CA2869728A1 - Vaginal remodeling device and method - Google Patents

Vaginal remodeling device and method Download PDF

Info

Publication number
CA2869728A1
CA2869728A1 CA2869728A CA2869728A CA2869728A1 CA 2869728 A1 CA2869728 A1 CA 2869728A1 CA 2869728 A CA2869728 A CA 2869728A CA 2869728 A CA2869728 A CA 2869728A CA 2869728 A1 CA2869728 A1 CA 2869728A1
Authority
CA
Canada
Prior art keywords
treatment tip
treatment
energy delivery
delivery elements
epithelium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2869728A
Other languages
French (fr)
Other versions
CA2869728C (en
Inventor
Donald I. Galen
Jerome Jackson
Steven Marc Lopez
Russell MEIROSE
Ian F. Smith
Srihari Yamanoor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viveve Inc
Original Assignee
Viveve Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viveve Inc filed Critical Viveve Inc
Publication of CA2869728A1 publication Critical patent/CA2869728A1/en
Application granted granted Critical
Publication of CA2869728C publication Critical patent/CA2869728C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1485Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00559Female reproductive organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/147Electrodes transferring energy by capacitive coupling, i.e. with a dielectricum between electrode and target tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1495Electrodes being detachable from a support structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1838Dipole antennas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1853Monopole antennas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/062Measuring instruments not otherwise provided for penetration depth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N2007/027Localised ultrasound hyperthermia with multiple foci created simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • A61N5/022Apparatus adapted for a specific treatment
    • A61N5/025Warming the body, e.g. hyperthermia treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary

Abstract

This invention provides devices and methods for remodeling the female genital tissue, the device comprising a treatment tip, wherein the distal end of the treatment tip is conical, spherical, hemispherical, oval or circular in shape. The device further comprises one or more energy delivery elements for simultaneous cooling of the vaginal epithelium and transmission of energy for heating the tissues underneath the epithelium. In one embodiment, said device may further comprise one or more of the following: one or more temperature sensors for measuring the temperature at or below the epithelium; one or more directional sensors mounted on the hand piece or treatment tip; and one or more depth markers to show the depth of penetration of the treatment tip into the vagina. In another embodiment, this invention provides a device having a finger holder with electrodes for remodeling the female genital tissue.

Description

INTERNATIONAL PATENT APPLICATION
UNDER THE PATENT COOPERATION TREATY
To all whom it may concern:
Be it know that Don I. GALEN, Jerome JACKSON, Steven Marc LOPEZ, Russell MEIROSE, Ian F. SMITH and Srihari YAMANOOR
have invented certain new and useful improvements in VAGINAL REMODELING DEVICE AND METHOD
of which the following is a full, clear and exact description.

VAGINAL REMODELING DEVICE AND METHOD
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims the priority of Chinese application 201210069906.X, filed March 16, 2012. The entire contents and disclosures of this prior application are incorporated herein by reference into this application.
FIELD OF THE INVENTION
[0002] This invention relates to devices and methods for remodeling tissue of the vagina and vulva, for example, by the application of radiant energy.
BACKGROUND OF THE INVENTION
[0003] The vaginal tissue of women is stretched during vaginal child birth; at least some of the effects of the stretching are permanent and many women have long term medical consequences.
Some consequences may include sexual aspects, as may follow from excessive loosening of the vagina and its opening. Such loosening typically occurs with the first vaginal delivery, and the loosening tends to increase with subsequent vaginal deliveries. The effect of looseness in this region may include decreased pressure and friction during intercourse, and as a consequence, decreased sexual pleasure for women and their conjugal partners. Some surgical options can be exercised in an attempt to alleviate these problems. However, these surgical approaches are not highly popular because of the risks associated with an invasive procedure.
[0004] Known systems and devices for treating the vagina are less than optimal, including those using radiant energy to modify the collagen. In particular, known systems are not optimized for the manipulation of the device and the cooling of the treated tissue. In addition, existing systems may not regulate the contact with the patient's tissue optimally. Finally, known systems have not proven to be simple, lightweight or intuitive to use. Described herein are systems and devices that can solve all the above-mentioned insufficiencies of known systems.
SUMMARY OF THE INVENTION
[0005] This invention provides a device and system for remodeling the female genital tissue, the device comprising a treatment tip and one or more energy delivery elements for simultaneous cooling of the vaginal epithelium and transmission of energy for heating the tissues underneath the epithelium. The device may further comprises one or more temperature sensors for measuring the temperature at or below the epithelium; one or more directional sensors mounted on the hand piece or treatment tip; and one or more depth markers to show the depth of penetration of the treatment tip into the vagina. In another embodiment, this invention provides a device having a finger holder with electrodes for remodeling the female genital tissue.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] Figure 1 is a perspective view of one embodiment of the device comprising a treatment tip (1), a hand piece (2) and a connection means (3), wherein said treatment tip has a cone-shaped distal end, wherein energy delivery elements (4) are arranged over the curved surface of the cone.
[0007] Figures 2A and 2B are perspective views of another embodiment of a device comprising a hand piece connected to a treatment tip that has a spherical distal end.
[0008] Figure 3A indicates cross-sections A-A and B-B in an embodiment of a device comprising a cone-shaped treatment tip. Figure 3B illustrates one embodiment of a coolant spray pattern in the internal cooling chamber (5) of a cone-shaped treatment tip, showing some of the nozzles (6). Figures 3C and 3D are close-up views of a coolant spray pattern, showing the energy delivery elements (4).
[0009] Figure 4 illustrates one embodiment of a hand piece.
[0010] Figures 5A and 5B show two views of an integrated system for tissue remodeling.
[0011] Figure 6A shows one embodiment of a treatment device with a temperature sensor (11) that is adapted to measure temperature on the surface of the genital epithelium. Figures 6B and 6C show other embodiments of a treatment device with temperature sensors adapted to measure temperature beneath the surface of the genital epithelium.
[0012] Figure 7A shows one embodiment of a directional sensor (7) mounted on the distal end of a hand piece; Figure 7B shows one embodiment of a directional sensor (7) mounted on the proximal end of a hand piece; Figure 7C shows one embodiment of a directional sensor (7) mounted on the treatment tip.
[0013] Figure 8A shows some depth markers (8) on the treatment surface of a treatment tip having a cone-shaped distal end; Figure 8B shows some depth markers (8) on the treatment surface of a treatment tip having a rectangular distal end; Figure 8C shows some raised and indented depth markers on the treatment surface of a treatment tip having a rectangular distal end.
[0014] Figure 9 shows one embodiment of a device having a finger holder with electrodes for remodeling female genital tissue, said device comprising a gripping means (14), a hand piece (2), a wrapping loop (15), a housing (13) and a wire (16).
[0015] Figure 10 shows one embodiment of a device having a finger holder for remodeling female genital tissue, wherein said finger holder (12) is coupled through a connection means (3) to a hand piece (2).
DETAILED DESCRIPTION OF THE INVENTION
[0016] Described herein are devices and systems for remodeling target tissues underlying the epithelium of female genital tissue, while cooling the epithelium. The systems consist of devices that work together as a remodeling tool. In one embodiment, the device includes a hand piece and a treatment tip, which may form part of a system further including a power source, a source of coolant, and a control system.
[0017] The present invention provides a device which is a component of systems for remodeling target tissues underlying the epithelium of female genital tissue (hereinafter called `systems').
[0018] The device in the present invention comprises a treatment tip (1) and a hand piece (2), wherein the treatment tip (1) is coupled through a connection means (3) to the distal end of the hand piece (2), wherein the distal end of the treatment tip is conical, spherical, hemispherical, oval or circular in shape, wherein the device further comprises one or more of the following: one or more temperature sensors (11) for measuring the temperature at or below the epithelium; one or more directional sensors (7); and one or more depth markers (8) showing the depth of penetration of the treatment tip into the vagina.
[0019] In another embodiment, the device in the present invention comprises a treatment tip (1) and a hand piece (2), wherein the treatment tip is coupled through a connection means (3) to the distal end of the hand piece, wherein the device comprises one or more temperature sensors (11) for measuring the temperature at or below the epithelium, wherein the device further comprises one or more directional sensors (7) mounted on the hand piece or treatment tip. In one embodiment, the distal end of the treatment tip is rectangular, curved, conical, spherical, oval, hemispherical or circular in shape.
[0020] The distal end of the treatment tip comprises one or more energy delivery elements (4) comprising an internal surface and an epithelium-contacting surface.
[0021] The inside of the distal end of said treatment tip (1) comprises an internal cooling chamber (5) having a plurality of nozzles (6) configured to spray a coolant onto the internal surface of the energy delivery elements. Said internal cooling chamber may comprise a coolant return line that vents used coolant from the treatment tip.
[0022] The energy delivery element comprises at least one radiofrequency (RF) electrode.
[0023] The surface of the distal end of the treatment tip may be fully covered by the energy delivery elements, or has one or more areas not covered by the energy delivery elements.
[0024] In one embodiment, the energy delivery elements can be turned on and off in a specific sequence, or in a clockwise or counter-clockwise direction.
[0025] The energy delivery elements can cool the vaginal epithelium and simultaneously transmit energy for heating the target tissues.
[0026] In one embodiment, the treatment tip can be removably attached to the hand piece of a system so as to receive electricity, radiofrequency, coolant and/or digital signals.
[0027] In one embodiment, the temperature sensors are thermocouples. For example, each thermocouple comprises a first and a second junction. In one embodiment, the first junction is located on the hand piece or between the energy delivery elements and said hand piece. In another embodiment, the second junction is located at the distal end, proximal end, or middle of the energy delivery elements.
[0028] In one embodiment, the second junction comprises a blunt end that contacts the epithelium and measures its temperature, or a needle that penetrates the epithelium and measures the temperature underneath the epithelium.
[0029] Directional sensors generally provide information for tracking the position of the treatment tip. In one embodiment, directional sensors employ electromagnetic or optical mechanisms to track the position of the treatment tip. Directional sensors can be mounted on various positions such as the proximal or distal end on the hand piece or close to the energy delivery elements on the treatment tip.
[0030] In one embodiment, the surface of the treatment tip comprises depth markers, wherein the surface can be rectangular, curved, conical, spherical, hemispherical, oval or circular in shape. In one embodiment, the depth markers comprise numerical markings.
[0031] In another embodiment, the depth markers on the treatment tip or its surface comprise raised lines, indented lines or numerical markings. In another embodiment, the depth markers are located on more than one side of the treatment tip.
[0032] In another embodiment, the present invention provides a device having a finger holder fitted with electrodes for remodeling female genital tissue, said device comprising a gripping means (14) and a hand piece (2), wherein the gripping means is connected to the hand piece, wherein the gripping means has a finger holder (12) at the proximal end, and a wrapping loop (15) at the distal end, wherein the finger holder is attached to a housing (13), and the surface of the housing comprises at least one energy delivery element (4), wherein the device further comprises one or more of the following: one or more temperature sensors (11);
one or more directional sensors (7); and one or more depth markers (8). In one embodiment, the finger holder and hand piece are connected via wires (16) for delivery of electricity, radiofrequency, coolant or digital signals.
[0033] In one embodiment, the present invention provides a device having a finger holder with electrodes for remodeling female genital tissue, said device comprising a finger holder (12), a hand piece (2) and a connection means (3), wherein the finger holder is coupled through the connection means to the distal end of the hand piece, wherein the finger holder is connected to a housing (13), and the surface of the housing comprises at least one energy delivery element (4), wherein the device further comprises one or more of the following: one or more temperature sensors (11); one or more said directional sensors (7); and one or more said depth markers (8).
[0034] The above-mentioned energy delivery element comprises an internal surface and an epithelium-contacting surface. In one embodiment, the energy delivery elements comprise at least one radiofrequency (RF) electrode.
[0035] The housing (13) is rectangular, curved, oval, conical, hemispherical, spherical or circular in shape. In one embodiment, the housing comprises an internal cooling chamber (5) having a supply line of coolant opposite to the internal surface of the energy delivery elements, wherein the supply line of coolant comprises a plurality of nozzles (6) configured to spray a coolant onto the internal surface of the energy delivery elements.
[0036] In another embodiment, the present invention provides a system for remodeling female genital tissue (hereinafter called 'system'). In one embodiment, the system comprises the treatment tip described above, a hand piece, and an integrated controller that comprises, for example, a housing, a radiofrequency generator within the housing, a cooling sub-system within the housing, and a controller for controlling the operation of the system.
[0037] This invention further provides a method of using the above device or system for remodeling a target tissue underlying a mucosal epithelium of the female genital tissue, comprising the step of cooling said epithelium and heating said target tissue with energy-delivery elements of the device or system. The content of PCT/US2010/049045 is hereby incorporated by reference in its entirety into this specification to illustrate a method of remodeling the female genital tissue.
[0038] The method may comprise a step of connecting the treatment tip to an elongated handle configured to be held by two hands. The method may also comprise a step of confirming contact of the energy delivery elements with the tissue based on the temperature at or near the energy delivery elements and the time since the treatment tip is last activated.
[0039] In one embodiment, the step of cooling the epithelium comprises spraying coolant onto the internal surface of the energy delivery elements, wherein the coolant may be recycled.
[0040] In said method, the target tissue may be heated to a temperature between about 45 C and about 80 C by applying energy from the energy delivery elements. In one embodiment, the method comprises cooling the epithelium to a temperature between about 0 C
and about 10 C.

The cooling may precede the heating, and continue during the heating.
Alternatively, cooling is performed during heating, and continues after heating.
[0041] In one embodiment, the method comprises contacting the epithelium with the treatment tip at one or more contact sites during a procedure.
[0042] In said method, the female genitalia include the vulva, the vagina and the introitus. The female genitalia may also include a portion of the vagina extending from the introitus inwardly from about 1 cm to about 3.5 cm. The female genitalia may include a portion of the vagina circumferentially around its wall from about 1 o'clock to about 11 o'clock, wherein the aspect closest to the urethra is at 12 o'clock. In one embodiment, the female genitalia includes a portion radiating outwardly from the introitus to the Hart's line. In another embodiment, the female genitalia includes the mucosal surfaces of the labia minora.
[0043] In said method, the target tissue includes submucosa and muscularis below the mucosal epithelium. In one embodiment, the heating does not substantially modify the mucosal epithelium of the genital tissue. In another embodiment, remodeling comprises contracting the target tissue, tightening the introitus, tightening the vagina, denaturing collagen, or tightening the collagen-rich sites in the target tissue.
[0044] This invention will be better understood by reference to the examples which follow.
However, one skilled in the art will readily appreciate that the examples provided are merely for illustrative purposes and are not meant to limit the scope of the invention which is defined by the claims following thereafter.
[0045] Throughout this application, it is to be noted that the transitional term "comprising", which is synonymous with "including", "containing" or "characterized by", is inclusive or open-ended, and does not exclude additional, un-recited elements or method steps.
EXAMPLES
DEVICE FOR REMODELING GENITAL TISSUES
[0046] In one embodiment, a device for remodeling female genital tissue comprises a hand piece and a treatment tip (Figures 1-2). The hand piece is adapted to be held by an operator, such as a physician. The hand piece may include connections to a larger supporting system, or it may be operable as a self-sufficient independent device. In one embodiment, the treatment tip can be configured to be removably coupled to the hand piece, for example, the treatment tip can be designed as a quick connect/disconnect unit with respect to its attachment to the hand piece.

TREATMENT TIP
[0047] In one embodiment, the treatment tip comprises a housing, a midsection, and a treatment surface at the distal end of the treatment tip, wherein the treatment surface is covered by one or more energy delivery elements that each comprises an internal surface and an epithelium-contacting surface. The energy delivery elements are adapted to allow cooling of the epithelium while transmitting energy to heat the target tissue. The housing defines an interior space which extends forward to the distal end of the treatment tip. The midsection of the treatment tip provides a functional advantage in that it allows the energy delivery elements to be projected forward from the body of the hand piece. The overall length of the treatment tip can be designed to reach the innermost region of the vagina that is to be treated.
ENERGY DELIVERY ELEMENT
[0048] In one embodiment, each energy delivery element has an internal surface facing the interior space within the treatment tip, and an epithelium-contacting surface facing the exterior of the treatment tip. The internal surface may be made of a metal, e.g. copper, gold, silver, or aluminum. The epithelium-contacting surface may comprise a variety of different materials, including but not limited to, polyimides, Teflon (RTM), silicon nitride, polysilanes, polysilazanes, Kapton and similar polymers, antenna dielectrics and other dielectric materials known in the art. Other exemplary dielectric materials include polymers such as polyester, silicon, sapphire, diamond, zirconium-toughened alumina (ZTA), alumina and the like. In another embodiment, the energy delivery element is made of a composite material, including but not limited to, gold-plated copper, copper-polyimide, silicon/silicon-nitride and the like.
[0049] In one embodiment, the energy delivery element may be a radiofrequency electrode, a microwave emitter, or an ultrasound emitter. For example, the radiofrequency electrode is a capacitive electrode that couples to the epithelium. In another embodiment, the radiofrequency electrode can be either monopolar or bipolar. In the monopolar mode, radiofrequency current flows through body tissue from a return electrode which can be in the form of a conductive pad applied to another portion of the patient's body. The distal end of the treatment tip may have a pair of monopolar electrodes, a bipolar pair, or multiple bipolar pairs.
[0050] In one embodiment, the electrode may be equipped with an integrated EEROM
(Electrically Erasable Read Only Memory, also known as EEPROM) programmable memory chip at any suitable location within the treatment tip. Such a chip may provide identifying information or other information about the operational status or configuration parameters of the radiofrequency electrode to the system, such parameters may include, by way of example, the type and size of the electrode, the number of times the energy delivery element has been fired, and the like.

TREATMENT SURFACE
[0051] In one embodiment, the distal end of the treatment tip is configured to be conical, spherical, hemispherical or of any other desirable geometry, providing a treatment surface that is suitable for the treatment site. Energy delivery elements are located on the treatment surface at the distal end of the treatment tip. For example, the energy delivery elements can be arranged on the treatment surface at the distal end of a treatment tip that may be conical, spherical, hemispherical, oval, circular or any other desirable geometry. One of ordinary skill in the art would readily design treatment surface (conical, spherical, etc.) and energy delivery elements in different sizes (e.g. small, medium and large) to accommodate anatomical differences of the female genital.
[0052] The energy delivery elements (or electrodes) can be arranged on the treatment surface in a number of different patterns or array (Figures 1-2). For example, the electrodes may or may not occupy the entire treatment surface. One of ordinary skill in the art would readily configure the dimensions of the energy delivery elements to suit the treatment needs and the configuration of the treatment tip so that the treatment surface and the electrodes would adequately cover the anatomy of the target tissue. By dividing the electrodes into multiple arrays and through the use of sensory technology, an operator may determine which array areas are making appropriate tissue contact and then deliver radiant energy to those specific electrodes.
[0053] In one embodiment, certain areas on the treatment surface are covered by an insulated material, not the energy delivery elements; therefore, the electrodes or energy delivery elements are absent from certain areas on the treatment surface (Figures 1-2). This allows the user to avoid treating certain areas of the tissue under treatment to improve the safety and effectiveness of the treatment.
[0054] In another embodiment, the electrodes are present throughout the treatment surface, but specific electrodes can be turned on/off so that treatment is avoided in certain portions of the tissue under treatment.
[0055] In yet another embodiment, the electrodes can be turned on and off in any sequence or pattern to provide treatment to the target tissue. For example, the electrodes may be turned on and off in a clockwise or counter-clockwise direction. In another embodiment, through remote control by means of a user interface, specific electrodes can be turned on and off in any sequence or pattern. In yet another embodiment, software programs can be used to track which electrodes have been turned on and turned off to identify and segregate untreated areas from treated areas.
COOLING MECHANISM
[0056] In one embodiment, the interior space of the distal end of the treatment tip accommodates a cooling system to cool the energy delivery elements. For example, the interior space comprises a cooling lumen for conveying coolant to a plurality of nozzles. Various coolants are known in the art, e.g. 1,1,1,2-tetrafluoroethane (R134A) or carbon dioxide, which can be stored in a reservoir under pressure. The nozzles are typically located opposite to the internal surface of the energy delivery elements. The coolant, upon release from the nozzles, is sprayed onto the internal surface of the energy delivery elements and cools the energy delivery elements as the coolant undergoes a liquid to gas transformation. Consequently, the exterior surface (the epithelium-contacting surface) of the energy delivery elements would cool the epithelial tissues in contact with said surface.
[0057] One of ordinary skill in the art would recognize that any appropriate coolant and internal cooling system may be used. In some variations, the cooling may be electrical (e.g., via Peltier effect or the like). Thus, in general, the cooling system of the treatment device may include a cooling chamber. The cooling chamber may include one or more nozzles for spraying or applying coolant. Coolant may be applied in any appropriate pattern to the internal surface of the energy delivery elements. For example, the spraying pattern may be overlapping circles. In Figure 3, the energy delivery elements are located on a cone-shaped treatment surface, and the nozzles are spaced opposite to the internal surface of the energy delivery elements and emit a cone-shaped spray pattern.
[0058] Thus, in general, the cooling chamber has a plurality of nozzles for applying coolant onto the internal surface of the energy delivery elements. Since the internal surface of the energy delivery elements is thermally conductive, cooling the internal surface (even a portion of the internal surface) will result in cooling the outer surface of the energy delivery elements, and thereby cooling the epithelial tissue in contact with the energy delivery elements.
HAND PIECE
[0059] In general, the hand piece is sufficiently long to be easily held by two hands. The hand piece may be relatively rigid (as compared to the flexible, typically flat cable, for example). In one embodiment, the hand piece (1101) is elongated, and includes a grip region (1003) (Figure 4). The hand piece may also include one or more controls such as a button, slider, dial, or the like. The control may allow the user to apply energy to the energy delivery elements, to apply coolant, or both. The hand piece may also include one or more indicators for indicating the status and/or orientation of the device, such as the treatment tip. For example, an indicator may indicate whether or not the treatment tip is attached; whether or not the device is out of coolant;
or whether or not the device is ready for activation. In another embodiment, an indicator may indicate the temperature of the treatment tip (e.g., the energy delivery elements), and/or the duration of time that the device has been active. In some variations, the indicator includes one or more lights (e.g., LEDs, etc.), colors (including colored lights), alphanumeric display (e.g., a display screen or monitor), or the like. The hand piece is typically configured to couple with the treatment tip. In some variations, the treatment tip is configured to be capable of quickly or easily attached to and detached from the handle.
[0060] In one embodiment, either the hand piece or the treatment tip, or both, may include markers that indicate how deep into the vagina the device has entered. This may allow the user to maintain a desired depth of operation.
[0061] In one embodiment, the treatment tip is designed as a single-use disposable component, while the hand piece is typically reusable. Accordingly, the entire treatment tip and its parts are to be sterilized, and individually packaged to maintain sterilized until the package is opened, and the treatment tip is attached to a hand piece in preparation for use.
ELECTRONIC SUPPORT SYSTEM FOR THE DEVICE
[0062] The device described above for remodeling female genital tissue may be included in a larger electronic system. The system may include a power source, such as a radiofrequency power source that provides energy to the radiofrequency electrodes. The system may also include a multiplexer driven by a controller, which can be a digital or analog controller, or a computer.
When the controller is a processor (such as a microprocessor of a computer), it can include a CPU coupled through a system bus. There may also be a keyboard, disk drive, or other nonvolatile memory systems, a display, and other peripherals on the system. A
program memory and a data memory may also be coupled to the bus.
[0063] In another embodiment, the electronic support system may include an operator interface comprising operator controls and a display. The operator controls can be coupled to different types of imaging systems including ultrasonic and impedance monitors. Current and voltage are used to calculate impedance. A diagnostic phase can be initially run to determine the level of treatment activity. This can be done through ultrasound as well as other means. Diagnostics can be performed both before and after treatment.
[0064] One of ordinary skill in the art would readily design an appropriate electronic support system for the device. Circuitry, software and feedback to controller result in full process control and are used to change power, the duty cycle, monopolar or bipolar energy delivery, flow rate and pressure, and can also determine when the process is completed through time, temperature and/or impedance. Furthermore, a controller can provide multiplexing, monitor circuit continuity, and determine which radiofrequency electrode is activated. When the values exceed the predetermined temperature or impedance values, a warning can be given on the display.
Additionally, the delivery of radiofrequency energy to the electrodes under warning can be decreased or multiplexed to another electrode.

SYSTEM FOR REMODELING TARGET TISSUES
[0065] In one embodiment, a vaginal remodeling system (hereinafter called 'system') may include a hand piece, a disposable (or reusable) treatment tip, a power source or supply, a cooling sub-system, and a controller. In some variations, the controller, power supply or source and cooling sub-system may be integrated into a single unit to which the hand piece and treatment tip may be coupled (Figures 5A and 5B). The integrated system (1500) in this example includes a display (1501) and a housing (1503) to which the hand piece (1505) and treatment tip (1507) are attached via a cable (1509). The cable may include supply and return coolant lines, as well as a connection to the radiofrequency energy supply and any sensors on the treatment device. This entire system may be configured for ease of use, including portability and compact arrangement.
[0066] For example, in one variation, the system may include: a treatment tip (for delivery of radiofrequency energy), a source of coolant (e.g., cryogen), a hand piece, a cable connecting the hand piece and treatment tip to the source of coolant, power source, and/or control system or a controller.
[0067] In one embodiment, the hand piece is connected via a single cable to an integrated controller, which includes both a cooling system and power source that may be controlled or regulated by the controller. The cable may include supply and return coolant lines, as well as a connection to the radiofrequency energy supply and any sensor(s) on the treatment device.
[0068] In one embodiment, the integrated system may include an opening into which a coolant may be inserted. For example, the coolant may be a pressurized canister (1521) of any appropriate cryogen. The coolant canister may be threaded with one or more sets of threads to secure it into place in the integrated system, although any appropriate sealing mechanism for the coolant may be used. The level of coolant may be monitored by the system, and the display may include an icon indicating the level of coolant remaining in the canister or system.
[0069] In one embodiment, the components of the integrated controller include a microprocessor (which may include hardware, software, and/or firmware) for controlling the system, any outputs (e.g., monitor, one or more speakers, etc.), the radiofrequency power source, and the cooling sub-system. These different components of the integrated controller may be individually installed within the housing in a "modular" manner.
[0070] The overall weight and footprint of the integrated system, and particularly the integrated controller, may be sufficiently small so that the system for tissue remodeling is portable and readily storable. For example, the entire system may weigh less than 50 pounds.
[0071] The system may also include one or more controls for controlling the device. In particular, the system may include a control for controlling the energy delivery of the treatment device (e.g., activation control), as well as one or more controls for controlling the treatment regime.
[0072] The controller may include a display that is configured to display information about the procedure, the coolant, the treatment tip, handle and other components of the system. This information may be displayed on the front of the integrated controller, and may present the information with audio signals as well. The display may also be used to display error information (including error codes) based on the status of the various system component (e.g., coolant level, contact with skin, radiofrequency generator status, etc.) In one embodiment, the display screen is a touch screen that allows the user to select treatment parameters by touching the screen. In some variations, the system may include a keyboard, mouse, trackball, or the like.
[0073] In some variations, the activation control is on the hand piece, e.g. a button. In one embodiment, the system may include a wired or wireless foot switch or other control that is separate from the hand piece. In one variation, the foot switch is connected to the integrated control.
TEMPERATURE SENSORS
[0074] One of the factors that need to be controlled during treatment is the temperature of the area being treated. This can be achieved through a temperature sensor such as a thermocouple.
All temperature sensors known in the art can be used. A sensory device such as a thermocouple works by comparing the difference in temperature between two junctions. One of the junctions is a reference junction and the other is placed at the target area.
[0075] In one configuration of the invention, a junction of a thermocouple is placed on the treatment electrode/energy delivery elements. For example, to measure temperature on the surface of the genital tissue, a junction is designed to be a short blunt needle that is innocuous and would not cause injury to the tissue (Figure 6A). Alternatively, to measure temperature underneath the epithelium, a junction is designed to comprise a needle that penetrates the epithelial tissue and reaches a specific depth of the target tissue where temperature data is gathered (Figures 6B-6C).
[0076] In one embodiment, the junction in contact with the target tissue may be positioned at the distal end or center of the energy delivery elements, or close to the proximal end of the hand piece (Figures 6A-6C).
[0077] In another embodiment, there may be more than one pair of temperature measuring junctions placed on the energy delivery elements in contact with the target tissue. This will allow for comparative temperature measurements or for temperature monitoring across the energy delivery elements.
[0078] In one embodiment, the reference junction of the thermocouple that is not contacting the tissue may be placed between the energy delivery elements and the hand piece, or on the hand piece.
[0079] Feedback obtained from the temperature measurement can be fed into a control unit and be displayed, and/or used for producing alarms as necessary. The temperature feedback may also be used to assess treatment effectiveness or to shut off the treatment when a target temperature has been reached or exceeded. The alarms and messages may be in the form of visual readouts and/or audio outputs.
DIRECTIONAL SENSORS
[0080] In a typical treatment procedure, the energy delivery elements on the distal end of the treatment tip can contact various sites in the lower vagina. A set of contact sites would collectively form a treatment area on the vaginal epithelium. The energy delivery elements (or the treatment surface comprising the energy delivery elements) can be applied to the contact sites or treatment area in many ways. For example, the energy delivery elements can treat the contact sites in a clockwise or counter-clockwise manner, or at pre-determined time intervals. Since treatments may vary from patient to patient, or even within the same patient, directional sensors are integrated into the device to provide the user with appropriate information on the position of the treatment tip. In one embodiment, sensory information may be obtained from more than one sensor in the tissue remodeling system, and the sensory information from each sensor can be used individually or collectively.
[0081] A number of sensory feedback mechanisms generally known in the art can be used in the present invention. In one embodiment, the sensory feedback may be obtained through electromagnetic sensory mechanisms or through sensors like accelerometers or gyroscopes, where an initial position is noted and any changes in position are noted by changes in distance, angle or other comparative means, such as changes in yaw, pitch, or roll etc.
[0082] In another embodiment, sensory feedback can also be obtained through optical means through the measurement of light. For example, optical encoder discs are used to measure changes in position using a light source and photo or reflective sensors.
[0083] In another embodiment, sensory feedback can also be obtained through optical means through the measurement of light. For example, optical encoder discs are used to measure changes in position using a light source and photo or reflective sensors.
[0084] In one embodiment, the directional sensors may be positioned proximally or distally on the hand piece (Figures 7A-B). In another embodiment, the sensors can be positioned near the energy delivery elements on the treatment tip (Figure 7C).
[0085] In one embodiment, sensory information from the directional sensors is processed and displayed to alert users as to the current position of the treatment tip, other positions it has been in, the direction of treatment and other pertinent information.
[0086] In another embodiment, sensory information obtained from a treatment device may activate alarms indicating if the treatment device is approaching a new treatment site, if it is traversing a site that has already been treated, or if there has been a change in the treatment direction.
[0087] Sensory information regarding the treatment process for a given patient may be stored as reference and used for comparison in future treatments or other purposes.
[0088] Sensory information obtained from the directional sensors would have many applications.
For example, it provides information on the specific location of the treatment device on the treatment area. In treating patients, it may be necessary to vary the energy delivery scheme, the quantity of energy delivered, coolants or other components used to assist treatment, etc. Thus, the position of the treatment device on the treatment area can be used for one or more purposes:
1. The position of the treatment device may indicate whether or not treatment or any supplementary components would be necessary. Thus, information regarding the position can be used to determine whether the treatment should be started or stopped, and if use of any supplementary materials (e.g. coolants) need to be started or stopped.
2. The position of the treatment device may be used to vary the amount of energy delivered, or the amount of any supplementary materials used. These changes may improve the efficiency and safety of the treatment. Thus, based on the changes in the position of the device, and the direction of movement of the device towards specific treatment areas, various treatment parameters may be changed.
3. The changes in the treatment materials and/or parameters can either be programmed directly into the treatment control device, or be manually controlled if necessary.
DEPTH MARKERS
[0089] In one embodiment, the tissue remodeling device described above can be used to treat vagina of different shapes and depths. The depth at which the treatment surface at the distal end of the treatment tip penetrates the vagina or other target tissue can affect the safety and/or effectiveness of the treatment. Accordingly, markers on the treatment device allow a user to quickly assess the depth at which the treatment surface/treatment device has penetrated the vagina. The location of the markers will depend on the configuration of the device itself
[0090] In one embodiment, scale markers accompanied by raised reference lines or other similar features help the user either visually or through sense of touch to determine the depth of penetration. Alternatively, the scale markers are indented instead of raised.
In another embodiment, the scale markers can be raised markers on one side of the treatment tip and be indented markers on another side. Any of the above marker schemes can be placed on one or more sides of the treatment tip to help the user manipulate the device while maintaining it at a specific depth within the vagina.
[0091] In case the distal end of the treatment tip is conical (or spherical, circular, etc.) in shape, depth markers (8) can surround the treatment surface or cover part of the surface (Figure 8A).
This will be useful when the treatment device is rotated or inserted during the treatment process.
[0092] In one embodiment, numerals can be used as depth markers to show the depth of penetration (Figures 8A, 8B). This numeric scale can include numbers and unit of measurement such as inches, millimeters or centimeters. These numbers can be printed on the treatment tip, flush with the surface of the treatment tip. In another configuration, the numbers may be raised or indented to enhance the visual effect and sense of touch.
[0093] The numeric markers may also be printed with colors that substantially contrast the color of the treatment tip. For example, if the treatment tip is black, the markers could be white, or vice versa. This color contrast will allow for easy visual recognition of the treatment depth.
[0094] In another embodiment, the numbers and markers can be staggered in multiple colors to display different depths of penetration, such as using three different colors to depict shallow, medium or deep.
[0095] In another embodiment, the numbers and markers can be staggered with two different colors as safety indicators. A certain depth may be considered safe, and this may be indicated using green color for example, and a depth considered unsafe may be indicated using red. Other contrasting colors could also be used.
[0096] In summary, markers located on the treatment tip enable the user to quickly determine if the tissue remodeling treatment tip has reached the depth of the target vaginal tissue. The markers and numerals are located on the treatment surface at the distal end of the treatment tip.
In another embodiment, the markers are near the proximal end of the treatment tip. In yet another embodiment, the markers could be located at multiple positions on the treatment tip for added convenience.
DEVICE WITH FINGER HOLDER
[0097] In one embodiment, the treatment device comprises a gripping means (14) and a hand piece (2), wherein the gripping means is connected to the hand piece, wherein the gripping means has a finger holder (12) at the proximal end, and a wrapping loop (15) at the distal end, wherein the finger holder is connected to a housing (13), and the surface of the housing comprises at least one energy delivery element (4) (Figure 9).
[0098] In one embodiment, the finger holder is connected to a rod and a strap that can wrap around the user's hand or arm so that the device may be held firmly (e.g. a wrist band, see Figure 9). This will allow the user to access and withdraw from the treatment site without losing the grip, thus promoting safety, treatment effectiveness and user comfort.
[0099] In one embodiment, the finger holder (12) is connected to the hand piece (2) via wires (16) to deliver electricity, radiofrequency, coolant and/or digital signals.
The housing (13) is rectangular, curved, oval, conical, hemispherical, spherical or circular in shape.
[0100] In another embodiment, the finger holder is connected to the hand piece without the rod and wristband (Figure 10). This will allow a user to pull his/her finger out of the finger holder and just grasp the hand piece after the energy delivery elements have been placed into the treatment site. The treatment device comprises a finger holder (12), a hand piece (2) and a connection means (3), wherein the finger holder is coupled through the connection means to the distal end of the hand piece, wherein the finger holder is connected to a housing (13), and the surface of the housing comprises at least one energy delivery element.
[0101] In one embodiment, the finger holder can be designed to accommodate a wide variety of finger sizes, both male and female. One way to achieve this would be through the use of finger holders and electrodes of matching sizes, or the use of sleeves of different internal diameters inside the finger holder. Another approach is making the finger holder with soft materials that will adapt to various finger sizes. The finger holder will allow the physician/user/treatment provider to easily reach the treatment site, thus achieving different advantages such as accuracy and speed of treatment.
[0102] In one embodiment, the energy delivery elements are part of a housing that accommodates a cooling chamber to cool the energy delivery elements. For example, the cooling chamber may comprise a cooling lumen for conveying coolant to one or more nozzles. Various coolants are known in the art, e.g. 1,1,1,2-tetrafluoroethane (R 134A) or carbon dioxide which can be stored under high pressure. The energy delivery elements comprise an epithelium-contacting surface and an internal surface facing the cooling chamber. In one embodiment, the nozzles are located opposite to the internal surface of the energy delivery elements. The coolant, upon release from the nozzles, is sprayed onto the internal surface of the energy delivery elements and cools the surface as a result of vaporization. Consequently, the exterior epithelium-contacting surface of the energy delivery elements would cool the epithelial surface of the target tissue.
[0103] Treatment of target tissue is achieved by inserting a finger into the finger holder and directly applying the energy delivery elements onto the treatment site. The energy delivery elements can be moved in a clockwise or counter-clockwise direction on the treatment site. One of ordinary skill in the art would readily configure the dimensions and sizes of the energy delivery elements to provide optimal treatment.
[0104] In one embodiment, the energy delivery element may be a radiofrequency electrode, a microwave emitter, or an ultrasound emitter. In one embodiment, the radiofrequency electrode is a capacitive electrode in contact with the mucosal epithelium.

Claims (20)

1. A device for remodeling the female genital tissue, comprising a treatment tip and a hand piece, wherein the treatment tip is connected to the distal end of the hand piece via a connection means, wherein the distal end of the treatment tip is rectangular, conical, spherical, hemispherical, oval or circular in shape, and has a surface comprising one or more energy delivery elements, wherein said elements have an internal surface and an epithelium-contacting surface, and wherein the device further comprises one or more of the following:
(a) one or more temperature sensors for measuring the temperature at or below the epithelium;
(b) one or more directional sensors; and (c) one or more depth markers showing the depth of penetration of the treatment tip into the vagina.
2. The device of claim 1, wherein said treatment tip is equipped with a finger holder.
3. The device of claim 2, wherein said treatment tip is connected to said connection means via a gripping means, wherein the distal end of said gripping means is attached to said treatment tip, and the proximal end of said gripping means is connected to said connection means.
4. The device of claim 3, wherein a strap is attached close to the proximal end of said gripping means.
5. The device of claim 4, wherein the proximal end of said gripping means is connected to said connection means via wires.
6. The device of any one of claims 1 to 5, wherein the inside of said treatment tip comprises an internal cooling chamber having a supply line of coolant opposite to the internal surface of said one or more energy delivery elements, wherein the supply line of coolant comprises a plurality of nozzles configured to spray a coolant onto the internal surface of said one or more energy delivery elements.
7. The device of any one of claims 1 to 6, wherein the surface at the distal end of the treatment tip is fully or partially covered by energy delivery elements.
8. The device of any one of claims 1 to 7, wherein the temperature sensors are thermocouples, each comprising a first and a second junction.
9. The device of claim 8, wherein the first junction is located on the hand piece or between the energy delivery elements and said hand piece.
10. The device of claim 8 or 9, wherein the second junction is located at the distal end, proximal end, or middle of the one or more energy delivery elements.
11. The device of any one of claims 8-10, wherein the second junction comprises a blunt end that contacts the epithelium and measures its temperature.
12. The device of any one of claims 8-10, wherein the second junction comprises a needle that penetrates the epithelium and measures the temperature below the epithelium.
13. The device of any one of claims 1 to 12, wherein the directional sensors employ electromagnetic or optical mechanisms to track the position of the treatment tip.
14. The device of any one of claims 1 to 13, wherein the directional sensors are mounted proximally or distally on the hand piece.
15. The device of any one of claims 1 to 13, wherein the directional sensors are mounted close to the one or more energy delivery elements on the treatment tip.
16. The device of any one of claims 1 to 15, wherein the depth markers are on the surface at the distal end of the treatment tip.
17. The device of any one of claims 1 to 16, wherein the depth markers comprise raised lines, indented lines or numerical markers.
18. The device of any one of claims 1 to 17, wherein the depth markers are located on more than one side of the treatment tip.
19. A method of using the device of any one of claims 1-18 for remodeling a target tissue underlying a mucosal epithelium of the female genital tissue, comprising the step of cooling said epithelium and heating said target tissue with said energy delivery elements.
20. The method of claim 19, wherein remodeling includes contracting the target tissue, tightening the introitus, tightening the vagina, denaturing collagen, or tightening collagen-rich sites of the target tissue.
CA2869728A 2012-03-16 2013-03-15 Vaginal remodeling device and method Expired - Fee Related CA2869728C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210069906.X 2012-03-16
CN201210069906.XA CN103301567B (en) 2012-03-16 2012-03-16 A kind of therapeutic apparatus repairing vagina tissue
PCT/US2013/032066 WO2013138718A1 (en) 2012-03-16 2013-03-15 Vaginal remodeling device and method

Publications (2)

Publication Number Publication Date
CA2869728A1 true CA2869728A1 (en) 2013-09-19
CA2869728C CA2869728C (en) 2017-08-08

Family

ID=49127564

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2869728A Expired - Fee Related CA2869728C (en) 2012-03-16 2013-03-15 Vaginal remodeling device and method

Country Status (15)

Country Link
US (2) US9415235B2 (en)
EP (2) EP2825119B1 (en)
JP (2) JP6138229B2 (en)
KR (3) KR102197234B1 (en)
CN (2) CN103301567B (en)
CA (1) CA2869728C (en)
DE (2) DE202013012099U1 (en)
ES (1) ES2534026T1 (en)
HK (2) HK1189531A1 (en)
IN (1) IN2014MN02062A (en)
MX (1) MX341571B (en)
RU (1) RU2631477C2 (en)
SG (3) SG10201708363VA (en)
TW (2) TW201717754A (en)
WO (1) WO2013138718A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961511B2 (en) 2006-02-07 2015-02-24 Viveve, Inc. Vaginal remodeling device and methods
CN105879238B (en) 2009-09-18 2019-10-18 女康乐公司 Repair the instrument and method of vagina tissue
CN103301567B (en) 2012-03-16 2016-04-06 女康乐公司 A kind of therapeutic apparatus repairing vagina tissue
US10143831B2 (en) 2013-03-14 2018-12-04 Cynosure, Inc. Electrosurgical systems and methods
WO2014145148A2 (en) 2013-03-15 2014-09-18 Ellman International, Inc. Surgical instruments and systems with multimodes of treatments and electrosurgical operation
WO2015042906A1 (en) * 2013-09-29 2015-04-02 Covidien Lp Medical treatment devices having adjustable length and/or diameter
US9949889B2 (en) 2013-11-11 2018-04-24 Joylux, Inc. At-home light-emitting diode and massage device for vaginal rejuvenation
US20150297908A1 (en) * 2014-04-22 2015-10-22 ThermiGen, LLC Methods and radiofrequency treatment probe for treating vaginal laxity
US20180001103A9 (en) 2014-04-22 2018-01-04 ThermiGen, LLC Radiofrequency treatment probe for treating vaginal laxity and associated systems and methods
WO2016095700A1 (en) * 2014-12-19 2016-06-23 Chongqing Derma Optic&Electronic Technique Co., Ltd. Ultrasonic treatment device
WO2017042737A1 (en) * 2015-09-11 2017-03-16 Novavision Group S.P.A. Handle assembly for radio frequency therapy
US10179085B2 (en) 2015-10-02 2019-01-15 Joylux, Inc. Light-emitting diode and massage device for delivering focused light for vaginal rejuvenation
ITUB20160508A1 (en) * 2016-01-22 2017-07-22 Bios S R L Unipersonale Radiofrequency device for laxity and vaginal remodeling
US10695219B2 (en) 2016-04-08 2020-06-30 ThermiGen, LLC Apparatus and method for treatment of dry eye using radio frequency heating
US20190143149A1 (en) 2016-06-06 2019-05-16 Sofwave Medical Ltd. Ultrasound transducer and system
US11617615B2 (en) 2017-01-19 2023-04-04 Bios S.R.L. Apparatus and cosmetic method for body orifice remodeling
US11511110B2 (en) 2018-06-27 2022-11-29 Viveve, Inc. Methods for treating urinary stress incontinence
US11896823B2 (en) 2017-04-04 2024-02-13 Btl Healthcare Technologies A.S. Method and device for pelvic floor tissue treatment
CN111801072A (en) 2017-10-27 2020-10-20 锐诺维公司 Devices, systems, and methods for training pelvic floor muscles
US20190151012A1 (en) * 2017-11-17 2019-05-23 Sherry Thomas Method and Apparatus for Treating Female Urinary Incontinence and Fecal Incontinence
WO2019107621A1 (en) * 2017-11-30 2019-06-06 주식회사 루트로닉 Vaginal canal treatment apparatus, control method thereof, and treatment method using same
WO2019107618A1 (en) * 2017-11-30 2019-06-06 주식회사 루트로닉 Vaginal canal treatment apparatus, control method thereof, and treatment method using same
CN107998518B (en) * 2017-12-08 2020-07-28 广州医科大学附属肿瘤医院 Manufacturing method of individualized auxiliary device for cervical cancer cavity combined parauterine implantation treatment
KR101914068B1 (en) * 2018-01-18 2018-11-01 김유인 Portable Clean Device for Vagina of Woman
KR20230035448A (en) 2018-02-07 2023-03-13 싸이노슈어, 엘엘씨 Methods and apparatus for controlled rf treatments and rf generator system
CN108392738A (en) * 2018-02-13 2018-08-14 武汉中科科理光电技术有限公司 Secret health care magnetoelectricity mutual benefit therapeutic equipment
KR101924489B1 (en) * 2018-02-14 2018-12-03 (주)비올 Apparatus for treating submucosal tissue using electric signal
EP3829500A4 (en) * 2018-08-02 2022-05-04 Sofwave Medical Ltd. Devices and methods for vaginal treatments
CN110101442A (en) * 2019-05-09 2019-08-09 宋月霞 One kind being directed to clinical obstetrics with anti-outer-flowing type film breaking unit
USD1005484S1 (en) 2019-07-19 2023-11-21 Cynosure, Llc Handheld medical instrument and docking base
CN111821018B (en) * 2019-07-22 2022-11-11 合肥源康信息科技有限公司 Microwave treatment equipment for uterine cavity of obstetrical department
KR102500324B1 (en) * 2020-09-23 2023-02-15 (주)비올 Apparatus for treatment of submucosal tissue equipped with motion detection sensor
US20220110680A1 (en) * 2020-10-08 2022-04-14 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Uterine manipulator with neutral return electrode
CA3203037A1 (en) 2020-12-31 2022-07-07 Ariel Sverdlik Cooling of ultrasound energizers mounted on printed circuit boards
FR3124068B1 (en) * 2021-06-22 2023-05-26 Matmatech Radio frequency equipment

Family Cites Families (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2811969A (en) * 1955-10-11 1957-11-05 William M Shubert Obstetrical instrument
US3595217A (en) * 1968-05-27 1971-07-27 Robert E Rheinfrank Fine needle aspiration biopsy of prostate
US3741211A (en) * 1971-09-22 1973-06-26 W Vreeland Finger mounted needle assembly with manifold
US3995629A (en) * 1975-06-23 1976-12-07 The Kendall Company Anesthesia device
US4326529A (en) 1978-05-26 1982-04-27 The United States Of America As Represented By The United States Department Of Energy Corneal-shaping electrode
US4381007A (en) 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
GB8420116D0 (en) * 1984-08-08 1984-09-12 Elchemtec Ltd Apparatus for monitoring redox reactions
US4976709A (en) 1988-12-15 1990-12-11 Sand Bruce J Method for collagen treatment
US4785828A (en) 1986-10-06 1988-11-22 Empi, Inc. Vaginal stimulator for controlling urinary incontinence in women
US4785807B1 (en) 1987-02-24 1996-07-16 American Medical Products Inc Electrosurgical knife
US5143063A (en) 1988-02-09 1992-09-01 Fellner Donald G Method of removing adipose tissue from the body
US4989614A (en) * 1988-02-23 1991-02-05 Vance Products Incorporated Fine-needle aspiration cell sampling methods
US4907589A (en) 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
US4892520A (en) * 1988-07-13 1990-01-09 Gilbaugh James H Finger mounted surgical needle guide/needle protector
US4920978A (en) 1988-08-31 1990-05-01 Triangle Research And Development Corporation Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia
US5230349A (en) 1988-11-25 1993-07-27 Sensor Electronics, Inc. Electrical heating catheter
US5041110A (en) 1989-07-10 1991-08-20 Beacon Laboratories, Inc. Cart for mobilizing and interfacing use of an electrosurgical generator and inert gas supply
US5046511A (en) 1989-11-28 1991-09-10 Empi, Inc. Vaginal electrode with snap-on electrode pad and method for preparing electrode for use
US5409453A (en) * 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
US5160334A (en) 1991-04-30 1992-11-03 Utah Medical Products, Inc. Electrosurgical generator and suction apparatus
US5242440A (en) * 1991-07-23 1993-09-07 Shippert Ronald D Finger controlled switching apparatus
US7549424B2 (en) 1991-10-18 2009-06-23 Pro Surg, Inc. Method and apparatus for tissue treatment with laser and electromagnetic radiation
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5301692A (en) 1992-11-16 1994-04-12 Knowlton Edward W Method for total, immediate, post-mastectomy breast reconstruction using a latissimus dorsi myocutaneous flap
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
SE9300825D0 (en) 1993-03-12 1993-03-12 Siemens Elema Ab DEVICE FOR Saturation of electrical activity at heart
US5449374A (en) 1993-04-01 1995-09-12 University Of Massachusetts Medical Center Tissue spreading forceps
US5456689A (en) 1993-10-13 1995-10-10 Arnold J. Kresch Method and device for tissue resection
US5450293A (en) * 1993-12-30 1995-09-12 Hoffman; Elliott S. Finger mounted fiber optic illumination system
US20050187599A1 (en) 1994-05-06 2005-08-25 Hugh Sharkey Method and apparatus for controlled contraction of soft tissue
US5458596A (en) 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US6277116B1 (en) 1994-05-06 2001-08-21 Vidaderm Systems and methods for shrinking collagen in the dermis
US6002968A (en) 1994-06-24 1999-12-14 Vidacare, Inc. Uterine treatment apparatus
US6024743A (en) 1994-06-24 2000-02-15 Edwards; Stuart D. Method and apparatus for selective treatment of the uterus
RU2125846C1 (en) * 1994-09-23 1999-02-10 Московский научно-исследовательский онкологический институт им.П.А.Герцена МЗ РФ Method for treating initial forms of cervical carcinoma
WO1996022739A1 (en) 1995-01-24 1996-08-01 Vidamed, Inc. Medical probe device with scope and proximal aspiraton openings and method for treatment of the prostate with same
US5824076A (en) 1995-03-22 1998-10-20 Knowlton; Edward W. Surgical method for breast reconstruction using a neovascular tissue peg
US5765567A (en) 1995-03-22 1998-06-16 Knowlton; Edward W. Surgical method for breast reconstruction using a tissue flap
CN2228772Y (en) * 1995-03-31 1996-06-12 凌朝志 Anorectal therapy apparatus
US5660836A (en) 1995-05-05 1997-08-26 Knowlton; Edward W. Method and apparatus for controlled contraction of collagen tissue
US6425912B1 (en) 1995-05-05 2002-07-30 Thermage, Inc. Method and apparatus for modifying skin surface and soft tissue structure
US5755753A (en) 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US6241753B1 (en) 1995-05-05 2001-06-05 Thermage, Inc. Method for scar collagen formation and contraction
US6430446B1 (en) 1995-05-05 2002-08-06 Thermage, Inc. Apparatus for tissue remodeling
JPH09140802A (en) * 1995-11-21 1997-06-03 Nippon Zeon Co Ltd Electrode catheter
US7006874B2 (en) 1996-01-05 2006-02-28 Thermage, Inc. Treatment apparatus with electromagnetic energy delivery device and non-volatile memory
US6350276B1 (en) * 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
US20040000316A1 (en) 1996-01-05 2004-01-01 Knowlton Edward W. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US7115123B2 (en) 1996-01-05 2006-10-03 Thermage, Inc. Handpiece with electrode and non-volatile memory
US7452358B2 (en) 1996-01-05 2008-11-18 Thermage, Inc. RF electrode assembly for handpiece
US7473251B2 (en) 1996-01-05 2009-01-06 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US7141049B2 (en) 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
US7229436B2 (en) 1996-01-05 2007-06-12 Thermage, Inc. Method and kit for treatment of tissue
US7189230B2 (en) 1996-01-05 2007-03-13 Thermage, Inc. Method for treating skin and underlying tissue
US20030212393A1 (en) 1996-01-05 2003-11-13 Knowlton Edward W. Handpiece with RF electrode and non-volatile memory
US7267675B2 (en) 1996-01-05 2007-09-11 Thermage, Inc. RF device with thermo-electric cooler
US7022121B2 (en) 1999-03-09 2006-04-04 Thermage, Inc. Handpiece for treatment of tissue
JP3930052B2 (en) * 1996-02-15 2007-06-13 バイオセンス・インコーポレイテッド Catheter-based surgery
WO1997034534A1 (en) 1996-03-18 1997-09-25 Femrx, Inc. Method and device for tissue vaporization and extraction
US6419673B1 (en) 1996-05-06 2002-07-16 Stuart Edwards Ablation of rectal and other internal body structures
US6726684B1 (en) * 1996-07-16 2004-04-27 Arthrocare Corporation Methods for electrosurgical spine surgery
US6126682A (en) 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
US6035238A (en) * 1997-08-13 2000-03-07 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6216704B1 (en) 1997-08-13 2001-04-17 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6091995A (en) 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US6292700B1 (en) 1999-09-10 2001-09-18 Surx, Inc. Endopelvic fascia treatment for incontinence
US6480746B1 (en) 1997-08-13 2002-11-12 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US7317949B2 (en) 1996-11-08 2008-01-08 Ams Research Corporation Energy induced bulking and buttressing of tissues for incontinence
US6081749A (en) * 1997-08-13 2000-06-27 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US5986446A (en) * 1997-02-05 1999-11-16 C. Blake Williamson Multi-meter and probe assembly and method of use
US5947891A (en) 1997-04-25 1999-09-07 Morrison; Richard A. Method and apparatus for homogeneously irradiating the vaginal mucosa with a linear source uterovaginal applicator
US20030178032A1 (en) 1997-08-13 2003-09-25 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US9023031B2 (en) * 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
US6179832B1 (en) * 1997-09-11 2001-01-30 Vnus Medical Technologies, Inc. Expandable catheter having two sets of electrodes
US5954717A (en) 1997-09-25 1999-09-21 Radiotherapeutics Corporation Method and system for heating solid tissue
TW380045B (en) * 1998-01-13 2000-01-21 Urometrics Inc Devices and methods for monitoring female arousal
WO1999035983A1 (en) 1998-01-14 1999-07-22 Surx, Inc. Ribbed electrodes and methods for their use
US5951550A (en) 1998-03-11 1999-09-14 Utah Medical Products, Inc. Endocervical conization electrode apparatus
US6044847A (en) 1998-06-23 2000-04-04 Surx, Inc. Tuck and fold fascia shortening for incontinence
US6236891B1 (en) 1998-07-31 2001-05-22 Surx, Inc. Limited heat transfer devices and methods to shrink tissues
US6156060A (en) 1998-07-31 2000-12-05 Surx, Inc. Static devices and methods to shrink tissues for incontinence
US6322584B2 (en) 1998-07-31 2001-11-27 Surx, Inc. Temperature sensing devices and methods to shrink tissues
US6139569A (en) 1998-07-31 2000-10-31 Surx, Inc. Interspersed heating/cooling to shrink tissues for incontinence
US6572639B1 (en) 1998-07-31 2003-06-03 Surx, Inc. Interspersed heating/cooling to shrink tissues for incontinence
US6461332B1 (en) 1998-10-19 2002-10-08 Surx, Inc. Urinary incontinence diagnostic system
US6416504B2 (en) 1998-10-19 2002-07-09 Surx, Inc. Urethral catheter holder
IL126723A0 (en) * 1998-10-22 1999-08-17 Medoc Ltd Vaginal probe and method
US6879858B1 (en) 1998-11-25 2005-04-12 Reproductive Health Technologies, Inc. Uterine contraction detection and initiation system and method
US6427089B1 (en) 1999-02-19 2002-07-30 Edward W. Knowlton Stomach treatment apparatus and method
US20020156471A1 (en) 1999-03-09 2002-10-24 Stern Roger A. Method for treatment of tissue
ES2240078T3 (en) 1999-03-09 2005-10-16 Thermage, Inc. APPARATUS FOR TREATMENT OF FABRICS.
CA2471783A1 (en) 1999-06-30 2003-07-03 Edward W. Knowlton Liquid cooled rf handpiece
US7520856B2 (en) 1999-09-17 2009-04-21 University Of Washington Image guided high intensity focused ultrasound device for therapy in obstetrics and gynecology
US6494882B1 (en) * 2000-07-25 2002-12-17 Verimetra, Inc. Cutting instrument having integrated sensors
US6418930B1 (en) * 2000-11-14 2002-07-16 Mayo Foundation For Medical Education And Research Anatomic incontinence pessary
CN2454769Y (en) * 2000-12-14 2001-10-17 中国科学院低温技术实验中心 Multi-point temp. detection device for on-body detection of local metabolic-rate of biologic live tissue
US7422586B2 (en) 2001-02-28 2008-09-09 Angiodynamics, Inc. Tissue surface treatment apparatus and method
US6607525B2 (en) 2001-08-01 2003-08-19 Nicolas Franco Apparatus and method for treating urinary stress incontinence
CA2461217A1 (en) 2001-09-27 2003-04-03 Roni Zvuloni Cryoplasty apparatus and method
US6830052B2 (en) 2001-10-03 2004-12-14 Solarant Medical, Inc. Urethral support for incontinence
US7577476B2 (en) * 2001-10-26 2009-08-18 Athena Feminine Technologies, Inc System and method for transducing, sensing, or affecting vaginal or body conditions, and/or stimulating perineal musculature and nerves using 2-way wireless communications
US6889090B2 (en) 2001-11-20 2005-05-03 Syneron Medical Ltd. System and method for skin treatment using electrical current
US6685623B2 (en) 2001-11-20 2004-02-03 Surx, Inc. Incontinence treatment with urethral guide
US7179219B2 (en) 2001-11-20 2007-02-20 Ams Research Corporation Incontinence treatment with urethral guide
US6840954B2 (en) 2001-12-20 2005-01-11 Solarant Medical, Inc. Systems and methods using vasoconstriction for improved thermal treatment of tissues
US20030139740A1 (en) 2002-01-22 2003-07-24 Syneron Medical Ltd. System and method for treating skin
US7294127B2 (en) * 2002-03-05 2007-11-13 Baylis Medical Company Inc. Electrosurgical tissue treatment method
US6882885B2 (en) 2002-03-19 2005-04-19 Solarant Medical, Inc. Heating method for tissue contraction
RU2217186C1 (en) * 2002-04-09 2003-11-27 Государственное образовательное учреждение высшего профессионального образования "Пермская государственная медицинская академия" Method for treating benign diseases of uterine cervix
US20030236487A1 (en) 2002-04-29 2003-12-25 Knowlton Edward W. Method for treatment of tissue with feedback
US20040127895A1 (en) 2002-05-20 2004-07-01 Flock Stephen T. Electromagnetic treatment of tissues and cells
WO2003099102A2 (en) 2002-05-20 2003-12-04 Kevin Marchitto Device and method for wound healing and uses therefor
US7967839B2 (en) 2002-05-20 2011-06-28 Rocky Mountain Biosystems, Inc. Electromagnetic treatment of tissues and cells
US7442192B2 (en) 2002-07-14 2008-10-28 Knowlton Edward W Method and apparatus for surgical dissection
US20040172291A1 (en) 2002-07-25 2004-09-02 Knowlton Edward W. System and methods for medical services and transactions
US6852110B2 (en) 2002-08-01 2005-02-08 Solarant Medical, Inc. Needle deployment for temperature sensing from an electrode
US20040260281A1 (en) 2002-09-19 2004-12-23 Baxter Chester O. Finger tip electrosurgical medical device
EP1613229A2 (en) * 2002-12-20 2006-01-11 Manoa Medical, Inc. Systems and methods for cutting tissue
CA2513564A1 (en) 2003-01-16 2004-08-05 Solarant Medical, Inc. Non-surgical incontinence treatment system and method
US9149322B2 (en) 2003-03-31 2015-10-06 Edward Wells Knowlton Method for treatment of tissue
US20040206365A1 (en) 2003-03-31 2004-10-21 Knowlton Edward Wells Method for treatment of tissue
US7282060B2 (en) * 2003-12-23 2007-10-16 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling laser-induced tissue treatment
US7476242B2 (en) 2004-01-30 2009-01-13 Ams Research Corporation Electrically heated/phase change probe temperature control
US7251531B2 (en) 2004-01-30 2007-07-31 Ams Research Corporation Heating method for tissue contraction
JP3607911B1 (en) * 2004-05-06 2005-01-05 株式会社ティグレ・タクミ Ovulation detector
US20060064009A1 (en) 2004-09-21 2006-03-23 Webler William E Vessel imaging devices and methods
NZ554608A (en) 2004-09-23 2010-07-30 Spine Solutions Inc System and method for an intervertebral implant
US20120016239A1 (en) * 2004-10-06 2012-01-19 Guided Therapy Systems, Llc Systems for cosmetic treatment
CN1778414A (en) * 2004-11-18 2006-05-31 田中枢 Multifunctional supersonic gynopathic therapeutic equipment
US8262715B2 (en) * 2004-11-23 2012-09-11 Eye Delivery System, Llc Medical device and method for temperature control and treatment of the eye and surrounding tissues via magnetic drug therapy
ATE556745T1 (en) 2005-01-18 2012-05-15 Alma Lasers Ltd IMPROVED SYSTEM FOR HEATING BIOLOGICAL TISSUE USING RF ENERGY
US7536225B2 (en) 2005-01-21 2009-05-19 Ams Research Corporation Endo-pelvic fascia penetrating heating systems and methods for incontinence treatment
WO2006105121A2 (en) * 2005-03-28 2006-10-05 Minnow Medical, Llc Intraluminal electrical tissue characterization and tuned rf energy for selective treatment of atheroma and other target tissues
US7713266B2 (en) * 2005-05-20 2010-05-11 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
CN1868396A (en) * 2005-05-27 2006-11-29 上海飞恩微电子有限公司 Medicine-releasing type capsule endoscope
RU2291673C1 (en) * 2005-08-09 2007-01-20 Государственное образовательное учреждение высшего профессионального образования "Нижегородская государственная медицинская академия Федерального Агентства по здравоохранению и социальному развитию" (ГОУ ВПО "НижГМА Росздрава") Method for applying cryogenic therapy to treat uterine cervix diseases
US20070078502A1 (en) 2005-10-05 2007-04-05 Thermage, Inc. Method and apparatus for estimating a local impedance factor
US7957815B2 (en) 2005-10-11 2011-06-07 Thermage, Inc. Electrode assembly and handpiece with adjustable system impedance, and methods of operating an energy-based medical system to treat tissue
US8702691B2 (en) 2005-10-19 2014-04-22 Thermage, Inc. Treatment apparatus and methods for delivering energy at multiple selectable depths in tissue
US8603084B2 (en) 2005-12-06 2013-12-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the formation of a lesion in tissue
US8961511B2 (en) * 2006-02-07 2015-02-24 Viveve, Inc. Vaginal remodeling device and methods
CN2897183Y (en) 2006-03-30 2007-05-09 迈德医疗科技(上海)有限公司 Blunt probe electrode device
WO2008153999A1 (en) * 2007-06-08 2008-12-18 Cynosure, Inc. Thermal surgery safety apparatus and method
WO2009036472A1 (en) * 2007-09-14 2009-03-19 Lazure Technologies, Llc Prostate cancer ablation
CN101229078A (en) 2007-11-28 2008-07-30 郁如煌 Hand-held multifunctional combined cryo-therapeutic device
US20090163807A1 (en) 2007-12-21 2009-06-25 Sliwa John W Finger-mounted or robot-mounted transducer device
JP2010046374A (en) 2008-08-25 2010-03-04 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic apparatus
CN201286935Y (en) 2008-10-19 2009-08-12 邵秀芹 Novel gynecology-department administration device
KR101182880B1 (en) * 2009-01-28 2012-09-13 삼성메디슨 주식회사 Ultrasound system and method for providing image indicator
CN105879238B (en) * 2009-09-18 2019-10-18 女康乐公司 Repair the instrument and method of vagina tissue
CN102711648B (en) 2009-11-30 2015-07-29 麦迪威公司 There is the radio frequency ablation system of tracking transducer
US8506564B2 (en) * 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
TWM385746U (en) * 2010-01-15 2010-08-01 Waltop Int Corp Electromagnetic pointer
US20110202108A1 (en) * 2010-02-18 2011-08-18 Rainbow Medical Ltd. Electrical menorrhagia treatment
CN101820505A (en) 2010-05-06 2010-09-01 中国科学院西安光学精密机械研究所 Large-viewing field space shooting device
WO2011150576A1 (en) * 2010-06-04 2011-12-08 广州市杉山医疗器械实业有限公司 Device for infertility treatment
JP5900825B2 (en) * 2010-06-29 2016-04-06 エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド Syringe with integrated needle
US9028484B2 (en) * 2010-11-16 2015-05-12 Covidien Lp Fingertip electrosurgical instruments for use in hand-assisted surgery and systems including same
US20120323181A1 (en) * 2011-06-17 2012-12-20 Shaw Thomas J Intravenous Catheter Introducer with Needle Retraction Controlled by Catheter Hub Seal
CA2851355C (en) * 2011-10-07 2020-02-18 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
CN103301567B (en) 2012-03-16 2016-04-06 女康乐公司 A kind of therapeutic apparatus repairing vagina tissue
CN202859916U (en) * 2012-03-16 2013-04-10 女康乐公司 Therapeutic device for repairing female vaginal tissues
CN107616870A (en) * 2012-03-16 2018-01-23 女康乐公司 A kind of therapeutic equipment for repairing vagina tissue

Also Published As

Publication number Publication date
DE202013012099U1 (en) 2015-04-17
JP2017124174A (en) 2017-07-20
ES2534026T1 (en) 2015-04-16
US20160296278A1 (en) 2016-10-13
TW201338820A (en) 2013-10-01
CN105919666A (en) 2016-09-07
MX2014011097A (en) 2015-05-08
RU2631477C2 (en) 2017-09-22
KR20170066687A (en) 2017-06-14
RU2014141309A (en) 2016-05-10
KR20140144703A (en) 2014-12-19
IN2014MN02062A (en) 2015-08-21
EP2825119B1 (en) 2018-06-20
HK1189531A1 (en) 2014-06-13
JP2015517832A (en) 2015-06-25
EP2825119A1 (en) 2015-01-21
HK1223258A1 (en) 2017-07-28
EP3372182A1 (en) 2018-09-12
KR102197234B1 (en) 2020-12-31
JP6138229B2 (en) 2017-05-31
KR102048702B1 (en) 2019-11-26
CA2869728C (en) 2017-08-08
US20130245728A1 (en) 2013-09-19
SG10201607753WA (en) 2016-11-29
KR20190131620A (en) 2019-11-26
US9415235B2 (en) 2016-08-16
SG11201405630TA (en) 2014-10-30
EP2825119A4 (en) 2015-04-22
WO2013138718A1 (en) 2013-09-19
TWI574710B (en) 2017-03-21
MX341571B (en) 2016-08-25
DE13760612T1 (en) 2015-05-21
TW201717754A (en) 2017-06-01
CN103301567A (en) 2013-09-18
CN103301567B (en) 2016-04-06
SG10201708363VA (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US9415235B2 (en) Vaginal remodeling device and method
US20220022950A1 (en) Vaginal remodeling device and methods
US6102907A (en) Apparatus and device for use therein and method for ablation of tissue
US20020165529A1 (en) Method and apparatus for non-invasive energy delivery
US20140088588A1 (en) Systems and methods for controlling energy application
US20060235378A1 (en) Slider control for ablation handset

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20160531

MKLA Lapsed

Effective date: 20210315