3923796B1 (en) 2019-05-09 2022-12-07 St. Jude Medical, Cardiology Division, Inc. System and method for detection and mapping of near field conduction in scar tissue
EP3923797B1 (en) 2019-05-24 2023-11-01 St. Jude Medical, Cardiology Division, Inc. System and method for cardiac mapping
US11504189B2 (en) 2020-02-06 2022-11-22 St Jude Medical International Holding S.À R.L. Hybrid approach to distortion detection
CN115243616A (en) 2020-03-16 2022-10-25 圣犹达医疗用品心脏病学部门有限公司 Systems, methods, and devices for mapping local activation times
JP7442677B2 (en) 2020-04-21 2024-03-04 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド System and method for mapping cardiac activity
US20210330213A1 (en) 2020-04-23 2021-10-28 St. Jude Medical, Cardiology Division, Inc. Determination of catheter shape
WO2021225717A1 (en) 2020-05-08 2021-11-11 St. Jude Medical, Cardiology Division, Inc. Methods for forming a spline using a flexible circuit assembly and electrode assemblies including same
US11751794B2 (en) 2020-05-19 2023-09-12 St. Jude Medical, Cardiology Division, Inc. System and method for mapping electrophysiological activation
JP2023537819A (en) 2020-08-18 2023-09-06 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド High Density Electrode Catheter with Magnetic Position Tracking
WO2023028133A1 (en) 2021-08-26 2023-03-02 St. Jude Medical, Cardiology Division, Inc. Method and system for generating respiration signals for use in electrophysiology procedures
WO2023114588A1 (en) 2021-12-17 2023-06-22 St. Jude Medical, Cardiology Division, Inc. Method and system for visualizing ablation procedure data
WO2023164001A1 (en) 2022-02-23 2023-08-31 St. Jude Medical, Cardiology Division, Inc. High density catheter

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US440064A (en) * 1890-11-04 Spectacle-frame
DE1573912A1 (en) * 1965-05-24 1970-06-04 Laszlo Urmenyi Method for the detection of surface elevations in paper and other plate-shaped material and device for practicing the method
US5215103A (en) 1986-11-14 1993-06-01 Desai Jawahar M Catheter for mapping and ablation and method therefor
US4940064A (en) 1986-11-14 1990-07-10 Desai Jawahar M Catheter for mapping and ablation and method therefor
US5231995A (en) 1986-11-14 1993-08-03 Desai Jawahar M Method for catheter mapping and ablation
US4901725A (en) * 1988-01-29 1990-02-20 Telectronics N.V. Minute volume rate-responsive pacemaker
US5511553A (en) * 1989-02-15 1996-04-30 Segalowitz; Jacob Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously
US5027813A (en) 1990-03-05 1991-07-02 Cardiac Pacemakers, Inc. Rate responsive pacemaker apparatus having an electrode interface sensor
US5074303A (en) 1990-03-08 1991-12-24 Cardiac Pacemakers, Inc. Rate adaptive cardiac pacer incorporating switched capacitor filter with cutoff frequency determined by heart rate
US5284136A (en) 1990-04-04 1994-02-08 Cardiac Pacemakers, Inc. Dual indifferent electrode pacemaker
US5280429A (en) 1991-04-30 1994-01-18 Xitron Technologies Method and apparatus for displaying multi-frequency bio-impedance
US5553611A (en) 1994-01-06 1996-09-10 Endocardial Solutions, Inc. Endocardial measurement method
US5662108A (en) 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US5318597A (en) 1993-03-15 1994-06-07 Cardiac Pacemakers, Inc. Rate adaptive cardiac rhythm management device control algorithm using trans-thoracic ventilation
US5335668A (en) 1993-04-30 1994-08-09 Medical Scientific, Inc. Diagnostic impedance measuring system for an insufflation needle
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
IL116699A (en) 1996-01-08 2001-09-13 Biosense Ltd Method of constructing cardiac map
US5876336A (en) 1994-10-11 1999-03-02 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structure
US5941251A (en) 1994-10-11 1999-08-24 Ep Technologies, Inc. Systems for locating and guiding operative elements within interior body regions
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
US5732710A (en) 1996-08-09 1998-03-31 R.S. Medical Monitoring Ltd. Method and device for stable impedance plethysmography
AU1367199A (en) * 1997-10-29 1999-05-17 Jentek Sensors, Inc. Absolute property measurement with air calibration
US7263397B2 (en) 1998-06-30 2007-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for catheter navigation and location and mapping in the heart
US7806829B2 (en) 1998-06-30 2010-10-05 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for navigating an ultrasound catheter to image a beating heart
JP3518502B2 (en) * 2000-10-19 2004-04-12 株式会社日立製作所 Biomagnetic field measurement device
US6730038B2 (en) * 2002-02-05 2004-05-04 Tensys Medical, Inc. Method and apparatus for non-invasively measuring hemodynamic parameters using parametrics
US7187968B2 (en) * 2003-10-23 2007-03-06 Duke University Apparatus for acquiring and transmitting neural signals and related methods

Also Published As

Publication number Publication date
US20070060833A1 (en) 2007-03-15
WO2007035339A3 (en) 2007-10-25
AU2006292698B2 (en) 2012-11-01
US7885707B2 (en) 2011-02-08
IL190042A (en) 2013-06-27
EP1931254A4 (en) 2009-07-01
DE202006020991U1 (en) 2012-01-17
WO2007035339A2 (en) 2007-03-29
US8805490B2 (en) 2014-08-12
JP2009508582A (en) 2009-03-05
JP4966310B2 (en) 2012-07-04
AU2006292698A1 (en) 2007-03-29
BRPI0616562B8 (en) 2021-06-22
IL190042A0 (en) 2008-08-07
EP1931254A2 (en) 2008-06-18
US20110098594A1 (en) 2011-04-28
BRPI0616562A2 (en) 2011-06-21
BRPI0616562B1 (en) 2018-07-31
CA2622715C (en) 2016-04-12

Similar Documents

Publication Publication Date Title
US7885707B2 (en) Method of scaling navigation signals to account for impedance drift in tissue
EP2120700B1 (en) System and method for correction of inhomogeneous fields
JP6046263B2 (en) Shift and drift correction in impedance-based medical device navigation using impedance measurements at external patch electrodes
EP2204121B1 (en) Apparatus for the cancellation of motion artifacts in medical interventional navigation
US20090264781A1 (en) Method and device for determining and presenting surface charge and dipole densities on cardiac walls
US11141583B2 (en) Multi-layer body surface electrodes
JP2016513493A (en) System and method for detecting in-sheath and out-of-sheath projections of location determining elements
US8517031B2 (en) System for determining the position of a medical device within a body
IL259151A (en) Combination torso vest to map cardiac electrophysiology
EP2407118B1 (en) Systems for filtering respiration noise from localization data
CN113891678A (en) Tracking catheter based on model of impedance tracking field
IL267695B2 (en) Assessing tissue contact with catheter using pairs of electrodes and common reference ground established using designed circuit-board capacitance
WO2023114588A1 (en) Method and system for visualizing ablation procedure data

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20210913