CA2844876A1 - Filamentary fixation device and assembly and method of assembly, manufacture and use - Google Patents

Filamentary fixation device and assembly and method of assembly, manufacture and use Download PDF

Info

Publication number
CA2844876A1
CA2844876A1 CA2844876A CA2844876A CA2844876A1 CA 2844876 A1 CA2844876 A1 CA 2844876A1 CA 2844876 A CA2844876 A CA 2844876A CA 2844876 A CA2844876 A CA 2844876A CA 2844876 A1 CA2844876 A1 CA 2844876A1
Authority
CA
Canada
Prior art keywords
retriever
pathway
working
filamentary
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2844876A
Other languages
French (fr)
Inventor
Charles Mccartney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmedica Osteonics Corp
Original Assignee
Howmedica Osteonics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howmedica Osteonics Corp filed Critical Howmedica Osteonics Corp
Publication of CA2844876A1 publication Critical patent/CA2844876A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0485Devices or means, e.g. loops, for capturing the suture thread and threading it through an opening of a suturing instrument or needle eyelet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0406Pledgets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0458Longitudinal through hole, e.g. suture blocked by a distal suture knot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • A61B2017/0475Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery using sutures having a slip knot

Abstract

The present invention, in one embodiment, includes a method of assembling a filamentary fixation device including obtaining a filamentary sleeve having a pathway therethrough, and a loading member and retriever member each positioned through at least a portion of the pathway, engaging a working suture with the retriever member, positioning at least a portion of the working suture in the pathway using the retriever member, and engaging the working suture with the loading member.

Description

OSTEONICS 3.0-921 CA
FILAMENTARY FIXATION DEVICE AND ASSEMBLY AND METHOD OF
ASSEMBLY, MANUFACTURE AND USE
BACKGROUND OF THE INVENTION
[0001]
Suture anchors are devices useful for fixing damaged soft tissue, such as tendons and ligaments, to bone.
Presently, certain of these devices may be secured to bone either through a solid-body anchor having threaded mechanism or interference fit. Generally, these devices are constructed from metal, polymer, or bioresorbable material. Consequently, these suture anchor devices tend to be rigid structures that require a minimum amount of material to provide the strength needed to prevent catastrophic failure.
This minimum amount of material dictates the volume of bone that must be removed for implantation to occur, which may be significant.
[0002]
Further, current suture anchors typically include an eyelet at one end containing the suture designated for anchoring.
This configuration commonly requires the suture anchor to be inserted into bone first, at which point the suture is passed through the target tissue where it is tensioned and tied-off with a surgical knot.
Unfortunately, these knots may loosen or come undone compromising the procedure. Additionally, setting the proper tension may prove difficult as the operator may not be aware of the final tension of the suture until the surgical knot is set.
[0003]
Thus, there is a need for an all filament anchor that provides for less bone removal during pilot hole creation without compromising pullout strength and provides flexibility in setting the optimum suture tension without the need for a complex surgical knot.
BRIEF SUMMARY OF THE INVENTION
[0004]
Generally, the present invention includes devices, assemblies, systems, kits and methods of manufacture, assembly and use for the repair of soft tissue.
Specifically, in one embodiment, the present invention includes a filamentary OSTEONICS 3.0-921 CA
fixation device having a filamentary sleeve, loading member, and retriever member. In another embodiment of the present invention, the filamentary fixation device may have the filamentary sleeve, loading member, and a working suture. The filamentary fixation device can be used to anchor damaged soft tissue to bone.
[0005]
According to a first embodiment of the present invention, a method of assembling a filamentary fixation assembly, including obtaining a filamentary sleeve having a pathway therethrough, a loading member positioned through at least a portion of the pathway, and a retriever member positioned through at least a portion of the pathway. The method also includes engaging a working suture with the retriever member.
Additionally, the method includes positioning at least a portion of the working suture in the pathway using the retriever member.
Further included in the method is the step of engaging the working suture with the loading member.
[0006]
Further, the positioning step may include tensioning the retriever member such that at least a portion of the working suture may be disposed within the pathway and the working tails may pass through the pathway. Additionally, the step of engaging the working suture with the loading member may include tying the working tails into a sliding knot around the loading member. Further, the method may thus include the additional step of tensioning the loading member such that the sliding knot passes into the pathway.
[0007] Continuing with this embodiment, the retriever member may include a first end and a second end with the first end including a first loop configuration. The loading member may also include a first end and a second end, with the first end including a second loop configuration. Further, the filamentary sleeve may include a first end and a second end.
The retriever member may be positioned through the pathway of OSTEONICS 3.0-921 CA
the filamentary sleeve such that the first loop configuration may extend from the first end of the filamentary sleeve and the second end may extend from the second end of the filamentary sleeve.
Similarly, the loading member may be positioned through the pathway of the filamentary sleeve such that the second loop configuration may extend from the second end of the filamentary sleeve and the first end may extend from the first end of the filamentary sleeve. As such, the engaging the retriever member with the working suture may include passing the working tails through the loop configuration.
Further, the step of positioning at least a portion of the working suture in the pathway using the retriever member can include tensioning of the retriever member by pulling on the second end of the retriever member to pull the working suture into the pathway.
Additionally, the aforementioned tying step may include tying the working tails through the second loop configuration of the loading member.
Further, tensioning of the loading member may include pulling the second end of the loading member to pull the sliding knot into the pathway.
[0008] In another embodiment of the present invention, a filamentary 'fixation assembly includes a filamentary sleeve constructed entirely of filamentary material and having a pathway extending therethrough.
Further included in the assembly is a loading member, which includes a first loop and at least one loading tail that is at least partially disposed within the pathway.
Additionally, a working suture, which includes at least a first working tail, is included in the assembly.
[0009] The assembly can further include a retriever member.
The retriever member may be at least partially disposed within the pathway and include a second loop and at least one retriever tail. The second loop may be positioned opposite OSTEONICS 3.0-921 CA
the first loop, and the at least one retriever tail may be positioned adjacent the first loop.
[0010]
Further, the loading member may be constructed from a single line of filament.
Further, the first loop may be formed by folding the single line of filament along its length, and the at least one loading tail may be two loading tails.
Alternatively, the first loop may be a pre-formed loop, and the at least one loading tail may extend from the first loop.
[0011]
Moreover, the retriever member may be constructed from a single line of filament. Further, the second loop may be formed by folding the single line of filament along its length, and the at least one retriever tail may be two retriever tails. Alternatively, the second loop may be a pre-formed loop, and the at least one retriever tail may extend from the second loop. Optionally, the retriever member may be constructed from memory metal. In another alternative, the filamentary sleeve may have a sidewall defined by the pathway, the sidewall having a plurality of pass-throughs disposed along one side of the filamentary sleeve.
[0012] In a further embodiment of the present invention, a method of anchoring tissue to bone using a filamentary sleeve is disclosed herein. The filamentary sleeve includes a pathway therethrough and a retriever member and loading member at least partially disposed within the pathway. The method includes engaging the retriever member with working tails of a working suture connected to the tissue, tensioning the retriever member such that at least a portion of the working suture is disposed within the pathway and the working tails pass through the pathway, inserting the filamentary sleeve into a bore hole in bone such that the loading member and working suture extend from the bore hole, tying the 'working tails into a sliding knot around the loading member and tensioning the loading member such that the sliding knot OSTEONICS 3.0-921 CA
passes into the pathway, thereby fixedly securing the filamentary sleeve within the bore hole.
[0013]
Optionally, the sliding knot may be a half-hitch knot. Further, the step inserting of the sleeve into the bore hole may occur prior to the tying step. Optionally, the step inserting of the sleeve into the bore hole may occur prior to the step of engaging the retriever member with the working tails.
[0014]
Continuing with this embodiment, the method may further include the step of pulling on either or both the loading member and working suture to deploy the filamentary sleeve within the bore hole. Additionally, the filamentary sleeve can be constructed entirely of filamentary material and includes a sidewall defined by the pathway. The sidewall may optionally include a plurality of pass-throughs disposed along one side of the filamentary sleeve.
[0015] Continuing with this embodiment, the retriever member may include a first end and a second end. The first end may include a first loop configuration. The loading member may also include a first end and a second end where this first end may have a second loop configuration.
Also, the filamentary sleeve may include a first end and a second end. The retriever member may be positioned through the pathway of the filamentary sleeve such that the first loop configuration extends from the first end of the filamentary sleeve and the second end may extend from the second end of the filamentary sleeve.
Also, the loading member may be positioned through the pathway of the filamentary sleeve such that the second loop configuration may extend from the second end of the filamentary sleeve and the first end may extend from the first end of the filamentary sleeve.
[0016]
Further, the step of engaging may include passing the working tails through the loop configuration, and thestep of tensioning of the retriever member may include pulling on OSTEONICS 3.0-921 CA
the second end of the retriever member to pull the working suture into the pathway.
[0017]
Moreover, continuing with this embodiment, the step of tying may include tying the working tails through the second loop configuration of the loading member, and the step of tensioning of the loading member may include pulling the second end of the loading member to pull the sliding knot into the pathway.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018]
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
[0019]
FIG. 1A shows a perspective view of an embodiment of a filamentary fixation device having a first embodiment of a filamentary sleeve.
[0020]
FIG. 1B shows a perspective view of the filamentary fixation device of FIG. 1A having a second embodiment of the filamentary sleeve.
[0021]
FIGS. 2-8 show subsequent steps of an exemplary method of use and assembly illustrated using the filamentary fixation device of FIG. 1A.
DETAILED DESCRIPTION
[0022]
FIG. lA depicts an embodiment of a filamentary fixation assembly 10, which includes a filamentary sleeve 30, a retriever member 40, and a loading member 20. The filamentary sleeve 30 may be cylindrical in shape and include a pathway 33 extending therethrough and a wall thickness 36 defined between the pathway 33 and an outer surface of the sleeve 30.
[0023] In a substitute embodiment of the filamentary sleeve 30, the filamentary sleeve 30 may be provided with an alternative configuration as illustrated in FIG. 1B. In such embodiment, the filamentary sleeve 30' may be generally OSTEONICS 3.0-921 CA
cylindrical with a plurality of pass-throughs 31.
A set of these pass-throughs 31 may provide filamentary material positioned within pathway 33, such as retriever member 40, loading member 20, and working suture 50, to instead have an alternative configuration relative to sleeve 30'.
For example, the filamentary material (e.g., member 40, member 20, suture 50) extends through a portion of the pathway, exits the pathway 33 by traversing wall thickness 36 at a pass-through 31, where it travels externally along apportion of the length of the filamentary sleeve 30', then re-enters the pathway 33 at another pass-through 31 where it continues through another portion of the pathway 33.
These pass-throughs 31 may be symmetrically disposed along one side of the filamentary sleeve 30'. The symmetrical arrangement is such that when the filamentary sleeve 30' is folded in half at least one pass-through 31 will face an opposing pass-through 31. These pass-.
throughs 31 may also facilitate folding and compressing of the filamentary sleeve 30' by drawing together discrete portions of the filamentary sleeve that are disposed between the pass-throughs as the filamentary material disposed within and through the pass-throughs are tensioned. ). Moreover, such pass-throughs may result in greater fixation strength with a bore hole to be prepared in the bone (if used in this manner, as described further below).
Further, these pass-throughs 31 may facilitate a solid anchoring position where the filamentary sleeve 30' is folded and inserted into a bore hole 81 in bone 80.
As such, a pulling force, typically originating from the filamentary material passing through the filamentary sleeve 30', creates a deploying friction between the filamentary sleeve 30' and bore hole 81 (if present, as in FIGS. 4 and 5). This friction buckles the filamentary sleeve 30' material between the pass-throughs 30' causing them to expand outwardly against the bore hole 81, thereby significantly increasing the friction against the bone, which OSTEONICS 3.0-921 CA
provides for a very strong anchor. In one example, the filamentary sleeve 31' can be the Iconix all suture anchor system (Howmedica Osteonics, Mahwah, NJ). Additional example are disclosed in U.S. Provisional Application No. 61/679,336, filed August 3, 2012, U.S. Application Nos. 13/303,849, filed November 23, 2011, 13/588,586, filed August 17, 2012, and 13/588,592, filed August 17, 2012, and U.S. Patent Nos.
5,989,252 and 6,511,498, the entireties of which are incorporated by reference herein as if fully set forth herein and all of which are assigned to the same entity as the present application. As described in certain of these references, the pass-throughs can alternatively be positioned elsewhere on the sleeve such that they may or may not be symmetrical. Moreover, in another alternative, the sleeve could include a set of pass-throughs in the middle of the sleeve, along or in addition to one or more other sets of pass-throughs. Such a set ofpass-through in the middle of the sleeve could also make folding the sleeve over an insertion instrument (not shown) easier, and thus also result in a more condensed structure on such an instrument, which thereby could necessitate a smaller bore hole in bone. While any of these sleeves (including sleeves 30 and 30') could be used in the present invention, sleeve 30 is illustrated throughout the various disclosed embodiments for reasons of clarity and simplicity.
[0024] In one embodiment of the retriever member 40, the retriever member 40 may include a retriever loop 41 that is a pre-formed loop and one retriever tail 42 extending therefrom, as illustrated in FIGS. lA and 1B.
Alternatively, the retriever member 40 could have a plurality of retriever tails (not shown) extending from the retriever loop 41. In one such configuration, the retriever member 40 may be constructed from a single line of filament wherein the retriever loop 41 and tail 42 are formed by a locking Brummel splice, as is known in OSTEONICS 3.0-921 CA
the art.
However, the locking Brummel splice is merely an example of the various approaches known in the art for forming a retriever loop 41 and a single retriever tail 42 or a plurality of retriever tails (not shown) extending therefrom.
Another example of the above mentioned configuration is a suture shuttle constructed from memory metal materials, such as nitinol, an example of which is disclosed in U.S.
Provisional Application No. 61/755,654, filed January 1, 2013 the entirety of which is incorporated by reference herein as if fully set forth herein and which is assigned to the same entity as the present application. Other alternative examples are illustrated in the above applications incorporated by reference, specifically the '336, '586 and '592 applications.
[0025] In an alternative embodiment of the retriever member 40 the retriever member 40 may be a single line of filament (not shown). In such an embodiment, the single line of filament may be folded along its length forming a retriever loop and a pair of retriever tails (not shown). An example of such an alternative is illustrated in U.S. Application No.
13/783,804, filed March 4, 2013, the entirety of which is incorporated by reference herein as if fully set forth herein and which is assigned to the same entity as the present application.
[0026] The loading member 20 may be similarly configured to that of the retriever member 40, and thus may have any of the above arrangements as described above as to the retriever member 40. In one embodiment, as illustrated in FIGS. 1A and 1B, the loading member 20 may be constructed from a single line of filament that may be folded along its length to form a loading loop 22 and a pair of loading tails 21.
[0027] In an alternate embodiment (not shown), the loading member 20 may include a loading loop that is a pre-formed loop and one loading tail, or a plurality of loading tails, extending from the loading loop. In one such configuration, OSTEONICS 3.0-921 CA
the loading member 20 may be constructed from a single line of filament wherein the loading loop and tail are formed by a locking Brummel splice, as is known in the art. However, the locking Brummel splice configuration is merely an example of the various approaches known in the art for forming a single loop with a tail extending therefrom, any of which may be utilized.
Thus, while FIGS. lA and 1B (and throughout FIGS.
2-8) illustrate a preferred embodiment of both the loading loop 20 and retriever member 40, they may instead be present in a variety of other configurations, and may have similar or different configurations from one another as desired.
[0028]
Continuing with the embodiment of the filamentary fixation assembly 10 as illustrated in FIG. 1A, the retriever member 20 may be partially disposed within a pathway 33 of the filamentary sleeve 30 such that the retriever loop 41 extends out of one side 34 of the filamentary sleeve 30 and the retriever tail 42 extends from the from the other side 35 of the filamentary sleeve 30. The loading loop 40 may also be partially disposed within the pathway 33 such that the loading loop 22 extends out of one side 35 of the filamentary sleeve 30 and the loading tails 21 extend out of the other side 34.
Generally, the loading loop 22 is positioned on the opposite side 35 of filamentary sleeve 30 as the retriever loop 41, but on the same side 35 and adjacent to the retriever tail 42.
[0029]
FIG. 3 depicts another embodiment of the filamentary fixation assembly 10', which may include the filamentary sleeve 30, the loading member 20, and a working suture 50.
The filamentary sleeve 30 and loading member 20 may be of any of the embodiments and configurations as described in the above embodiment of the filamentary fixation assembly 10.
[0030] In one embodiment of the working suture 50, the working suture may be constructed from a single line of filament that may be folded along its length to form a pair of working tails 51.

OSTEONICS 3.0-921 CA
[0031] In an alternate embodiment of the working suture 50, the working suture 50 may include a pre-formed loop and at least one working tail extending from the pre-formed loop (not shown). In one such configuration, the working suture 50 may be constructed from a single line of filament wherein the pre-formed loop and working tail are formed by a locking Brummel splice, as is known in the art. However, the locking Brummel splice configuration is merely an example of the various approaches known in the art for forming a single loop with a tail extending therefrom, any of which may be utilized. An example of such a working suture can be found in the above, incorporated by reference, '804 Application, as well as U.S.
Application No. 13/441,290, filed April 6, 2012, the entirety of which is incorporated by reference herein as if fully set forth herein and which is assigned to the same entity as the present application.
Such working sutures may be secured to the tissue 60 by, for example, passing a free end around or through the tissue, and then through the pre-formed loop. The free end may then be tensioned to pull the loop against the tissue, similar to a "luggage tag" configuration.
[0032] As has been described in the prior embodiment of the filamentary fixation assembly 10, the loading member 20 is partially disposed within the pathway 33 of the filamentary sleeve 30 such that the loading loop 22 extends out of one side 35 of the filamentary sleeve 30 and the loading tails 21 extend from the other side 34. The working suture 50 also may be partially disposed within the pathway 33 such that the working tails 51 extend from the filamentary sleeve 30 on the same side 35 as and adjacent to the loading loop 22. In some embodiments, the working tails 51 may be tied around the loading loop 22 in a sliding knot configuration, such as a half-hitch knot, as discussed further below.
[0033] As will be described in greater detail below, assembly 10' can be assembled from assembly 10 using retriever OSTEONICS 3.0-921 CA
member 40, or a similar device suitable to pass the tails 51 of working suture 50 through sleeve 30.
[0034] The filamentary sleeve 30, retriever member 40, loading member 20 and working suture 50 may be constructed from filamentary material, such as homogenous or heterogeneous materials including, but not limited to, polyester, polyethylene (including ultra-high molecular weight polyethylene (UHMWPE)), polytetrafluorethylene (including expanded polytetrafluorethylene), nylon, polypropylene, aramids (such as Kevlar-based materials), polydioxanone, polygycolic acid, and organic material (silk, animal tendon, or the like).
Further, the retriever member 40 may be constructed from memory metal material such as nitinol, and the filamentary sleeve 30 may be entirely constructed from filamentary material.
Therefore, the filamentary fixation device 10, 10' may be, and is preferably, constructed entirely from filamentary material.
[0035] The filamentary fixation device 10, 10' may be provided to the user in any number of arrangements. In one arrangement, the end user may be provided the embodiment of the filamentary fixation assembly 10 that includes the loading member 20 and retriever member 40 disposed within the pathway 33 of the filamentary sleeve 30.
However, in another arrangement, the user may be provided this embodiment of the filamentary fixation device 10 along with the working suture 50 disassembled from the filamentary fixation device 10. In such a circumstance, the user may convert this embodiment into the other embodiment of the filamentary fixation device 10' that includes the loading loop 20 and working suture 50 disposed within the pathway 33 of the filamentary sleeve 30.
However, in another arrangement, the user may only be provided the filamentary fixation assembly 10'.
[0036] In another arrangement, a kit may be provided with a filamentary sleeve 30, loading member 20, retriever member 40, OSTEONICS 3.0-921 CA
and working suture 50 either in assembled form or unassembled leaving it to the user to arrange the device as he or she desires for a particular application. If the device comes to the user unassembled, the kit may further include a suture passing device, such as any of the variations of retriever member 40 and loading member 20 described above. Preferably, if included, such a suture passer would be manufactured from metal wire to provide adequate rigidity in passing the various filaments through the sleeve 30.
Alternatively, the working suture 50, retriever member, and/or loading member may be provided affixed to a needle (not shown) to provide the adequate rigidity for passing through sleeve 30. Any kit of the present invention may include a plurality of any or all of the sleeve 30, member 20, member 40 and/or suture 50.
[0037] The present invention also includes a method of assembly of one embodiment of the filamentary fixation device 10, including a filamentary sleeve 30, loading member 20, and retriever member 40, is now described. In this embodiment, the filamentary sleeve 30, retriever member 40, and loading member 20 may be obtained unassembled and preferably constructed from filamentary material. The loading member 20 is positioned into the pathway 33 of the filamentary sleeve 30 such that the loading loop 22 and loading tails 21 extend from the filamentary sleeve 30 at opposing sides as shown in FIG.
1. The retriever member 40 may then be positioned within the pathway 33 such that the retriever loop 41 extends from the same side 34 of the filamentary sleeve 30 as that of the loading tails 21, and the retriever tail 42 extends from the same side 35 as the loading loop 22. While the loading member 20 is described herein as being positioned within the pathway 33 prior to the retriever member 40, the retriever member 40 may be positioned within the pathway 33 first. It is envisioned that a method may also entail the use of a suture passer, as described above.

OSTEONICS 3.0-921 CA
[0038] In another embodiment of the filamentary fixation device 10', the working suture 50 and filamentary sleeve 30 may be obtained, wherein the filamentary sleeve 30 includes the loading member 20 and retriever member 40 disposed within the pathway 33 of the filamentary sleeve 30, such that the loading loop 20 and retriever tails 42 extend from one side of the filamentary sleeve 30 and the retriever loop 41 and loading tails 21 extend from the other. The working suture 50 may be placed into an engagement configuration with the retriever member 40.
This engagement configuration could include simply passing the working tails 42 through the retriever loop 41 or tying the working tails 42 to the retriever loop 41. The retriever member 40 is then tensioned at the retriever tail 42 such that a portion of the working suture 50 enters into the pathway 33 of filamentary sleeve 30, and preferably such that the working tails 51 extend from the same side 35 of the filamentary sleeve 30 as the loading loop 22. The working tails 51 may then be tied to the loading loop 22 in a sliding knot configuration, preferably a half-hitch knot 52, as shown in FIG. 5.
Tension may then be applied to the working tails 51 and a working loop 52 located opposite the working tails 51 in an opposite direction.
Simultaneously, tension may be applied to the loading tails 21 such that the half-hitch knot 52 enters into the pathway 33 of the filamentary sleeve 30. In this fashion, the working suture 50 may be fixedly secured to the sleeve 30.
[0039] The filamentary fixation assembly 10, 10' may be used in soft tissue repair procedures to fix soft tissue to bone as illustrated in FIGS. 2-8, for example.
Such soft tissue repair can be performed in any soft tissue, include such tissue in the foot, ankle, hand, wrist, elbow, hip and shoulder, and in particular soft tissue repair of the rotator cuff and labrum in the hip and shoulder. FIGS. 2-8 illustrate one embodiment of such a method of repair, as performed OSTEONICS 3.0-921 CA
specifically in the reattachment of the labrum to the glenoid, though this method may be useful and be performed in other soft tissues of the body.
[0040]
Initially in this embodiment, as illustrated in FIG.
2, the working suture 50 may be passed around or through the tissue 60 designated for repair. Where the working suture 50 is a single line of filament, one end of the filament may be passed through the tissue 60, as seen in FIG. 2, using a suture passer, as is known in the art, or other techniques that are known in the art. In other instances, the single line of filament many be folded along its length forming a looped-end 52 and a pair of working tails 51, in which case the looped-end 52 is passed through the tissue and the working tails 51 are passed through the looped-end 52 around a portion of the tissue in a "luggage-tag" configuration (not shown).
This "luggage-tag" configuration may also be utilized where the working suture 50 includes the pre-formed loop and single working tail extending from the pre-formed loop as described above, or where the working suture 50 is provided pre-assembled with the filamentary sleeve 30, also described above, in which case the entire filamentary fixation assembly 10' would be passed through the looped end (not shown). It is noted that where the working suture 50 is provided already assembled to the filamentary sleeve 30 in conjunction with the loading loop 20, the following steps utilizing the retriever loop 40 may be skipped.
[0041]
Continuing with this embodiment, and with reference to FIG. 2, the filamentary fixation assembly 10 may be introduced to the surgical repair site where the working tails 51 engage the retriever loop 41 of the retriever member 40.
This engagement can be as simple as threading the working tails 51 through the retriever loop 41. The retriever member 40 is then tensioned at the retriever tail 42 as demonstrated by arrow 30.
This tension passes the retriever loop 41 OSTEONICS 3.0-921 CA
through the pathway 33 of the filamentary sleeve such that the working suture 50 is partially disposed within the filamentary sleeve 30 and the working tails 51 extend from the pathway 33 and reside adjacent the loading loop 22, as shown in FIG. 3.
[0042]
With the loading member 20 and working suture 50 now disposed within the filamentary sleeve 30 as shown in FIG. 3, the filamentary sleeve 30 may be folded and inserted into a bore hole 81 that has been formed in bone 80 such that both ends of the loading member 20 and working suture 50 extend from the bore hole 81 as shown in FIG. 4A. The bore hole 81 is generally formed in cancelleous bone 82 through cortical bone 83, and the filamentary sleeve 30 is generally inserted into the cancellous region of the bore hole 81, as shown.
Once the filamentary sleeve 30 is inserted in the bore hole 81, either or both the loading member 20 and working suture 50 may be tensioned to deploy sleeve 30 and firmly seat the sleeve 30 within the bore hole 81.
Such deployment is described in many of the above-incorporated applications. Due to the relatively thin nature of the filamentary sleeve 30 and filamentary material located therein, the bore hole 81 may generally be very small as compared to the bore hole 81 necessary to accommodate a current rigid suture anchor, thereby preserving native bone. For example, the sleeve 30 may be constructed of #5 suture, and working suture 50 and loading member 20 may both be constructed of #2 suture. Thus, in a preferred embodiment, bore hole 81 may have a diameter of about 2.3 mm.
[0043]
While the engagement of the working tails 51 to the retriever loop 41 is described as occurring prior to folding and inserting the filamentary sleeve 30 into the bore hole 81, this is merely an illustrative order of performance, and indeed, has been presented in this manner for the sake of clarity of illustration. In a preferred embodiment, the filamentary sleeve 30 may be folded and inserted into the bore OSTEONICS 3.0-921 CA
hole 81 prior to engaging the working tails 51 with the retriever loop 41. As such, the configuration as in FIG. 4B
would instead be achieved by first inserting and deploying sleeve 30 in bore hole 81, followed by passing the tails 51 through retriever loop 41. Then, in such an alternative, the working tails would be passed through the pathway 33, as detailed above, while the filamentary sleeve 30 is folded and deployed within the bore hole 81.
[0044]
Referring to FIG. 5, the working tails 51 are then engaged with loading loop 22. For example, as illustrated, the tails 51 may be tied through the loading loop 22 preferably in a simple half-hitch knot 52. While a half-hitch knot 52 is shown, any sliding knot that can be locked from further sliding that is known in the art may be utilized.
Further, the tying of the half-hitch knot 52 may be performed prior to inserting the filamentary sleeve 30 in the bore hole 81 or after.
[0045]
Referring to FIGS. 6 and 7, with the half-hitch knot 52 tied through the loading loop 22, the loading tails 21 are tensioned as demonstrated by arrow 71.
Contemporaneous with the tensioning of the loading tails 21, the working tails 51 are tensioned as demonstrated by arrow 72. The tension on the loading tails 21 pulls the half-hitch knot 52 resulting in the sliding of half-hitch 52 toward the bore hole 81 and filamentary sleeve 30 as illustrated by FIG. 6, while the tension on the working tails 51 allows the working suture 50, and thus tissue 60, to be tensioned.
Further, tension on the tails 51 can allow the half-hitch 52 to slide along the working suture 50, while suture 50 and tissue 60 are tensioned and drawn towards bone hole 81, while preventing the working tails 51, and half-hitch 52, to prematurely move into the bore hole 81 and sleeve 30.
Further, the tension on the working tails 51 may contract the half-hitch knot 52 and allow the user to maintain appropriate tension on the working suture 50 OSTEONICS 3.0-921 CA
and the tissue 60 while the half-hitch 52 is slid into the filamentary sleeve 30, as seen in FIG. 7.
[0046] As the knot 52 enters into the pathway 33, the knot 52 may become trapped by the fold 32 (or other material of sleeve 30), at which point further tension on the working tails 51 and loading tails 21 further contracts the half-hitch knot 52, until the working suture 50 and sleeve 30 are fixedly secured with one another and the engagement is so tight that it is no longer capable of sliding, thereby effectively securing the tissue 60.
Further, as the half-hitch 52 contracts and tightens, the material forming the knot 52 may become localized at a point, which further expands the filamentary sleeve 30 against the bore hole 81, providing added anchoring support. This mechanism may provide the user the ability to maintain the desired tension of the working suture 50 up until the half-hitch 52 is locked into position, thereby setting the desired tension into the working suture 50 and tissue 60. The working tails 51 and loading member 20 are trimmed close to the surface of the bone 80 resulting in a configuration as shown in FIG. 8 where the filamentary sleeve 30 is fixedly secured in the bore hole 81 and the half-hitch 52 fixedly secures the working suture 50, sleeve 30 and tissue 60 to one another and to the bore hole 81.
Thus, as illustrated, a portion of the loading member 20 can remain within the filamentary sleeve 30.
[0047] In another embodiment, the present invention includes a system for the repair of soft tissue including at least one filamentary fixation assembly (including or in addition to a working suture 50), at least one instrument for insertion of the filamentary fixation assembly, and a surgical procedure. The surgical procedure may include instructions or protocol for using the filamentary fixation assembly and instrument to repair soft tissue. The protocol may include aspects of any of the above-discussed embodiments, though OSTEONICS 3.0-921 CA
other variations are also envisioned within the scope of the present invention.
[0048] In an associated embodiment, the present invention includes a method of providing instructions or information to practice any of the various methods of performing soft tissue repair described herein. For example, the method may include supplying a surgical protocol, or like document, to provide step-by-step instructions for performing any of the method embodiments of the present invention.
[0049]
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (24)

IN THE CLAIMS:
1. A method of assembling a filamentary fixation assembly, comprising the steps of:
obtaining a filamentary sleeve having a pathway therethrough, a loading member positioned through at least a portion of the pathway, and a retriever member positioned through at least a portion of the pathway;
engaging a working suture with the retriever member;
positioning at least a portion of the working suture in the pathway using the retriever member; and engaging the working suture with the loading member.
2. The method of claim 1, wherein the positioning step includes tensioning the retriever member such that at least a portion of the working suture is disposed within the pathway and the working tails pass through the pathway.
3. The method of claim 2, wherein the step of engaging the working suture with the loading member includes tying the working tails into a sliding knot around the loading member.
4. The method of claim 3, further comprising the step of tensioning the loading member such that the sliding knot passes into the pathway.
5. The method of claim 4, wherein the retriever member includes a first end and a second end, the first end having a first loop configuration, the loading member includes a first end and a second end, the first end having a second loop configuration, and the filamentary sleeve including a first end and a second end, wherein the retriever member is positioned through the pathway of the filamentary sleeve such that the first loop configuration extends from the first end of the filamentary sleeve and the second end extends from the second end of the filamentary sleeve and the loading member is positioned through the pathway of the filamentary sleeve such that the second loop configuration extends from the second end of the filamentary sleeve and the first end extends from the first end of the filamentary sleeve.
6. The method of claim 5, wherein the step of engaging a working suture with the retriever member includes passing the working tails through the loop configuration and the step of positioning at least a portion of the working suture in the pathway using the retriever member includes tensioning the retriever member by pulling on the second end of the retriever member to pull the working suture into the pathway.
7. The method of claim 6, wherein the tying step includes tying the working tails through the second loop configuration of the loading member and the tensioning of the loading member step includes pulling the second end of the loading member to pull the sliding knot into the pathway.
8. A filamentary fixation assembly, comprising:
a filamentary sleeve constructed entirely of filamentary material and having a pathway extending therethrough;
a loading member having a first loop and at least one loading tail being at least partially disposed within the pathway; and a working suture including at least a first working tail.
9. The assembly of claim 8, further comprising a retriever member at least partially disposed within the pathway, the retriever member having a second loop and at least one retriever tail, wherein the second loop is positioned opposite the first loop and the at least one retriever tail is positioned adjacent the first loop.
10. The assembly of claim 9, wherein:
the loading member is constructed from a single line of filament, the first loop being formed by folding the single line of filament along its length, and the at least one loading tail is two loading tails.
11. The assembly of claim 9, wherein the first loop is a pre-formed loop and the at least one loading tail extending therefrom.
12. The assembly of claim 9, wherein:
the retriever member is a constructed from a single line of filament, the second loop being formed by folding the single line of filament along its length, and the at least one retriever tail is two retriever tails.
13. The assembly of claim 9, wherein the second loop is a pre-formed loop and the at least one retriever tail extending therefrom.
14. The assembly of claim 13, wherein the retriever member is constructed from memory metal.
15. The assembly of claim 8, wherein the filamentary sleeve has a sidewall defined by the pathway, the sidewall having a plurality of pass-throughs disposed along one side of the filamentary sleeve.
16. A method of anchoring tissue to bone using a filamentary sleeve having a pathway therethrough and a retriever member and loading member at least partially disposed within the pathway, comprising the steps of:
engaging the retriever member with working tails of a working suture connected to the tissue;
tensioning the retriever member such that at least a portion of the working suture is disposed within the pathway and the working tails pass through the pathway;
inserting the filamentary sleeve into a bore hole in bone such that the loading member and working suture extends from the bore hole;
tying the working tails into a sliding knot around the loading member;
tensioning the loading member such that the sliding knot passes into the pathway, thereby fixedly securing the filamentary sleeve within the bore hole.
17. The method of claim 16, wherein the sliding knot is a half-hitch knot.
18. The method of claim 17, further comprising the step of pulling on either or both the loading member and working suture to deploy the filamentary sleeve within the bore hole.
19. The method of claim 16, wherein the inserting step is performed before the tying step.
20. The method of claim 16, wherein the inserting step is performed before the engaging step.
21. The method of claim 16, wherein the filamentary sleeve is constructed entirely of filamentary material and has a sidewall defined by the pathway, the sidewall having a plurality of pass-throughs disposed along one side of the filamentary sleeve.
22. The method of claim 16, wherein the retriever member includes a first end and a second end, the first end having a first loop configuration, the loading member includes a first end and a second end, the first end having a second loop configuration, and the filamentary sleeve including a first end and a second end, wherein the retriever member is positioned through the pathway of the filamentary sleeve such that the first loop configuration extends from the first end of the filamentary sleeve and the second end extends from the second end of the filamentary sleeve and the loading member is positioned through the pathway of the filamentary sleeve such that the second loop configuration extends from the second end of the filamentary sleeve and the first end extends from the first end of the filamentary sleeve.
23. The method of claim 16, wherein the engaging step includes passing the working tails through the loop configuration and the tensioning of the retriever member step includes pulling on the second end of the retriever member to pull the working suture into the pathway.
24. The method of claim 16, wherein the tying step includes tying the working tails through the second loop configuration of the loading member and the tensioning of the loading member step includes pulling the second end of the loading member to pull the sliding knot into the pathway.
CA2844876A 2013-03-11 2014-03-04 Filamentary fixation device and assembly and method of assembly, manufacture and use Abandoned CA2844876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/792,982 2013-03-11
US13/792,982 US9788826B2 (en) 2013-03-11 2013-03-11 Filamentary fixation device and assembly and method of assembly, manufacture and use

Publications (1)

Publication Number Publication Date
CA2844876A1 true CA2844876A1 (en) 2014-09-11

Family

ID=50238195

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2844876A Abandoned CA2844876A1 (en) 2013-03-11 2014-03-04 Filamentary fixation device and assembly and method of assembly, manufacture and use

Country Status (4)

Country Link
US (2) US9788826B2 (en)
EP (1) EP2777511A3 (en)
AU (1) AU2014200973A1 (en)
CA (1) CA2844876A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10058319B2 (en) 2009-07-17 2018-08-28 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system, including a novel locking element
US11197663B2 (en) 2009-07-17 2021-12-14 Stryker Puerto Rico Limited Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US10426456B2 (en) 2009-07-17 2019-10-01 Pivot Medical, Inc. Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US10238379B2 (en) 2009-07-17 2019-03-26 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US9149268B2 (en) 2009-07-17 2015-10-06 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US10136884B2 (en) 2009-07-17 2018-11-27 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system, including a retractable sheath
US9179905B2 (en) 2009-07-17 2015-11-10 Pivot Medical, Inc. Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US11246585B2 (en) 2009-07-17 2022-02-15 Stryker Puerto Rico Limited Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
EP3895625A1 (en) 2011-05-06 2021-10-20 Linvatec Corporation Soft anchor made from suture filament and suture tape
CA2839629A1 (en) 2011-06-29 2013-01-03 Pivot Medical, Inc. Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US9107653B2 (en) * 2011-09-22 2015-08-18 Arthrex, Inc. Tensionable knotless anchors with splice and methods of tissue repair
US9402620B2 (en) 2013-03-04 2016-08-02 Howmedica Osteonics Corp. Knotless filamentary fixation devices, assemblies and systems and methods of assembly and use
US9788826B2 (en) 2013-03-11 2017-10-17 Howmedica Osteonics Corp. Filamentary fixation device and assembly and method of assembly, manufacture and use
US10292694B2 (en) * 2013-04-22 2019-05-21 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone
US10610211B2 (en) 2013-12-12 2020-04-07 Howmedica Osteonics Corp. Filament engagement system and methods of use
AU2014362199B2 (en) 2013-12-12 2019-07-11 Stryker Puerto Rico Limited Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US9986992B2 (en) 2014-10-28 2018-06-05 Stryker Corporation Suture anchor and associated methods of use
US10335136B2 (en) 2015-08-20 2019-07-02 Arthrex, Inc. Tensionable constructs with multi-limb locking mechanism through single splice and methods of tissue repair
US10265060B2 (en) 2015-08-20 2019-04-23 Arthrex, Inc. Tensionable constructs with multi-limb locking mechanism through single splice and methods of tissue repair
WO2017087848A1 (en) * 2015-11-20 2017-05-26 The Uab Research Foundation, Inc. Knotless anchor devices and systems and uses thereof
US20180132841A1 (en) * 2016-11-11 2018-05-17 Arthrex, Inc. Soft anchor with tubular sheath having flared ends
US11019862B1 (en) * 2017-04-06 2021-06-01 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Grasp assist system with triple Brummel soft anchor
US20180344314A1 (en) * 2017-06-05 2018-12-06 Conmed Corporation Suture system and related methods for connecting and creating suspension between at least two bodies
US11911019B2 (en) 2017-07-13 2024-02-27 Conmed Corporation All-suture anchor
US10849734B2 (en) * 2018-08-16 2020-12-01 Arthrex, Inc. Methods of tissue repairs
IT201800020884A1 (en) 2018-12-21 2020-06-21 Alessandro Luci MORE SUTURE AND METHOD FOR ITS POSITIONING
US11712233B2 (en) 2020-06-03 2023-08-01 Arthrex, Inc. Soft surgical construct and method of use for tissue repair
US11344290B1 (en) * 2021-12-16 2022-05-31 Christopher Ninh Knotless labral repair techniques and related devices

Family Cites Families (476)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1308798A (en) 1919-07-08 Surgical instrument
US749624A (en) 1904-01-12 Dental bur
US1624530A (en) 1926-02-23 1927-04-12 Daniel Mastrolia Screw driver
US2073903A (en) 1936-04-14 1937-03-16 Maurice B O'neil Flexible tool
US2267925A (en) 1941-02-11 1941-12-30 Herbert A Johnston Fracture securing apparatus
US2382019A (en) 1944-05-02 1945-08-14 Miller Edwin August Compound screw
US2494229A (en) 1946-07-08 1950-01-10 John G Collison Bone surgery
US2515365A (en) 1947-03-31 1950-07-18 Edward Adolphus Zublin Flexible drill pipe
US2547571A (en) 1950-06-02 1951-04-03 Zimmer Mfg Company Hip fracture drill guide
US2808632A (en) 1952-04-29 1957-10-08 Shuford Mills Inc Combination knot and retaining means therefor
FR1166884A (en) 1957-02-19 1958-11-17 Beaudouin Ets Curved ear trephine
US2833284A (en) 1957-02-25 1958-05-06 Henry A Springer Patellar needle
US3384085A (en) 1964-07-03 1968-05-21 Robert M. Hall Surgical cutting tool
US3461875A (en) 1966-04-27 1969-08-19 Robert M Hall Rotary lateral osteal cutting bit
US3554192A (en) 1967-07-24 1971-01-12 Orthopedic Equipment Co Medullary space drill
GB1291704A (en) 1968-12-11 1972-10-04 Nat Res Dev Intra-uterine contraceptive
US3580256A (en) 1969-06-30 1971-05-25 Jack E Wilkinson Pre-tied suture and method of suturing
US3608095A (en) 1970-03-05 1971-09-28 Federal Tool Eng Co Method of fixing hair pieces to scalps
US3750671A (en) 1971-03-31 1973-08-07 Minnesota Mining & Mfg Surgical cutting tool adapter apparatus
US3810456A (en) 1972-04-03 1974-05-14 Medical Concepts Inc Abortifacient
US3845772A (en) 1973-09-17 1974-11-05 D Smith Retention suture device and method
US3892232A (en) 1973-09-24 1975-07-01 Alonzo J Neufeld Method and apparatus for performing percutaneous bone surgery
US3867932A (en) 1974-01-18 1975-02-25 Donald R Huene Assembly for inserting rigid shafts into fractured bones
US3976079A (en) 1974-08-01 1976-08-24 Samuels Peter B Securing devices for sutures
US4265231A (en) 1979-04-30 1981-05-05 Scheller Jr Arnold D Curved drill attachment for bone drilling uses
US4328839A (en) 1980-09-19 1982-05-11 Drilling Development, Inc. Flexible drill pipe
GB2093353B (en) 1981-02-25 1984-09-19 Dyonics Inc A surgical instrument for arthroscopic arthroplasty
DE3131496A1 (en) 1981-08-08 1983-02-24 Laboklinika H.G. Schlosser KG, 7407 Rottenburg Device for producing a duct in bone cement for anchorage of an endoprosthesis
US4483562A (en) 1981-10-16 1984-11-20 Arnold Schoolman Locking flexible shaft device with live distal end attachment
US5417691A (en) 1982-05-20 1995-05-23 Hayhurst; John O. Apparatus and method for manipulating and anchoring tissue
US5601557A (en) 1982-05-20 1997-02-11 Hayhurst; John O. Anchoring and manipulating tissue
US4741330A (en) 1983-05-19 1988-05-03 Hayhurst John O Method and apparatus for anchoring and manipulating cartilage
US4611515A (en) 1982-06-07 1986-09-16 Marbourg Jr Edgar F Tool for control and use of miniature screws and threaded fasteners
US4489446A (en) 1982-07-14 1984-12-25 Reed Charles C Heart valve prosthesis
US4541423A (en) 1983-01-17 1985-09-17 Barber Forest C Drilling a curved hole
US5037423A (en) 1983-10-26 1991-08-06 Pfizer Hospital Products Group, Inc. Method and instrumentation for the replacement of a knee prosthesis
EP0153831B1 (en) 1984-02-13 1991-05-02 Bahaa Botros Seedhom Instruments for use in the surgical replacement of ligaments
SE442083B (en) 1984-03-14 1985-12-02 Magnus Odensten DEVICE FOR ALIGNMENT AND CONTROL OF A FRONT AND RELEASABLE DRILLING ROD FOR DRILLING A CIRCULAR HALL IN ATMINSTONE ONE OF TWO KNEELED MAKING RAILS AND LARBES
US4706659A (en) 1984-12-05 1987-11-17 Regents Of The University Of Michigan Flexible connecting shaft for intramedullary reamer
US4608972A (en) 1985-02-19 1986-09-02 Small Irwin A Method of applying a chin implant, drill guide tool and implant
US4646738A (en) 1985-12-05 1987-03-03 Concept, Inc. Rotary surgical tool
US4748872A (en) 1986-04-28 1988-06-07 Brown William J Flexible power tools
US5123914A (en) 1986-05-19 1992-06-23 Cook Incorporated Visceral anchor for visceral wall mobilization
US4751922A (en) 1986-06-27 1988-06-21 Dipietropolo Al Flexible medullary reamer
CA1303298C (en) 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
GB8622563D0 (en) 1986-09-19 1986-10-22 Amis A A Artificial ligaments
US4781182A (en) 1986-10-03 1988-11-01 Purnell Mark L Apparatus and method for use in performing a surgical operation
FR2606996A1 (en) 1986-11-26 1988-05-27 Laluque Jean Jacques Self-inserting pin, which can be adjusted in order to hold bone fragments in compression
US4872451A (en) 1987-02-02 1989-10-10 Moore Robert R Glenohumeral ligament repair
USRE34293F1 (en) 1987-02-17 1998-04-07 Globe Marlowe E Ligament attachment method and apparatus
US5002546A (en) 1987-04-13 1991-03-26 Romano Jack W Curved bore drilling apparatus
US4898156A (en) 1987-05-18 1990-02-06 Mitek Surgical Products, Inc. Suture anchor
US5529580A (en) 1987-10-30 1996-06-25 Olympus Optical Co., Ltd. Surgical resecting tool
US5556376A (en) 1988-07-22 1996-09-17 Yoon; Inbae Multifunctional devices having loop configured portions and collection systems for endoscopic surgical procedures and methods thereof
US5037426A (en) 1988-09-19 1991-08-06 Marlowe Goble E Procedure for verifying isometric ligament positioning
US4946462A (en) 1988-12-12 1990-08-07 Watanabe Robert S Arthroscopic guide and method
US4927421A (en) 1989-05-15 1990-05-22 Marlowe Goble E Process of endosteal fixation of a ligament
US5030219A (en) 1990-01-22 1991-07-09 Boehringer Mannheim Corporation Glenoid component installation tools
US5139520A (en) 1990-01-31 1992-08-18 American Cyanamid Company Method for acl reconstruction
US5122134A (en) 1990-02-02 1992-06-16 Pfizer Hospital Products Group, Inc. Surgical reamer
US5203595A (en) 1990-02-02 1993-04-20 Pfizer Hospital Products Group, Inc. Dovetail-type coupling device and method
US5021059A (en) 1990-05-07 1991-06-04 Kensey Nash Corporation Plug device with pulley for sealing punctures in tissue and methods of use
US6464713B2 (en) 1990-06-28 2002-10-15 Peter M. Bonutti Body tissue fastening
US5269785A (en) 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
US5037422A (en) 1990-07-02 1991-08-06 Acufex Microsurgical, Inc. Bone anchor and method of anchoring a suture to a bone
US5269809A (en) 1990-07-02 1993-12-14 American Cyanamid Company Locking mechanism for use with a slotted suture anchor
US5258016A (en) 1990-07-13 1993-11-02 American Cyanamid Company Suture anchor and driver assembly
US5743916A (en) 1990-07-13 1998-04-28 Human Factors Industrial Design, Inc. Drill guide with removable ferrules
US5133720A (en) 1990-07-13 1992-07-28 Greenberg Alex M Surgical drill guide and retractor
US5300077A (en) 1990-07-16 1994-04-05 Arthrotek Method and instruments for ACL reconstruction
US6019767A (en) 1990-07-16 2000-02-01 Arthrotek Tibial guide
US6254604B1 (en) 1990-07-16 2001-07-03 Arthrotek, Inc. Tibial guide
US6224608B1 (en) 1990-08-10 2001-05-01 United States Surgical Corporation Tissue holding device and method
US5385567A (en) 1990-09-07 1995-01-31 Goble; E. Marlowe Sight barrel arthroscopic instrument
US5203787A (en) 1990-11-19 1993-04-20 Biomet, Inc. Suture retaining arrangement
US5259846A (en) 1991-01-07 1993-11-09 United States Surgical Corporation Loop threaded combined surgical needle-suture device
US5064431A (en) 1991-01-16 1991-11-12 St. Jude Medical Incorporated Annuloplasty ring
US5320115A (en) 1991-01-16 1994-06-14 Applied Biological Concepts Method and apparatus for arthroscopic knee surgery
US5391170A (en) 1991-12-13 1995-02-21 David A. McGuire Angled surgical screw driver and methods of arthroscopic ligament reconstruction
US5464407A (en) 1991-02-19 1995-11-07 Mcguire; David A. Flexible surgical screwdriver and methods of arthroscopic ligament reconstruction
US5163940A (en) 1991-03-04 1992-11-17 American Cyanamid Company Surgical drill guide for tibia
US5234435A (en) 1991-03-08 1993-08-10 Seagrave Jr Richard A Surgical method and apparatus
US5354298A (en) 1991-03-22 1994-10-11 United States Surgical Corporation Suture anchor installation system
US5190548A (en) 1991-04-10 1993-03-02 Linvatec Corporation Surgical reamer
FR2676638B3 (en) 1991-05-22 1993-08-27 Adalbert Ibrahim Kapandji PIN FOR THE PRODUCTION OF AN OSTEOSYNTHESIS OR ARTHRODESIS.
US5141520A (en) 1991-10-29 1992-08-25 Marlowe Goble E Harpoon suture anchor
US5766221A (en) 1991-12-03 1998-06-16 Boston Scientific Technology, Inc. Bone anchor implantation device
US5681320A (en) 1991-12-13 1997-10-28 Mcguire; David A. Bone-cutting guide
US5520693A (en) 1992-02-19 1996-05-28 Mcguire; David A. Femoral guide and methods of precisely forming bone tunnels in cruciate ligament reconstruction of the knee
US5797918A (en) 1991-12-13 1998-08-25 David A. McGuire Flexible surgical screwdriver and methods of arthroscopic ligament reconstruction
JP2002509448A (en) 1992-01-27 2002-03-26 メドトロニック インコーポレーテッド Annular forming and suturing rings
US5505736A (en) 1992-02-14 1996-04-09 American Cyanamid Company Surgical fastener with selectively coated ridges
US5211647A (en) 1992-02-19 1993-05-18 Arthrex Inc. Interference screw and cannulated sheath for endosteal fixation of ligaments
US5320626A (en) 1992-02-19 1994-06-14 Arthrex Inc. Endoscopic drill guide
US5269786A (en) 1992-02-20 1993-12-14 Arthrex Inc. PCL oriented placement tibial guide method
US5350383A (en) 1992-02-20 1994-09-27 Arthrex, Inc. Adjustable drill guide with interchangeable marking hooks
US6010515A (en) 1993-09-03 2000-01-04 University College London Device for use in tying knots
DE4231101A1 (en) 1992-09-17 1994-03-24 Joachim Dr Med Schmidt Motor-driven milling system esp. for hip joint prosthesis - has control system for using measured sound emission from bone, optical and/or acoustic signals and/or automatic interruption of process
GB9221257D0 (en) 1992-10-09 1992-11-25 Minnesota Mining & Mfg Glenoid alignment guide
IL103737A (en) 1992-11-13 1997-02-18 Technion Res & Dev Foundation Stapler device particularly useful in medical suturing
DE4243715C2 (en) 1992-12-23 1994-09-29 Stefan Koscher Surgical instrument
US5810825A (en) 1995-06-01 1998-09-22 Huebner; Randall J. Surgical wire clamp
US5441502A (en) 1993-02-17 1995-08-15 Mitek Surgical Products, Inc. System and method for re-attaching soft tissue to bone
US5549630A (en) 1993-05-14 1996-08-27 Bonutti; Peter M. Method and apparatus for anchoring a suture
US5403348A (en) 1993-05-14 1995-04-04 Bonutti; Peter M. Suture anchor
US5464426A (en) 1993-05-14 1995-11-07 Bonutti; Peter M. Method of closing discontinuity in tissue
US5423860A (en) 1993-05-28 1995-06-13 American Cyanamid Company Protective carrier for suture anchor
US5370662A (en) 1993-06-23 1994-12-06 Kevin R. Stone Suture anchor assembly
US5569269A (en) 1993-07-26 1996-10-29 Innovasive Devices, Inc. Surgical grasping and suturing device and method
US5549613A (en) 1993-09-15 1996-08-27 Mitek Surgical Products, Inc. Modular surgical drill
US5584835A (en) 1993-10-18 1996-12-17 Greenfield; Jon B. Soft tissue to bone fixation device and method
US5324308A (en) 1993-10-28 1994-06-28 Javin Pierce Suture anchor
CA2173869A1 (en) 1993-10-28 1995-05-04 Javin Pierce A suture anchor
US5405359A (en) 1994-04-29 1995-04-11 Pierce; Javi Toggle wedge
US5618314A (en) 1993-12-13 1997-04-08 Harwin; Steven F. Suture anchor device
US5395188A (en) 1993-12-23 1995-03-07 Roy E. Bowling Guide for angled and curved drilling
US5466243A (en) 1994-02-17 1995-11-14 Arthrex, Inc. Method and apparatus for installing a suture anchor through a hollow cannulated grasper
US5690677A (en) 1994-02-17 1997-11-25 Arthrex, Inc. Method for installing a suture anchor through a cannulated tissue-shifting guide
US5527316A (en) 1994-02-23 1996-06-18 Stone; Kevin T. Surgical reamer
US5464425A (en) 1994-02-23 1995-11-07 Orthopaedic Biosystems, Ltd. Medullary suture anchor
US5584695A (en) 1994-03-07 1996-12-17 Memory Medical Systems, Inc. Bone anchoring apparatus and method
US5486197A (en) 1994-03-24 1996-01-23 Ethicon, Inc. Two-piece suture anchor with barbs
FR2718012A1 (en) 1994-03-30 1995-10-06 T2C Sarl Intra-bone anchoring.
ATE193816T1 (en) 1994-04-15 2000-06-15 Smith & Nephew Inc CURVED SURGICAL INSTRUMENT WITH SEGMENTED INNER ELEMENT
US5531759A (en) 1994-04-29 1996-07-02 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5683418A (en) 1994-04-29 1997-11-04 Mitek Surgical Products, Inc. Wedge shaped suture anchor and method of implantation
US5545178A (en) 1994-04-29 1996-08-13 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5488761A (en) 1994-07-28 1996-02-06 Leone; Ronald P. Flexible shaft and method for manufacturing same
US5573542A (en) 1994-08-17 1996-11-12 Tahoe Surgical Instruments-Puerto Rico Endoscopic suture placement tool
US5645589A (en) 1994-08-22 1997-07-08 Li Medical Technologies, Inc. Anchor and method for securement into a bore
US5472452A (en) 1994-08-30 1995-12-05 Linvatec Corporation Rectilinear anchor for soft tissue fixation
HU214568B (en) 1994-09-16 1998-04-28 METRIMED Orvosi Műszergyártó Kft. Instrument-set for implantation of chondrus, like a mosaic
US5649963A (en) 1994-11-10 1997-07-22 Innovasive Devices, Inc. Suture anchor assembly and methods
US5601561A (en) 1995-01-17 1997-02-11 W. L. Gore & Associates, Inc. Guided bone rasp
US7008624B1 (en) 1995-02-22 2006-03-07 Immunex Corporation Antagonists of interleukin-15
US5667509A (en) 1995-03-02 1997-09-16 Westin; Craig D. Retractable shield apparatus and method for a bone drill
US5571111A (en) 1995-05-01 1996-11-05 Aboczky; Robert I. Instrument for orienting, inserting and impacting an acetabular cup prosthesis including prosthesis retaining head arrangement
CA2219089C (en) 1995-06-06 2001-05-08 Raymond Thal Knotless suture anchor assembly
US5569306A (en) 1995-06-06 1996-10-29 Thal; Raymond Knotless suture anchor assembly
US6447518B1 (en) 1995-07-18 2002-09-10 William R. Krause Flexible shaft components
CN1193899A (en) 1995-07-18 1998-09-23 G·U·爱德华兹 Flexible shaft
US5645545A (en) 1995-08-14 1997-07-08 Zimmer, Inc. Self reaming intramedullary nail and method for using the same
EP0955894A4 (en) 1995-08-25 2001-02-28 R Thomas Grotz Stabilizer for human joints
US5665110A (en) 1995-09-21 1997-09-09 Medicinelodge, Inc. Suture anchor system and method
US5548862A (en) 1995-09-22 1996-08-27 Curtis; Sandra Cleaning utensil
US5899906A (en) 1996-01-18 1999-05-04 Synthes (U.S.A.) Threaded washer
US5662658A (en) 1996-01-19 1997-09-02 Mitek Surgical Products, Inc. Bone anchor inserter, method for loading same, method for holding and delivering a bone anchor, and method for inserting a bone anchor in a bone
US5665111A (en) 1996-01-22 1997-09-09 Raymedica, Inc. Method for anchoring a surgical suture to bone
US5725541A (en) 1996-01-22 1998-03-10 The Anspach Effort, Inc. Soft tissue fastener device
US5702397A (en) 1996-02-20 1997-12-30 Medicinelodge, Inc. Ligament bone anchor and method for its use
US5695513A (en) 1996-03-01 1997-12-09 Metagen, Llc Flexible cutting tool and methods for its use
US5681352A (en) 1996-03-06 1997-10-28 Kinetikos Medical Incorporated Method and apparatus for anchoring surgical ties to bone
US5782862A (en) 1996-07-01 1998-07-21 Bonutti; Peter M. Suture anchor inserter assembly and method
DE19628909C2 (en) 1996-07-18 1999-11-18 Ruesch Willy Ag Closure
US5951559A (en) 1996-07-25 1999-09-14 Arthrex, Inc. Method for installing a threaded suture anchor with a cannulated suture anchor drill guide
US6007567A (en) 1996-08-19 1999-12-28 Bonutti; Peter M. Suture anchor
US5718717A (en) 1996-08-19 1998-02-17 Bonutti; Peter M. Suture anchor
US7611521B2 (en) 1996-09-13 2009-11-03 Tendon Technology, Ltd. Apparatus and methods for tendon or ligament repair
US5733307A (en) 1996-09-17 1998-03-31 Amei Technologies, Inc. Bone anchor having a suture trough
US5732606A (en) 1996-09-20 1998-03-31 Chiang; Shu Chi Extendible screw driver
ES2210442T3 (en) 1996-10-04 2004-07-01 United States Surgical Corporation APPLIANCE FOR THE IMPLEMENTATION OF A FABRIC CLAMP.
US5851208A (en) 1996-10-15 1998-12-22 Linvatec Corporation Rotatable surgical burr
US5948002A (en) 1996-11-15 1999-09-07 Bonutti; Peter M. Apparatus and method for use in positioning a suture anchor
US5716397A (en) 1996-12-06 1998-02-10 Medtronic, Inc. Annuloplasty device with removable stiffening element
US6436124B1 (en) 1996-12-19 2002-08-20 Bionx Implants Oy Suture anchor
US5709708A (en) 1997-01-31 1998-01-20 Thal; Raymond Captured-loop knotless suture anchor assembly
US6146385A (en) 1997-02-11 2000-11-14 Smith & Nephew, Inc. Repairing cartilage
US7077863B2 (en) 1997-02-12 2006-07-18 Arthrex, Inc. Transverse fixation technique for ACL reconstruction using bone-tendon-bone graft with loop at end
FR2760185B1 (en) 1997-02-28 1999-05-14 Laurent Fumex SURGICAL BONE AND ANCILLARY ANCHORING DEVICE FOR ITS PLACEMENT
US5782866A (en) 1997-03-25 1998-07-21 Ethicon, Inc. System for anchoring tissue to bone
US5782864A (en) 1997-04-03 1998-07-21 Mitek Surgical Products, Inc. Knotless suture system and method
US6159234A (en) 1997-08-01 2000-12-12 Peter M. Bonutti Method and apparatus for securing a suture
US6010525A (en) 1997-08-01 2000-01-04 Peter M. Bonutti Method and apparatus for securing a suture
US6475230B1 (en) 1997-08-01 2002-11-05 Peter M. Bonutti Method and apparatus for securing a suture
US5906626A (en) 1997-08-07 1999-05-25 Carrillo; Hipolito Suture depressor
US5941139A (en) 1997-08-29 1999-08-24 Vodehnal; Robert Wayne Tuner screwdriver
US5885294A (en) 1997-09-22 1999-03-23 Ethicon, Inc. Apparatus and method for anchoring a cord-like element to a workpiece
WO1999015095A1 (en) 1997-09-24 1999-04-01 Depuy Orthopaedics, Inc. Acl fixation pin and method
US5980558A (en) 1997-09-30 1999-11-09 Biomet Inc. Suture anchor system
US6120511A (en) 1997-11-18 2000-09-19 Chan; Kwan-Ho Drill guide assembly and method for producing a bone tunnel
US5968050A (en) 1997-12-05 1999-10-19 Smith & Nephew, Inc. Positioning a tibial tunnel
US6156056A (en) 1998-01-09 2000-12-05 Ethicon, Inc. Suture buttress
US6245081B1 (en) 1998-01-09 2001-06-12 Steven M. Bowman Suture buttress
US6045551A (en) 1998-02-06 2000-04-04 Bonutti; Peter M. Bone suture
FR2774580B1 (en) 1998-02-06 2000-09-08 Laurent Fumex BONE ANCHORING SURGICAL DEVICE
US5921986A (en) 1998-02-06 1999-07-13 Bonutti; Peter M. Bone suture
US6024758A (en) 1998-02-23 2000-02-15 Thal; Raymond Two-part captured-loop knotless suture anchor assembly
US6183461B1 (en) 1998-03-11 2001-02-06 Situs Corporation Method for delivering a medication
US6440138B1 (en) 1998-04-06 2002-08-27 Kyphon Inc. Structures and methods for creating cavities in interior body regions
US5980539A (en) 1998-05-06 1999-11-09 X-Site L.L.C. Device and method for suturing blood vessels and the like
DE19832303C2 (en) 1998-07-17 2000-05-18 Storz Karl Gmbh & Co Kg screwdriver
US6436100B1 (en) 1998-08-07 2002-08-20 J. Lee Berger Cannulated internally threaded bone screw and reduction driver device
US6306159B1 (en) 1998-12-23 2001-10-23 Depuy Orthopaedics, Inc. Meniscal repair device
AU2000226357A1 (en) 1999-02-01 2000-08-18 Garland U. Edwards Surgical reamer cutter
US6143017A (en) 1999-03-17 2000-11-07 Thal; Raymond Free loop knotless suture anchor assembly
US6045574A (en) 1999-04-01 2000-04-04 Thal; Raymond Sleeve and loop knotless suture anchor assembly
US6805697B1 (en) 1999-05-07 2004-10-19 University Of Virginia Patent Foundation Method and system for fusing a spinal region
US6607530B1 (en) 1999-05-10 2003-08-19 Highgate Orthopedics, Inc. Systems and methods for spinal fixation
US6156039A (en) 1999-08-06 2000-12-05 Thal; Raymond Snagging knotless suture anchor assembly
US6592609B1 (en) 1999-08-09 2003-07-15 Bonutti 2003 Trust-A Method and apparatus for securing tissue
US6447516B1 (en) 1999-08-09 2002-09-10 Peter M. Bonutti Method of securing tissue
US6527794B1 (en) 1999-08-10 2003-03-04 Ethicon, Inc. Self-locking suture anchor
US6893445B1 (en) 1999-08-27 2005-05-17 Ian Revie Pressurizer device
IL149000A0 (en) 1999-10-18 2002-11-10 Tendon Technology Ltd Apparatus and methods for tendon or ligament repair
WO2001028469A2 (en) 1999-10-21 2001-04-26 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US6830570B1 (en) 1999-10-21 2004-12-14 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US20050070906A1 (en) 1999-11-30 2005-03-31 Ron Clark Endosteal tibial ligament fixation with adjustable tensioning
GB9929599D0 (en) 1999-12-15 2000-02-09 Atlantech Medical Devices Limi A graft suspension device
US6635073B2 (en) 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US6558386B1 (en) 2000-02-16 2003-05-06 Trans1 Inc. Axial spinal implant and method and apparatus for implanting an axial spinal implant within the vertebrae of the spine
US6899716B2 (en) 2000-02-16 2005-05-31 Trans1, Inc. Method and apparatus for spinal augmentation
US6558390B2 (en) 2000-02-16 2003-05-06 Axiamed, Inc. Methods and apparatus for performing therapeutic procedures in the spine
US7500977B2 (en) 2003-10-23 2009-03-10 Trans1 Inc. Method and apparatus for manipulating material in the spine
US6790210B1 (en) 2000-02-16 2004-09-14 Trans1, Inc. Methods and apparatus for forming curved axial bores through spinal vertebrae
US6575979B1 (en) 2000-02-16 2003-06-10 Axiamed, Inc. Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae
US6210415B1 (en) 2000-02-18 2001-04-03 Lab Engineering & Manufacturing, Inc. Surgical drill guide
US6808528B2 (en) 2000-02-23 2004-10-26 Ethicon, Inc. Apparatus and method for securing a graft ligament in a bone tunnel
US20030220646A1 (en) 2002-05-23 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
US7258692B2 (en) 2000-03-07 2007-08-21 Zimmer, Inc. Method and apparatus for reducing femoral fractures
US7488329B2 (en) 2000-03-07 2009-02-10 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
US6468277B1 (en) 2000-04-04 2002-10-22 Ethicon, Inc. Orthopedic screw and method
US6478800B1 (en) 2000-05-08 2002-11-12 Depuy Acromed, Inc. Medical installation tool
US6419684B1 (en) 2000-05-16 2002-07-16 Linvatec Corporation End-cutting shaver blade for axial resection
EP1155776B1 (en) 2000-05-16 2006-09-06 Storz-Endoskop GmbH Removable tool insert for endoscopic processing apparatus and such an endoscopic processing apparatus
WO2001097677A2 (en) 2000-06-22 2001-12-27 Arthrex, Inc. Graft fixation using a screw or plug against suture or tissue
US7993369B2 (en) 2000-06-22 2011-08-09 Arthrex, Inc. Graft fixation using a plug against suture
US6485504B1 (en) 2000-06-22 2002-11-26 James A. Magovern Hard or soft tissue closure
US6325804B1 (en) 2000-06-28 2001-12-04 Ethicon, Inc. Method for fixing a graft in a bone tunnel
US6440141B1 (en) 2000-07-24 2002-08-27 Oratec Interventions, Inc. Method and apparatus for treating osteochondral pathologies
US6641596B1 (en) 2000-10-18 2003-11-04 Ethicon, Inc. Knotless bioabsorbable suture anchor system and method
US6887259B2 (en) 2000-10-18 2005-05-03 Depuy Mitek, Inc. Suture anchor system and method of use
US6343482B1 (en) 2000-10-31 2002-02-05 Takeshi Endo Heat pump type conditioner and exterior unit
US6419678B1 (en) 2000-11-28 2002-07-16 Wilson T. Asfora Curved drill guide system
US6638283B2 (en) 2001-01-26 2003-10-28 Raymond Thal Surgical suture passer
DE10104658A1 (en) 2001-02-02 2002-10-02 Aesculap Ag & Co Kg Implant for fixing a tendoplasty in a channel in the knee region of the tibia and/or femur comprises fixing the tendoplasty under tension in the channel by relative movement between a bearing element and a connecting element
US6610080B2 (en) 2001-02-28 2003-08-26 Axya Medical, Inc. Parabolic eyelet suture anchor
US6991597B2 (en) 2001-03-09 2006-01-31 Boston Scientific Scimed, Inc. System for implanting an implant and method thereof
US6508830B2 (en) 2001-04-30 2003-01-21 Musculoskeletal Transplant Foundation Suture anchor
US6641597B2 (en) 2001-05-25 2003-11-04 Arthrex, Inc. Interference fit knotless suture anchor fixation
US20020188301A1 (en) 2001-06-11 2002-12-12 Dallara Mark Douglas Tissue anchor insertion system
EP1416866A4 (en) 2001-07-16 2007-04-18 Depuy Products Inc Devices form naturally occurring biologically derived
WO2003007861A1 (en) 2001-07-20 2003-01-30 Cutmed Ltd. System for performing a micro-drilling procedure in human or animal and a method for use thereof
US7892256B2 (en) 2001-09-13 2011-02-22 Arthrex, Inc. High strength suture tape
US7029490B2 (en) 2001-09-13 2006-04-18 Arthrex, Inc. High strength suture with coating and colored trace
US20050033362A1 (en) 2001-09-13 2005-02-10 Grafton R. Donald High strength suture with collagen fibers
US6716234B2 (en) 2001-09-13 2004-04-06 Arthrex, Inc. High strength suture material
DE10149396A1 (en) 2001-09-26 2003-04-17 Storz Karl Gmbh & Co Kg Device for inserting a thread anchor into a bone
US7520898B2 (en) 2001-10-01 2009-04-21 Scandius Biomedical, Inc. Apparatus and method for reconstructing a ligament
US6712822B2 (en) 2001-10-01 2004-03-30 Scandius Biomedical, Inc. Apparatus and method for the repair of articular cartilage defects
US7008431B2 (en) 2001-10-30 2006-03-07 Depuy Spine, Inc. Configured and sized cannula
US6923814B1 (en) 2001-10-30 2005-08-02 Nuvasive, Inc. System and methods for cervical spinal fusion
US7048754B2 (en) 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
US6824552B2 (en) 2002-04-03 2004-11-30 Stryker Corporation Surgical cutting accessory with nickel titanium alloy cutting head
US7922772B2 (en) 2002-05-24 2011-04-12 Zimmer, Inc. Implants and related methods and apparatus for securing an implant on an articulating surface of an orthopedic joint
AU2003240512B2 (en) 2002-06-04 2009-11-05 The Board Of Trustees Of The Leland Stanford Junior University Device and method for rapid aspiration and collection of body tissue from within an enclosed body space
US20030233098A1 (en) 2002-06-18 2003-12-18 Stryker Spine Variable depth drill guide
US6972027B2 (en) 2002-06-26 2005-12-06 Stryker Endoscopy Soft tissue repair system
US20040010264A1 (en) 2002-07-15 2004-01-15 Dean Acker Cable passer for less invasive surgery
US20040092952A1 (en) 2002-08-02 2004-05-13 Peter Newton Screw placement guide
US6991636B2 (en) 2002-08-26 2006-01-31 Arthrex, Inc. Nitinol loop suture passer
US7204839B2 (en) 2002-09-04 2007-04-17 Arthrex, Inc. Method of using offset drill guide in arthroscopic surgery
US7776049B1 (en) 2002-10-02 2010-08-17 Nuvasive, Inc. Spinal implant inserter, implant, and method
US6960214B2 (en) 2002-10-15 2005-11-01 Zimmer Austin, Inc. Method for performing automated microfracture
US7588595B2 (en) 2002-10-29 2009-09-15 Stryker Endoscopy Graft fixation device and method
US7326215B2 (en) 2002-10-30 2008-02-05 Symmetry Medical, Inc. Curved surgical tool driver
EP1567069A4 (en) 2002-11-08 2008-11-12 Warsaw Orthopedic Inc Transpedicular intervertebral disk access methods and devices
US7601155B2 (en) 2003-05-20 2009-10-13 Petersen Thomas D Instruments and method for minimally invasive surgery for total hips
US7806909B2 (en) 2003-06-11 2010-10-05 Medicine Lodge Inc. Line lock threading systems and methods
DE10327358A1 (en) 2003-06-16 2005-01-05 Ulrich Gmbh & Co. Kg Implant for correction and stabilization of the spine
US20040260300A1 (en) 2003-06-20 2004-12-23 Bogomir Gorensek Method of delivering an implant through an annular defect in an intervertebral disc
US7819880B2 (en) 2003-06-30 2010-10-26 Depuy Products, Inc. Implant delivery instrument
US7563266B2 (en) 2003-06-30 2009-07-21 Depuy Products, Inc. Slide and kit for delivering implants
US20050043739A1 (en) 2003-08-18 2005-02-24 Sullivan Robert L. Hybrid flexible drive shaft
US7678134B2 (en) 2003-10-10 2010-03-16 Arthrex, Inc. Knotless anchor for tissue repair
DE10348329B3 (en) 2003-10-17 2005-02-17 Biedermann Motech Gmbh Rod-shaped element used in spinal column and accident surgery for connecting two bone-anchoring elements comprises a rigid section and an elastic section that are made in one piece
US7217279B2 (en) 2003-11-14 2007-05-15 Ethicon, Inc. Suture loop anchor
WO2005062827A2 (en) 2003-12-19 2005-07-14 Spinascope Inc. Dissecting high speed burr for spinal surgery
US20050137600A1 (en) 2003-12-23 2005-06-23 Jacobs Andrew M. Articular cartilage repair implant delivery device and method of use
US20060030855A1 (en) 2004-03-08 2006-02-09 Haines Timothy G Methods and apparatus for improved profile based resection
US7879037B2 (en) 2004-02-11 2011-02-01 Medtronic Xomed, Inc. High speed surgical cutting instrument
US7488322B2 (en) 2004-02-11 2009-02-10 Medtronic, Inc. High speed surgical cutting instrument
US20050187537A1 (en) 2004-02-19 2005-08-25 Loeb Marvin P. Angular deflection apparatus for use in confined spaces and method of use
US8784421B2 (en) 2004-03-03 2014-07-22 Boston Scientific Scimed, Inc. Apparatus and methods for removing vertebral bone and disc tissue
DE102004011685A1 (en) 2004-03-09 2005-09-29 Biedermann Motech Gmbh Spine supporting element, comprising spiraled grooves at outer surface and three plain areas
US6995683B2 (en) 2004-03-12 2006-02-07 Welldynamics, Inc. System and method for transmitting downhole data to the surface
US8088128B2 (en) 2004-03-25 2012-01-03 Depuy Mitek, Inc. Implantable cross-pin for anterior cruciate ligament repair
JP4245505B2 (en) 2004-04-12 2009-03-25 邦夫 原 Guide for reconstruction of the anterior cruciate ligament
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US7604636B1 (en) 2004-04-20 2009-10-20 Biomet Sports Medicine, Llc Method and apparatus for arthroscopic tunneling
US20050251159A1 (en) 2004-05-07 2005-11-10 Usgi Medical Inc. Methods and apparatus for grasping and cinching tissue anchors
US20050251208A1 (en) 2004-05-07 2005-11-10 Usgi Medical Inc. Linear anchors for anchoring to tissue
US8109965B2 (en) 2004-06-09 2012-02-07 Biomet Sports Medicine, LLP Method and apparatus for soft tissue fixation
US8328810B2 (en) 2004-06-17 2012-12-11 Boston Scientific Scimed, Inc. Slidable sheaths for tissue removal devices
ATE411784T1 (en) 2004-06-18 2008-11-15 Arthrex Inc KNOTLESS BONE ANCHOR
JP4476717B2 (en) 2004-06-30 2010-06-09 オークマ株式会社 Electromagnetic induction type position sensor
US7632284B2 (en) 2004-07-06 2009-12-15 Tyco Healthcare Group Lp Instrument kit and method for performing meniscal repair
US7503920B2 (en) 2004-08-11 2009-03-17 Tzony Siegal Spinal surgery system and method
US20060074434A1 (en) 2004-09-27 2006-04-06 Wenstrom Richard F Jr Triangular handle surgical drill guide
US7666189B2 (en) 2004-09-29 2010-02-23 Synthes Usa, Llc Less invasive surgical system and methods
US20060079904A1 (en) 2004-10-13 2006-04-13 Raymond Thal Multirow knotless suture anchor assembly
US20070213734A1 (en) 2006-03-13 2007-09-13 Bleich Jeffery L Tissue modification barrier devices and methods
US7938830B2 (en) 2004-10-15 2011-05-10 Baxano, Inc. Powered tissue modification devices and methods
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US20060189993A1 (en) 2004-11-09 2006-08-24 Arthrotek, Inc. Soft tissue conduit device
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US20060190042A1 (en) 2004-11-05 2006-08-24 Arthrotek, Inc. Tissue repair assembly
US7857830B2 (en) 2006-02-03 2010-12-28 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US7914539B2 (en) 2004-11-09 2011-03-29 Biomet Sports Medicine, Llc Tissue fixation device
US8034090B2 (en) 2004-11-09 2011-10-11 Biomet Sports Medicine, Llc Tissue fixation device
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US7608098B1 (en) 2004-11-09 2009-10-27 Biomet Sports Medicine, Llc Bone fixation device
AU2005306603B2 (en) 2004-11-15 2011-12-01 Covidien Lp Method and apparatus for the repair of a rotator cuff (RTC) tendon or ligament
AU2005311977A1 (en) 2004-11-30 2006-06-08 Osteobiologics, Inc. Implants and delivery system for treating defects in articulating surfaces
US7261016B2 (en) 2004-11-30 2007-08-28 Miller Charles H Multi-functional screwdriver
TW200635566A (en) 2005-01-25 2006-10-16 Vnus Med Tech Inc Structures for permanent occlusion of a hollow anatomical structure
US8128640B2 (en) 2005-02-07 2012-03-06 Ivy Sports Medicine LLC System and method for all-inside suture fixation for implant attachment and soft tissue repair
US8465522B2 (en) 2005-03-30 2013-06-18 Arthrex, Inc. Self-reinforcing tissue fixation
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US20070010843A1 (en) 2005-07-07 2007-01-11 Stryker Corporation Medical apparatus with cannula and releasable handle assembly for accessing remote anatomical sites
CA2615969A1 (en) 2005-07-19 2007-01-25 Stryker Ireland Limited Surgical bur with anti-chatter flute geometry
US7896894B2 (en) 2005-08-05 2011-03-01 Ethicon Endo-Surgery, Inc. Apparatus for single pass gastric restriction
US8123750B2 (en) 2005-08-17 2012-02-28 Corespine Technologies, Llc Apparatus and methods for removal of intervertebral disc tissues
US20070093840A1 (en) 2005-10-06 2007-04-26 Pacelli Nicolas J Flexible shaft
US7736364B2 (en) 2006-02-02 2010-06-15 Biomet Sports Medicine, Llc Method and apparatus for performing ACL reconstruction
US10034674B2 (en) 2006-02-02 2018-07-31 Steven C Chudik Universal anterior cruciate ligament repair and reconstruction system
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US9468433B2 (en) 2006-02-03 2016-10-18 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US9408599B2 (en) 2006-02-03 2016-08-09 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8926613B2 (en) 2011-03-25 2015-01-06 Biomet Sports Medicine, Llc Method and apparatus for forming a bone hole
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US20080009904A1 (en) 2006-03-17 2008-01-10 Bourque Barnard J Soft Tissue Fixation
US7828820B2 (en) 2006-03-21 2010-11-09 Biomet Sports Medicine, Llc Method and apparatuses for securing suture
AU2007227349B2 (en) 2006-03-22 2013-02-07 Tornier, Inc. Bone anchor installer and method of use
US7331263B2 (en) 2006-03-31 2008-02-19 Sdgi Holdings, Inc. Surgical screwdrivers with torque control and methods of use
JP5389337B2 (en) 2006-05-18 2014-01-15 オーソレクス,インコーポレイテッド Swivel anchor for tissue nodule fixation
US20080009900A1 (en) 2006-06-12 2008-01-10 Kfx Medical Corporation Surgical grasping device
US8376865B2 (en) 2006-06-20 2013-02-19 Cardiacmd, Inc. Torque shaft and torque shaft drive
DE102006035579A1 (en) 2006-07-27 2008-01-31 Karl Storz Gmbh & Co. Kg A partial aiming device for targeting an arthroscopic surgical site for a medical procedure
DE602007003529D1 (en) 2006-08-16 2010-01-14 Arthrex Inc Button and continuous loop for fixing ribbons
US8882833B2 (en) 2006-08-16 2014-11-11 Arthrex, Inc. Drill pin for fixation of ligaments using button/loop construct
US8758367B2 (en) 2006-09-05 2014-06-24 Smith & Nephew, Inc. Anchor delivery system
US8944069B2 (en) 2006-09-12 2015-02-03 Vidacare Corporation Assemblies for coupling intraosseous (IO) devices to powered drivers
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
WO2008073588A2 (en) 2006-10-24 2008-06-19 Cayenne Medical, Inc. Methods and systems for material fixation
US8951185B2 (en) 2007-10-26 2015-02-10 Ams Research Corporation Surgical articles and methods for treating pelvic conditions
WO2008054814A2 (en) 2006-10-31 2008-05-08 Core Essence Orthopaedics, Llc A medical device and procedure for attaching tissue to bone
US8167906B2 (en) 2006-11-01 2012-05-01 Depuy Mitek, Inc. Suture anchor with pulley
US20080109037A1 (en) 2006-11-03 2008-05-08 Musculoskeletal Transplant Foundation Press fit suture anchor and inserter assembly
US20080114364A1 (en) 2006-11-15 2008-05-15 Aoi Medical, Inc. Tissue cavitation device and method
US20080140078A1 (en) 2006-11-22 2008-06-12 Sonoma Orthopedic Products, Inc. Surgical tools for use in deploying bone repair devices
US8814880B2 (en) 2006-12-28 2014-08-26 Craig M. McAllister Device and method for mounting an object on a bone
US20080167660A1 (en) 2007-01-04 2008-07-10 Nathan Ryan Moreau Suture anchor and inserter arrangement
US20080188854A1 (en) 2007-01-05 2008-08-07 University Of Florida Research Foundation, Inc. Surgical Anchor Delivery System
US8518044B2 (en) 2007-02-09 2013-08-27 Christopher G. Sidebotham Disposable flexible reamer shaft for medical applications
EP2114262A1 (en) 2007-02-13 2009-11-11 Orthogroup, Inc. Drill system for acetabular cup implants
US8147546B2 (en) 2007-03-13 2012-04-03 Biomet Sports Medicine, Llc Method and apparatus for graft fixation
US20090012629A1 (en) 2007-04-12 2009-01-08 Isto Technologies, Inc. Compositions and methods for tissue repair
US8137381B2 (en) 2007-04-25 2012-03-20 Arthrocare Corporation Knotless suture anchor having discrete polymer components and related methods
US8845685B2 (en) 2007-05-03 2014-09-30 Biomet Sports Medicine, Llc Anchor assembly and method of use
US20080287958A1 (en) 2007-05-14 2008-11-20 Howmedica Osteonics Corp. Flexible intramedullary rod
US8048079B2 (en) 2007-06-07 2011-11-01 Arthrex, Inc. Retrograde cutting instrument
US8663324B2 (en) 2007-06-29 2014-03-04 Arthrex, Inc. Double socket ACL reconstruction
US8500809B2 (en) 2011-01-10 2013-08-06 Ceterix Orthopaedics, Inc. Implant and method for repair of the anterior cruciate ligament
US8709013B2 (en) 2007-07-19 2014-04-29 Linvatec Corporation Cannulated drill bit with radially offset cutting edge
US7963972B2 (en) 2007-09-12 2011-06-21 Arthrocare Corporation Implant and delivery system for soft tissue repair
CA2702044C (en) 2007-10-12 2013-09-10 Edward Jordan Stoll, Jr. Toggle bolt suture anchor kit
US20090105775A1 (en) 2007-10-19 2009-04-23 David Mitchell Cannula with lateral access and directional exit port
US8419769B2 (en) 2007-11-07 2013-04-16 Raymond Thal Adjustable loop knotless anchor
US20090138084A1 (en) 2007-11-19 2009-05-28 Magellan Spine Technologies, Inc. Spinal implants and methods
DE102007057075A1 (en) 2007-11-23 2009-05-28 Karl Storz Gmbh & Co. Kg Tibial target device for the dual channel technique
US20090149858A1 (en) 2007-12-05 2009-06-11 Biomet Sports Medicine, Inc. Method And Apparatus For Forming A Bone Tunnel
EP2072015B1 (en) 2007-12-17 2015-06-03 Karl Storz GmbH & Co. KG Surgical drill for providing holes at an angle
US8636270B2 (en) 2007-12-19 2014-01-28 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
US20090198258A1 (en) 2008-02-01 2009-08-06 William Buchanan Workman Curved arthroscopic guide
US8298239B2 (en) 2008-02-21 2012-10-30 Tyco Healthcare Group Lp Tibial guide for ACL repair having interchangeable and/or rotatable outrigger
US20090216243A1 (en) 2008-02-21 2009-08-27 Paul Re Guide for creating femoral tunnel during acl reconstruction
US8430883B2 (en) 2008-02-21 2013-04-30 Covidien Lp Femoral guide for ACL repair having reduced profile for left/right knee configurations
US8740912B2 (en) 2008-02-27 2014-06-03 Ilion Medical Llc Tools for performing less invasive orthopedic joint procedures
US20110034930A1 (en) 2008-02-29 2011-02-10 Buschmann Michael D Drill burr and method for performing holes in subchondral bone to promote cartilage repair
EP2098177B1 (en) 2008-03-03 2013-10-16 Arthrex, Inc. Combined flip cutter and drill
US20090234386A1 (en) 2008-03-11 2009-09-17 Dean John C Suture Cleat for Soft Tissue Injury Repair
US20090234451A1 (en) 2008-03-12 2009-09-17 Manderson Easton L Method and system for graft ligament attachment
US8814935B2 (en) 2008-03-31 2014-08-26 The Lonnie and Shannon Paulos Trust Interference screw driver assembly and method of use
US8241305B2 (en) 2008-05-08 2012-08-14 Biomet Sports Medicine, Llc Method for repairing a meniscal tear
US8409230B2 (en) 2008-05-08 2013-04-02 Pivot Medical, Inc. Method and apparatus for performing arthroscopic microfracture surgery
US9011412B2 (en) 2008-05-16 2015-04-21 Ford Albritton, IV Apparatus, system and method for manipulating a surgical catheter and working device with a single hand
US8267966B2 (en) 2008-06-06 2012-09-18 Providence Medical Technology, Inc. Facet joint implants and delivery tools
US8361152B2 (en) 2008-06-06 2013-01-29 Providence Medical Technology, Inc. Facet joint implants and delivery tools
WO2009155319A1 (en) 2008-06-17 2009-12-23 Soteira, Inc. Devices and methods for fracture reduction
US8057500B2 (en) 2008-08-01 2011-11-15 B&M Precision, Inc. Flexible inner member having a flexible region comprising a cut with convoluted path areas
US8114088B2 (en) 2008-09-19 2012-02-14 Zimmer Spine, Inc. Geared spinal implant inserter-distractor
US8663226B2 (en) 2008-09-30 2014-03-04 Dfine, Inc. System for use in treatment of vertebral fractures
US8852201B2 (en) 2009-03-30 2014-10-07 Arthrex, Inc. Microfracture instrument
ES2705473T3 (en) 2009-04-01 2019-03-25 Sentreheart Inc Tissue ligation device and controls thereof
WO2010132309A1 (en) 2009-05-12 2010-11-18 Foundry Newco Xi, Inc. Knotless suture anchor and methods of use
US8911474B2 (en) 2009-07-16 2014-12-16 Howmedica Osteonics Corp. Suture anchor implantation instrumentation system
US8828053B2 (en) 2009-07-24 2014-09-09 Depuy Mitek, Llc Methods and devices for repairing and anchoring damaged tissue
CA2713309C (en) 2009-08-20 2013-07-02 Howmedica Osteonics Corp. Flexible acl instrumentation, kit and method
US20120203288A1 (en) 2009-10-05 2012-08-09 Robert Lange Spinal fixation system and screwdriver tool for use with the same
US8753375B2 (en) 2009-10-14 2014-06-17 Arthrex, Inc. Z-shaped button for tissue repair
US8613756B2 (en) 2009-10-30 2013-12-24 Depuy Mitek, Llc Knotless suture anchor
US8801800B2 (en) 2009-11-20 2014-08-12 Zimmer Knee Creations, Inc. Bone-derived implantable devices and tool for subchondral treatment of joint pain
US9006606B2 (en) 2010-03-05 2015-04-14 Arthrex, Inc. Flexible drill and method of joining nitinol to dissimilar metals
US9597064B2 (en) 2010-04-27 2017-03-21 DePuy Synthes Products, Inc. Methods for approximating a tissue defect using an anchor assembly
WO2011137159A1 (en) 2010-04-27 2011-11-03 Synthes Usa, Llc Anchor assembly including expandable anchor
US9451938B2 (en) 2010-04-27 2016-09-27 DePuy Synthes Products, Inc. Insertion instrument for anchor assembly
US8273097B2 (en) 2010-04-30 2012-09-25 Medtronic Xomed, Inc. Powered surgical tissue cutting instrument having an irrigation system
US8679135B2 (en) 2010-05-25 2014-03-25 Biomet Sports Medicine, Llc Method and apparatus for passing a suture
US8709022B2 (en) 2011-05-24 2014-04-29 Biomet Sports Medicine, Llc Method and apparatus for passing a suture
US8366559B2 (en) 2010-06-23 2013-02-05 Lenkbar, Llc Cannulated flexible drive shaft
US20120004672A1 (en) 2010-06-30 2012-01-05 Brandon Giap Suture Straightening Device and Method
US8801716B2 (en) 2010-08-24 2014-08-12 Biomet Manufacturing, Llc Cartilage repair system with flexible trephine
US20120078372A1 (en) 2010-09-23 2012-03-29 Thomas Gamache Novel implant inserter having a laterally-extending dovetail engagement feature
US20120109142A1 (en) 2010-10-27 2012-05-03 Alan Dayan Surgical Screwdriver
US20120109194A1 (en) 2010-10-28 2012-05-03 Linvatec Corporation Suspensory graft fixation with adjustable loop length
US8814905B2 (en) 2010-11-23 2014-08-26 Depuy Mitek, Llc Surgical filament snare assemblies
US8821543B2 (en) 2010-12-23 2014-09-02 Depuy Mitek, Llc Adjustable anchor systems and methods
US9345468B2 (en) 2010-11-23 2016-05-24 Medos International Sárl Surgical filament snare assemblies
US9713463B2 (en) 2011-01-13 2017-07-25 Howmedica Osteonics Corp Toggle bolt assembly and method of assembly
US8795334B2 (en) 2011-01-28 2014-08-05 Smith & Nephew, Inc. Tissue repair
WO2012125617A1 (en) 2011-03-14 2012-09-20 Reznik Alan M Nonlinear self seating suture anchor for confined spaces
US8777960B2 (en) 2011-03-28 2014-07-15 DePuy Synthes Products, LLC Interlock driving instrument
US20130018416A1 (en) 2011-04-15 2013-01-17 Linvatec Corporation Soft suture anchor made of braided or monofilament suture
EP3895625A1 (en) 2011-05-06 2021-10-20 Linvatec Corporation Soft anchor made from suture filament and suture tape
US20120290002A1 (en) 2011-05-12 2012-11-15 Smith & Nephew, Inc. Tissue graft anchoring
WO2012158617A2 (en) 2011-05-13 2012-11-22 Suspension Orthopaedic Solutions, Inc. Adjustable suture lock loop
WO2012158583A1 (en) 2011-05-17 2012-11-22 Biomet Sports Medicine, Llc Method and apparatus for fixation of an acl graft
US9237887B2 (en) 2011-05-19 2016-01-19 Biomet Sports Medicine, Llc Tissue engaging member
EP2723244B1 (en) 2011-06-23 2017-05-17 Synthes GmbH Strand for minimally invasive removal of t-anchor
US20130178898A1 (en) 2011-07-06 2013-07-11 Imds Corporation Tissue approximation
US9301745B2 (en) 2011-07-21 2016-04-05 Arthrex, Inc. Knotless suture constructs
US9332979B2 (en) 2011-07-22 2016-05-10 Arthrex, Inc. Tensionable knotless acromioclavicular repairs and constructs
US9107653B2 (en) 2011-09-22 2015-08-18 Arthrex, Inc. Tensionable knotless anchors with splice and methods of tissue repair
US9421008B2 (en) 2011-09-23 2016-08-23 Arthrex, Inc. Soft suture-based anchors
US10245016B2 (en) 2011-10-12 2019-04-02 Arthrex, Inc. Adjustable self-locking loop constructs for tissue repairs and reconstructions
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9445803B2 (en) 2011-11-23 2016-09-20 Howmedica Osteonics Corp. Filamentary suture anchor
US9615821B2 (en) 2011-12-09 2017-04-11 Arthrex, Inc. Tensionable knotless anchor systems and methods of tissue repair
US9084597B2 (en) 2012-03-09 2015-07-21 Smith & Nephew, Inc. Suture-based knotless repair
US9585654B2 (en) 2012-05-01 2017-03-07 Dean & Webb, LLC Segmentally rigid suture and suturing technique
US9060763B2 (en) 2012-05-07 2015-06-23 Medos International Sàrl Systems, devices, and methods for securing tissue
US9345567B2 (en) 2012-05-07 2016-05-24 Medos International Sàrl Systems, devices, and methods for securing tissue using snare assemblies and soft anchors
US9357990B2 (en) 2012-05-22 2016-06-07 Riverpoint Medical, Llc Continuous loop and button assembly
US20130325063A1 (en) 2012-05-31 2013-12-05 Biomet Sports Medicine, Llc Suture Anchor Reload
US9737292B2 (en) 2012-06-22 2017-08-22 Arthrex, Inc. Knotless suture anchors and methods of tissue repair
US8821494B2 (en) 2012-08-03 2014-09-02 Howmedica Osteonics Corp. Surgical instruments and methods of use
US9237888B2 (en) * 2012-09-20 2016-01-19 Medos International Sarl Methods and devices for threading sutures
US9271716B2 (en) 2012-12-27 2016-03-01 Medos International Sàrl Surgical constructs and methods for securing tissue
US9788826B2 (en) 2013-03-11 2017-10-17 Howmedica Osteonics Corp. Filamentary fixation device and assembly and method of assembly, manufacture and use

Also Published As

Publication number Publication date
EP2777511A2 (en) 2014-09-17
EP2777511A3 (en) 2016-08-03
US9788826B2 (en) 2017-10-17
US20140257382A1 (en) 2014-09-11
US20180035998A1 (en) 2018-02-08
AU2014200973A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
US20180035998A1 (en) Filamentary fixation device and assembly and method of assembly, manufacture and use
US11690610B2 (en) Soft suture-based anchors
US20230363753A1 (en) Soft anchors with soft eyelets
US9463013B2 (en) Adjustable continuous filament structure and method of manufacture and use
US10285685B2 (en) Knotless filamentary fixation devices, assemblies and systems and methods of assembly and use
US20140039551A1 (en) Suture Anchor Device and Methods of Use
JP2019536518A (en) Tissue repair assembly and system with soft fixation implant
JP2019536518A5 (en)
AU2021282400B2 (en) Knotless instability anchor
US10610211B2 (en) Filament engagement system and methods of use
KR102505414B1 (en) Method and device for securing suture to an anchor body of a suture anchor
US20170172561A1 (en) Hybrid suture anchor
EP2879591B1 (en) Suture anchor device
WO2019055189A1 (en) Embroidered tissue button
US11129607B2 (en) Anchored loop-in-loop suture anchor
US11337687B2 (en) Double row collapsible suture construct

Legal Events

Date Code Title Description
FZDE Dead

Effective date: 20190305