CA2717668C - Coated carriers - Google Patents

Coated carriers Download PDF

Info

Publication number
CA2717668C
CA2717668C CA2717668A CA2717668A CA2717668C CA 2717668 C CA2717668 C CA 2717668C CA 2717668 A CA2717668 A CA 2717668A CA 2717668 A CA2717668 A CA 2717668A CA 2717668 C CA2717668 C CA 2717668C
Authority
CA
Canada
Prior art keywords
carrier
combinations
methacrylate
acrylate
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2717668A
Other languages
French (fr)
Other versions
CA2717668A1 (en
Inventor
Daryl W. Vanbesien
Michael S. Hawkins
Suxia Yang
Richard P. N. Veregin
Karen A. Moffat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of CA2717668A1 publication Critical patent/CA2717668A1/en
Application granted granted Critical
Publication of CA2717668C publication Critical patent/CA2717668C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • G03G9/0823Electric parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1132Macromolecular components of coatings
    • G03G9/1133Macromolecular components of coatings obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1138Non-macromolecular organic components of coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1139Inorganic components of coatings

Abstract

The present disclosure provides carriers for use with toner compositions. In embodiments, a carrier may include a core, having a dry powder polymer coating. The polymer coating possesses a carbon to oxygen from about 3:1 to about 8:1. In embodiments, the coating may also include a colorant, such as carbon black. Processes for coating such carriers with the dry powder polymer coatings are also provided.

Description

COATED CARRIERS
BACKGROUND
[0001] The present disclosure is generally directed to toner compositions, and more specifically, to toner compositions including coated carrier components. In embodiments, the coated carrier particles can be prepared with polymeric components utilizing dry powder processes.
[0002] Electrophotographic printing utilizes toner particles which may be produced by a variety of processes. One such process includes an emulsion aggregation ("EA") process that forms toner particles in which surfactants are used in forming a latex emulsion. See, for example, U.S. Patent No. 6,120,967, as one example of such a process.
Combinations of amorphous and crystalline polyesters may be used in the EA
process. This resin combination may provide toners with high gloss and relatively low-melting point characteristics (sometimes referred to as low-melt, ultra low melt, or ULM), which allows for more energy efficient and faster printing. The use of additives with EA toner particles may be important in realizing optimal toner performance, especially in the area of charging, where crystalline polyesters on the particle surface can lead to poor A-zone charge.
The sensitivity of toner charge to relative humidity (RH) may result in a major loss in toner concentration (TC) latitude, in that the TC must be controlled more tightly to enable good development and background. High triboelectric charge at low RH limits development, while low triboelectric charge at high RH produces background, and both high and low triboelectric charge result in poor print quality.
In addition, recent trends to ultra-low melt (ULM) toner are even more sensitive to relative humidity due to the use of polyester resins which may include crystalline polyesters. Also, with the move to even smaller toner particles, the triboelectric charge and TC
latitude is reduced, and can no longer accommodate a large charge difference with environment. For example, for toners with particles of 4 microns in size or less, there is much less latitude between development at low RH and background at high RH. Thus, for these toners, excellent triboelectric charge/RH sensitivity is very important.
There remains a continual need for improving the use of additives in the formation of toners.
SUMMARY
100031 The present disclosure provides carriers and compositions, in embodiments developers including such carriers, as well as processes for forming same. In embodiments, a carrier of the present disclosure includes a magnetic core; and a polymeric coating over at least a portion of a surface of the core, the polymeric coating including a copolymer, optionally a charge control agent monomer, and optionally carbon black, wherein the ratio of carbon to oxygen in the polymeric coating is from about 3:1 to about 8:1.
[0004] In embodiments, a composition of the present disclosure includes a toner including at least one resin and one or more optional ingredients such as optional colorants, optional waxes, and combinations thereof; and a carrier including a magnetic core and a polymeric coating over at least a portion of a surface of the core, the polymeric coating including a copolymer, an optional charge control monomer, and optionally carbon black, wherein the ratio of carbon to oxygen in the polymeric coating is from about 3:1 to about 8:1.
[0005] A process of the present disclosure may include, in embodiments, forming an emulsion including at least one surfactant, at least one monomer, optionally a charge control agent monomer, and optionally carbon black; polymerizing the at least one monomer and the optional charge control agent monomer to form a copolymer resin having a ratio of carbon to oxygen in the copolymer of from above about 3:1 to about 8:1; recovering the copolymer -2-.

resin; drying the copolymer resin to form a powder coating; and applying the powder coating to a magnetic core.
[0005a] In accordance with another aspect, there is provided a carrier comprising:
a magnetic core; and a polymeric coating over at least a portion of a surface of the core, the polymeric coating comprising a copolymer comprising a cycloacrylate and a methylmethacrylate, optionally a charge control agent monomer, and optionally carbon black, wherein the ratio of carbon to oxygen in the polymeric coating is from about 3:1 to about 5:1.
[0005b] In accordance with a further aspect, there is provided a carrier comprising:
a magnetic core; and a polymeric coating over at least a portion of a surface of the core, the polymeric coating comprising a copolymer comprising at least two aliphatic cycloacrylate monomers, optionally a charge control agent monomer, and optionally carbon black, wherein the ratio of carbon to oxygen in the polymeric coating is from about 3:1 to about 8:1.
[00050 In accordance with another aspect, there is provided a process comprising:
forming an emulsion comprising at least one surfactant, at least one monomer, optionally a charge control agent monomer, and optionally carbon black;
polymerizing the at least one monomer and the optional charge control agent monomer to form a copolymer resin having a ratio of carbon to oxygen in the copolymer of from above about 3:1 to about 5: 1;
recovering the copolymer resin;
-3 -drying the copolymer resin to form a powder for coating a magnetic core.
BRIEF DESCRIPTION OF THE DRAWINGS
Various embodiments of the present disclosure will be described herein below with reference to the figure wherein:
[0006] The Figure is a graph depicting the RH ratio versus C/O ratio of a carrier possessing a polymer coating of the present disclosure.
DETAILED DESCRIPTION
[0007] In embodiments, the present disclosure provides carrier particles which include a core, in embodiments a core metal, with a coating thereover. The coating may include a polymer, optionally in combination with a colorant such as carbon black. In embodiments, the coating utilized may be based on polymers having a high carbon-to-oxygen (C/O) ratio.
As toners tend to adsorb water vapor in humid environments, leading to poor RH-dependent charging ratios and poor image quality, the coating materials of the present disclosure, which include a combination of hydrophobic monomers with a high C/O ratio, may provide a significant improvement in relative humidity (RH) sensitivity, which enables better RH
sensitivity of the developer to charging, as demonstrated by RH-dependent charging ratio.
As used herein, a high C/O ratio may be above about 3, in embodiments from about 3:1 to about 8:1, in embodiments from about 3:1 to less than about 5:1, in other embodiments from above about 5:1 to about 8:1.
- 3a -Carrier [0008] Various suitable solid core materials can be utilized for the carriers and developers of the present disclosure. Characteristic core properties include those that, in embodiments, will enable the toner particles to acquire a positive charge or a negative charge, and carrier cores that will permit desirable flow properties in the developer reservoir present in an electrophotographic imaging apparatus. Other desirable properties of the core include, for example, suitable magnetic characteristics that permit magnetic brush formation in magnetic brush development processes; desirable mechanical aging characteristics; and desirable surface morphology to permit high electrical conductivity of any developer including the carrier and a suitable toner.
[0009] Examples of carrier cores that can be utilized include iron and/or steel, such as atomized iron or steel powders available from Hoeganaes Corporation or Pomaton S.p.A
(Italy); ferrites such as Cu/Zn-ferrite containing, for example, about 11 percent copper oxide, about 19 percent zinc oxide, and about 70 percent iron oxide, including those commercially available from D.M. Steward Corporation or Powdertech Corporation, Ni/Zn-ferrite available from Powdertech Corporation, Sr (strontium)-ferrite, containing, for example, about 14 percent strontium oxide and about 86 percent iron oxide, commercially available from Powdertech Corporation, and Ba-ferrite; magnetites, including those commercially available from, for example, Hoeganaes Corporation (Sweden); nickel; combinations thereof, and the like. In embodiments, the polymer particles obtained can be used to coat carrier cores of any known type by various known methods, and which carriers are then incorporated with a known toner to form a developer for electrophotographic printing. Other suitable carrier cores are illustrated in, for example, U.S. Patent Nos. 4,937,166, 4,935,326, and 7,014,971 and may include granular zircon, granular silicon, glass, silicon dioxide, combinations thereof,
- 4 -and the like. In embodiments, suitable carrier cores may have an average particle size of, for example, from about 20 microns to about 400 microns in diameter, in embodiments from about 40 microns to about 200 microns in diameter.
100101 In embodiments, a ferrite may be utilized as the core, including a metal such as iron and at least one additional metal such as copper, zinc, nickel, manganese, magnesium, calcium, lithium, strontium, zirconium, titanium, tantalum, bismuth, sodium, potassium, rubidium, cesium, strontium, barium, yttrium, lanthanum, hafnium, vanadium, niobium, aluminum, gallium, silicon, germamium, antimony, combinations thereof, and the like.
[0011] The polymeric coating on the core metal includes a latex. In embodiments, a latex copolymer utilized as the coating of a carrier core may include at least one aliphatic cycloacrylate, optionally an acidic acrylate monomer, and optionally carbon black. Suitable aliphatic cycloacrylates which may be utilized in forming the polymer coating include, for example, methylmethacrylate, cyclohexylmethacrylate, cyclopropyl acrylate, cyclobutyl acrylate, cyclopentyl acrylate, cyclohexyl acrylate, cyclopropyl methacrylate, cyclobutyl methacrylate, cyclopentyl methacrylate, isobomyl methacrylate, isobomyl acrylate, combinations thereof, and the like. In embodiments, a coating may include a copolymer of cyclohexylmethacrylate with isobomyl methacrylate, with the cyclohexylmethacrylate present in an amount of from about 0.1 percent to about 99.9 % by weight of the copolymer, in embodiments from about 35 percent to about 65 % by weight of the copolymer, with the isobomyl methacrylate present in an amount from about 99.9 percent to about 0.1 % by weight of the copolymer, in embodiments from about 65 percent to about 35 % by weight of the copolymer.
10012] Charge control agent monomers include, but are not limited to, acidic acrylates and dialkylaminoacrylates. Suitable acidic acrylate monomers which may be utilized in forming the polymer coating include, for example, acrylic acid, methacrylic acid, beta-carboxyethyl
-5 -acrylate, combinations thereof, and the like. Suitable dialkylaminoacrylates which may be utilized in forming the polymer coating include, for example, dimethylamino ethyl methacrylate (DMAEMA), 2-(dimethylamino) ethyl methacrylate, diethylamino ethyl methacrylate, dimethylamino butyl methacrylate, methylamino ethyl methacrylate, combinations thereof, and the like.
100131 Where the cycloacrylate is combined with a charge control agent monomer, the cycloacrylate may be present in a copolymer utilized as a polymeric coating of a carrier core in an amount of from about 0.1% by weight of the copolymer to about 99.8% by weight of the copolymer, in embodiments from about 50% by weight of the copolymer to about 95% by weight of the copolymer. The charge control agent monomer may be present in such a copolymer in an amount of from about 0.1% by weight of the copolymer to about 5% by weight of the copolymer.
100141 In accordance with the present disclosure, it has been found that using a combination of cyclic aliphatic acrylate monomer(s), optionally with a charge control monomer, results in an increase in A-zone charge, while keeping C-zone charge the same, when compared with a latex having methylmethacrylate. For example, where only methylmethacrylate is used as a coating, which has a C/O ratio of 5/2 (2.5), the water adsorption is high, providing an A-zone/C-zone charge ratio of only 0.38, so that charge in A-zone is only 38% of what it is in C-zone. When switching to coatings of the present disclosure with higher C/O ratios, the amount of water adsorption is progressively less. The higher C/O ratio dramatically improves RH sensitivity, and may, in embodiments, be as high as 0.77, so the charge in A-zone is 77% of what it is in C-zone.
100151 Thus, in embodiments, A-zone charge may be from about -15 to about -60 microcolombs per gram, in embodiments from about -20 to about -55 microcolombs per gram, while C-zone charge may be from about -15 to about -60 microcolombs per gram , in
- 6 -embodiments from about -20 to about -55 microcolombs per gram. The ratio of A-zone charge to C-zone charge, sometimes referred to herein, in embodiments, as the RH ratio, may be from about 0.40, to about 1.0, in embodiments from about 0.6, to about 0.8.
[0016] Methods for forming the polymeric coating are within the purview of those skilled in the art and include, in embodiments, emulsion polymerization of the monomers utilized to form the polymeric coating.
100171 In the polymerization process, the reactants may be added to a suitable reactor, such as a mixing vessel. The appropriate amount of starting materials may be optionally dissolved in a solvent, an optional initiator may be added to the solution, and contacted with at least one surfactant to form an emulsion. A copolymer may be formed in the emulsion, which may then be recovered and used as the polymeric coating for a carrier particle.
Where utilized, suitable solvents include, but are not limited to, water and/or organic solvents including toluene, benzene, xylene, tetrahydrofuran, acetone, acetonitrile, carbon tetrachloride, chlorobenzene, cyclohexane, diethyl ether, dimethyl ether, dimethyl formamide, heptane, hexane, methylene chloride, pentane, combinations thereof, and the like.
100181 In embodiments, the latex for forming the polymeric coating may be prepared in an aqueous phase containing a surfactant or co-surfactant, optionally under an inert gas such as nitrogen. Surfactants which may be utilized with the resin to form a latex dispersion can be ionic or nonionic surfactants in an amount of from about 0.01 to about 15 weight percent of the solids, and in embodiments of from about 0.1 to about 10 weight percent of the solids.
Anionic surfactants which may be utilized include sulfates and sulfonates, sodium dodecylsulfate (SDS), sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfate, dialkyl benzenealkyl sulfates and sulfonates, acids such as abietic acid available from Aldrich, NEOGEN RTM, NEOGEN SCTM obtained from Daiichi Kogyo Seiyaku Co., Ltd., combinations thereof, and the like. Other suitable anionic surfactants include, in
- 7 -embodiments, DOWFAXTM 2A1, an alkyldiphenyloxide disulfonate from The Dow Chemical Company, and/or TAYCA POWER BN2060 from Tayca Corporation (Japan), which are branched sodium dodecyl benzene sulfonates. Combinations of these surfactants and any of the foregoing anionic surfactants may be utilized in embodiments.
Examples of cationic surfactants include, but are not limited to, ammoniums, for example, alkylbenzyl dimethyl ammonium chloride, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl dimethyl ammonium bromide, benzalkonium chloride, C12, C15, C17 trimethyl ammonium bromides, combinations thereof, and the like. Other cationic surfactants include cetyl pyridinium bromide, halide salts of quaternized polyoxyethylalkylamines, dodecylbenzyl triethyl ammonium chloride, MIRAPOL and ALKAQUAT available from Alkaril Chemical Company, SANISOL (benzalkonium chloride), available from Kao Chemicals, combinations thereof, and the like. In embodiments a suitable cationic surfactant includes available from Kao Corp., which is primarily a benzyl dimethyl alkonium chloride.
Examples of nonionic surfactants include, but are not limited to, alcohols, acids and ethers, for example, polyvinyl alcohol, polyacrylic acid, methalose, methyl cellulose, ethyl cellulose, propyl cellulose, hydroxyl ethyl cellulose, carboxy methyl cellulose, polyoxyethylene cetyl ether, polyoxyethylene lauryl ether, polyoxyethylene octyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, dialkylphenoxy poly(ethyleneoxy) ethanol, combinations thereof, and the like. In embodiments commercially available surfactants from Rhone-Poulenc such as IGEPAL CA-210Tm, IGEPAL CA52OTM, IGEPAL CA72OTM, IGEPAL CO89OTM, IGEPAL CO72OTM, IGEPAL
CO29OTM, IGEPAL CA21OTM, ANTAROX 890TM and ANTAROX 897TM can be utilized.
- 8 -[0019] The choice of particular surfactants or combinations thereof, as well as the amounts of each to be used, are within the purview of those skilled in the art.
[0020] In embodiments initiators may be added for formation of the latex utilized in formation of the polymeric coating. Examples of suitable initiators include water soluble initiators, such as ammonium persulfate, sodium persulfate and potassium persulfate, and organic soluble initiators including organic peroxides and azo compounds including Vazo peroxides, such as VAZO 64TM, 2-methyl 2-2'-azobis propanenitrile, VAZO 88TM, 2-2'-azobis isobutyramide dehydrate, and combinations thereof. Other water-soluble initiators which may be utilized include azoamidine compounds, for example 2,2'-azobis(2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2'-azobis[N-(4-chloropheny1)-2-methylpropionamidine] di-hydrochloride, 2,2'-azobis[N-(4-hydroxypheny1)-2-methyl-propionamidine]dihydrochloride, 2,2'-azobis[N-(4-amino-pheny1)-2-methylpropionamidine]tetrahydrochloride, 2,2'-azobis[2-methyl-N(phenylmethyl)propionamidineldihydrochloride, 2,2'-azobis[2-methyl-N-2-propenylpropionamidine]dihydrochloride, 2,2'-azobis[N-(2-hydroxy-ethy1)2-methylpropionamidine]dihydrochloride, 2,2'-azobis[2(5-methy1-2-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis[2-(2-imicia7olin-2-yl)propane]dihydrochloride, 2,2'-azobis[2-(4,5,6,7-tetrahydro-1H-1,3-diazepin-2-yppropane]dihydrochloride, 2,2'-azobis[2-(3,4,5,6-tetrahydropyrimidin-2-yl)propane]dihydrochloride, 2,2'-azobis[2-(5-hydroxy-3,4,5,6-tetrahydropyrimidin -2-yl)propane]dihydrochloride, 2,2'-azobis {241-(2-hydroxyethyl)-2-imidazolin-2-yl]propane}dihydrochloride, combinations thereof, and the like.
[0021] Initiators can be added in suitable amounts, such as from about 0.1 to about 8 weight percent, and in embodiments of from about 0.2 to about 5 weight percent of the monomers.
- 9 -[0022] In forming the emulsions, the starting materials, surfactant, optional solvent, and optional initiator may be combined utilizing any means within the purview of those skilled in the art. In embodiments, the reaction mixture may be mixed for from about 1 minute to about 72 hours, in embodiments from about 4 hours to about 24 hours (although times outside these ranges may be utilized), while keeping the temperature at from about 10 C to about 100 C, in embodiments from about 20 C to about 90 C, in other embodiments from about 45 C to about 75 C, although temperatures outside these ranges may be utilized.
[0023] Those skilled in the art will recognize that optimization of reaction conditions, temperature, and initiator loading can be varied to generate polyesters of various molecular weights, and that structurally related starting materials may be polymerized using comparable techniques.
[0024] Once the copolymer utilized as the coating for a carrier has been formed, it may be recovered from the emulsion by any technique within the purview of those skilled in the art, including filtration, drying, centrifugation, spray drying, combinations thereof, and the like.
[0025] In embodiments, once obtained, the copolymer utilized as the coating for a carrier may be dried to powder form by any method within the purview of those skilled in the art, including, for example, freeze drying, optionally in a vacuum, spray drying, combinations thereof, and the like.
[0026] Particles of the copolymer may have a size of from about 40 nanometers to about 200 nanometers, in embodiments from about 60 nanometers to about 120 nanometers.
[0027] In embodiments, if the size of the particles of the dried polymeric coating is too large, the particles may be subjected to homogenizing or sonication to further disperse the particles and break apart any agglomerates or loosely bound particles, thereby obtaining particles of the sizes noted above. Where utilized, a homogenizer, (that is, a high shear device), may operate at a rate of from about 6,000 rpm to about 10,000 rpm, in embodiments
- 10 -from about 7,000 rpm to about 9,750 rpm, for a period of time of from about 0.5 minutes to about 60 minutes, in embodiments from about 5 minute to about 30 minutes, although speeds and times outside these ranges may be utilized.
[0028] The copolymers utilized as the carrier coating may have a number average molecular weight (Mn), as measured by gel permeation chromatography (GPC) of, for example, from about 60,000 to about 400,000, in embodiments from about 170,000 to about 280,000, and a weight average molecular weight (Mn,) of, for example, from about 200,000 to about 800,000, in embodiments from about 400,000 to about 600,000, as determined by Gel Permeation Chromatography using polystyrene standards.
100291 The copolymers utilized as the carrier coating may have a glass transition temperature (Tg) of from about 85 C to about 140 C, in embodiments from about 100 C to about 130 C.
100301 In some embodiments, the carrier coating may include a conductive component.
Suitable conductive components include, for example, carbon black.
100311 There may be added to the carrier a number of additives, for example, charge enhancing additives, including particulate amine resins, such as melamine, and certain fluoropolymer powders, such as alkyl-amino acrylates and methacrylates, polyamides, and fluorinated polymers, such as polyvinylidine fluoride and poly(tetrafluoroethylene), and fluoroalkyl methacrylates, such as 2,2,2-trifluoroethyl methacrylate. Other charge enhancing additives which may be utilized include quaternary ammonium salts, including distearyl dimethyl ammonium methyl sulfate (DDAMS), bis[1-[(3,5-disubstituted-2-hydroxyphenyl)azo]-3-(mono-substituted)-2-naphthalenolato(2-)]chromate(1-), ammonium sodium and hydrogen (TRH), cetyl pyridinium chloride (CPC), FANAL PINK D4830, combinations thereof, and the like, and other effective known charge agents or additives. The charge additive components may be selected in various effective amounts, such as from about
- 11 -0.5 weight percent to about 20 weight percent, and from about 1 weight percent to about 3 weight percent, based, for example, on the sum of the weights of polymer/copolymer, conductive component, and other charge additive components. The addition of conductive components can act to further increase the negative triboelectric charge imparted to the carrier, and therefore, further increase the negative triboelectric charge imparted to the toner in, for example, an electrophotographic development subsystem. These components may be included by roll mixing, tumbling, milling, shaking, electrostatic powder cloud spraying, fluidized bed, electrostatic disc processing, and an electrostatic curtain, as described, for example, in U.S. Patent No. 6,042,981 and wherein the carrier coating is fused to the carrier core in either a rotary kiln or by passing through a heated extruder apparatus.
100321 Conductivity is important for semi-conductive magnetic brush development to enable good development of solid areas which otherwise may be weakly developed. It has been found that the addition of the polymeric coating of the present disclosure, optionally with a conductive component such as carbon black, can result in carriers with decreased developer triboelectric response with change relative humidities of from about 20 percent to about 90 percent, in embodiments from about 40 percent to about 80 percent, that the charge is more consistent when the relative humidity is changed, and thus there is less decrease in charge at high relative humidity reducing background toner on the prints, and less increase in charge and subsequently less loss of development at low relative humidity, resulting in such improved image quality performance due to improved optical density.
[00331 As noted above, in embodiments the polymeric coating may be dried, after which time it may be applied to the core carrier as a dry powder. Powder coating processes differ from conventional solution coating processes. Solution coating requires a coating polymer whose composition and molecular weight properties enable the resin to be soluble in a
- 12 -solvent in the coating process. This typically requires relatively low Mw compared to powder coating, which does not provide the most robust coating. The powder coating process does not require solvent solubility, but does require the resin to be coated as a particulate with a particle size of from about 10 nm to about 2 microns, in embodiments from about 30 nm to about 1 micron, in other embodiments from about 50 nm to about 400 nm.
Examples of processes which may be utilized to apply the powder coating include, for example, combining the carrier core material and copolymer coating by cascade roll mixing, tumbling, milling, shaking, electrostatic powder cloud spraying, fluidized bed, electrostatic disc processing, electrostatic curtains, combinations thereof, and the like.
When resin coated carrier particles are prepared by a powder coating process, the majority of the coating materials may be fused to the carrier surface, thereby reducing the number of toner impaction sites on the carrier. Fusing of the polymeric coating may occur by mechanical impaction, electrostatic attraction, combinations thereof, and the like.
100341 Following application of the copolymers to the core, heating may be initiated to permit flow of the coating material over the surface of the carrier core. The concentration of the coating material, in embodiments powder particles, and the parameters of the heating may be selected to enable the formation of a continuous film of the coating polymers on the surface of the carrier core, or permit only selected areas of the carrier core to be coated. In embodiments, the carrier with the polymeric powder coating may be heated to a temperature of from about 170 C to about 280 C, in embodiments from about 190 C to about 240 C, for a period of time of, for example, from about 10 minutes to about 180 minutes, in embodiments from about 15 minutes to about 60 minutes, to enable the polymer coating to melt and fuse to the carrier core particles. Following incorporation of the micro-powder onto the surface of the carrier, heating may be initiated to permit flow of the coating material over the surface of the carrier core. In embodiments, the micro-powder may be fused to the carrier
- 13 -core in either a rotary kiln or by passing through a heated extruder apparatus. See, for example, U.S. Patent No. 6,355,391.
[0035] In embodiments, the coating coverage encompasses from about 10 percent to about 100 percent of the carrier core. When selected areas of the metal carrier core remain uncoated or exposed, the carrier particles may possess electrically conductive properties when the core material is a metal.
[0036] The coated carrier particles may then be cooled, in embodiments to room temperature, and recovered for use in forming developer.
[0037] In embodiments, carriers of the present disclosure may include a core, in embodiments a ferrite core, having a size of from about 20 p.m to about 100 ILtm, in embodiments from about 30 pm to about 75 pm, coated with from about 0.5% to about 10%
by weight, in embodiments from about 0.7% to about 5% by weight, of the polymer coating of the present disclosure, optionally including carbon black.
[0038] Thus, with the carrier compositions and processes of the present disclosure, there can be formulated developers with selected high triboelectric charging characteristics and/or conductivity values utilizing a number of different combinations.
Toners [0039] The coated carriers thus produced may then be combined with toner resins, optionally possessing colorants, to form a toner of the present disclosure.
[0040] Any latex resin may be utilized in forming a toner of the present disclosure. Such resins, in turn, may be made of any suitable monomer. Any monomer employed may be selected depending upon the particular polymer to be utilized.
- 14 -[0041] In embodiments, the resins may be an amorphous resin, a crystalline resin, and/or a combination thereof. In further embodiments, the polymer utilized to form the resin may be a polyester resin, including the resins described in U.S. Patent Nos. 6,593,049 and 6,756,176.
Suitable resins may also include a mixture of an amorphous polyester resin and a crystalline polyester resin as described in U.S. Patent No. 6,830,860.
[0042] In embodiments, the resin may be a polyester resin formed by reacting a diol with a diacid in the presence of an optional catalyst. For forming a crystalline polyester, suitable organic diols include aliphatic diols with from about 2 to about 36 carbon atoms, such as 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol and the like; alkali sulfo-aliphatic diols such as sodio 2-sulfo-1,2-ethanediol, lithio 2-sulfo-1,2-ethanediol, potassio 2-sulfo-1,2-ethanediol, sodio 2-sulfo-1,3-propanediol, lithio 2-sulfo-1,3-propanediol, potassio 2-sulfo-1,3-propanediol, mixture thereof, and the like. The aliphatic diol may be, for example, selected in an amount of from about 40 to about 60 mole percent, in embodiments from about 42 to about 55 mole percent, in embodiments from about 45 to about 53 mole percent (although amounts outside of these ranges can be used), and the alkali sulfo-aliphatic diol can be selected in an amount of from about 0 to about 10 mole percent, in embodiments from about 1 to about 4 mole percent of the resin.
[0043] Examples of organic diacids or diesters including vinyl diacids or vinyl diesters selected for the preparation of the crystalline resins include oxalic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, fumaric acid, dimethyl fumarate, dimethyl itaconate, cis, 1,4-diacetoxy-2-butene, diethyl fumarate, diethyl maleate, phthalic acid, isophthalic acid, terephthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-
- 15 -dicarboxylic acid, cyclohexane dicarboxylic acid, malonic acid and mesaconic acid, a diester or anhydride thereof; and an alkali sulfo-organic diacid such as the sodio, lithio or potassio salt of dimethy1-5-sulfo-isophthalate, dialky1-5-sulfo-isophthalate-4-sulfo-1,8-naphthalic anhydride, 4-sulfo-phthalic acid, dimethy1-4-sulfo-phthalate, dialky1-4-sulfo-phthalate, 4-sulfopheny1-3,5-dicarbomethoxybenzene, 6-sulfo-2-naphthy1-3,5-dicarbomethoxybenzene, sulfo-terephthalic acid, dimethyl-sulfo-terephthalate, 5-sulfo-isophthalic acid, dialkyl-sulfo-terephthalate, sulfoethanediol, 2-sulfopropanediol, 2-sulfobutanediol, 3-sulfopentanediol, 2-sulfohexanediol, 3-sulfo-2-methylpentanediol, 2-sulfo-3,3-dimethylpentanediol, sulfo-p-hydroxybenzoic acid, N,N-bis(2-hydroxyethyl)-2-amino ethane sulfonate, or mixtures thereof. The organic diacid may be selected in an amount of, for example, in embodiments from about 40 to about 60 mole percent, in embodiments from about 42 to about 52 mole percent, in embodiments from about 45 to about 50 mole percent, and the alkali sulfo-aliphatic diacid can be selected in an amount of from about 1 to about 10 mole percent of the resin.
[0044] Examples of crystalline resins include polyesters, polyamides, polyimides, polyolefins, polyethylene, polybutylene, polyisobutyrate, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, polypropylene, mixtures thereof, and the like. Specific crystalline resins may be polyester based, such as poly(ethylene-adipate), poly(propylene-adipate), poly(butylene-adipate), poly(pentylene-adipate), poly(hexylene-adipate), poly(octylene-adipate), poly(ethylene-succinate), poly(propylene-succinate), poly(butylene-succinate), poly(pentylene-succinate), poly(hexylene-succinate), poly(octylene-succinate), poly(ethylene-sebacate), poly(propylene-sebacate), poly(butylene-sebacate), poly(pentylene-sebacate), poly(hexylene-sebacate), poly(octylene-sebacate), poly(decylene-sebacate), poly(decylene-decanoate), poly(ethylene-decanoate), poly(ethylene dodecanoate), poly(nonylene-sebacate), poly(nonylene-decanoate), copoly(ethylene-fumarate)-
- 16 -copoly(ethylene-sebacate), copoly(ethylene-fumarate)-copoly(ethylene-decanoate), copoly(ethylene-fumarate)-copoly(ethylene-dodecanoate), alkali copoly(5-sulfoisophthaloy1)-copoly(ethylene-adipate), alkali copoly(5-sulfoisophthaloy1)-copoly(propylene-adipate), alkali copoly(5-sulfoisophthaloy1)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(hexylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(octylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(ethylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly (propylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(hexylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(octylene-adipate), alkali copoly(5-sulfoisophthaloy1)-copoly(ethylene-succinate), alkali copoly(5-sulfoisophthaloy1)-copoly(propylene-succinate), alkali copoly(5-sulfoisophthaloy1)-copoly(butylenes-succinate), alkali copoly(5-sulfoisophthaloy1)-copoly(pentylene-succinate), alkali copoly(5-sulfoisophthaloy1)-copoly(hexylene-succinate), alkali copoly(5-sulfoisophthaloy1)-copoly(octylene-succinate), alkali copoly(5-sulfo-isophthaloy1)-copoly(ethylene-sebacate), alkali copoly(5-sulfo-isophthaloy1)-copo1y(propy1ene-sebacate), alkali copoly(5-sulfo-isophthaloy1)-copoly(butylene-sebacate), alkali copoly(5-sulfo-isophthaloy1)-copoly(pentylene-sebacate), alkali copoly(5-sulfo-isophthaloy1)-copoly(hexylene-sebacate), alkali copoly(5-sulfo-isophthaloy1)-copoly(octylene-sebacate), alkali copoly(5-sulfo-isophthaloy1)-copoly(ethylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(propylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloy1)-copoly(hexylene-adipate), poly(octylene-adipate), wherein alkali is a metal like sodium, lithium or potassium.
Examples of polyamides include poly(ethylene-adipamide), poly(propylene-adipamide),
- 17 -=
, poly(butylenes-adipamide), poly(pentylene-adipamide), poly(hexylene-adipamide), poly(octylene-adipamide), poly(ethylene-succinimide), and poly(propylene-sebecamide).
Examples of polyimides include poly(ethylene-adipimide), poly(propylene-adipimide), poly(butylene-adipimide), poly(pentylene-adipimide), poly(hexylene-adipimide), poly(octylene-adipimide), poly(ethylene-succinimide), poly(propylene-succinimide), and poly(butylene-succinimide).
[0045] The crystalline resin may be present, for example, in an amount of from about 5 to about 50 percent by weight of the toner components, in embodiments from about 10 to about 35 percent by weight of the toner components. The crystalline resin can possess various melting points of, for example, from about 30 C to about 120 C, in embodiments from about 50 C to about 90 C. The crystalline resin may have a number average molecular weight (M), as measured by gel permeation chromatography (GPC) of, for example, from about 1,000 to about 50,000, in embodiments from about 2,000 to about 25,000, and a weight average molecular weight (Mw) of, for example, from about 2,000 to about 100,000, in embodiments from about 3,000 to about 80,000, as determined by Gel Permeation Chromatography using polystyrene standards. The molecular weight distribution (Mw/Mn) of the crystalline resin may be, for example, from about 2 to about 6, in embodiments from about 3 to about 4.
[0046] Examples of diacids or diesters including vinyl diacids or vinyl diesters utilized for the preparation of amorphous polyesters include dicarboxylic acids or diesters such as terephthalic acid, phthalic acid, isophthalic acid, fumaric acid, dimethyl fumarate, dimethyl itaconate, cis, 1,4-diacetoxy-2-butene, diethyl fumarate, diethyl maleate, maleic acid, succinic acid, itaconic acid, succinic acid, succinic anhydride, dodecylsuccinic acid, dodecylsuccinic anhydride, glutaric acid, glutaric anhydride, adipic acid, pimelic acid, suberic acid, azelaic acid, dodecane diacid, dimethyl terephthalate, diethyl terephthalate, dimethylisophthalate,
- 18 -diethylisophthalate, dimethylphthalate, phthalic anhydride, diethylphthalate, dimethylsuccinate, dimethylfumarate, dimethylmaleate, dimethylglutarate, dimethyladipate, dimethyl dodecylsuccinate, and combinations thereof. The organic diacid or diester may be present, for example, in an amount from about 40 to about 60 mole percent of the resin, in embodiments from about 42 to about 52 mole percent of the resin, in embodiments from about 45 to about 50 mole percent of the resin.
100471 Examples of the alkylene oxide adducts of bisphenol include polyoxypropylene (2.2)-2,2-bis(4-hydroxyphenyl) propane, polyoxypropylene (3.3)-2,2-bis(4-hydroxyphenyl) propane, polyoxyethylene (2.0)-2,2-bis(4-hydroxyphenyl) propane, polyoxyethylene (2.2)-2,2-bis(4-hydroxyphenyl) propane, polyoxypropylene (2.0)-polyoxyethylene (2.0)-2,2-bis(4-hydroxyphenyl) propane, and polyoxypropylene (6)-2,2-bis(4-hydroxyphenyl) propane.
These compounds may be used singly or as a combination of two or more thereof.
Examples of additional diols which may be utilized in generating the amorphous polyester include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, 2,2-dimethylpropanediol, 2,2,3-trimethylhexanediol, heptanediol, dodecanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, xylenedimethanol, cyclohexanediol, diethylene glycol, dipropylene glycol, dibutylene, and combinations thereof. The amount of organic diol selected can vary, and may be present, for example, in an amount from about 40 to about 60 mole percent of the resin, in embodiments from about 42 to about 55 mole percent of the resin, in embodiments from about 45 to about 53 mole percent of the resin.
[0048] Polycondensation catalysts which may be utilized in forming either the crystalline or amorphous polyesters include tetraalkyl titanates, dialkyltin oxides such as dibutyltin oxide, tetraalkyltins such as dibutyltin dilaurate, and dialkyltin oxide hydroxides such as butyltin oxide hydroxide, aluminum alkoxides, alkyl zinc, dialkyl zinc, zinc oxide, stannous
-19-oxide, or combinations thereof. Such catalysts may be utilized in amounts of, for example, from about 0.01 mole percent to about 5 mole percent based on the starting diacid or diester used to generate the polyester resin.
In embodiments, suitable amorphous resins include polyesters, polyamides, polyimides, polyolefins, polyethylene, polybutylene, polyisobutyrate, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, polypropylene, combinations thereof, and the like.
Examples of amorphous resins which may be utilized include alkali sulfonated-polyester resins, branched alkali sulfonated-polyester resins, alkali sulfonated-polyimide resins, and branched alkali sulfonated-polyimide resins. Alkali sulfonated polyester resins may be useful in embodiments, such as the metal or alkali salts of copoly(ethylene-terephthalate)-copoly(ethylene-5-sulfo-isophthalate), copoly(propylene-terephthalate)-copoly(propylene-5-sulfo-isophthalate), copoly(diethylene-terephthalate)-copoly(diethylene-5-sulfo-isophthalate), copoly(propylene-diethylene-terephthalate)-copoly(propylene-di ethylene-5-sulfoisophthalate), copoly(propylene-butylene-terephthalate)-copoly(propylene-butylene-5-sulfo-isophthalate), copoly(propoxylated bisphenol-A-fumarate)-copoly(propoxylated bisphenol A-5-sulfo-isophthalate), copoly(ethoxylated bisphenol-A-fumarate)-copoly(ethoxylated bisphenol-A-5-sulfo-isophthalate), and copoly(ethoxylated bisphenol-A-maleate)-copoly(ethoxylated bisphenol-A-5-sulfo-isophthalate), wherein the alkali metal is, for example, a sodium, lithium or potassium ion.
100491 In embodiments, as noted above, an unsaturated amorphous polyester resin may be utilized as a latex resin. Examples of such resins include those disclosed in U.S. Patent No.
6,063,827. Exemplary unsaturated amorphous polyester resins include, but are not limited to, poly(propoxylated bisphenol co-fumarate), poly(ethoxylated bisphenol co-fumarate), poly(butyloxylated bisphenol co-fumarate), poly(co-propoxylated bisphenol co-ethoxylated
- 20 -' bisphenol co-fumarate), poly(1,2-propylene fumarate), poly(propoxylated bisphenol co-maleate), poly(ethoxylated bisphenol co-maleate), poly(butyloxylated bisphenol co-maleate), poly(co-propoxylated bisphenol co-ethoxylated bisphenol co-maleate), poly(1,2-propylene maleate), poly(propoxylated bisphenol co-itaconate), poly(ethoxylated bisphenol co-itaconate), poly(butyloxylated bisphenol co-itaconate), poly(co-propoxylated bisphenol co-ethoxylated bisphenol co-itaconate), poly(1,2-propylene itaconate), and combinations thereof.
[0050] Furthermore, in embodiments, a crystalline polyester resin may be contained in the binding resin. The crystalline polyester resin may be synthesized from an acid (dicarboxylic acid) component and an alcohol (diol) component. In what follows, an "acid-derived component" indicates a constituent moiety that was originally an acid component before the synthesis of a polyester resin and an "alcohol-derived component" indicates a constituent moiety that was originally an alcoholic component before the synthesis of the polyester resin.
[0051] A "crystalline polyester resin" indicates one that shows not a stepwise endothermic amount variation but a clear endothermic peak in differential scanning calorimetry (DSC).
However, a polymer obtained by copolymerizing the crystalline polyester main chain and at least one other component is also called a crystalline polyester if the amount of the other component is 50% by weight or less.
[0052] As the acid-derived component, an aliphatic dicarboxylic acid may be utilized, such as a straight chain carboxylic acid. Examples of straight chain carboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,9-nonanedicarboxylic acid, 1,10-decanedicarboxylic acid, 1,1-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,13-tridecanedicarboxylic acid, 1,14-tetradecanedicarboxylic acid, 1,16-hexadecanedicarboxylic acid, and 1,18-octadecanedicarboxylic acid, as well as lower alkyl esters and acid anhydrides thereof.
Among these, acids having 6 to 10 carbon atoms may be desirable for obtaining suitable
- 21 -crystal melting point and charging properties. In order to improve the crystallinity, the straight chain carboxylic acid may be present in an amount of about 95% by mole or more of the acid component and, in embodiments, more than about 98% by mole of the acid component.
[0053] Other acids are not particularly restricted, and examples thereof include conventionally known divalent carboxylic acids and dihydric alcohols, for example those described in "Polymer Data Handbook: Basic Edition" (Soc. Polymer Science, Japan Ed.:
Baihukan). Specific examples of the monomer components include, as divalent carboxylic acids, dibasic acids such as phthalic acid, isophthalic acid, terephthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, and cyclohexanedicarboxylic acid, and anhydrides and lower alkyl esters thereof, as well as combinations thereof, and the like.
[0054] As the acid-derived component, a component such as a dicarboxylic acid-derived component having a sulfonic acid group may also be utilized.
[0055] The dicarboxylic acid having a sulfonic acid group may be effective for obtaining excellent dispersion of a coloring agent such as a pigment. Furthermore, when a whole resin is emulsified or suspended in water to prepare a toner mother particle, a sulfonic acid group, may enable the resin to be emulsified or suspended without a surfactant.
Examples of such dicarboxylic acids having a sulfonic group include, but are not limited to, sodium 2-sulfoterephthalate, sodium 5-sulfoisophthalate and sodium sulfosuccinate.
Furthermore, lower alkyl esters and acid anhydrides of such dicarboxylic acids having a sulfonic group, for example, are also usable. Among these, sodium 5-sulfoisophthalate and the like may be desirable in view of the cost. The content of the dicarboxylic acid having a sulfonic acid group may be from about 0.1% by mole to about 2% by mole, in embodiments from about 0.2% by mole to about 1% by mole. When the content is more than about 2% by mole, the charging properties may be deteriorated. Here, "component mol %" or "component mole %"
- 22 -indicates the percentage when the total amount of each of the components (acid-derived component and alcohol-derived component) in the polyester resin is assumed to be 1 unit (mole).
[0056] As the alcohol component, aliphatic dialcohols may be used. Examples thereof include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decariediol, 1,11-dodecanediol, 1,12-undecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1,18-octadecanediol and 1,20-eicosanediol. Among them, those having from about 6 to about 10 carbon atoms may be used to obtain desirable crystal melting points and charging properties. In order to raise crystallinity, it may be useful to use the straight chain dialcohols in an amount of about 95%
by mole or more, in embodiments about 98% by mole or more.
[0057] Examples of other dihydric dialcohols which may be utilized include bisphenol A, hydrogenated bisphenol A, bisphenol A ethylene oxide adduct, bisphenol A
propylene oxide adduct, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, neopentyl glycol, combinations thereof, and the like.
[0058] For adjusting the acid number and hydroxyl number, the following may be used:
monovalent acids such as acetic acid and benzoic acid; monohydric alcohols such as cyclohexanol and benzyl alcohol; benzenetricarboxylic acid, naphthalenetricarboxylic acid, and anhydrides and lower alkylesters thereof; trivalent alcohols such as glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, combinations thereof, and the like.
[0059] The crystalline polyester resins may be synthesized from a combination of components selected from the above-mentioned monomer components, by using conventional known methods. Exemplary methods include the ester exchange method and the direct polycondensation method, which may be used singularly or in a combination
-23 -, = CA 02717668 2010-10-15 thereof. The molar ratio (acid component/alcohol component) when the acid component and alcohol component are reacted, may vary depending on the reaction conditions.
The molar ratio is usually about 1/1 in direct polycondensation. In the ester exchange method, a monomer such as ethylene glycol, neopentyl glycol or cyclohexanedimethanol, which may be distilled away under vacuum, may be used in excess.
[0060] Examples of other suitable resins or polymers which may be utilized include, but are not limited to, poly(styrene-butadiene), poly(methylstyrene-butadiene), poly(methyl methacrylate-butadiene), poly(ethyl methacrylate-butadiene), poly(propyl methacrylate-butadiene), poly(butyl methacrylate-butadiene), poly(methyl acrylate-butadiene), poly(ethyl acrylate-butadiene), poly(propyl acrylate-butadiene), poly(butyl acrylate-butadiene), poly(styrene-isoprene), poly(methylstyrene-isoprene), poly(methyl methacrylate-isoprene), poly(ethyl methacrylate-isoprene), poly(propyl methacrylate-isoprene), poly(butyl methacrylate-isoprene), poly(methyl acrylate-isoprene), poly(ethyl acrylate-isoprene), poly(propyl acrylate-isoprene), poly(butyl acrylate-isoprene); poly(styrene-propyl acrylate), poly(styrene-butyl acrylate), poly(styrene-butadiene-acrylic acid), poly(styrene-butadiene-methacrylic acid), poly(styrene-butadiene-acrylonitrile-acrylic acid), poly(styrene-butyl acrylate-acrylic acid), poly(styrene-butyl acrylate-methacrylic acid), poly(styrene-butyl acrylate-acrylonitrile), and poly(styrene-butyl acrylate-acrylonitrile-acrylic acid), and combinations thereof. The polymer may be block, random, or alternating copolymers.
[0061] In embodiments, the resins may have a glass transition temperature of from about 30 C to about 80 C, in embodiments from about 35 C to about 70 C. In further embodiments, the resins utilized in the toner may have a melt viscosity of from about 10 to about 1,000,000 Pa*S at about 130 C, in embodiments from about 20 to about 100,000 Pa*S
at about 130 C.
- 24 -[0062] One, two, or more toner resins may be used. In embodiments where two or more toner resins are used, the toner resins may be in any suitable ratio (e.g., weight ratio) such as for instance about 10% (first resin)/90% (second resin) to about 90% (first resin)/10%
(second resin).
[0063] In embodiments, the resin may be formed by emulsion polymerization methods.
Surfactants [0064] In embodiments, colorants, waxes, and other additives utilized to form toner compositions may be in dispersions including surfactants. Moreover, toner particles may be formed by emulsion aggregation methods where the resin and other components of the toner are placed in one or more surfactants, an emulsion is formed, toner particles are aggregated, coalesced, optionally washed and dried, and recovered.
[0065] One, two, or more surfactants may be utilized. The surfactants may be selected from ionic surfactants and nonionic surfactants. Any surfactant described above for use in forming the copolymer utilized as the polymeric coating for the carrier core may be utilized.
Colorants [0066] As the colorant to be added, various known suitable colorants, such as dyes, pigments, mixtures of dyes, mixtures of pigments, mixtures of dyes and pigments, and the like, may be included in the toner. The colorant may be included in the toner in an amount of, for example, about 0.1 to about 35 % by weight of the toner, or from about 1 to about 15 weight percent of the toner, or from about 3 to about 10 % by weight of the toner, although amounts outside these ranges may be utilized.
[0067] As examples of suitable colorants, mention may be made of carbon black like REGAL 330 ; magnetites, such as Mobay magnetites M08029TM, MO8O6OTM; Columbian
- 25 -magnetites; MAPICO BLACKSTM and surface treated magnetites; Pfizer magnetites CB4799TM, CB5300TM, CB5600TM, MCX6369TM; Bayer magnetites, BAYFERROX 8600TM, 8610TM; Northern Pigments magnetites, NP6O4TM, NP6O8TM; Magnox magnetites TMB-100Tm, or TMB-104Tm; and the like. As colored pigments, there can be selected cyan, magenta, yellow, red, green, brown, blue or mixtures thereof. Generally, cyan, magenta, or yellow pigments or dyes, or mixtures thereof, are used. The pigment or pigments are generally used as water based pigment dispersions.
[0068] Specific examples of pigments include SUNSPERSE 6000, FLEXIVERSE and AQUATONE water based pigment dispersions from SUN Chemicals, HELIOGEN BLUE
L6900TM, D6840TM, D7O8OTM, D7O2OTM, PYLAM OIL BLUETM, PYLAM OIL YELLOWTM, PIGMENT BLUE 1TM available from Paul Uhlich & Company, Inc., PIGMENT VIOLET
1TM, PIGMENT RED 48TM, LEMON CHROME YELLOW DCC 1026TM, E.D. TOLUIDINE
REDTM and BON RED CTM available from Dominion Color Corporation, Ltd., Toronto, Ontario, NOVAPERM YELLOW FGLTM, HOSTAPERM PINK ETM from Hoechst, and CINQUASIA MAGENTATm available from E.I. DuPont de Nemours & Company, and the like. Generally, colorants that can be selected are black, cyan, magenta, or yellow, and mixtures thereof Examples of magentas are 2,9-dimethyl-substituted quinacridone and anthraquinone dye identified in the Color Index as CI 60710, CI Dispersed Red 15, diazo dye identified in the Color Index as CI 26050, CI Solvent Red 19, and the like.
Illustrative examples of cyans include copper tetra(octadecyl sulfonamido) phthalocyanine, x-copper phthalocyanine pigment listed in the Color Index as CI 74160, CI Pigment Blue, Pigment Blue 15:3, and Anthrathrene Blue, identified in the Color Index as CI 69810, Special Blue X-2137, and the like. Illustrative examples of yellows are diarylide yellow 3,3-dichlorobenzidene acetoacetanilides, a monoazo pigment identified in the Color Index as CI
12700, CI Solvent Yellow 16, a nitrophenyl amine sulfonamide identified in the Color Index
- 26 -. =
as Foron Yellow SE/GLN, CI Dispersed Yellow 33 2,5-dimethoxy-4-sulfonanilide phenylazo-4'-chloro-2,5-dimethoxy acetoacetanilide, and Permanent Yellow FGL.
Colored magnetites, such as mixtures of MAPICO BLACKTM, and cyan components may also be selected as colorants. Other known colorants can be selected, such as Levanyl Black A-SF
(Miles, Bayer) and Sunsperse Carbon Black LHD 9303 (Sun Chemicals), and colored dyes such as Neopen Blue (BASF), Sudan Blue OS (BASF), PV Fast Blue B2G01 (American Hoechst), Sunsperse Blue BHD 6000 (Sun Chemicals), Irgalite Blue BCA (Ciba-Geigy), Paliogen Blue 6470 (BASF), Sudan III (Matheson, Coleman, Bell), Sudan II
(Matheson, Coleman, Bell), Sudan IV (Matheson, Coleman, Bell), Sudan Orange G (Aldrich), Sudan Orange 220 (BASF), Paliogen Orange 3040 (BASF), Ortho Orange OR 2673 (Paul Uhlich), Paliogen Yellow 152, 1560 (BASF), Lithol Fast Yellow 0991K (BASF), Paliotol Yellow 1840 (BASF), Neopen Yellow (BASF), Novoperm Yellow FG 1 (Hoechst), Permanent Yellow YE 0305 (Paul Uhlich), Lumogen Yellow D0790 (BASF), Sunsperse Yellow YHD
6001 (Sun Chemicals), Suco-Gelb L1250 (BASF), Suco-Yellow D1355 (BASF), Hostaperm Pink E (American Hoechst), Fanal Pink D4830 (BASF), Cinquasia Magenta (DuPont), Lithol Scarlet D3700 (BASF), Toluidine Red (Aldrich), Scarlet for Thermoplast NSD PS
PA (Ugine Kuhlmann of Canada), E.D. Toluidine Red (Aldrich), Lithol Rubine Toner (Paul Uhlich), Lithol Scarlet 4440 (BASF), Bon Red C (Dominion Color Company), Royal Brilliant Red RD-8192 (Paul Uhlich), Oracet Pink RF (Ciba-Geigy), Paliogen Red 3871K (BASF), Paliogen Red 3340 (BASF), Lithol Fast Scarlet L4300 (BASF), combinations of the foregoing, and the like.
Wax 100691 Optionally, a wax may also be combined with the resin and optional colorant in forming toner particles. When included, the wax may be present in an amount of, for
- 27 -=
example, from about 1 weight percent to about 25 weight percent of the toner particles, in embodiments from about 5 weight percent to about 20 weight percent of the toner particles, although amounts outside these ranges may be utilized.
[0070] Waxes that may be selected include waxes having, for example, a weight average molecular weight of from about 500 to about 20,000, in embodiments from about 1,000 to about 10,000, although molecular weights outside these ranges may be utilized.
Waxes that may be used include, for example, polyolefins such as polyethylene, polypropylene, and polybutene waxes such as commercially available from Allied Chemical and Petrolite Corporation, for example POLYWAXTM polyethylene waxes from Baker Petrolite, wax emulsions available from Michaelman, Inc. and the Daniels Products Company, EPOLENE
N15TM commercially available from Eastman Chemical Products, Inc., and VISCOL

pTM, a low weight average molecular weight polypropylene available from Sanyo Kasei K.
K.; plant-based waxes, such as camauba wax, rice wax, candelilla wax, sumacs wax, and jojoba oil; animal-based waxes, such as beeswax; mineral-based waxes and petroleum-based waxes, such as montan wax, ozokerite, ceresin, paraffin wax, microcrystalline wax, and Fischer-Tropsch wax; ester waxes obtained from higher fatty acid and higher alcohol, such as stearyl stearate and behenyl behenate; ester waxes obtained from higher fatty acid and monovalent or multivalent lower alcohol, such as butyl stearate, propyl oleate, glyceride monostearate, glyceride distearate, and pentaerythritol tetra behenate; ester waxes obtained from higher fatty acid and multivalent alcohol multimers, such as diethyleneglycol monostearate, dipropyleneglycol distearate, diglyceryl distearate, and triglyceryl tetrastearate;
sorbitan higher fatty acid ester waxes, such as sorbitan monostearate, and cholesterol higher fatty acid ester waxes, such as cholesteryl stearate. Examples of functionalized waxes that may be used include, for example, amines, amides, for example AQUA SUPERSLIP
6550TM, SUPERSLIP 6530TM available from Micro Powder Inc., fluorinated waxes, for example
- 28 -POLYFLUO 19OTM, POLYFLUO 200TM, POLYSILK 19TM, POLYSILK 14TM available from Micro Powder Inc., mixed fluorinated, amide waxes, for example MICROSPERSION
19Tm also available from Micro Powder Inc., imides, esters, quaternary amines, carboxylic acids or acrylic polymer emulsion, for example JONCRYL 74TM, 89TM, 13OTM, 537TM, and 538TM, all available from SC Johnson Wax, and chlorinated polypropylenes and polyethylenes available from Allied Chemical and Petrolite Corporation and SC Johnson wax. Mixtures and combinations of the foregoing waxes may also be used in embodiments. Waxes may be included as, for example, fuser roll release agents.
Toner Preparation [0071] The toner particles may be prepared by any method within the purview of one skilled in the art. Although embodiments relating to toner particle production are described below with respect to emulsion-aggregation processes, any suitable method of preparing toner particles may be used, including chemical processes, such as suspension and encapsulation processes disclosed in U.S. Patent Nos. 5,290,654 and 5,302,486.
In embodiments, toner compositions and toner particles may be prepared by aggregation and coalescence processes in which small-size resin particles are aggregated to the appropriate toner particle size and then coalesced to achieve the final toner particle shape and morphology.
[0072] In embodiments, toner compositions may be prepared by emulsion-aggregation processes, such as a process that includes aggregating a mixture of an optional colorant, an optional wax and any other desired or required additives, and emulsions including the resins described above, optionally in surfactants as described above, and then coalescing the aggregate mixture. A mixture may be prepared by adding a colorant and optionally a wax or
- 29 -= CA 02717668 2010-10-15 other materials, which may also be optionally in a dispersion(s) including a surfactant, to the emulsion, which may be a mixture of two or more emulsions containing the resin. The pH of the resulting mixture may be adjusted by an acid such as, for example, acetic acid, nitric acid or the like. In embodiments, the pH of the mixture may be adjusted to from about 4 to about 5, although a pH outside this range may be utilized. Additionally, in embodiments, the mixture may be homogenized. If the mixture is homogenized, homogenization may be accomplished by mixing at about 600 to about 4,000 revolutions per minute, although speeds outside this range may be utilized. Homogenization may be accomplished by any suitable means, including, for example, an IKA ULTRA TURRAX T50 probe homogenizer.
[0073] Following the preparation of the above mixture, an aggregating agent may be added to the mixture. Any suitable aggregating agent may be utilized to form a toner. Suitable aggregating agents include, for example, aqueous solutions of a divalent cation or a multivalent cation material. The aggregating agent may be, for example, polyaluminum halides such as polyaluminum chloride (PAC), or the corresponding bromide, fluoride, or iodide, polyaluminum silicates such as polyaluminum sulfosilicate (PASS), and water soluble metal salts including aluminum chloride, aluminum nitrite, aluminum sulfate, potassium aluminum sulfate, calcium acetate, calcium chloride, calcium nitrite, calcium oxylate, calcium sulfate, magnesium acetate, magnesium nitrate, magnesium sulfate, zinc acetate, zinc nitrate, zinc sulfate, zinc chloride, zinc bromide, magnesium bromide, copper chloride, copper sulfate, and combinations thereof. In embodiments, the aggregating agent may be added to the mixture at a temperature that is below the glass transition temperature (Tg) of the resin.
[0074] The aggregating agent may be added to the mixture utilized to form a toner in an amount of, for example, from about 0.1% to about 8% by weight, in embodiments from about 0.2% to about 5% by weight, in other embodiments from about 0.5% to about 5%
by weight,
-30-of the resin in the mixture, although amounts outside these ranges may be utilized. This provides a sufficient amount of agent for aggregation.
[0075] In order to control aggregation and subsequent coalescence of the particles, in embodiments the aggregating agent may be metered into the mixture over time.
For example, the agent may be metered into the mixture over a period of from about 5 to about 240 minutes, in embodiments from about 30 to about 200 minutes, although more or less time may be used as desired or required. The addition of the agent may also be done while the mixture is maintained under stirred conditions, in embodiments from about 50 rpm to about 1,000 rpm, in other embodiments from about 100 rpm to about 500 rpm, although speeds outside these ranges may be utilized and at a temperature that is below the glass transition temperature of the resin as discussed above, in embodiments from about 30 C
to about 90 C, in embodiments from about 35 C to about 70 C, although temperatures outside these ranges may be utilized.
[0076] The particles may be permitted to aggregate until a predetermined desired particle size is obtained. A predetermined desired size refers to the desired particle size to be obtained as determined prior to formation, and the particle size being monitored during the growth process until such particle size is reached. Samples may be taken during the growth process and analyzed, for example with a Coulter Counter, for average particle size. The aggregation thus may proceed by maintaining the elevated temperature, or slowly raising the temperature to, for example, from about 30 C to about 99 C, and holding the mixture at this temperature for a time from about 0.5 hours to about 10 hours, in embodiments from about hour 1 to about 5 hours (although times outside these ranges may be utilized), while maintaining stirring, to provide the aggregated particles. Once the predetermined desired particle size is reached, then the growth process is halted. In embodiments, the predetermined desired particle size is within the toner particle size ranges mentioned above.
- 31 -[0077] The growth and shaping of the particles following addition of the aggregation agent may be accomplished under any suitable conditions. For example, the growth and shaping may be conducted under conditions in which aggregation occurs separate from coalescence.
For separate aggregation and coalescence stages, the aggregation process may be conducted under shearing conditions at an elevated temperature, for example of from about 40 C to about 90 C, in embodiments from about 45 C to about 80 C (although temperatures outside these ranges may be utilized), which may be below the glass transition temperature of the resin as discussed above.
[0078] Once the desired final size of the toner particles is achieved, the pH
of the mixture may be adjusted with a base to a value of from about 3 to about 10, and in embodiments from about 5 to about 9, although a pH outside these ranges may be utilized. The adjustment of the PH may be utilized to freeze, that is to stop, toner growth. The base utilized to stop toner growth may include any suitable base such as, for example, alkali metal hydroxides such as, for example, sodium hydroxide, potassium hydroxide, ammonium hydroxide, combinations thereof, and the like. In embodiments, ethylene diamine tetraacetic acid (EDTA) may be added to help adjust the pH to the desired values noted above.
[0079] In some embodiments, a resin, including any resin described above for use in forming the toner, may be applied to the toner particles to form a shell thereover.
Coalescence [0080] Following aggregation to the desired particle size and application of any optional shell, the particles may then be coalesced to the desired final shape, the coalescence being achieved by, for example, heating the mixture to a temperature of from about 45 C to about 100 C, in embodiments from about 55 C to about 99 C (although temperatures outside of these ranges may be used), which may be at or above the glass transition temperature of the
- 32 -resins utilized to form the toner particles, and/or reducing the stirring, for example to from about 100 rpm to about 1,000 rpm, in embodiments from about 200 rpm to about 800 rpm (although speeds outside of these ranges may be used). The fused particles can be measured for shape factor or circularity, such as with a Sysmex FPIA 2100 analyzer, until the desired shape is achieved.
[0081] Higher or lower temperatures may be used, it being understood that the temperature is a function of the resins used for the binder. Coalescence may be accomplished over a period of from about 0.01 to about 9 hours, in embodiments from about 0.1 to about 4 hours (although times outside of these ranges may be used).
[0082] After aggregation and/or coalescence, the mixture may be cooled to room temperature, such as from about 20 C to about 25 C. The cooling may be rapid or slow, as desired. A suitable cooling method may include introducing cold water to a jacket around the reactor. After cooling, the toner particles may be optionally washed with water, and then dried. Drying may be accomplished by any suitable method for drying including, for example, freeze-drying.
Additives [0083] As noted above, the coated carriers of the present disclosure may be combined with these toner particles. In embodiments, the toner particles may also contain other optional additives, as desired or required. For example, the toner may include additional positive or negative charge control agents, for example in an amount of from about 0.1 to about 10 % by weight of the toner, in embodiments from about 1 to about 3 % by weight of the toner (although amounts outside of these ranges may be used). Examples of suitable charge control agents include quaternary ammonium compounds inclusive of alkyl pyridinium halides;
bisulfates; alkyl pyridinium compounds, including those disclosed in U.S.
Patent No.
- 33 -4,298,672; organic sulfate and sulfonate compositions, including those disclosed in U.S.
Patent No. 4,338,390; cetyl pyridinium tetrafluoroborates; distearyl dimethyl ammonium methyl sulfate; aluminum salts such as BONTRON E84TM or E88TM (Orient Chemical Industries, Ltd.); combinations thereof, and the like. Such charge control agents may be applied simultaneously with the shell resin described above or after application of the shell resin.
[0084] After formation, there can also be blended with the toner particles external additives including flow aid additives, which additives may be present on the surface of the toner particles. Examples of these additives include metal oxides such as titanium oxide, silicon oxide, aluminum oxides, cerium oxides, tin oxide, mixtures thereof, and the like; colloidal and amorphous silicas, such as AEROSILO; metal salts and metal salts of fatty acids inclusive of zinc stearate, calcium stearate; and/or long chain alcohols such as UNILIN 700, and combinations thereof.
[0085] In general, silica may be applied to the toner surface for toner flow, enhancement of triboelectric charge, admix control, improved development and transfer stability, and higher toner blocking temperature. TiO2 may be applied for improved relative humidity (RH) stability, control of triboelectric charge, and improved development and transfer stability.
Zinc stearate, calcium stearate and/or magnesium stearate may optionally also be used as an external additive for providing lubricating properties, developer conductivity, enhancement of triboelectric charge, enabling higher toner charge and charge stability by increasing the number of contacts between toner and carrier particles. In embodiments, a commercially available zinc stearate known as Zinc Stearate L, obtained from Ferro Corporation, may be used. The external surface additives may be used with or without a coating.
- 34 -[0086] Each of these external additives may be present in an amount of from about 0.1 percent by weight to about 5 percent by weight of the toner, in embodiments of from about 0.25 percent by weight to about 3 percent by weight of the toner. In embodiments, the toners may include, for example, from about 0.1 weight percent to about 5 weight percent titania, from about 0.1 weight percent to about 8 weight percent silica, and from about 0.1 weight percent to about 4 weight percent zinc stearate. Suitable additives include those disclosed in U.S. Patent Nos. 3,590,000, 3,800,588, and 6,214,507. Again, these additives may be applied simultaneously with the shell resin described above or after application of the shell resin.
[0087] In embodiments, toners of the present disclosure may be utilized as ultra low melt (ULM) toners. In embodiments, the dry toner particles having a core and/or shell may, exclusive of external surface additives, have one or more the following characteristics:
(1) Volume average diameter (also referred to as "volume average particle diameter") was measured for the toner particle volume and diameter differentials. The toner particles have a volume average diameter of from about 3 to about 25 p,m, in embodiments from about 4 to about 15 p.m, in other embodiments from about 5 to about 12 pm.
(2) Number Average Geometric Size Distribution (GSDn) and/or Volume Average Geometric Size Distribution (GSDv): In embodiments, the toner particles described in (1) above may have a very narrow particle size distribution with a lower number ratio GSD of from about 1.15 to about 1.38, in other embodiments, less than about 1.31. The toner particles of the present disclosure may also have a size such that the upper GSD by volume is from about 1.20 to about 3.20, in other embodiments, from about 1.26 to about 3.11. Volume average particle diameter D5ov, GSDv, and GSDn
- 35 -= CA 02717668 2010-10-15 may be measured by means of a measuring instrument such as a Beckman Coulter Multisizer 3, operated in accordance with the manufacturer's instructions.
Representative sampling may occur as follows: a small amount of toner sample, about 1 gram, may be obtained and filtered through a 25 micrometer screen, then put in isotonic solution to obtain a concentration of about 10%, with the sample then run in a Beckman Coulter Multisizer 3.
(3) Shape factor, SF1*a, of from about 105 to about 170, in embodiments, from about 110 to about 160. Scanning electron microscopy (SEM) may be used to determine the shape factor analysis of the toners by SEM and image analysis (IA). The average particle shapes are quantified by employing the following shape factor (SF1*a) formula: SF1*a = 1007cd2/(4A), where A is the area of the particle and d is its major axis. A perfectly circular or spherical particle has a shape factor of exactly 100. The shape factor SF1*a increases as the shape becomes more irregular or elongated in shape with a higher surface area.
(4) Circularity of from about 0.92 to about 0.99, in embodiments from about 0.94 to about 0.975. The instrument used to measure particle circularity may be an FPIA-2100 manufactured by Sysmex.
[0088] The characteristics of the toner particles may be determined by any suitable technique and apparatus and are not limited to the instruments and techniques indicated hereinabove.
[0089] In embodiments, the toner particles may have a weight average molecular weight (Mw) in the range of from about 17,000 to about 60,000 daltons, a number average molecular weight (Mn) of from about 9,000 to about 18,000 daltons, and a MWD (a ratio of the Mw to Mn of the toner particles, a measure of the polydispersity, or width, of the polymer) of from about 2.1 to about 10 (although values outside of these ranges may be obtained). For cyan
-36-and yellow toners, the toner particles in embodiments can exhibit a weight average molecular weight (Mw) of from about 22,000 to about 38,000 daltons, a number average molecular weight (Mn) of from about 9,000 to about 13,000 daltons, and a MWD of from about 2.2 to about 10 (although values outside of these ranges may be obtained). For black and magenta, the toner particles in embodiments can exhibit a weight average molecular weight (Mw) of from about 22,000 to about 38,000 daltons, a number average molecular weight (Mn) of from about 9,000 to about 13,000 daltons, and a MWD of from about 2.2 to about 10 (although values outside of these ranges may be obtained).
[0090] Toners produced in accordance with the present disclosure may possess excellent charging characteristics when exposed to extreme relative humidity (RH) conditions. The low-humidity zone (C zone) may be about 12 C/15% RH, while the high humidity zone (A
zone) may be about 28 C/85% RH. Toners of the present disclosure may possess a parent toner charge per mass ratio (Q/M) of from about -5 C/g to about -80 C/g, in embodiments from about -10 C/g to about -70 C/g, and a final toner charging after surface additive blending of from -15 C/g to about -60 C/g, in embodiments from about -20 C/g to about -55 ,C/g.
Developer [0091] The toner particles may be formulated into a developer composition by combining them with the coated carriers of the present disclosure. For example, the toner particles may be mixed with the coated carrier particles to achieve a two-component developer composition. The carrier particles can be mixed with the toner particles in various suitable combinations. The toner concentration in the developer may be from about 1% to about 25%
by weight of the developer, in embodiments from about 2% to about 15% by weight of the total weight of the developer, with the carrier present in an amount of from about 80% to
-37-about 96% by weight of the developer, in embodiments from about 85% to about 95% by weight of the developer. In embodiments, the toner concentration may be from about 90% to about 98% by weight of the carrier. However, different toner and carrier percentages may be used to achieve a developer composition with desired characteristics.
[0092] Thus, for example, there can be formulated in accordance with the present disclosure developers with resistivity as determined in a magnetic brush conducting cell of from about 109 ohm-cm to about 1014 ohm-cm at 10 Volts, in embodiments from about 1010 ohm-cm to about 1013 ohm-cm at 10 Volts, and from about 108 ohm-cm to about 1013 ohm-cm at 150 Volts, in embodiments from about 109 ohm-cm to about 1012 ohm-cm at 150 Volts.
[0093] Toners including the carriers of the present disclosure may thus have triboelectric charges of from about 15 C/g to about 60 pE/g, in embodiments from about 20 C/g to about 55 iC/g.
Resistivity [0094] To measure carrier conductivity or resistivity, about 30 to about 50 grams of the carrier may be placed between two circular planar parallel steel electrodes (radius=3 centimeters), and compressed by a weight of 4 kilograms to form an about 0.4 to about 0.5 centimeter layer; the DC voltage of 10 volts may be applied between the electrodes, and a DC
current may be measured in series between the electrodes and voltage source after 1 minute following the moment of voltage application. Conductivity in (ohm cm)-1 may be obtained by multiplying current in Amperes, by the layer thickness in centimeters, and divided by the electrode area in cm2 and by the voltage, 10 volts. Resistivity may be obtained as the inverse of the conductivity and may be measured in ohm-cm. The voltage may be increased to 150 volts and the measurement repeated, and the calculation done the same way, using the value of the voltage of 150 volts.
- 38 -=
[0095] In accordance with the present disclosure, a carrier may have a resistivity of from about 109 to about 1014 ohm-cm measured at 10 volts, and from about 108 to about 1013 ohm-cm at 150 volts.
[0096] In accordance with the present disclosure, it has been discovered that developer charging RH sensitivity can be improved by increasing the molar C/O ratio of the carrier coating resin. Thus, developers of the present disclosure may have an RH
sensitivity of from about 0.4 to about 1.0, in embodiments from about 0.6 to about 0.8.
Imaging [0097] The carrier particles of the present invention can be selected for a number of different imaging systems and devices, such as electrophotographic copiers and printers, inclusive of high speed color electrophotographic systems, printers, digital systems, combination of electrophotographic and digital systems, and wherein colored images with excellent and substantially no background deposits are achievable. Developer compositions including the carrier particles illustrated herein and prepared, for example, by a dry coating process may be useful in electrostatographic or electrophotographic imaging systems, especially electrophotographic imaging and printing processes, and digital processes.
Additionally, the developer compositions of the present disclosure including the conductive carrier particles of the present disclosure may be useful in imaging methods wherein relatively constant conductivity parameters are desired. Furthermore, in the aforementioned imaging processes the toner ttiboelectric charge with the carrier particles can be preselected, which charge is dependent, for example, on the polymer composition applied to the carrier core, and optionally the type and amount of the conductive component selected.
[0098] Imaging processes include, for example, preparing an image with an electrophotographic device including a charging component, an imaging component, a
-39-photoconductive component, a developing component, a transfer component, and a fusing component. In embodiments, the development component may include a developer prepared by mixing a carrier with a toner composition described herein. The electrophotographic device may include a high speed printer, a black and white high speed printer, a color printer, and the like.
100991 Once the image is formed with toners/developers via a suitable image development method such as any one of the aforementioned methods, the image may then be transferred to an image receiving medium such as paper and the like. In embodiments, the toners may be used in developing an image in an image-developing device utilizing a fuser roll member.
Fuser roll members are contact fusing devices that are within the purview of those skilled in the art, in which heat and pressure from the roll may be used to fuse the toner to the image-receiving medium. In embodiments, the fuser member may be heated to a temperature above the fusing temperature of the toner, for example to temperatures of from about 70 C to about 160 C, in embodiments from about 80 C to about 150 C, in other embodiments from about 90 C to about 140 C (although temperatures outside of these ranges may be used), after or during melting onto the image receiving substrate.
[00100] Images, especially colored images obtained with the developer compositions of the present invention in embodiments possess, for example, acceptable solids, excellent halftones, and desirable line resolution with acceptable or substantially no background deposits, excellent chroma, superior color intensity, constant color chroma and intensity over extended time periods, such as 1,000,000 imaging cycles, and the like.
The following Examples are being submitted to illustrate embodiments of the present disclosure. These Examples are intended to be illustrative only and are not intended to limit the scope of the present disclosure. Also, parts and percentages are by weight unless
- 40 -. . CA 02717668 2010-10-15 otherwise indicated. As used herein, "room temperature" refers to a temperature of from about 20 C to about 25 C.
-41 -. . CA 02717668 2010-10-15 EXAMPLES
Latexes A latex emulsion including polymer particles generated from the emulsion polymerization of monomers, in most cases a primary monomer and secondary monomer, was prepared as follows. A surfactant solution including about 2.6 mmol sodium lauryl sulfate (an anionic emulsifier) and about 21 moles of de-ionized water was prepared by combining the monomers in a beaker and mixing for about 10 minutes. The aqueous surfactant solution was then transferred into a reactor. The reactor was continuously purged with nitrogen while being stirred at about 450 revolutions per minute (rpm).
Separately, about 2 mmol of ammonium persulfate initiator was dissolved in about 222 mmol of de-ionized water to form an initiator solution.
In a separate container was added a predetermined amount of the primary monomer (Monomer A) and a predetermined amount of secondary monomer (Monomer B) as shown in Table 1, and about 7.2 mmol of DMAEMA. About 10 % by weight of this solution was added to the aqueous surfactant mixture as a seed. The reactor was then heated up to about 65 C at a controlled rate of about 1 C/minute.
Once the temperature of the reactor reached about 65 C, the initiator solution was slowly charged into the reactor over a period of about 40 minutes, after which the rest of the emulsion was continuously fed into the reactor using a metering pump at a rate of about 0.8%
by weight/minute. Once all the monomer emulsion was charged into the main reactor, the temperature was held at about 65 C for an additional 2 hours to complete the reaction.
Cooling was then applied and the reactor temperature was reduced to about 35 C. The product was then collected into a container and dried to a powder form using a freeze-drier.
- 42 -= CA 02717668 2010-10-15 Four latexes were prepared following the above processes, with varying amounts of reactants.
A summary of the reactants and the properties of the copolymers thus produced are summarized below in Table 1.
Table 1 Latex formulation and properties for carrier resin coating.
mmot mmol Monomer Size D50 Mw Mn Latex Monomer A Monomer Monomer Tg (nm) (/1000) (/1000) A
Methyl A None 0 Methacrylate 665.7 97.4 453.5 124.3 119.2 Cyclohexyl Methyl 166.4 499.28 110.1 613.1 157.1 110.6 methacrylate Methacrylate Cyclohexyl Methyl 332.85 332.85 74.2 456.8 109.2 103.4 methacrylate Methacrylate Cyclohexyl Methyl 499.28 166.4 85.1 400.1 68.8 104 methacrylate Methacrylate Cyclohexyl lsobornyl 332.85 332.85 48.5 415 69 118 methacrylate Methacrylate Latexes A through to D were prepared using different ratios of cyclyhexylmethacrylate and methyl methacrylate. The C/O ratio in latexes A through E varied from 2.5:1 to 4.375:1.
Latex E was a 50:50 mixture of cyclohexylmethacrylate and isobomyl methacrylate, which provided an even higher C/O ratio of 6:1.

A carrier was prepared as follows. About 120 grams of a 35 micron ferrite core (commercially available from Powdertech) was placed into a 250 ml polyethylene bottle.
About 0.912 grams of the dried powder polymer latex as described in Tables 1 and 2 was added thereto, as well as 0.048 grams of Cabot VULCAN XC72 Carbon Black. The bottle was then sealed and loaded into a C-zone TURBULA mixer. The TURBULA mixer was run for about 45 minutes to disperse the powders onto the carrier core particles.
- 43 -. . CA 02717668 2010-10-15 Next, a HAAKE mixer was setup with the following conditions: set temperature 200 C (all zones); 30 minute batch time; 30 RPM with high shear rotors. After the HAAKE
mixer reached its operating temperature, the mixer rotation was started and the blend was transferred from the TURBULA into the HAAKE mixer. After about 45 minutes, the carrier was discharged from the mixer and sieved through a 45 pm screen. Four carriers were prepared following the above process. A summary of the dried powder polymer latexes used in each carrier are set forth below in Table 2.

Carrier Formulation Comparative Carrier ID Example 1 Example 2 Example 3 Example 4 Example 1 Latex A 13 C D E
A summary of coated carrier resistivity data at 10 and 150 Volts is shown in Table 3 below.

Resistivity data at 10 Volts and 150 Volts Resistivity at 10V Resistivity at 150V
Carrier ID
(ohm*cm*10^9) (ohm*cm*10^9) Example 4 6.00 1.40 Developers were prepared with the various carriers listed in Table 2 by combining them with a Xerox 700 Digital Color Press cyan toner. The concentration of the toner was about 5 parts per hundred (pph). Developers were conditioned over night in A-zone and C-zone and then sealed and agitated for 60 minutes using a TURBULA mixer.
Charging characteristics were obtained as q/m values in microcoulombs per gram using the total charge blow-off method and by a charge spectrograph using a 100 V/cm field as q/d values in mm displacement. The q/d values can be converted from mm displacement to femtocoulombs per micron by multiplying the value in mm by 0.092. Table 4 provides a summary of the 60 minute A-zone and C-zone charging characteristics for the various toners.
Table 4 60 minute charging.
- 44 -A Zone C Zone RH (q/d) Carrier q/d q/m, q/d_q/m A-zone/C-zone Comparative Example 1 5.6 21.2 17.0 52.9, 0.33 Example 1 8.9 34.1 20.3 57.4 0.44 _ Example 2 10.4 39.0 19.5 65.7 0.53 Example 3 10.4 '41.3 18.1 56.3 0.57 Example 4 7.4 30.3 9.8 37.1 0.76 q/d = toner charge q/m = toner charge per mass ratio Additional data comparing the RH ratio (A-zone charge to C-zone charge) of the developer to C/O ratio of the polymer coating is set forth in the Figure. As shown in Table 4 and graphically in the Figure, as the carbon to oxygen ratio increased in the binder polymer of the carrier coating, the resulting RH ratio of the developer also increased. This demonstrates that the carbon to oxygen ratio was important for RH
ratio.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the specification as a whole. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material_
- 45 -

Claims (27)

WHAT IS CLAIMED IS:
1. A carrier comprising:
a magnetic core; and a polymeric coating over at least a portion of a surface of the core, the polymeric coating comprising a copolymer comprising a cycloacrylate and a methylmethacrylate, optionally a charge control agent monomer, and optionally carbon black, wherein the ratio of carbon to oxygen in the polymeric coating is from about 3:1 to about 5:1.
2. The carrier as in claim 1, wherein the core is selected from the group consisting of iron, steel, ferrites, magnetites, nickel, and combinations thereof, having an average particle size of from about 20 microns to about 400 microns in diameter, and wherein the coating comprises the copolymer in combination with carbon black.
3. The carrier as in claim 1, wherein the cycloacrylate forming the copolymer is selected from the group consisting of cyclohexylmethacrylate, cyclopropyl acrylate, cyclobutyl acrylate, cyclopentyl acrylate, cyclohexyl acrylate, cyclopropyl methacrylate, cyclobutyl methactylate, cyclopentyl methacrylate, isobornyl methacrylate, isobornyl acrylate, and combinations thereof.
4. The carrier as in claim 1, wherein the polymeric coating has a number average molecular weight of from about 60,000 to about 400,000, a weight average molecular weight of from about 200,000 to about 800,000, and a glass transition temperature of from about 85°C to about 140°C.
5. The carrier as in claim 1, comprising a resistivity of from about 10 9 to about 10 14 ohm-cm measured at 10 volts, and from about 10 8 to about 10 13 ohm-cm at 150 volts.
6. A composition comprising:
a toner comprising at least one resin and one or more optional ingredients selected from the group consisting of optional colorants, optional waxes, and combinations thereof; and the carrier of claim 1.
7. The composition as in claim 6, comprising a triboelectric charge of from about 15 µC/g to about 60 µC/g.
8. The carrier as in claim 1, wherein the core is selected from the group consisting of copper/zinc-ferrites, nickel/zinc-ferrites, strontium-ferrites and combinations thereof.
9. The carrier as in claim 1, wherein the core comprises a ferrite comprising iron and at least one additional metal selected from the group consisting of copper, zinc, nickel, manganese, magnesium, calcium, lithium, strontium, zirconium, titanium, tantalum, bismuth, sodium, potassium, rubidium, cesium, strontium, barium, yttrium, lanthanum, hafnium, vanadium, niobium, aluminum, gallium, silicon, germanium, antimony, and combinations of thereof.
10. The carrier as in claim 1, wherein the charge control agent monomer is selected from the group consisting of acrylic acid, methacrylic acid, beta-carboxyethyl acrylate, dimethylamino ethyl methacrylate, 2-(dimethylamino) ethyl methacrylate, diethylamino ethyl methacrylate, dimethylamino butyl methacrylate, methylamino ethyl methacrylate, and combinations thereof.
11. A carrier comprising:
a magnetic core; and a polymeric coating over at least a portion of a surface of the core, the polymeric coating comprising a copolymer comprising at least two aliphatic cycloacrylate monomers, optionally a charge control agent monomer, and optionally carbon black, wherein the ratio of carbon to oxygen in the polymeric coating is from about 3:1 to about 8:1.
12. The carrier as in claim 11, wherein the core is selected from the group consisting of iron, steel, ferrites, magnetites, nickel, and combinations thereof, having an average particle size of from about 20 microns to about 400 microns in diameter, and wherein the coating comprises the copolymer in combination with carbon black.
13. The carrier as in claim 11, wherein the cycloacrylate monomer is selected from the group consisting of cyclohexylmethacrylate, cyclopropyl acrylate, cyclobutyl acrylate, cyclopentyl acrylate, cyclohexyl acrylate, cyclopropyl methacrylate, cyclobutyl methacrylate, cyclopentyl methacrylate, isobornyl methacrylate, isobornyl acrylate, and combinations thereof.
14. The carrier as in claim 11, wherein the polymeric coating has a number average molecular weight of from about 60,000 to about 400,000, a weight average molecular weight of from about 200,000 to about 800,000, and a glass transition temperature of from about 85°C to about 140°C.
15. The carrier as in claim 11, comprising a resistivity of from about 10 9 to about 10 14 ohm-cm measured at 10 volts, and from about 10 8 to about 10 13 ohm-cm at 150 volts.
16. A composition comprising:
a toner comprising at least one resin and one or more optional ingredients selected from the group consisting of optional colorants, optional waxes, and combinations thereof;
and the carrier of claim 11.
17. The composition as in claim 16, comprising a triboelectric charge of from about 15 µC/g to about 60 µC/g.
18. The carrier as in claim 11, wherein the core is selected from the group consisting of copper/zinc-ferrites, nickel/zinc-ferrites, strontium-ferrites and combinations thereof.
1 9. The carrier as in claim 11, wherein the core comprises a ferrite comprising iron and at least one additional metal selected from the group consisting of copper, zinc, nickel, manganese, magnesium, calcium, lithium, strontium, zirconium, titanium, tantalum, bismuth, sodium, potassium, rubidium, cesium, strontium, barium, yttrium, lanthanum, hafnium, vanadium, niobium, aluminum, gallium, silicon, germanium, antimony, and combinations of thereof.
20. The carrier as in claim 11, wherein the charge control agent monomer is selected from the group consisting of acrylic acid, methacrylic acid, beta-carboxyethyl acrylate, dimethylamino ethyl methacrylate, 2-(dimethylamino) ethyl methacrylate, diethylamino ethyl methacrylate, dimethylamino butyl methacrylate, methylamino ethyl methacrylate, and combinations thereof.
21. A process comprising:
forming an emulsion comprising at least one surfactant, at least one monomer, optionally a charge control agent monomer, and optionally carbon black;
polymerizing the at least one monomer and the optional charge control agent monomer to form a copolymer resin having a ratio of carbon to oxygen in the copolymer of from above about 3:1 to about 5:1;
recovering the copolymer resin;
drying the copolymer resin to form a powder for coating a magnetic core.
22. The process as in claim 21, wherein the monomer forming the copolymer is selected from the group consisting of methylmethacrylate, cyclohexylmethacrylate, cyclopropyl acrylate, cyclobutyl acrylate, cyclopentyl acrylate, cyclohexyl acrylate, cyclopropyl methacrylate, cyclobutyl methacrylate, cyclopentyl methacrylate, isobornyl methacrylate, isobornyl acrylate, and combinations thereof, and wherein the charge control agent monomer is selected from the group consisting of acrylic acid, methacrylic acid, beta-carboxyethyl acrylate, dimethylamino ethyl methacrylate, 2-(dimethylamino) ethyl methacrylate, diethylamino ethyl methacrylate, dimethylamino butyl methacrylate, methylamino ethyl methacrylate, and combinations thereof.
23. The process as in claim 21, wherein the copolymer resin has a number average molecular weight of from about 60,000 to about 400,000, a weight average molecular weight of from about 200,000 to about 800,000, and a glass transition temperature of from about 85°C to about 140°C.
24. The process as in claim 21, wherein applying the powder to the core occurs by a process selected from the group consisting of cascade roll mixing, tumbling, milling, shaking, electrostatic powder cloud spraying, fluidized bed, electrostatic disc processing, electrostatic curtains, and combinations thereof.
25. The process as in claim 21, wherein applying the powder coating to the core produces a coated carrier having a resistivity of from about 10 9 to about 10 14 ohm-cm measured at 10 volts, and from about 10 8 to about 10 13 ohm-cm at 150 volts.
26. The process as in claim 21, further comprising applying said powder, optionally with a carbon black, to a magnetic core.
27. The process of claim 26, wherein the core is selected from the group consisting of iron, steel, ferrites, magnetites, nickel, and combinations thereof, having an average particle size of from about 20 µm to about 400 µm in diameter.
CA2717668A 2009-10-22 2010-10-15 Coated carriers Expired - Fee Related CA2717668C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/603,822 US8389191B2 (en) 2009-10-22 2009-10-22 Coated carriers
US12/603,822 2009-10-22

Publications (2)

Publication Number Publication Date
CA2717668A1 CA2717668A1 (en) 2011-04-22
CA2717668C true CA2717668C (en) 2014-09-02

Family

ID=43896986

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2717668A Expired - Fee Related CA2717668C (en) 2009-10-22 2010-10-15 Coated carriers

Country Status (4)

Country Link
US (1) US8389191B2 (en)
JP (1) JP2011090302A (en)
BR (1) BRPI1003709A2 (en)
CA (1) CA2717668C (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807438B2 (en) * 2011-08-12 2015-11-10 富士ゼロックス株式会社 Two-component developer carrier, two-component developer, image forming method, and image forming apparatus
US8461252B2 (en) * 2011-11-12 2013-06-11 Xerox Corporation Powder coated carrier
JP5884592B2 (en) * 2012-03-26 2016-03-15 富士ゼロックス株式会社 Electrostatic image developer, process cartridge, image forming apparatus and image forming method
US20140128541A1 (en) * 2012-11-06 2014-05-08 Xerox Corporation Latex process to enable high loadings of hydrophobic monomers
US20140370432A1 (en) * 2013-06-14 2014-12-18 National Research Council Of Canada Carrier Resins With Improved RH Sensitivity
US9195158B2 (en) * 2013-06-14 2015-11-24 Xerox Corporation Carrier resins with improved RH sensitivity
JP2015114560A (en) * 2013-12-13 2015-06-22 コニカミノルタ株式会社 Carrier for electrostatic charge image development and two-component developer
US9134635B1 (en) 2014-04-14 2015-09-15 Xerox Corporation Method for continuous aggregation of pre-toner particles
CN104111597B (en) * 2014-06-25 2018-06-12 宁波佛来斯通新材料有限公司 Resin-coated carrier and two-component developing agent
WO2016048278A1 (en) 2014-09-23 2016-03-31 Hewlett-Packard Development Company, L.P. Ink composition
US10274855B2 (en) 2015-02-13 2019-04-30 Hp Indigo B.V. Ink composition with UV-curable polymeric resin
US9335667B1 (en) * 2015-04-02 2016-05-10 Xerox Corporation Carrier for two component development system
JP2018155912A (en) * 2017-03-17 2018-10-04 コニカミノルタ株式会社 Toner for electrostatic charge image development
US11628494B2 (en) 2019-03-29 2023-04-18 Xerox Corporation Surface additive for three-dimensional metal printing compositions

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590000A (en) * 1967-06-05 1971-06-29 Xerox Corp Solid developer for latent electrostatic images
US3800588A (en) * 1971-04-30 1974-04-02 Mts System Corp Multiple axis control system for vibration test apparatus
US4298672A (en) * 1978-06-01 1981-11-03 Xerox Corporation Toners containing alkyl pyridinium compounds and their hydrates
US4338390A (en) * 1980-12-04 1982-07-06 Xerox Corporation Quarternary ammonium sulfate or sulfonate charge control agents for electrophotographic developers compatible with viton fuser
JPS6177863A (en) * 1984-09-26 1986-04-21 Konishiroku Photo Ind Co Ltd Color developer for developing electrostatic charge image
US4935326A (en) * 1985-10-30 1990-06-19 Xerox Corporation Electrophotographic carrier particles coated with polymer mixture
US4937166A (en) * 1985-10-30 1990-06-26 Xerox Corporation Polymer coated carrier particles for electrophotographic developers
JP2759528B2 (en) * 1989-12-01 1998-05-28 キヤノン株式会社 Color developer
JP2643568B2 (en) * 1990-09-10 1997-08-20 三田工業株式会社 Two-component developer
US5302486A (en) * 1992-04-17 1994-04-12 Xerox Corporation Encapsulated toner process utilizing phase separation
US5290654A (en) * 1992-07-29 1994-03-01 Xerox Corporation Microsuspension processes for toner compositions
JPH06324523A (en) * 1993-05-12 1994-11-25 Konica Corp Electrostatic charge image developer carrier
US5631116A (en) * 1993-08-23 1997-05-20 Konica Corporation Carrier for electrophotographic use
JP3397483B2 (en) * 1993-12-29 2003-04-14 キヤノン株式会社 Electrophotographic carrier, manufacturing method thereof, two-component developer, and image forming method
JPH10104879A (en) * 1996-10-03 1998-04-24 Konica Corp Electrostatic charge image developer and developing method
US6063827A (en) * 1998-07-22 2000-05-16 Xerox Corporation Polyester process
US6214507B1 (en) * 1998-08-11 2001-04-10 Xerox Corporation Toner compositions
US6042981A (en) * 1998-08-26 2000-03-28 Xerox Corporation Coated carrier
US5935750A (en) * 1998-08-26 1999-08-10 Xerox Corporation Coated carrier
US6120967A (en) * 2000-01-19 2000-09-19 Xerox Corporation Sequenced addition of coagulant in toner aggregation process
US6355391B1 (en) * 2000-11-28 2002-03-12 Xerox Corporation Micro-powder coating for xerographic carrier
JP4292715B2 (en) * 2001-01-16 2009-07-08 コニカミノルタホールディングス株式会社 Two-component developer and carrier production method
US6593049B1 (en) * 2001-03-26 2003-07-15 Xerox Corporation Toner and developer compositions
JP2003345065A (en) * 2002-05-22 2003-12-03 Konica Minolta Holdings Inc Electrostatic charge image developing black toner, method for manufacturing it and two-component developer
US6756176B2 (en) * 2002-09-27 2004-06-29 Xerox Corporation Toner processes
US6830860B2 (en) * 2003-01-22 2004-12-14 Xerox Corporation Toner compositions and processes thereof
US7014971B2 (en) * 2003-03-07 2006-03-21 Xerox Corporation Carrier compositions
JP2006039532A (en) * 2004-06-25 2006-02-09 Canon Inc Carrier for electrophotographic developer
JP4513624B2 (en) * 2005-03-25 2010-07-28 富士ゼロックス株式会社 Full color image forming method
JP2008209836A (en) * 2007-02-28 2008-09-11 Konica Minolta Business Technologies Inc Electrostatic latent image developing carrier, and electrostatic latent image developer
JP2008233763A (en) * 2007-03-23 2008-10-02 Fuji Xerox Co Ltd Electrophotographic carrier, and electrophotographic developer, electrophotographic developer cartridge, process cartridge, and image forming apparatus each using the carrier

Also Published As

Publication number Publication date
CA2717668A1 (en) 2011-04-22
BRPI1003709A2 (en) 2013-07-09
US8389191B2 (en) 2013-03-05
US20110097662A1 (en) 2011-04-28
JP2011090302A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
CA2717668C (en) Coated carriers
CA2734197C (en) Coated carriers
US8617780B2 (en) Toner having titania and processes thereof
CA2714737C (en) Coated carriers
CA2794536C (en) Powder coated carrier
CA2714795C (en) Coated carriers
US9069275B2 (en) Carrier resins with improved relative humidity sensitivity
CA2852484A1 (en) Carrier resins with improved rh sensitivity
US9221929B2 (en) Carrier resins with improved relative humidity sensitivity
US20110091805A1 (en) Toner compositions
US11281119B1 (en) Toner surface additive
US11169461B1 (en) Toner surface additive
US8889329B1 (en) Alumina nanotubes as a toner additive to reduce impaction
CA2838542C (en) Toner additives

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20201015