CA2699334C - Dialysis cartridges comprising sodium zirconium carbonate and zirconium basic carbonate and methods of making the same - Google Patents

Dialysis cartridges comprising sodium zirconium carbonate and zirconium basic carbonate and methods of making the same Download PDF

Info

Publication number
CA2699334C
CA2699334C CA2699334A CA2699334A CA2699334C CA 2699334 C CA2699334 C CA 2699334C CA 2699334 A CA2699334 A CA 2699334A CA 2699334 A CA2699334 A CA 2699334A CA 2699334 C CA2699334 C CA 2699334C
Authority
CA
Canada
Prior art keywords
zirconium
carbonate
sodium
zirconium carbonate
sodium zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2699334A
Other languages
French (fr)
Other versions
CA2699334A1 (en
Inventor
Raymond J. Wong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renal Solutions Inc
Original Assignee
Renal Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renal Solutions Inc filed Critical Renal Solutions Inc
Publication of CA2699334A1 publication Critical patent/CA2699334A1/en
Application granted granted Critical
Publication of CA2699334C publication Critical patent/CA2699334C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1694Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes with recirculating dialysing liquid
    • A61M1/1696Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes with recirculating dialysing liquid with dialysate regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0277Carbonates of compounds other than those provided for in B01J20/043
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0292Phosphates of compounds other than those provided for in B01J20/048
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28052Several layers of identical or different sorbents stacked in a housing, e.g. in a column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/62In a cartridge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content

Abstract

A method of making sodium zirconium carbonate is described which involves forming a mixture of zirconium oxychloride with soda ash and then heating at a sufficient temperature and for a sufficient time to form the sodium zirconium carbonate. Subsequent washing and filtration steps can further form parts of the process. A novel sodium zirconium carbonate is further described which contains from about 2 wt% to about 5wt% Na+; from about 44 wt% to about 50 wt% ZrO2; from about 12 wt% to about 18 wt% CO32 ; and from about 30 wt% to about described which involve titrating an aqueous slurry of sodium zirconium carbonate to a pH of from about 3.5 to about 4.0 with an acidic agent wherein the sodium zirconium carbonate has a moisture content of form about 15% to about 25% LOD is solid form. The process further involves washing the aqueous slurry containing the formed zirconium basic carbonate with water. A novel zirconium basic carbonate is further disclosed which has a minimum adsorption capacity of from about 30 to about 35 mg/PO4-P/gm SZC; a minimum HCO3- content of from about 2 to about 4 mEq HCO3-gm/SZC; a leachable Na+ content of from about 1.5 to about 2.0 mEq Na+/gm SZC; and/or a pH range of titrated sodium zirconium carbonate of from about 6 to about 7. A method of making zirconium phosphate is also disclosed which involves treating sodium zirconium carbonate with caustic soda to from an alkaline hydrous zirconium oxide which is subsequently heated and mixed with phosphoric acid to obtain an acid zirconium phosphate which can be titrated with caustic soda to achieve the desired zirconium phosphate. Novel zirconium phosphates are also disclosed as well as uses for the above zirconium containing materials.

Description

DIALYSIS CARTRIDGES COMPRISING SODIUM ZIRCONIUM CARBONATE AND
ZIRCONIUM BASIC CARBONATE AND METHODS OF MAKING THE SAME.
BACKGROUND OF THE INVENTION
The present invention relates to sodium zirconium carbonate, zirconium phosphate, and zirconium basic carbonate and methods of making these compounds.
Sodium Zirconium Carbonate (SZC) is an amorphorous zirconium polymeric compound with the structural formula as shown:
wo -o wo xo V 1 O ii ` I, I I I I

Maieeebest eorsCbd*strarbn crwroc+o,=atso) The granular form of the material can be obtained by the following two methods:
Method A : Reaction of granular zirconium basic sulfate with a saturated soda ash solution followed by washing the product to remove the sulfate.
Method B : Controlled polymeric particle growth reaction of a metastable sodium zirconium carbonate solution formed by. mixing a soluble zirconium salt solution with an excessive amount of soda ash solution.
One industrial application of granular SZC is the conversion of the material to zirconium basic carbonate (ZBC) which is a commercial raw material in making other zirconium chemical products. The conversion can be made by titrating the granular SZC to pH 3.5-4.0 with an acid to remove the excessive sodium carbonate. The granular SZC used for making ZBC is usually produced by Method A. Another important application of SZC is the conversion of the material to the granular zirconium chemical ion exchangers, namely, zirconium phosphate (ZrP) and hydrous zirconium oxide (HZO). These zirconium ion exchange materials are used commercially for renal dialysis applications. The quality and economic criteria, which dictate the method of their manufacture, constitute the art of making the REDY sorbent cartridge for hemodialysate regeneration currently used by SORRT" Technology. Inc.. Oklahoma City, Oklahoma. A recent study on the design of a .orbent cartridge it SORt3T" Technology. Inc. tor peritoneal dialysis (PD) fluid regeneration indicates that the !ranular SZC by itself has unique properties eehich make it more beneficial than NZ,O in contributing to the potency of the sorbent PD
cartridge.
These properties of the material Which snake the cartridge adaptable to the PD
treatment conditions may be summarized as follows:
I. The material has sufficient phosphate adsorption capacity to remove phosphate from the patient fluid for the treatment of hyperphosphatemia in renal disease patients.
2. The material supplements bicarbonate to the PD fluid, which can be essential to correct metabolic acidosis in patients.
3. The material prevents the pH of PD fluid from failing, which may cause depiction of bicarbonate from the patient. This allows regenerative PD to be feasible.
In order to manufacture the granular SZC for sorbent PD applications, both quality and economic factors have to be considered. Method A cannot be used because the product has high sulfate content that degrades the quality of the material as a sorbent.
Method B has been used in production through the use of acid zirconium sulfate tetrahydrate (AZST) as the zirconium raw material. The process efficiency is less and the manufacture cost is higher for this process, but the ZrP made from granular SZC has higher ammonium adsorption capacity than that made from zirconium basic sulfate (ZBS).
While these processes are useful, there is a need to provide a better quality sodium zirconium carbonate and zirconium basic carbonate with uses especially in the dialysis area and further there is a need to reduce the cost of manufacturing these components.
SUMMARY OF THE PRESENT [NVENTtON
The feature of the present invention is to provide an improved sodium zirconium carbonate.
A further feature of the present invention is to provide improved methods to make the sodium zirconium carbonate.
An additional feature of the present invention is to provide a method to make zirconium basic carbonate.
Also, a feature of the present invention is to provide methods to make the zirconium basic carbonate.

Another feature of the present invention is to provide an improved zirconium phosphate and methods to make zirconium phosphates.
An additional feature of the present invention is to provide methods to make the sodium zirconium carbonate, zirconium phosphate, and zirconium basic carbonate more economically and to provide methods which result in a better quality product.
Additional features and advantages of the present invention will be set forth in part in the description which follows, and in part will be apparent from the description, or may be learned by practice of the present invention.
To achieve these and other advantages and in accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention relates to a method of making sodium zirconium carbonate which involves heating zirconium oxychloride with soda ash at a sufficient temperature and for a sufficient time to form the sodium zirconium carbonate. Preferably, the soda ash is in the form of an aqueous slurry or solution and the zirconium oxychloride is in the form of a powder or solution. Prior to the heating, the zirconium oxychloride and soda ash are preferably agitated or mixed by other means to form a solution mixture at ambient temperatures, such as room temperature. After the heating step, the sodium zirconium carbonate can be washed to remove impurities and any chloride.
The sodium zirconium carbonate, after the initial preparation can be subjected to a titration.
Preferably, an alkaline slurry contains the sodium zirconium carbonate and the titration occurs with at least one acidic agent, such as an acid, to obtain a pH below about 7Ø Other additional steps can be used in this process, such as filtering steps, washing steps, and drying steps.
The present invention further relates to a sodium zirconium carbonate in general and preferably which contains from about 2 weight percent to about 5 weight percent Na ;
from about 44 weight percent to about 50 weight percent ZrO2 ;
from about 12 weight percent to about 18 weight percent C032- ;and from about 30 weight percent to about 40 weight percent LOD, based on the weight of the sodium zirconium carbonate.
The present invention, in addition, relates to a method of making zirconium basic carbonate which involves titrating an aqueous slurry of a sodium zirconium carbonate to a
-4-pH of from about 1.5 to about 4 with an acidic agent. The sodium zirconium carbonate used to firm the slurry has a preferred moisture content of from about 15 %vt%
to about 25 xWo LOD. After titrating, the aqueous slurp is washed with water. The zirconium basic carbonate,an then he recovered as a wet powder from the slurry by various techniques.
In addition, the present invention relates to a zirconium basic carbonate which is preferably characterized by a Na* content of less than about 1000 ppm;
a 7.r0z wt% of from about 35 wt% to about 40 wt%; and a CO3" of from about S wt% to about 10 wt 'o wherein the weight % is based on the composition of the solid powder (final product). Unless stated otherwise, all % and wt%, throughout this application, are wt% based on the weight of the final product.
The present invention further relates to a method of making zirconium phosphate which involves heating zirconium oxychloride with soda ash at a sufficient temperature and for a sufficient time to form sodium zirconium carbonate and treating the sodium zirconium, carbonate with caustic soda to form an alkaline hydrous zirconium oxide.
Afterwards, the alkaline hydrous zirconium oxide is heated as a slurry, and an acidic agent(s) such as phosphoric acid, is added. After heating, the slurry can be cooled and an acid zirconium phosphate can be filtered off and washed to reduce unreacted leachable phosphate levels. An aqueous slurry can then be formed with the acid zirconium phosphate and this slurry can be titrated with a basic agent, such as caustic soda, until a desired pH is reached, such as a pH of from about 5 to about 6. Afterwards, the titrated product, which is titrated zirconium phosphate, can be filtered and washed to preferably reduce the leachable sodium ions. Then, the zirconium phosphate can be dried to form a free flowing powder preferably having a moisture level of from about 12 to about 18%
LOD.
The present invention further relates to a novel zirconium phosphate which preferably has a H` content of from about 1.4 to about 2.0 wt%; a Na' content of from about 4 to about 6 wt%; a 2502 wt% of from about 34 wt% to about 37 wt%; a POD
% of from about 41 wt% to about 43 wt%; and a LOD wt% of from about 14 wt'/o to about 18 wto/a, based on the weight of the zirconium phosphate. The zirconium phosphate of the present in, =:ntion preferably has a good adsorption capacity for ammonia, Ca*, Ml r'*, K', and toxic heavy metals. Preferably, the circonitun phosphate his no residual sulfate or chloride and satisfies other characteristics desirable in dialysis applications or other ion exchange applications.
-5-The accompanying drawing, which is incorporated in and constitute a part of this application, illustrates embodiments of the present invention and together with the description, serve to explain the principles of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic drawing showing one embodiment of preparing sodium zirconium carbonate.
DETAILED DESCRIPTION OF THE PRESENT MENTION
The present invention relates to methods of making sodium zirconium carbonate and to methods of making zirconium basic carbonate and zirconium phosphate. In each instance, the starting materials are preferably zirconium oxychloride. The present invention further relates to novel forms of sodium zirconium carbonate, zirconium phosphate, and zirconium basic carbonate. The sodium zirconium carbonate, the zirconium basic carbonate, and the zirconium phosphate can be used in a variety of industrial applications as raw materials and further can be used in renal dialysis applications and in other separation applications.
In more detail, in an embodiment of the present invention, the present invention relates to a method of making sodium zirconium carbonate. The method involves heating zirconium oxychloride with soda ash at a sufficient temperature and for a sufficient time to form the sodium zirconium carbonate. Prior to heating, the sodium zirconium carbonate may be partially or completely formed.
Preferably, the soda ash is in the form of an aqueous slurry or solution. The amount of the soda ash used to form the solution or slurry is preferably an amount to form a saturated solution or slurry containing soda ash. For instance, from about 260 g to about 920 g of soda ash per liter of water can be used to form the saturated solution or slurry.
The zirconium oxychloride preferably has the formula ZrOC12-8H20 and is commercially available from such sources as Teledyne Wah Chang Co., Dastech Intl, Inc., and Zirconia Sales, Inc.
Preferably, the zirconium oxychloride and the soda ash are present -b-in a weight ratio of from about 3.0:1 to about 4.0:1; and more pretrab(y a weight ratio of from about 3.5:1 to about 4.0:1: and even more preferably a weight ratio of about 3.6:1.
The zirconium ox)chkwide is preferably in the form of a powder or solution. If in a solution, the zirconium ox)-chloride is preferably present in an amount of about 400 g per liter of water.
With respect to the above process, preferably, prior to the heating step, the zirconium oxychloride and soda ash are agitated or mixed by other means to form a solution mixture preferably at ambient temperature, such as room temperature (e.g., from about 30 F to about 110 F). With regard to the metastable sodium zirconium carbonate solution which is achieved prior to the heating step, preferably. a gelatinous precipitate of zirconium carbonate is formed when zirconium oxychloride (solution or solid) is added to soda ash solution. Due to the amphoteric property of the material, the zirconium carbonate re-dissolves in excessive soda ash solution to preferably form a metastable sodium zirconium carbonate (alkaline) solution at room temperature. When the mixing ratio of ZrOCI2.8H20 to soda ash is optimized and the mixing temperature is preferably maintained in the range of from about 90 to about 95 F (by the heat of reaction generated during mixing), the material is preferably completely dissolved to form a clear solution.
Upon storage at room temperature for a few hours, the solution becomes turbid as precipitate starts to form. The turbidity of the starting solution does not affect the particle size and % recovery of the product. Nevertheless, it is preferred to start heating up the metastable SZC solution at once after it is formed. In the heating step, precipitation of SZC preferably starts to occur at about 150 OF due to saturation. As heating is continued, polymeric SZC particles start to grow to 30 - 50 micron particle size range at the final temperature (boiling point) of the sodium zirconium carbonate. Preferably, a sufficient temperature is the boiling temperature of the mixture of the zirconium oxychloride and soda ash. For example, the temperature of the heating can be from about 1500E
to about 250 F (super heating under pressure) for a time of about 2 hours. The equilibration time at the final temperature is about 2 hours. Maximum temperature of heating and long heating time affect the resulting particle size. When heating sodium zirconium carbonate and the soda ash, preferably the heating rate of the mixture is from about 0.50E to about 1 1'/minute until boiling of the mixture is achieved. The mixture can be heated until the superheating temperature of the mixture is obtained tinder pressure.

Preferably. the agitation or other mixing means used to obtain the mixture leads toa clear metastable solution at room temperature. During the heating step, preferably. the mixture is slowly agitated or mixed by other weans to obtain improved particle growth.

In the above process, and after the heating step, the sodium zirconium carbonate solution can be reduced in emperature from the boiling temperature to about 1500 F or lower. This product solution containing the sodium 'irconium carbonate can be filtered off to recover the sodium zirconium carbonate which is preferably in a granular .orm. Water separation can be achieved by any standard filtering technique, such as using centrifuging or filtration.
Afterwards, the filtered sodium zirconium carbonate can be washed with water, such as RO ("reverse osmosis") Hater to remove any chlorides or other impurities from the sodium zirconium carbonate. Typically, many of these mpurities originated from the soda ash.

As a preferred part of the process, an alkaline slurry containing the sodium zirconium carbonate can then be itrated, as an option, with at least one acidic agent to obtain a pH of below about 7 and more preferably a pH of rom about 3.5 to about 6.0 and even more preferably a pH of about 6Ø The acidic agent used for the titration an be my agent capable of reducing the pH of the alkaline slurry and more preferably is an acid and even more preferably s HCI, such as I N HCI. After the titration, the sodium zirconium carbonate can be filtered off as before and )ptionally washed with, for instance, RO water. This washing step preferably reduces the amount of leachable W.

The sodium zirconium carbonate (SZC) recovered from the above-described with or without the optional .teps, but preferably with the optional steps, is generally in the form of a washed sodium zirconium carbonate filter !ake. This sodium zirconium carbonate is then preferably dried and is generally dried for a sufficient time to form a iee-flowing powder. The drying can occur by any technique, such as putting the filter cake on a tray and drying in .n oven. Preferably, the drying temperature is at a temperature range of from about 100 F to about 1 50 F. Other emperatures can be used. During the drying of the sodium zirconium carbonate, the moisture content that is ventually achieved is preferably from about 10% LOD ("loss on drying") to about 60% LOD and more preferably nom about 30% LOD to about 35% LOD. Figure 1 sets forth a preferred process of making the SZC.

The recovered sodium zirconium carbonate preferably has an average particle size of from about 30 Microns to about 50 microns, and other particle size ranges can be achieved.

The sodium zirconium carbonate of the present invention preferably, in its final form. has from about 2 a r% to about 5 %vt% Na`;
from about -td wt% to about 50 wt% ZrO ;
from about 12 v, t01o to about 18 %V1% C03 2- and from about 30 vts'o to about 40 we/16 LOD and more preferably from about 32 wtO7e to about 35 wt% LOD, based on the weight of the sodium zirconium carbonate.
The LOD
is the wt /a of the SZC that is lost during drying and the majority is H2O.
The sodium zirconium carbonate of the present invention further preferably satisfies the standards set forth in ANSI/AAMI RD-5-1992 on extractable toxic impurities.
Preferably, the sodium zirconium carbonate of the present invention further achieves one or more of the following properties or characteristics:
- a phosphate adsorption having a minimum capacity of from about 30 to about 35 mg P04 P/gm SZC;
- a minimum HCO3' content of from about 2 to about 4 mEq HCO3'/gm SZC:
- a maximum leachable Na+ content of from about 1.5 to about 2.0 mEq Na'/gm SZC;
- and/or a pH range of the titrated sodiurn zirconium carbonate of from about
6 to about 7.
Preferably, the sodium zirconium carbonate of the present invention has at least one of the above characteristics and more preferably at least two or three, and even more preferably, all of the above characteristics.
The sodium zirconium carbonate in general and preferably the preferred SZC
described above preferably provides the necessary potency requirements for peritoneal dialysis or hemodialysis applications by providing a sufficient phosphate adsorption capacity for economic use as a clinical sorbent for the treatment of, for instance, hyperphosphatemia of renal disease patients. Further, the sodium zirconium carbonate of the present invention provides the specified bicarbonate content in a peritoneal dialysis fluid or hemodialysis fluid during applications. The present invention further has the minimum leachable Na+ as described above.
In the manufacture of granular SZC, the particle size of the product and %
recovery can he important for the process performance especially economics, process efficiency (washing, filtration) and product quality. Bigger particle site may increase the stability of the polymeric particles against attrition loss during washing and improve the i filiation efficiency. fhe stability of the particles during the crystal groe%th reaction is preferably controlled by the ZrO_ `o of the metastable SZC solution, the ratio of soda ash to Lrt> in olution. the heating rate of the reaction, the maximum heating temperature. and the heating time. A recovery of 92 - 99% product in the particle size range 30 microns can he achieved by adjusting the process parameters as follows:
Table I

f ZrO o of SZC metastable solution 5.5-7.0% Reactant ratio of soda ash to ZrO in solution 3.6:1 by weight Heating rate of particle growth reaction 0.5 F - I F,min Maximum heating temperature Boiling to superheating (under pressure) Continuous heating time at maximum 2 hours temperature The SZC titrated to different pH in the range 3 - 8 have variant qualities summarized by Table 2. Cartridge performance tests indicate that SZC pH 7 - 8 may induce phosphate leakage and a spike of Na+ and pH in the initial cartridge effluent when the material is tested, for instance, in a cartridge for PD application.
Table 2 Variant Qualities of Granular SZC for Dialysis Application as a Function of pH
SZC H Phosphate Adsorption Leachable Na Content HCO3 Content 3.5 35.12 m P04-ft in - -5.0 - 0.87 mE m 2.1 mE m 6.0 33.9 mg P04-P/gm 1.88 mE / m 3.05 mEq4n -- --8.0 33.5 mg P04-P/gin While low pH is favorable for phosphate adsorption and reduction of leachable Na+, it also reduces the bicarbonate content and buffer capacity of the material used for the cartridge. Thus the pH 6.0 - 6.5 should be the optimum range, as verified by the cartridge performance test. After titration, the material should be washed with plenty of RO water until the Total Dissolved Solid is below 300 ppm level in order to control the leachable Na` content.
The fitter cake after titration and washing should be tray-dried at mild temperature (e.g., 100 F - 150 F) to the preferred moisture level of from about 30 to about 35% LOD.
the final product is preferably not over-dried to prevent the loss of bicarbonate. Drying to different moisture levels can also affect the phosphate adsorption capacity of the material as shown in Table 3. Finally, the dried product should be stored in sealed containers to avoid loss of moisture and bicarbonate content.

Table 3 Variation of Phosphate Adsorption Capacity as a Function of Moisture Level for Granular SZC pH 6.0 Moisture Level ( .'"e LOD) Phosphate Adsorption Capacity m P04-P/ SZC
10.6% 21.44 14.9% 22.24 21.0% 24.0 28.3% 27.36 36.7% 28.8 42.9% 30.16 51.6% 29.12 57.9% 28.72 Cartridge performance tests indicate that granular SZC titrated to pH 6.0 and dried to the moisture level 30 - 35% LOD has sufficient phosphate adsorption capacity to completely remove the uremic toxin from PD fluid for an 8-hour treatment. The material also has sufficient bicarbonate provision to maintain the pH of the fluid throughout dialysis. The level of spikes of Na and pH in the initial cartridge effluent is also tolerable and can be diminished by priming before dialysis.
In addition, the present invention also relates to a method of making zirconium basic carbonate which preferably has the formula:

Zr^~r/
OH/ ( I OH
OH C-OH
Il In making the zirconium basic carbonate, an aqueous slurry of sodium zirconium carbonate is titrated to a pH of from about 3.5 to about 4.0 with an acidic agent, such as an acid(s). The sodium zirconium carbonate prior to being introduced into an aqueous slurry preferably has a moisture content of from about 15% to about 25% LOD and more preferably from about 15% to about 20 % LOD in solid form. While any sodium zirconium carbonate can be used, preferably the sodium zirconium carbonate formed from the above-described processes is used.
After titration, the aqueous slurry is preferably washed with, for instance, RO
water. Afterwards. the zirconium basic carbonate can be recovered as a wet powder from the slurry. The recovery of the zirconium basic carbonate can be achieved by any recovery techniques, such as vacuum filtered or centrifuging or other means. The acidic agent used for titration can be any agent capable of reducing the pH as described above but is more preferably a dilute HC1 or HNO3 or other acid or mixtures thereof Preferably, the final washing of the zirconium basic carbonate is to remove any sodium before any final recovery of the zirconium basic carbonate.
Also, as part of the present invention, the present invention relates to zirconium basic carbonate in general and preferably a novel zirconium basic carbonate having Na`
content of less than about 1000 ppm;
a ZrO-, wt% of from about 35% to about 40%; and a CO32' wt% of from about 3% to about 10%, based on the weight of the zirconium basic carbonate.
Preferably, the zirconium basic carbonate has essentially no S042' and essentially no cr in the zirconium basic carbonate, e.g., less than about 0.01 wt%.
Again, the zirconium basic carbonate can be used in a variety of industrial applications as well as in sorbent applications.
With respect to the process of making the zirconium phosphate, the process involves similar steps to those used to make the sodium zirconium carbonate.
The sodium zirconium carbonate discussed above and achieved after the initial heating step and optional fettering and washing of the sodium zirconium carbonate can be used in this process to form the zirconium phosphate of the present invention.
Alternatively, other zirconium oxychlorides can be processed in the manner discussed above to obtain the sodium zirconium carbonate which can then be used through the subsequent steps described below to achieve the desired zirconium phosphate.
In making the zirconium phosphate of the present invention, sodium zirconium carbonate is preferably formed by heating zirconium oxychloride with soda ash at a sufficient temperature and for a sufficient time to form the sodium zirconium carbonate.
The starting materials and the temperatures and times that are preferred can be the same as described above with respect to making the sodium zirconium carbonate. The sodium i zirconium carbonate formed can then be preferably cooled for instance to a temperature of about 150 'F and optionally subjected to a filtering and washing. Afterwards.
the sodium zirconium carbonate can then be treated with a caustic soda or other suitable agent to form alkaline hydrous zirconium oxide. This hydrous zirconium oxide can be in the form of a slurry which is then heated, for instance, in a reactor, at a sufficient temperature and for a sufficient time with an acidic agent, such as phosphoric acid, and more preferably a diluted technical grade phosphoric acid at a 1: 1 ratio, with the alkaline hydrous zirconium oxide. Preferably, the heating temperature, as stated above, is at about 180 OF to about 185 F for about t hour. Afterwards, the product can be cooled to a temperature of preferably about 150 F and filtered off as acid zirconium phosphate (H`ZrP). The acid zirconium phosphate is preferably washed with RO water one or more times to reduce unreacted leachable phosphate levels. Afterwards, an aqueous slurry can be formed with the acid zirconium phosphate and this slurry can be titrated to a pH of about 5 to about 6, and more preferably from about 5.5 to about 6. Preferably, the titrating agent is a 50%
caustic soda.
Afterwards, the titrated zirconium phosphate can be filtered and washed to reduce leachable Na' and more preferably washed with RO water to achieve a 300 ppm or less total dissolved solids to minimize leachable Na`.
Afterwards, the washed zirconium phosphate can be dried to achieve a free flowing powder which preferably has a moisture level of from about 12 to about 18%
LOD.
Preferably, the drying occurs at a temperature of from about 100 C to about though other temperatures can be used as long as the integrity of the powder is maintained.
Preferably, the particle size of the powder is from about 30 microns to about 50 microns, though other sizes can be obtained based on desired parameters.
The washing, filtering, and drying steps mentioned above can be achieved by conventional techniques known to those skilled in the art.
The zirconium phosphate preferably achieved by the process of the present invention has the following characteristics:
H' content from about 1.4 to about 2.0 wt%;
Na* content of from about 4 to about 6 wt%;
ZrO2 content of from about 34 to about 37 wt%;
Pt34' content of from about 41 to about 43 wt%; and 1 12t) content from about 14 to about 18 wt%, based on the weight of the zirconium phosphate.

Furthennore, the zirconium phosphate of the present invention preferably has an adsorption capacity for ammonia. Ca-4, Mg'', K'. and toxic heavy metals. More preferably, the adsorption capacity is approximately from about 20 to about 45 mg NHa-N/gm ZrP and more preferably from about 30 mg NH4-N/gm ZrP to about 35 mg NH4-N/gm ZrP, and even more preferably about 30 mg or more NH,,-N,/gm ZrP; from about 2 to about 7 mEq Ca"!gm ZrP and more preferably from about 3 mEq Ca-'/gm ZrP to about mEq Cat`/gm ZrP, and even more preferably about 3 mEq Cat'/gm ZrP or more;
from about l to about 5 mEq Mgt'/gm ZrP and more preferably from about 2 mEq ,vfg2`/gm ZrP to about 3 mEq Mg''/gm ZrP, and even more preferably about 2 mEq Mg"/gm ZrP or more; and from 3 to about 9 mEq HM/gm ZrP and more preferably from about 5 mEq HM/gm ZrP to about 7 mEq HM/gm ZrP, and even more preferably about 6 mEq HM/gm ZrP or more for heavy metals (HM).
Further, the zirconium phosphate preferably has a Na` content of from about 2 mEq Na'/gm ZrP to about 3 mEq Na+/gm ZrP, and more preferably about 2.4 mEq Na+/gm and a pH of from about 5.5 to about 6. Other pHs and the Na+ content can be used.
Also, the zirconium phosphate of the present invention preferably has a minimum leachable PO4'' for the material and more preferably is less than about 0.05 mg% PO43"/gm ZrP.
In addition, the zirconium phosphate preferably has an average grain size of from about 30 to about 40 microns and has no residual sulphate or chloride (e.g., less than 0.01%). Furthermore, the zirconium phosphate preferably satisfies the AN5VAAMl 1992 standard on extractable toxic impurities and has a pH when in water of from about 6 to about 7. As stated earlier, the zirconium phosphate can be used in a variety of separation devices, such as dialysis separations.
The present invention will be further clarified by the following examples, which are intended to be purely exemplary of the present invention.

EXAMPLES
Examok 1 789 gm soda ash was dissolved in 3 liters deionizcd water. With agitation, 610 gm MM, powder was discharged into the soda ash solution. Agitation was continued until the solid was completely dissolved to form a metastable solution. The metastable solution was slowly heated up at the rate 6 - 10 F per 10 minutes until the boiling or superheating temperature (under pressure) was reached. The heating was continued at the equilibration temperature for 1.5 - 2 hours. SZC particles started to form at about 150 F
and continued to grow to 30 - 50 microns in particle size during the equilibration. Slow agitation was used to obtain better particle growth. The product slurry was then cooled to about 120 F
after heating. The granular SZC was filtered off and the filter cake was washed with deionized water to remove the sodium chloride and excess carbonate. The yield of SZC

wet cake was 862 gin and the Zr02 % recovery from the metastable solution was found to be 95%.

The SZC wet cake was transferred back to 500 ml deionized water in a beaker.
With agitation, the slurry was titrated with 3 N HCI. Equilibration at this pH
was continued for 30 minutes and the pH was readjusted to 6.0 afterwards. The titrated SZC
was then filtered off and washed with deionized water until the Total Dissolved Solid in the filtrate was less than 300 ppm. The washed filter cake was then dried at mild temperature (about 150 F) with a tray dryer to about 30% moisture level to form a free-flowing powder.

Example 2: Synthesis of ZrP from zirconium oxychloride The washed filter cake of SZC obtained in Example I was transferred to 500 ml of 10% NaOH with agitation. The alkali treatment was continued for half an hour.
Then the material was filtered and washed briefly with deionized water. The filter cake was transferred to I liter of deionized water in the reactor. The slurry was heated up to about 185 F. 1200 gm of 1:1 diluted phosphoric acid (600 gm 76"% H3PO4 mixed with equal volume of water) was slowly added to the heated slurry until the addition was complete.
Heating was then continued at 190 - 195 F for 1 hour. The product slurry was then cooled to 150 F, filtered, and washed with deionized water to remove excessive phosphate. The acid ZrP thus obtained was then titrated to pH 5.75 in 500 ml deionized water with 50% NaOH. The titrated ZrP was then filtered and rinsed with deionized water to remove leachable Na` until the Total Dissolved Solid in filtrate was less than 300 ppm.
The filter cake of titrated ZrP after washing was then dried to 14 - 18%
moisture level with tray dryer to form a free-flowing powder.
Other embodiments of the present invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. it is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims and equivalents thereof

Claims (5)

What Is Claimed Is:
1. A dialysis cartridge which contains sodium zirconium carbonate and zirconium phosphate.
2. The dialysis cartridge of claim 1, wherein said zirconium phosphate is titrated zirconium phosphate in the Na+ and H+ form.
3. The dialysis cartridge of claim 1, wherein said sodium zirconium carbonate comprises from 2 wt% to 5 wt% Na+ ;

from 44 wt% to 50 wt% ZrO2 ;
from 12 wt% to 18 wt% CO3 2-; and from 30 wt% to 40 wt% loss on drying, based on the weight of the sodium zirconium carbonate.
4. The dialysis cartridge of claim 3, wherein said sodium zirconium carbonate satisfies ANSI/AAMI RD-5-1992 standard on extractable toxic impurities.
5. The dialysis cartridge of claim 4, wherein said sodium zirconium carbonate satisfies at least one of the following characteristics:

- a phosphate absorption having a minimum capacity of from 30 to 35 mg/PO4-P/g sodium zirconium carbonate;

- a minimum HCO3- content of from 2 to 4 mEq HCO3- /g sodium zirconium carbonate;
- a leachable Na+ content of from 1.5 to 2.0 mEq Na+ /g sodium zirconium carbonate; or - a pH range of titrated sodium zirconium carbonate of from 6 to 7.
CA2699334A 2000-11-28 2001-11-28 Dialysis cartridges comprising sodium zirconium carbonate and zirconium basic carbonate and methods of making the same Expired - Lifetime CA2699334C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/723,396 US6627164B1 (en) 2000-11-28 2000-11-28 Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same
US09/723,396 2000-11-28
CA2427992A CA2427992C (en) 2000-11-28 2001-11-28 Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA2427992A Division CA2427992C (en) 2000-11-28 2001-11-28 Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same

Publications (2)

Publication Number Publication Date
CA2699334A1 CA2699334A1 (en) 2002-06-06
CA2699334C true CA2699334C (en) 2011-09-20

Family

ID=24906071

Family Applications (4)

Application Number Title Priority Date Filing Date
CA2427992A Expired - Lifetime CA2427992C (en) 2000-11-28 2001-11-28 Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same
CA2699627A Expired - Lifetime CA2699627C (en) 2000-11-28 2001-11-28 Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same
CA2699334A Expired - Lifetime CA2699334C (en) 2000-11-28 2001-11-28 Dialysis cartridges comprising sodium zirconium carbonate and zirconium basic carbonate and methods of making the same
CA002427985A Expired - Lifetime CA2427985C (en) 2000-11-28 2001-11-28 Cartridges useful in cleaning dialysis solutions

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CA2427992A Expired - Lifetime CA2427992C (en) 2000-11-28 2001-11-28 Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same
CA2699627A Expired - Lifetime CA2699627C (en) 2000-11-28 2001-11-28 Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA002427985A Expired - Lifetime CA2427985C (en) 2000-11-28 2001-11-28 Cartridges useful in cleaning dialysis solutions

Country Status (10)

Country Link
US (3) US6627164B1 (en)
EP (2) EP1345687B1 (en)
JP (4) JP3956363B2 (en)
CN (5) CN1230245C (en)
AU (3) AU2002217926A1 (en)
CA (4) CA2427992C (en)
HK (2) HK1058782A1 (en)
MX (2) MXPA03004639A (en)
TW (1) TWI232132B (en)
WO (2) WO2002043859A2 (en)

Families Citing this family (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627164B1 (en) * 2000-11-28 2003-09-30 Renal Solutions, Inc. Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same
US7241272B2 (en) * 2001-11-13 2007-07-10 Baxter International Inc. Method and composition for removing uremic toxins in dialysis processes
JP4890761B2 (en) 2002-07-19 2012-03-07 バクスター・インターナショナル・インコーポレイテッド System and method for performing peritoneal dialysis
WO2006071532A1 (en) * 2004-12-28 2006-07-06 Renal Solutions, Inc. Method of synthesizing zirconium phosphate particles
WO2006086490A1 (en) 2005-02-07 2006-08-17 Medtronic, Inc. Ion imbalance detector
EP1935441A1 (en) * 2006-12-21 2008-06-25 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Device for the removal of toxic substances from blood
FR2914295A1 (en) * 2007-03-26 2008-10-03 Clariant Production France Soc PROCESS FOR THE PREPARATION OF AQUEOUS ZIRCONIUM COMPOSITION AND ALKALI METAL SALT AND USE THEREOF
US8535522B2 (en) 2009-02-12 2013-09-17 Fresenius Medical Care Holdings, Inc. System and method for detection of disconnection in an extracorporeal blood circuit
US8240636B2 (en) 2009-01-12 2012-08-14 Fresenius Medical Care Holdings, Inc. Valve system
US8475399B2 (en) 2009-02-26 2013-07-02 Fresenius Medical Care Holdings, Inc. Methods and systems for measuring and verifying additives for use in a dialysis machine
US20090076434A1 (en) * 2007-09-13 2009-03-19 Mischelevich David J Method and System for Achieving Volumetric Accuracy in Hemodialysis Systems
US8105487B2 (en) 2007-09-25 2012-01-31 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
US9199022B2 (en) 2008-09-12 2015-12-01 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US10035103B2 (en) 2008-10-30 2018-07-31 Fresenius Medical Care Holdings, Inc. Modular, portable dialysis system
US9358331B2 (en) 2007-09-13 2016-06-07 Fresenius Medical Care Holdings, Inc. Portable dialysis machine with improved reservoir heating system
US9308307B2 (en) 2007-09-13 2016-04-12 Fresenius Medical Care Holdings, Inc. Manifold diaphragms
US20090101577A1 (en) * 2007-09-28 2009-04-23 Fulkerson Barry N Methods and Systems for Controlling Ultrafiltration Using Central Venous Pressure Measurements
US8597505B2 (en) 2007-09-13 2013-12-03 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
JP5126235B2 (en) * 2007-11-14 2013-01-23 東亞合成株式会社 Method for producing hexagonal zirconium phosphate powder
US8889004B2 (en) 2007-11-16 2014-11-18 Fresenius Medical Care Holdings, Inc. Dialysis systems and methods
WO2009064984A2 (en) * 2007-11-16 2009-05-22 Fresenius Medical Care Holdings, Inc. Dialysis systems and methods
CA2706919C (en) 2007-11-29 2018-03-06 Fresenius Medical Care Holdings, Inc. System and method for conducting hemodialysis and hemofiltration
EP2072117A1 (en) 2007-12-19 2009-06-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Sorbent material
MX2010010271A (en) * 2008-03-20 2010-12-02 Baxter Int Destruction of microbial products by enzymatic digestion.
WO2009157878A1 (en) * 2008-06-23 2009-12-30 Temasek Polytechnic A flow system of a dialysis device and a portable dialysis device
US9821105B2 (en) 2008-07-01 2017-11-21 Baxter International Inc. Nanoclay sorbents for dialysis
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
US20100184198A1 (en) * 2009-01-16 2010-07-22 Joseph Russell T Systems and Methods of Urea Processing to Reduce Sorbent Load
US8409444B2 (en) 2008-09-30 2013-04-02 Fresenius Medical Care Holdings, Inc. Acid zirconium phosphate and alkaline hydrous zirconium oxide materials for sorbent dialysis
US8497107B2 (en) * 2008-09-30 2013-07-30 Fresenius Medical Care Holdings, Inc. Covalently immobilized enzyme and method to make the same
AU2009298636B2 (en) 2008-10-03 2013-12-05 Fresenius Medical Care Holdings, Inc. Zirconium phosphate particles having improved adsorption capacity and method of synthesizing the same
WO2010042667A2 (en) 2008-10-07 2010-04-15 Xcorporeal, Inc. Thermal flow meter
MX343532B (en) 2008-10-07 2016-11-09 Fresenius Medical Care Holdings Inc Priming system and method for dialysis systems.
CN101920047A (en) * 2009-06-16 2010-12-22 于杰 Multi-functional quick-acting hemoperfusion apparatus
US9526820B2 (en) 2009-08-04 2016-12-27 Fresenius Medical Care Holdings, Inc. Dialysis systems, components, and methods
US9399091B2 (en) 2009-09-30 2016-07-26 Medtronic, Inc. System and method to regulate ultrafiltration
AU2010328630B2 (en) * 2009-12-07 2014-05-15 Fresenius Medical Care Holdings, Inc. Water purification cartridge using zirconium ion-exchange sorbents
JP2011190149A (en) * 2010-03-15 2011-09-29 Sumitomo Osaka Cement Co Ltd Composite ceramic powder and method for producing the same, and solid oxide fuel cell
WO2011125758A1 (en) * 2010-03-31 2011-10-13 富田製薬株式会社 Dialysis composition, hemodialysis system, and hemodialyzer
US8449686B2 (en) 2010-04-26 2013-05-28 Fresenius Medical Care Holdings, Inc. Methods for cleaning a drain line of a dialysis machine
US8784668B2 (en) 2010-10-12 2014-07-22 Fresenius Medical Care Holdings, Inc. Systems and methods for compensation of compliant behavior in regenerative dialysis systems
CN102120613A (en) * 2011-01-24 2011-07-13 王必庆 High-purity high-activity alkali type acyl zirconium carbonate and preparation method thereof
WO2012112932A1 (en) 2011-02-17 2012-08-23 Medtronic, Inc. Method and device to treat kidney disease
US9848778B2 (en) 2011-04-29 2017-12-26 Medtronic, Inc. Method and device to monitor patients with kidney disease
US8926542B2 (en) 2011-04-29 2015-01-06 Medtronic, Inc. Monitoring fluid volume for patients with renal disease
US9456755B2 (en) 2011-04-29 2016-10-04 Medtronic, Inc. Method and device to monitor patients with kidney disease
US9017277B2 (en) 2011-05-02 2015-04-28 Medtronic, Inc. System and implantable device for treating chronic kidney disease
US8836519B2 (en) 2011-05-12 2014-09-16 Fresenius Medical Care Holdings, Inc. Determining the absence or presence of fluid in a dialysis system
US9333286B2 (en) 2011-05-12 2016-05-10 Fresenius Medical Care Holdings, Inc. Medical tubing installation detection
CN102180455A (en) * 2011-05-23 2011-09-14 大连交通大学 Method for preparing sodium hydrogen zirconium phosphate powder
CN105288763B (en) 2011-08-02 2018-01-02 美敦力公司 Hemodialysis system with the flow path with controllable compliance volume
WO2013025844A2 (en) 2011-08-16 2013-02-21 Medtronic, Inc. Modular hemodialysis system
EP2744536A1 (en) 2011-08-18 2014-06-25 Fresenius Medical Care Holdings, Inc. Sorbent and chemical regeneration of dialysate
WO2013028809A2 (en) 2011-08-22 2013-02-28 Medtronic, Inc. Dual flow sorbent cartridge
US8906240B2 (en) 2011-08-29 2014-12-09 Fresenius Medical Care Holdings, Inc. Early detection of low bicarbonate level
US8992777B2 (en) 2011-11-18 2015-03-31 Fresenius Medical Care Holdings, Inc. Systems and methods for providing notifications in dialysis systems
CN102515164B (en) * 2011-11-30 2013-08-28 北京科技大学 Preparation method of zirconium carbide ceramic powder
EP2797684B1 (en) 2011-12-29 2020-03-11 Fresenius Medical Care Holdings, Inc. Sorbent cartridge for dialysis
EP2800592B1 (en) 2012-01-04 2019-03-06 Medtronic Inc. Multi-staged filtration system for blood fluid removal
US9165112B2 (en) 2012-02-03 2015-10-20 Fresenius Medical Care Holdings, Inc. Systems and methods for displaying objects at a medical treatment apparatus display screen
CN102776803A (en) * 2012-04-20 2012-11-14 深圳市瑞成科讯实业有限公司 Preparation method for preparing potassium-zirconium-carbonate water repellent agent
US9414752B2 (en) 2012-11-09 2016-08-16 Elwha Llc Embolism deflector
SE537060C2 (en) * 2012-11-23 2014-12-23 Triomed Ab Regeneration circuit for regenerating a dialysis fluid comprising an adsorbent cartridge
US10905816B2 (en) 2012-12-10 2021-02-02 Medtronic, Inc. Sodium management system for hemodialysis
US9399090B2 (en) 2012-12-10 2016-07-26 Medtronic, Inc. Potassium loaded ion-exchange material for use in a dialysate regeneration system
US20140158588A1 (en) 2012-12-10 2014-06-12 Medtronic, Inc. pH AND BUFFER MANAGEMENT SYSTEM FOR HEMODIALYSIS SYSTEMS
US9201036B2 (en) 2012-12-21 2015-12-01 Fresenius Medical Care Holdings, Inc. Method and system of monitoring electrolyte levels and composition using capacitance or induction
US9157786B2 (en) 2012-12-24 2015-10-13 Fresenius Medical Care Holdings, Inc. Load suspension and weighing system for a dialysis machine reservoir
US11154648B2 (en) 2013-01-09 2021-10-26 Medtronic, Inc. Fluid circuits for sorbent cartridge with sensors
US9713666B2 (en) 2013-01-09 2017-07-25 Medtronic, Inc. Recirculating dialysate fluid circuit for blood measurement
US9707328B2 (en) 2013-01-09 2017-07-18 Medtronic, Inc. Sorbent cartridge to measure solute concentrations
US11565029B2 (en) 2013-01-09 2023-01-31 Medtronic, Inc. Sorbent cartridge with electrodes
EP2950838B1 (en) 2013-02-01 2020-04-01 Medtronic, Inc. Sorbent cartridge with electrodes
US9623164B2 (en) 2013-02-01 2017-04-18 Medtronic, Inc. Systems and methods for multifunctional volumetric fluid control
WO2014121162A1 (en) 2013-02-01 2014-08-07 Medtronic, Inc. Sorbent cartridge to measure solute concentrations
WO2014121159A1 (en) 2013-02-01 2014-08-07 Medtronic, Inc. Fluid circuits for sorbent cartridges with sensors
US10543052B2 (en) 2013-02-01 2020-01-28 Medtronic, Inc. Portable dialysis cabinet
US10010663B2 (en) 2013-02-01 2018-07-03 Medtronic, Inc. Fluid circuit for delivery of renal replacement therapies
US9526822B2 (en) 2013-02-01 2016-12-27 Medtronic, Inc. Sodium and buffer source cartridges for use in a modular controlled compliant flow path
US10850016B2 (en) 2013-02-01 2020-12-01 Medtronic, Inc. Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection
US9144640B2 (en) 2013-02-02 2015-09-29 Medtronic, Inc. Sorbent cartridge configurations for improved dialysate regeneration
US9827361B2 (en) 2013-02-02 2017-11-28 Medtronic, Inc. pH buffer measurement system for hemodialysis systems
US9433720B2 (en) 2013-03-14 2016-09-06 Fresenius Medical Care Holdings, Inc. Universal portable artificial kidney for hemodialysis and peritoneal dialysis
US20140263062A1 (en) 2013-03-14 2014-09-18 Fresenius Medical Care Holdings, Inc. Universal portable machine for online hemodiafiltration using regenerated dialysate
US9707329B2 (en) * 2013-10-23 2017-07-18 Fresenius Medical Care Holdings, Inc. Process for regeneration of spent zirconium phosphate for reuse in sorbent treatments
CN105848581B (en) 2013-11-04 2019-01-01 美敦力公司 Method and apparatus for managing the body fluid volume in body
US9354640B2 (en) * 2013-11-11 2016-05-31 Fresenius Medical Care Holdings, Inc. Smart actuator for valve
US10099215B2 (en) 2013-11-26 2018-10-16 Medtronic, Inc. Management of recharger effluent pH
US10064986B2 (en) 2013-11-26 2018-09-04 Medtronic, Inc. Recharger for recharging zirconium phosphate and zirconium oxide modules
US9895477B2 (en) * 2013-11-26 2018-02-20 Medtronic, Inc. Detachable module for recharging sorbent materials with optional bypass
US9974896B2 (en) * 2014-06-24 2018-05-22 Medtronic, Inc. Method of zirconium phosphate recharging
US10052612B2 (en) 2013-11-26 2018-08-21 Medtronic, Inc. Zirconium phosphate recharging method and apparatus
US10004839B2 (en) 2013-11-26 2018-06-26 Medtronic, Inc. Multi-use sorbent cartridge
US10052624B2 (en) 2013-11-26 2018-08-21 Medtronic, Inc. Zirconium phosphate and zirconium oxide recharging flow paths
US10159957B2 (en) 2013-11-26 2018-12-25 Medtronic, Inc. Zirconium phosphate recharging customization
US10537875B2 (en) 2013-11-26 2020-01-21 Medtronic, Inc. Precision recharging of sorbent materials using patient and session data
US10099214B2 (en) 2013-11-26 2018-10-16 Medtronic, Inc. Zirconium phosphate and zirconium oxide recharger control logic and operational process algorithms
US9884145B2 (en) 2013-11-26 2018-02-06 Medtronic, Inc. Parallel modules for in-line recharging of sorbents using alternate duty cycles
US9943780B2 (en) 2013-11-26 2018-04-17 Medtronic, Inc. Module for in-line recharging of sorbent materials with optional bypass
EP3073911A4 (en) 2013-11-27 2017-07-19 Medtronic Inc. Precision dialysis monitoring and synchonization system
BR112016019115A2 (en) * 2014-02-19 2017-10-03 Medtronic Inc MODULE FOR COUPLED RECHARGE OF SORBENT MATERIALS WITH OPTIONAL BYPASS
CN105992599B (en) * 2014-03-17 2019-05-17 弗雷塞尼斯医疗保健控股公司 Cylindrantherae for cleaning dialysis solutions
CN104005265B (en) * 2014-05-19 2017-02-15 山东源根石油化工有限公司 Water-resistant reinforcing agent used for papermaking and preparation method thereof
US10155076B2 (en) 2014-05-29 2018-12-18 Fresenius Medical Care Holdings, Inc. Method for treating dialysate, dialysis system, and method for pre-evaluating dialysis patients for treatment with same
US10286380B2 (en) 2014-06-24 2019-05-14 Medtronic, Inc. Sorbent pouch
WO2015199766A1 (en) 2014-06-24 2015-12-30 Medtronic, Inc. Modular dialysate regeneration assembly
US10357757B2 (en) 2014-06-24 2019-07-23 Medtronic, Inc. Stacked sorbent assembly
CN106659828B (en) 2014-06-24 2019-05-03 美敦力公司 Use the urase in urase introducer supplement dialysis system
WO2015199763A1 (en) * 2014-06-24 2015-12-30 Medtronic, Inc. A urease introduction system for replenishing urease in a sorbent cartridge
WO2015199764A1 (en) * 2014-06-24 2015-12-30 Medtronic, Inc. Replenishing urease in dialysis systems using urease pouches
US10874787B2 (en) 2014-12-10 2020-12-29 Medtronic, Inc. Degassing system for dialysis
US9713665B2 (en) 2014-12-10 2017-07-25 Medtronic, Inc. Degassing system for dialysis
US9895479B2 (en) 2014-12-10 2018-02-20 Medtronic, Inc. Water management system for use in dialysis
US10098993B2 (en) 2014-12-10 2018-10-16 Medtronic, Inc. Sensing and storage system for fluid balance
CN107690337B (en) * 2015-05-26 2020-02-21 美敦力公司 Zirconium phosphate and zirconium oxide recharging flow paths
WO2016190794A2 (en) * 2015-05-27 2016-12-01 Triomed Ab Cartridge, method and apparatus for performing adsorption dialysis
WO2016207206A1 (en) 2015-06-25 2016-12-29 Gambro Lundia Ab Medical device system and method having a distributed database
CA2991781C (en) 2015-09-16 2020-01-14 Stephen A. Merchant Cartridges useful in cleaning dialysis solutions
CN105214624B (en) * 2015-11-02 2017-08-04 李建中 A kind of dialyzate adsorption stuffing, its preparation method and application
WO2017078965A1 (en) 2015-11-06 2017-05-11 Medtronic, Inc Dialysis prescription optimization for decreased arrhythmias
US9962477B2 (en) 2015-12-30 2018-05-08 Fresenius Medical Care Holdings, Inc. Cartridge systems useful in cleaning dialysis solutions
CN105821707B (en) * 2016-03-21 2017-12-05 江苏九洲环保技术有限公司 More active function groups coating reinforcing agents and preparation method thereof
US10874790B2 (en) 2016-08-10 2020-12-29 Medtronic, Inc. Peritoneal dialysis intracycle osmotic agent adjustment
US10994064B2 (en) 2016-08-10 2021-05-04 Medtronic, Inc. Peritoneal dialysate flow path sensing
US10702797B2 (en) 2016-06-15 2020-07-07 Hemocleanse Technology Llc Carbon block/filtration bed/conical reactor with fluidized bed system allowing small sorbent particles to regenerate fluid during extracorporeal blood treatment
US11013843B2 (en) 2016-09-09 2021-05-25 Medtronic, Inc. Peritoneal dialysis fluid testing system
US10981148B2 (en) 2016-11-29 2021-04-20 Medtronic, Inc. Zirconium oxide module conditioning
CN110049793B (en) 2016-12-05 2022-04-05 淡马锡理工学院 Adsorbent for dialysis apparatus and dialysis system
BR112019012719A2 (en) 2016-12-21 2019-11-26 Gambro Lundia Ab medical device system including information technology infrastructure having secure cluster domain supporting external domain
US11167070B2 (en) 2017-01-30 2021-11-09 Medtronic, Inc. Ganged modular recharging system
CN107261234A (en) * 2017-05-18 2017-10-20 李建中 The renovation process and blood purification system of a kind of dialyzate
US10960381B2 (en) 2017-06-15 2021-03-30 Medtronic, Inc. Zirconium phosphate disinfection recharging and conditioning
CN107469170A (en) * 2017-09-29 2017-12-15 成都威力生生物科技有限公司 A kind of wearable artificial kidney
US11278654B2 (en) 2017-12-07 2022-03-22 Medtronic, Inc. Pneumatic manifold for a dialysis system
CN108046318B (en) * 2017-12-23 2019-09-24 淄博广通化工有限责任公司 Dedicated zirconium carbonate of carbonate synthesis zirconium potassium water resistant crosslinking agent and preparation method thereof
CN108128804B (en) * 2017-12-23 2019-11-01 淄博广通化工有限责任公司 The industrial carbonic acid zirconium and preparation method thereof of the good stable storing of purity high activity
CN107840363B (en) * 2017-12-23 2019-08-23 淄博广通化工有限责任公司 The industrial carbonic acid zirconium production method of environmental-friendly low cost
US11033667B2 (en) 2018-02-02 2021-06-15 Medtronic, Inc. Sorbent manifold for a dialysis system
US11110215B2 (en) 2018-02-23 2021-09-07 Medtronic, Inc. Degasser and vent manifolds for dialysis
CN112752585A (en) 2018-07-30 2021-05-04 费森尤斯医疗保健控股公司 Valve actuation system and related method
AU2019314390A1 (en) * 2018-07-31 2021-01-28 Fresenius Medical Care Holdings, Inc. Sorbent cartridge for dialysate regeneration
US20200040323A1 (en) 2018-07-31 2020-02-06 Fresenius Medical Care Holdings, Inc. Urease Purification And Purified Urease Products Thereof And Sorbent Cartridges, Systems And Methods Using The Same
US11213616B2 (en) 2018-08-24 2022-01-04 Medtronic, Inc. Recharge solution for zirconium phosphate
US11806457B2 (en) 2018-11-16 2023-11-07 Mozarc Medical Us Llc Peritoneal dialysis adequacy meaurements
US11090421B2 (en) * 2018-11-28 2021-08-17 Baxter International Inc. Systems and methods for batch sorbent material reuse
EP3890820A1 (en) 2018-12-07 2021-10-13 Fresenius Medical Care Holdings, Inc. Rotary valves for managing fluid flows in medical systems
US11806456B2 (en) 2018-12-10 2023-11-07 Mozarc Medical Us Llc Precision peritoneal dialysis therapy based on dialysis adequacy measurements
US11331597B2 (en) * 2019-08-05 2022-05-17 Fresenius Medical Care Holdings, Inc. Cation exchange materials for dialysis systems
EP3804988A1 (en) 2019-10-11 2021-04-14 Tetra Laval Holdings & Finance S.A. Impression roller, and a method for manufacturing such
US20230115027A1 (en) * 2020-03-13 2023-04-13 Toagosei Co., Ltd. Zirconium phosphate particles, basic gas deodorant using the same, and production method thereof
CN111498824A (en) * 2020-04-18 2020-08-07 青岛天尧新材料有限公司 Preparation method of sodium zirconium phosphate powder with high cation exchange capacity
EP4255521A1 (en) * 2020-12-02 2023-10-11 W. L. Gore & Associates, Inc. Dialysate filter
US11850344B2 (en) 2021-08-11 2023-12-26 Mozarc Medical Us Llc Gas bubble sensor
US11944733B2 (en) 2021-11-18 2024-04-02 Mozarc Medical Us Llc Sodium and bicarbonate control
TW202330103A (en) 2021-11-30 2023-08-01 新加坡商阿瓦克科技私人有限公司 Sorbent for dialysis and sorbent system for regenerative dialysis

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US436057A (en) * 1890-09-09 George e
DE82578C (en) *
US2328381A (en) 1940-08-28 1943-08-31 Samuel R Jaffe Pipe joint
US3416884A (en) * 1966-11-04 1968-12-17 Nat Lead Co Crystalline zirconium phosphates
US3520298A (en) 1967-08-10 1970-07-14 Kurt Lange Peritoneal dialysis apparatus
US3545438A (en) 1968-02-12 1970-12-08 Sarns Inc Intermittent dialysis method and apparatus therefor
US3669878A (en) 1968-12-02 1972-06-13 Health Education And Welfare U Treatment of dialysate solution for removal of urea
US3669880A (en) 1969-06-30 1972-06-13 Cci Aerospace Corp Recirculation dialysate system for use with an artificial kidney machine
BE759038A (en) 1969-11-17 1971-04-30 Cci Aerospace Corp RECIRCULATION DIALYSAT MODULE, INTENDED TO BE DISCARDED
US3685680A (en) 1970-06-08 1972-08-22 Battelle Development Corp Peritoneal dialysis delivery unit using home-prepared dialysate
US3961026A (en) * 1970-09-09 1976-06-01 Pokhodenko Vladimir Nikiforovi Method of producing basic zirconium carbonate
DE2239254C2 (en) 1970-12-30 1983-08-04 Organon Teknika Corp., Oklahoma City, Okla. "Column for regenerating a circulating dialysate solution and using this column".
US3697418A (en) 1971-01-25 1972-10-10 Cci Aerospace Corp Method and apparatus for regenerating the dialyzing fluid for an artificial kidney
US3697410A (en) 1971-02-08 1972-10-10 Cci Aerospace Corp Electrodialysis demineralization apparatus
US3850835A (en) 1971-11-08 1974-11-26 Cci Life Systems Inc Method of making granular zirconium hydrous oxide ion exchangers, such as zirconium phosphate and hydrous zirconium oxide, particularly for column use
BE792314A (en) 1971-12-06 1973-06-05 Rhone Poulenc Sa DEVELOPMENT IN ARTIFICIAL KIDNEYS
US3888250A (en) 1973-07-02 1975-06-10 Becton Dickinson Co Disposable hemoperfusion assembly for detoxification of blood and method therefor
SE373752B (en) 1973-07-05 1975-02-17 V H Hyden
US4192748A (en) 1973-07-05 1980-03-11 Hyden Viktor H Dialysis apparatus with selective chemical activity
GB1499805A (en) 1973-12-27 1978-02-01 Magnesium Elektron Ltd Zirconium phosphate product
IT1006761B (en) 1974-01-07 1976-10-20 Getters Spa PLANT AND PROCEDURE FOR OBTAINING HIGH VACUUMS
GB1495267A (en) * 1974-03-18 1977-12-14 Borax Cons Ltd Process for the production of basic zirconium carbonate
US4042672A (en) 1974-10-30 1977-08-16 Th. Goldschmidt Ag Process for preparing carbonated zirconium oxide hydrate
US3989625A (en) 1975-02-25 1976-11-02 Ma-De Inc. Detector for air in blood dialysis systems
NL7703937A (en) 1977-04-12 1978-10-16 Organon Teknika Bv DEVICE EQUIPPED WITH A SORBENT FOR THE PURIFICATION OF BLOOD; A SORBENT SUITABLE FOR ORAL USE AND A PROCESS FOR MANUFACTURE OF THE SORBENT.
US4190047A (en) 1977-08-26 1980-02-26 University Of Utah Method and apparatus for peritoneal dialysis
JPS54155199A (en) * 1978-03-20 1979-12-06 Organon Teknika Bv Sodium zirconium carbonate compound and its manufacture
US4256718A (en) 1978-03-20 1981-03-17 Organon Teknika Corporation Sodium zirconium carbonate compound and the method of its preparation
US4360507A (en) 1979-01-24 1982-11-23 Organon Teknika Corporation Sodium zirconium carbonate compound and the method of its preparation
DE2927128C2 (en) * 1979-07-05 1981-06-11 Th. Goldschmidt Ag, 4300 Essen Process for the production of basic zirconium carbonate of high purity
FI59926C (en) 1980-05-28 1981-11-10 Instrumentarium Oy PERITONEALDIALYSAGGREGAT
US4381289A (en) * 1980-12-10 1983-04-26 National Research Development Corporation Process for preparing zirconium phosphate
US4738668A (en) 1981-07-29 1988-04-19 Baxter Travenol Laboratories, Inc. Conduit connectors having antiseptic application means
IT1154308B (en) * 1982-05-17 1987-01-21 Consiglio Nazionale Ricerche INORGANIC ION EXCHANGE FILMS CONSISTING OF INSOLUBLE ACID SALTS OF TETRAVALENT METALS WITH A LAYER STRUCTURE AND / OR THEIR DERIVATIVES AND RELATED PREPARATION PROCEDURE
JPS5946129A (en) * 1982-09-08 1984-03-15 Daiichi Kigenso Kagaku Kogyo Kk Phosphorus adsorbent
JPS5946964A (en) 1982-09-08 1984-03-16 理化学研究所 Blood purifying material
US4650587A (en) 1982-09-09 1987-03-17 Akzona Incorporated Ammonia scavenger
US4460555A (en) 1983-08-25 1984-07-17 Organon Teknika Corporation Ammonia scavenger
US4473449A (en) 1982-09-22 1984-09-25 The Board Of Trustees Of The Leland Stanford Junior University Flowthrough electrochemical hemodialysate regeneration
JPS5969428A (en) * 1982-10-07 1984-04-19 Nippon Mining Co Ltd Manufacture of ultrafine powder of zirconium oxide
JPS5976535A (en) 1982-10-22 1984-05-01 Kureha Chem Ind Co Ltd Sorption agent and its production
US4560472A (en) 1982-12-10 1985-12-24 Baxter Travenol Laboratories, Inc. Peritoneal dialysis apparatus
US4558996A (en) 1983-06-30 1985-12-17 Organon Teknika Corporation Easy load peristaltic pump
USD282578S (en) 1983-08-08 1986-02-11 Organon Teknika Corporation Processor for a portable recirculatory hemodialysis unit
US4495129A (en) 1983-09-06 1985-01-22 Magnetic Peripherals Incorporated Process for producing high precision apertures in plastic components
US4680122A (en) 1983-09-10 1987-07-14 Organon Teknika Corporation Ultrafiltration control for hemodialysis
US4484599A (en) 1983-09-23 1984-11-27 Organon Teknika Corporation Pinch-type pressure- or flow-regulating valve
US4521528A (en) 1983-10-28 1985-06-04 Kovach Julius L Preparation of zirconium phosphate activated carbon adsorbent
FR2554721B1 (en) 1983-11-14 1987-05-07 Sante Tech Rech Sarl HEMODIALYSIS APPARATUS
US4765907A (en) 1984-03-28 1988-08-23 Research Development Systems, Inc. Wearable, continuously internally operable and externally regenerable dialysis device
US4747822A (en) 1984-07-09 1988-05-31 Peabody Alan M Continuous flow peritoneal dialysis system and method
FR2585251B1 (en) 1985-05-02 1989-10-20 Murisasco Antoine PROCESS AND DEVICE FOR PURIFYING A HEMOFILTRAT
IT1191613B (en) * 1985-05-15 1988-03-23 Eniricerche Spa ZIRCONIUM PHOSPHATE AND ITS PREPARATION METHOD
US5035805A (en) 1985-05-17 1991-07-30 Freeman Clarence S Water detection and removal for instruments
JPS62226807A (en) * 1986-03-27 1987-10-05 Rasa Kogyo Kk Production of crystalline layer zirconium phosphate
US4882050A (en) 1987-10-02 1989-11-21 Kopf Henry B Filter plate, filter plate element, and filter comprising same
US5595909A (en) 1988-05-23 1997-01-21 Regents Of The University Of Minnesota Filter device
US5032261A (en) 1988-05-24 1991-07-16 Dufresne-Henry, Inc. Compact biofilter for drinking water treatment
US5151082A (en) 1988-08-05 1992-09-29 Heathdyne, Inc. Apparatus and method for kidney dialysis using plasma in lieu of blood
JPH03242206A (en) 1990-02-17 1991-10-29 Haruyasu Yamazaki Filter
SE9001890L (en) 1990-05-25 1991-11-26 Gambro Ab SYSTEM FOR MANAGING A MEDICAL TREATMENT, TEX DIALYSIS
RU1770285C (en) 1990-08-17 1992-10-23 Киевский государственный институт усовершенствования врачей Individual equipment for water disinfection
WO1992003202A2 (en) 1990-08-20 1992-03-05 Abbott Laboratories Medical drug formulation and delivery system
US5520632A (en) 1991-04-11 1996-05-28 Robert Leveen Ascites valve
US5486286A (en) 1991-04-19 1996-01-23 Althin Medical, Inc. Apparatus for performing a self-test of kidney dialysis membrane
US5234603A (en) * 1991-06-04 1993-08-10 Analytical Development Corporation Methods employing a zirconium salt for use in wastewater treatment
US5336165A (en) 1991-08-21 1994-08-09 Twardowski Zbylut J Artificial kidney for frequent (daily) Hemodialysis
ATE239503T1 (en) 1992-02-04 2003-05-15 Baxter Int PERITONEAL DIALYSIS SOLUTIONS AND THEIR USE TO REDUCE DAMAGE TO MESOTHELIAL CELLS
US5549674A (en) 1992-03-02 1996-08-27 The Regents Of The University Of Michigan Methods and compositions of a bioartificial kidney suitable for use in vivo or ex vivo
US5296137A (en) 1992-03-12 1994-03-22 Oil-Dri Corporation Of America Filtration system with axial flow cartridge
JP3242206B2 (en) 1993-06-04 2001-12-25 株式会社村田製作所 Chip coil
US5589197A (en) 1993-10-04 1996-12-31 Baxter International, Inc. Low sodium peritoneal dialysis solution
US6306836B1 (en) 1994-01-21 2001-10-23 Baxter International Inc. Peritoneal dialysis solutions containing maltodextrins and amino acids
ATE206061T1 (en) 1994-04-06 2001-10-15 Baxter Int DEVICE FOR OSCILLATING, TIDE-PULSED PERITONEAL DIALYSIS
JP3677046B2 (en) 1994-06-17 2005-07-27 バクスター、インターナショナル、インコーポレイテッド Apparatus for purified pulse peritoneal dialysis
US5824213A (en) 1994-09-07 1998-10-20 Medisystems Technology Corporation Separable hemodialysis system
JP3377318B2 (en) 1995-01-11 2003-02-17 真啓 尾崎 Blood purification device
US5782796A (en) 1995-02-10 1998-07-21 Baxter International Inc. Foldable dialysis unit with integral pump and a method for performing solution exchange
US5679231A (en) 1995-02-13 1997-10-21 Alexander; Donald H. Gel bed dialyzer
US5704915A (en) 1995-02-14 1998-01-06 Therex Limited Partnership Hemodialysis access device
US5873853A (en) 1995-05-23 1999-02-23 Baxter International Inc. Portable pump apparatus for continuous ambulatory peritoneal dialysis and a method for providing same
US5712154A (en) 1995-06-07 1998-01-27 W.R. Grace & Co.-Conn. Dual fiber bioreactor
US5944684A (en) 1995-08-31 1999-08-31 The Regents Of The University Of California Wearable peritoneum-based system for continuous renal function replacement and other biomedical applications
US5938634A (en) 1995-09-08 1999-08-17 Baxter International Inc. Peritoneal dialysis system with variable pressure drive
US6284139B1 (en) 1996-03-27 2001-09-04 Vito Piccirillo Peritoneal dialysis method
SE510127C2 (en) 1996-06-13 1999-04-19 Althin Medical Ab Disposable Hemodia Filtration Kit
US6017942A (en) 1996-10-31 2000-01-25 Baxter International Inc. Method and compositions for the treatment of renal failure
US5980481A (en) 1997-05-08 1999-11-09 Transvivo, Inc. Method and apparatus for continuous peritoneal cascade dialysis and hemofiltration (CPCD/H)
US6293921B1 (en) 1998-07-06 2001-09-25 Jms Company, Ltd. Automatic exchanger for peritoneal dialysis
US6274103B1 (en) 1999-03-26 2001-08-14 Prismedical Corporation Apparatus and method for preparation of a peritoneal dialysis solution
US6309673B1 (en) 1999-09-10 2001-10-30 Baxter International Inc. Bicarbonate-based solution in two parts for peritoneal dialysis or substitution in continuous renal replacement therapy
US6627164B1 (en) * 2000-11-28 2003-09-30 Renal Solutions, Inc. Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same
US6703334B2 (en) * 2001-12-17 2004-03-09 Praxair S.T. Technology, Inc. Method for manufacturing stabilized zirconia

Also Published As

Publication number Publication date
JP2008214183A (en) 2008-09-18
CN104709940B (en) 2016-09-14
CA2699627A1 (en) 2002-06-06
US20050031523A1 (en) 2005-02-10
CN100569658C (en) 2009-12-16
CN101712489A (en) 2010-05-26
WO2002044086A3 (en) 2003-01-23
CN102602992B (en) 2015-04-08
JP4885161B2 (en) 2012-02-29
AU1793002A (en) 2002-06-11
HK1059061A1 (en) 2004-06-18
CA2427992A1 (en) 2002-06-06
CN101712489B (en) 2012-07-18
US6818196B2 (en) 2004-11-16
MXPA03004639A (en) 2004-10-14
WO2002043859A3 (en) 2003-01-16
HK1058782A1 (en) 2004-06-04
WO2002043859A2 (en) 2002-06-06
JP3956363B2 (en) 2007-08-08
US20040022717A1 (en) 2004-02-05
CN104709940A (en) 2015-06-17
TWI232132B (en) 2005-05-11
MXPA03004689A (en) 2004-04-20
CN1487853A (en) 2004-04-07
CA2427985C (en) 2008-07-08
WO2002044086A2 (en) 2002-06-06
CA2699334A1 (en) 2002-06-06
CN1230245C (en) 2005-12-07
JP5439438B2 (en) 2014-03-12
CA2699627C (en) 2012-03-06
US7101519B2 (en) 2006-09-05
EP1345856B1 (en) 2013-03-20
CN102602992A (en) 2012-07-25
AU2002217926A1 (en) 2002-06-11
EP1345687A2 (en) 2003-09-24
JP4159355B2 (en) 2008-10-01
CA2427985A1 (en) 2002-06-06
CN1484617A (en) 2004-03-24
US6627164B1 (en) 2003-09-30
JP2004514640A (en) 2004-05-20
AU2002217930B2 (en) 2006-10-26
JP2011236126A (en) 2011-11-24
JP2004525747A (en) 2004-08-26
EP1345687B1 (en) 2013-06-26
CA2427992C (en) 2010-06-29
EP1345856A2 (en) 2003-09-24

Similar Documents

Publication Publication Date Title
CA2699334C (en) Dialysis cartridges comprising sodium zirconium carbonate and zirconium basic carbonate and methods of making the same
AU2009298636B2 (en) Zirconium phosphate particles having improved adsorption capacity and method of synthesizing the same
CA2678390C (en) Acid zirconium phosphate and alkaline hydrous zirconium oxide materials for sorbent dialysis
US7135156B2 (en) Method for processing a zirconium oxide composition in crystalline form
CN112969531A (en) Methods and compositions for removing uremic toxins
JP4468568B2 (en) Water treatment flocculant, method for producing the same, and water treatment method
JP3981318B2 (en) Treatment method of electroless nickel plating aging solution
AU2013273759A1 (en) Zirconium phosphate particles having improved adsorption capacity and method of synthesizing the same
AU2014271279A1 (en) Zirconium phosphate particles having improved adsorption capacity and method of synthesizing the same

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20211129