CN100339915C - 隧道结磁电阻元件及其制备方法 - Google Patents

隧道结磁电阻元件及其制备方法 Download PDF

Info

Publication number
CN100339915C
CN100339915C CNB038205408A CN03820540A CN100339915C CN 100339915 C CN100339915 C CN 100339915C CN B038205408 A CNB038205408 A CN B038205408A CN 03820540 A CN03820540 A CN 03820540A CN 100339915 C CN100339915 C CN 100339915C
Authority
CN
China
Prior art keywords
layer
nanocrystal
forms
magnetic element
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB038205408A
Other languages
English (en)
Other versions
CN1679121A (zh
Inventor
约翰·M·斯劳特
雷纽·W·戴夫
孙吉军
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Publication of CN1679121A publication Critical patent/CN1679121A/zh
Application granted granted Critical
Publication of CN100339915C publication Critical patent/CN100339915C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49044Plural magnetic deposition layers

Abstract

一种磁电阻元件及其制备方法,更特别地一种磁性元件(100),具有结晶学上无序的籽晶层(120)和/或模板层(122),其用于引晶包括钉扎层(124)、受钉扎层(125),以及固定层(126)的随后层的纳米晶体生长。

Description

隧道结磁电阻元件及其制备方法
技术领域
本发明一般地涉及磁电子学,更特别地涉及磁电子学元件的材料组成和制造技术。
背景技术
磁电子学、自旋电子学,以及电子自旋学是供主要地由电子自旋引起的效应使用的同义术语。磁电子学在许多信息器件中使用,并且提供非易失性、可靠、耐辐射,以及高密度数据存储与检索。该许多磁电子学信息器件包括,但不局限于,磁性随机存取存储器(MRAM)、磁性传感器,以及磁盘驱动器的读出磁头。
典型地,磁电子学器件,例如磁性存储元件,具有包括由至少一个非磁性层分隔的多个铁磁性层的结构。信息存储为磁性层中磁化矢量的方向。一个磁性层中的磁矢量,例如在磁性上固定或受钉扎,而其他磁性层的磁化方向能够自由在分别称作“平行”与“反平行”状态的相同和相反方向之间转变。响应于平行与反平行状态,磁性存储元件表现两种不同电阻。当两个磁性层的磁化矢量分别指向基本上相同和相反方向时,电阻具有最小和最大值。因此,电阻变化的检测使得器件,例如MRAM器件,可以提供存储于磁性存储元件中的信息。最小和最大电阻值之间的差,除以最小电阻,被称为磁阻率(MR)。
这些磁性元件的物理结构典型地包含非常薄的层,有些是几十埃厚或更小。磁性元件的性能对磁性层沉积于其上的表面状况敏感。因此,一般地希望使表面尽可能平整,以便防止磁性元件的工作特性退化。
在典型的磁性元件制造过程中,例如在包括通过溅射沉积、蒸发或外延技术生长的金属膜的MRAM元件制造过程中,薄膜表面不是绝对平整的,而是易于显示出表面或界面粗糙性。这种铁磁性层的表面和/或界面的粗糙性是自由铁磁性层和其他铁磁性层,例如固定层或受钉扎层之间的磁耦合的原因,这种磁耦合被称为“拓扑耦合”或“Néel橙皮耦合”。这种耦合典型地是在磁性元件中不希望有的,因为它可能在自由层对外部磁场的响应中造成抵消。
粗糙性也可能通过影响磁性层和非磁性分隔层之间的界面的质量而对器件的电性质具有不希望有的影响。在典型的隧道结应用中,这种粗糙性也可能导致分隔层厚度的变化,从而相应地作为结果发生的隧道电流的变化。
一种磁结构被称为“底部受钉扎”,当固定层在分隔层之前形成而自由层在分隔层之后形成时。在这种底部受钉扎结构中,反铁磁性(AF)钉扎层包含于底部磁电极中。常规的底部受钉扎磁性隧道结(MTJ)和自旋阀结构典型地使用籽晶和模板层来制造用于强钉扎的定向的晶体AF层。典型的底部受钉扎MTJ结构的底部电极包括Ta/NiFe/FeMn/NiFe的堆叠层,继之以AlOx隧道势垒以及典型地包括NiFe自由层的顶部电极,其中Ta/NiFe籽晶/模板层诱导FeMn层中大的和高度定向的FeMn微晶和受钉扎磁性层的生长。这种高度定向的多晶层也可以描述为“强织构化的”。该强织构化的FeMn层提供在AlOx隧道势垒下方的NiFe层的强钉扎。FeMn层,或其他定向的多晶AF层典型地引起粗糙性,这可能导致受钉扎NiFe层和顶部自由NiFe层之间不希望有的Néel耦合的增加,以及隧道电流的变化。
在实际的MTJ元件中,底部电极一般地在提供与遂道结的相对低电阻接触的基底金属层上形成。基底金属层典型地是多晶,并且易于以柱形方式生长。这可能引起粗糙性,该粗糙性又传播进底部电极中并在分隔层界面处引起粗糙,导致不希望有的磁和电性质增加。从基底金属层和底部电极传播来的粗糙性又是不利的,因为它限制当保持与结面积成反比的高MR和器件电阻时能够达到的最小隧道势垒厚度。
为了减小层和层界面的粗糙度,各种类型的非晶性或非晶形材料已被研发,以在MTJ堆的各个层中使用。因为非晶性或非晶形材料没有其他材料的晶界和尖锐特征,由具有非晶形材料的层产生的隧道势垒可以提供更好的器件性能。但是,虽然非晶形材料的使用可能是所希望的,但是该要求将磁性层的合金的选择极大地局限于哪些很少的非晶形材料。另外,在晶体钉扎层上形成的非晶形磁性材料的薄层易于复制下方表面的至少一些表面粗糙性。这导致非晶性材料层的贬值。
发明内容
因此,希望提供用于在MTJ堆中一贯地形成平滑的层界面,从而增强由此形成的磁性元件的性能的材料与方法。此外,本发明的其他所希望有的特征和特性将结合附图从随后的说明书和附加权利要求书变得明白。
本发明提供一种磁性元件,包括:结晶学上无序的籽晶层;在所述结晶学上无序的籽晶层上形成的纳米晶体模板层;在所述纳米晶体模板层上形成的纳米晶体反铁磁性钉扎层。
本发明提供一种磁性元件,包括:衬底;在所述衬底上形成的基底金属层;在所述基底金属层上形成的结晶学上无序的TaNx籽晶层;在所述籽晶层上形成的纳米晶体Ru模板层;在所述模板层上形成的纳米晶体反铁磁性钉扎层,所述钉扎层包括选自PtMn、PdMn、PtPdMn、IrMn、FeMn和RhMn的合金;在所述钉扎层上形成的合成反铁磁体,所述合成反铁磁体包括:第一纳米晶体铁磁性层;在所述第一纳米晶体铁磁性层上形成的钌耦合层;以及在所述耦合层上形成的第二纳米晶体铁磁性层;在所述合成反铁磁体上形成的AlOx层;在所述AlOx层上形成的自由铁磁性层;以及在所述自由铁磁性层上形成的顶部电极。
本发明提供一种方法,包括下面步骤:形成结晶学上无序的籽晶层;在所述籽晶层上形成纳米晶体模板层;以及在所述模板层上形成纳米晶体反铁磁性钉扎层。
本发明提供一种方法,包括下面步骤:在衬底上形成基底金属层;在所述基底金属层上形成Ta层,所述Ta层小于50埃;通过由等离子体或离子束氮化过程将所述TaNx层暴露于氮原子下形成TaNx籽晶层;在所述TaNx籽晶层上形成纳米晶体Ru模板层;使用选自PtMn、PdMn、PtPdMn、IrMn、FeMn和RhMn的合金来形成纳来晶体反铁磁性钉扎层;在所述钉扎层上形成合成的反铁磁体,所述的合成反铁磁体包括:第一铁磁性层;在所述第一铁磁性层上形成的钌耦合层;以及在所述钌耦合层上形成的第二铁磁性层;在所述合成的反铁磁体上形成AlOx层;在所述AlOx层上形成自由铁磁性层;以及在所述自由铁磁性层上形成顶部电极。
附图说明
下面附图的详细描述只是性质上示范性的,并不打算限制本发明或本发明的应用和使用。此外,并不打算被这里所给出的任何理论所限制。
本发明将在下文结合附随附图而描述,其中相似数字表示相似元素,并且:
图1是根据本发明优选示范实施方案的具有改进磁响应的磁性元件的横截面视图;
图2是常规多晶材料的x射线衍射谱的示意表示。
图3是根据本发明优选示范实施方案的纳米晶体材料的x射线衍射谱的示意表示。
具体实施方式
下面优选实施方案的详细描述只是性质上说明性的,并不打算限制本发明或本发明的应用和使用。此外,并不打算被在前述的发明背景或下面的优选示范实施方案的详细描述中给出的任何理论所限制。
在本发明的各种优选实施方案中,纳米晶体反铁磁性层被利用。为了下面各种优选实施方案的讨论,纳米晶体是指这样的多晶材料,具有优选地小于10纳米(100)的平均微晶尺寸,并具有很少或没有最佳取向或织构。如图1中所示,这种纳米晶体结构通过籽晶层和模板层的适当选择来引晶。纳米晶体反铁磁性层产生比常规织构化的多晶层更合乎需要的表面粗糙性。此外,纳米晶体反铁磁性层可以用来在沉积于其上的层中引晶类似的纳米晶体,导致那些层的更合乎需要的界面粗糙度特性。在本发明的各种优选实施方案中,该改进的界面导致改进的磁和电性质。
现在参考图1,适合于供本发明的优选示范实施方案使用的磁性元件100被显示。磁性元件100的结构包括衬底112、第一电极多层堆114、包括被氧化的铝的分隔层116,以及第二电极多层堆118。应当明白,分隔层116的材料组成取决于所制造的磁性元件的类型。
更特别地,在典型的MTJ结构中,分隔层116由电介质材料形成,而在自旋阀结构中,分隔层116由导电材料形成。第一电极多层堆114和第二电极多层堆118包含一个或多个铁磁性层。第一电极多层堆114在形成于衬底112之上的基底金属层113上形成。基底金属层113可以由单个金属材料或层,或者多于一个金属材料或层的堆构成。
第一电极多层堆114包含沉积于基底金属层113之上的籽晶层120、模板层122、一层反铁磁性(AF)钉扎材料124、在下方AF钉扎层124上形成并与之交换耦合的受钉扎铁磁性层125、在受钉扎层125上形成的反铁磁性耦合层123,以及沉积于耦合层123上并通过耦合层123与受钉扎层125反铁磁性地耦合的固定铁磁性层126。铁磁性层125和126被描述为固定或受钉扎的,因为那些层的磁矩被阻止在外加磁场的存在下旋转。
在本发明的一种优选实施方案中,籽晶层120由氮化钽(TaNx)形成,并且通过等离子体或离子束氮化过程用相对薄的优选地小于大约100且最优选地小于大约50的钽(Ta)层来制造。在该实施方案中,优选地由镍铁(NiFe)合金、镍铁钴(NiFeCo)合金、钌(Ru)或钽(Ta)构成的模板层122然后沉积在氮化钽(TaNx)籽晶层120上。另外,在本发明的某些优选实施方案中,通过这里所描述的氮化过程制成的氮化钽(TaNx)可以用来引晶所希望的反铁磁性层而不需要单独的模板层122。
成层材料的这种组合结合并产生高度无序的籽晶层用于磁性元件100中随后层的形成。应当注意,模板层122性质上最优选地是纳米晶体,并不是非晶形。类似地,在模板层122上的层,例如AF钉扎层124、受钉扎层125、耦合层123,以及固定层126性质上可以是纳米晶体。
在本发明的可选优选实施方案中,籽晶层120和模板层122通过在一层铝(Al)上沉积一层钌(Ru)来形成。这种组合,如同先前所公开的上述TaNx层一样,结合并产生高度无序的籽晶层用于磁性元件100中随后层的形成。对于该特定实施方案,典型的籽晶层120和模板层122将由Al 20和Ru 17构成。应当注意,虽然Al和Ru结合并形成合金,它们在不同过程步骤中分别沉积。作为结果而产生的合金的晶体结构性质上是高度无序且相对随机的。Ru层优选地小于大约100且最优选地小于大约50。除了钌以外,其他过渡金属元素也可以与Al层120结合以提供类似结果。
不管用来制造籽晶层120和模板层122的具体材料,籽晶层120和模板层122的组合提供AF钉扎层124的基底。如先前所讨论的,形成高度无序的籽晶/模板以引晶纳米晶体AF钉扎层124的生长的任何材料或过程被认为在本发明的范围内。在籽晶层120和模板层122的形成之后,AF钉扎层124从具有一般组成MnX,其中X优选地是铂(Pt)、钯(Pd)、镍(Ni)、铱(Ir)、锇(Os)、钌(Ru)或铁(Fe)中一种的锰合金制造。
AF钉扎层124的最优选实施方案包括这样的锰合金,其中X处于35%-55%的范围内且最优选地处于40%-50%的范围内,并且X是Pt、Pd或Ni的一种。其他优选实施方案包括这样的锰合金,其中X处于5%-35%的范围内且最优选地处于10%-30%的范围内,并且X优选地是Ir、Rh、Os、Ru或Fe的一种。通过制造如这里所述的AF钉扎层124,纳米晶体铁磁性层125可以被实现。无序的模板层122引晶AF钉扎层124,以生长由具有小于10纳米平均尺寸的近似随机定向的微晶构成的纳米晶体结构。
在本发明的最优选实施方案中,铁磁性层125和126由AF耦合层123分隔。AF耦合层123最优选地由钌构成,并且与铁磁性层125和126结合,形成合成的反铁磁性(SAF)受钉扎层。通过AF耦合层123提供的反铁磁耦合使磁性元件100在外加磁场中更稳定。另外,通过改变铁磁性层125和126的厚度,静磁耦合可以被抵消而自由层磁滞回线可以集中。虽然Ru是用于AF耦合层123的最优选材料,其他非磁性材料例如Rh也可以提供铁磁性层125和126之间所希望的AF耦合并可以用于AF耦合层123。AF钉扎层124的纳米晶体结构可以以随机方式进一步引晶在其上的层的生长,导致受钉扎SAF结构具有纳米晶体结构。这通过将纳米晶体结构延伸到与分隔层116的界面而提供额外的好处,从而抑制粗糙度的增加,否则如果较大微晶在受钉扎SAF结构中生长的话将发生粗糙度的增加。
第二电极堆118包括自由铁磁性层128和保护接触层130。自由铁磁性层128的磁矩不通过交换耦合固定或受钉扎,因此在外加磁场的存在下能够自由旋转。虽然在图1中描绘成单个层,但在某些应用中自由铁磁性层128可以制造成多层堆,而不是单个铁磁性层。
在本发明的最优选实施方案中,与用非晶形材料引晶相反,第一电极多层堆114中的各个纳米晶体层最优选地通过用结晶学上无序的层引晶各个层来获得。籽晶层120和/或模板层122的小、相对随机且无序的晶粒引晶彼此相对接近的不同竞争取向的生长。这些竞争取向“阻止(frustrate)”AF钉扎层124中的典型多晶层形成过程,使得它在结晶学上无序且典型地随机取向,从而性质上是纳米晶体。
通过使用本发明的方法来制造籽晶层120和/或模板层122,更平滑的界面在第一电极多层堆114和第二电极多层堆118的随后层中表现出来。这些界面比在具有强晶序和边界明确的晶体织构的常规生长材料中所发现的更平滑。这些更平滑的界面导致由此形成的磁性元件中改进的性能。
应当明白,倒转或翻转结构也被本公开内容所预料。更特别地,可以预料,所公开的磁性元件可以被形成以包括顶部被固定或钉扎层,从而被描述为“顶部受钉扎”结构。在顶部受钉扎结构的情况下,自由层将在无序的籽晶和/或模板层上生长。纳米晶体结构可以延伸到自由层或往上直到AF钉扎层,取决于用于制造堆的特定材料。
现在参考图2和3,两种类似的多层结构的比较x射线衍射图被给出。这两种多层结构基本上相同,除了值得注意的模板层以两种不同结构在籽晶层上形成以外。在图2的情况下,模板层使用相当典型的镍铁(NiFe)合金来制造。在图3的情况下,模板层使用结合图1描述的本发明的纳米晶体铝钌(AlRu)合金来制造。图2和图3两者都显示由结构的铂锰(PtMn)钉扎层所表现的面心正方(111)晶面的峰。
现在参考图2,衍射谱200是以下结构的x射线衍射,该结构包含硅-二氧化硅(Si-SiO2)衬底、Ta 50/Al 200/Ta 50基底金属层、Ta50籽晶层、NiFe 20模板层、PtMn 300 AF层,以及Ta 50/Al50保护盖。如图2中所示,在NiFe模板层上生长的PtMn层表现出常规织构化多晶材料的相当典型的特性。特别地,相对强的(111)峰指示相对大的微晶尺寸,其将转变成相对更粗糙的界面。
现在参考图3,衍射谱300是以下结构的x射线衍射,该结构包括硅-二氧化硅(Si-SiO2)衬底、Ta 50/Al 200/Ta 50基底金属层、Ta50籽晶层、Al 20/Ru 17模板层、PtMn 300 AF层,以及Ta 50/Al 50保护盖。如图3中所示,模板层的无序性质已形成纳米晶体PtMn层。特别地,相对弱的(111)峰指示钉扎层中相对小的微晶尺寸,其将转变成相对更平滑的界面。
从前面的描述应当认识到,特定成层材料的使用和这里所公开的方法提供对于本领域技术人员容易明白的重大好处。此外,虽然多个实施方案已在前面的描述中给出,应当认识到存在实施方案中的大量变动。最后,应当认识到,这些实施方案只是优选示范实施方案,并不打算以任何方式限制本发明的范围、适用性或配置。当然,前面的详细描述为本领域技术人员提供实施本发明优选示范实施方案的便利路线图。应当理解,可以不背离在权利要求书中陈述的本发明的本质和范围而在示范优选实施方案中所描述的元件的功能和布局上做各种修改。

Claims (24)

1.一种磁性元件,包括:
结晶学上无序的籽晶层;
在所述结晶学上无序的籽晶层上形成的纳米晶体模板层;
在所述纳米晶体模板层上形成的纳米晶体反铁磁性钉扎层。
2.根据权利要求1的磁性元件,还包括在所述纳米晶体反铁磁性钉扎层上形成的第一纳米晶体铁磁性层。
3.根据权利要求1的磁性元件,其中所述结晶学上无序的籽晶层包括氮化钽层。
4.根据权利要求1的磁性元件,其中所述结晶学上无序的籽晶层包括铝层,并且所述纳米晶体模板层包括沉积在所述铝层上的过渡金属。
5.根据权利要求4的磁性元件,其中所述过渡金属是钌和铑的一种。
6.根据权利要求4的磁性元件,其中所述过渡金属是钌合金和铑合金的一种。
7.根据权利要求1的磁性元件,其中所述结晶学上无序的籽晶层小于100埃。
8.根据权利要求1的磁性元件,其中所述结晶学上无序的籽晶层小于50埃。
9.根据权利要求5的磁性元件,其中所述纳米晶体模板层包括镍铁模板层。
10.根据权利要求5的磁性元件,其中所述纳米晶体模板层包括钌模板层。
11.根据权利要求1的磁性元件,其中所述纳米晶体反铁磁性钉扎层包括锰合金。
12.根据权利要求11的磁性元件,其中所述锰合金是铂锰、钯锰、铂钯锰、铱锰、铁锰,以及铑锰中的一种。
13.根据权利要求1的磁性元件,还包括:
在所述结晶学上无序的籽晶层下方形成的基底金属层;以及
在所述基底金属层下方形成的衬底。
14.根据权利要求2的磁性元件,还包括:
在所述第一纳米晶体铁磁性层上形成的耦合层;以及
在所述耦合层上形成的第二纳米晶体铁磁性层,其中所述第一纳米晶体铁磁性层、所述耦合层以及所述第二纳米晶体铁磁性层结合以形成合成的反铁磁体。
15.根据权利要求14的磁性元件,其中所述耦合层包括钌耦合层。
16.一种磁性元件,包括:
衬底;
在所述衬底上形成的基底金属层;
在所述基底金属层上形成的结晶学上无序的TaNx籽晶层;
在所述籽晶层上形成的纳米晶体Ru模板层;
在所述模板层上形成的纳米晶体反铁磁性钉扎层,所述钉扎层包括选自PtMn、PdMn、PtPdMn、IrMn、FeMn和RhMn的合金;
在所述钉扎层上形成的合成反铁磁体,所述合成反铁磁体包括:
第一纳米晶体铁磁性层;
在所述第一纳米晶体铁磁性层上形成的钌耦合层;以及
在所述耦合层上形成的第二纳米晶体铁磁性层;
在所述合成反铁磁体上形成的AlOx层;
在所述AlOx层上形成的自由铁磁性层;以及
在所述自由铁磁性层上形成的顶部电极。
17.一种方法,包括下面步骤:
形成结晶学上无序的籽晶层;
在所述籽晶层上形成纳米晶体模板层;以及
在所述模板层上形成纳米晶体反铁磁性钉扎层。
18.根据权利要求17的方法,进一步包括在所述纳米晶体反铁磁性钉扎层上形成第一纳米晶体铁磁性层的步骤。
19.根据权利要求18的方法,其中形成结晶学上无序的籽晶层的步骤包括形成TaNx层的步骤。
20.根据权利要求19的方法,其中在所述籽晶层上形成纳米晶体模板层的步骤包括在所述籽晶层上形成NiFe模板层的步骤。
21.根据权利要求20的方法,其中在所述结晶学上无序的籽晶层上形成所述纳米晶体模板层的步骤包括在所述结晶学上无序的籽晶层上形成Ru模板层的步骤。
22.根据权利要求21的方法,其中在所述纳米晶体模板层上形成反铁磁性钉扎层的步骤包括使用选自PtMn、PdMn、PtPdMn、IrMn、FeMn和RhMn的合金形成反铁磁性钉扎层的步骤。
23.根据权利要求22的方法,其中形成结晶学上无序的籽晶层的步骤包括将具有<50厚度的钽层暴露于氮原子,从而形成TaNx籽晶层的步骤。
24.一种方法,包括下面步骤:
在衬底上形成基底金属层;
在所述基底金属层上形成Ta层,所述Ta层小于50埃;
通过由等离子体或离子束氮化过程将所述TaNx层暴露于氮原子下形成TaNx籽晶层;
在所述TaNx籽晶层上形成纳米晶体Ru模板层;
使用选自PtMn、PdMn、PtPdMn、IrMn、FeMn和RhMn的合金来形成纳米晶体反铁磁性钉扎层;
在所述钉扎层上形成合成的反铁磁体,所述的合成反铁磁体包括:
第一铁磁性层;
在所述第一铁磁性层上形成的钌耦合层;以及
在所述钌耦合层上形成的第二铁磁性层;
在所述合成的反铁磁体上形成AlOx层;
在所述AlOx层上形成自由铁磁性层;以及
在所述自由铁磁性层上形成顶部电极。
CNB038205408A 2002-08-30 2003-07-24 隧道结磁电阻元件及其制备方法 Expired - Lifetime CN100339915C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/232,111 2002-08-30
US10/232,111 US6801415B2 (en) 2002-08-30 2002-08-30 Nanocrystalline layers for improved MRAM tunnel junctions

Publications (2)

Publication Number Publication Date
CN1679121A CN1679121A (zh) 2005-10-05
CN100339915C true CN100339915C (zh) 2007-09-26

Family

ID=31976922

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038205408A Expired - Lifetime CN100339915C (zh) 2002-08-30 2003-07-24 隧道结磁电阻元件及其制备方法

Country Status (10)

Country Link
US (1) US6801415B2 (zh)
EP (1) EP1547102B1 (zh)
JP (1) JP2006506828A (zh)
KR (1) KR101036124B1 (zh)
CN (1) CN100339915C (zh)
AT (1) ATE361536T1 (zh)
AU (1) AU2003304170A1 (zh)
DE (1) DE60313636T2 (zh)
TW (1) TWI311754B (zh)
WO (1) WO2004107370A2 (zh)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724652B2 (en) * 2002-05-02 2004-04-20 Micron Technology, Inc. Low remanence flux concentrator for MRAM devices
US7002228B2 (en) * 2003-02-18 2006-02-21 Micron Technology, Inc. Diffusion barrier for improving the thermal stability of MRAM devices
US7054119B2 (en) * 2003-06-18 2006-05-30 Hewlett-Packard Development Company, L.P. Coupled ferromagnetic systems having modified interfaces
US6893741B2 (en) * 2003-06-24 2005-05-17 Hitachi Global Storage Technologies Netherlands B.V. Magnetic device with improved antiferromagnetically coupling film
JP3818592B2 (ja) * 2003-11-04 2006-09-06 Tdk株式会社 磁気抵抗効果装置およびその製造方法、薄膜磁気ヘッド、ヘッドジンバルアセンブリならびにハードディスク装置
KR100634501B1 (ko) * 2004-01-29 2006-10-13 삼성전자주식회사 자기 메모리 소자 및 그 제조방법
US7339769B2 (en) * 2004-03-02 2008-03-04 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor with antiferromagnetic exchange-coupled structure having underlayer for enhancing chemical-ordering in the antiferromagnetic layer
US6960480B1 (en) * 2004-05-19 2005-11-01 Headway Technologies, Inc. Method of forming a magnetic tunneling junction (MTJ) MRAM device and a tunneling magnetoresistive (TMR) read head
US7098495B2 (en) * 2004-07-26 2006-08-29 Freescale Semiconducor, Inc. Magnetic tunnel junction element structures and methods for fabricating the same
US6992910B1 (en) * 2004-11-18 2006-01-31 Maglabs, Inc. Magnetic random access memory with three or more stacked toggle memory cells and method for writing a selected cell
US7251110B2 (en) * 2005-01-18 2007-07-31 Hitachi Global Storage Technologies Netherlands B.V. GMR sensor having layers treated with nitrogen for increased magnetoresistance
US7672094B2 (en) * 2005-01-18 2010-03-02 Hitachi Global Storage Technologies Netherlands B.V. TMR sensor having an under-layer treated with nitrogen for increased magnetoresistance
US7267997B1 (en) 2005-04-29 2007-09-11 Samsung Electronics Co., Ltd. Process for forming magnetic memory structures
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7575978B2 (en) 2005-08-04 2009-08-18 Micron Technology, Inc. Method for making conductive nanoparticle charge storage element
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US8582252B2 (en) 2005-11-02 2013-11-12 Seagate Technology Llc Magnetic layer with grain refining agent
US20070121254A1 (en) * 2005-11-29 2007-05-31 Honeywell International Inc. Protective and conductive layer for giant magnetoresistance
US7635654B2 (en) * 2006-01-27 2009-12-22 Everspin Technologies, Inc. Magnetic tunnel junction device with improved barrier layer
US8363457B2 (en) * 2006-02-25 2013-01-29 Avalanche Technology, Inc. Magnetic memory sensing circuit
US8084835B2 (en) * 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
US7732881B2 (en) * 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
US8063459B2 (en) * 2007-02-12 2011-11-22 Avalanche Technologies, Inc. Non-volatile magnetic memory element with graded layer
US8508984B2 (en) * 2006-02-25 2013-08-13 Avalanche Technology, Inc. Low resistance high-TMR magnetic tunnel junction and process for fabrication thereof
US8535952B2 (en) * 2006-02-25 2013-09-17 Avalanche Technology, Inc. Method for manufacturing non-volatile magnetic memory
US8058696B2 (en) * 2006-02-25 2011-11-15 Avalanche Technology, Inc. High capacity low cost multi-state magnetic memory
US8018011B2 (en) * 2007-02-12 2011-09-13 Avalanche Technology, Inc. Low cost multi-state magnetic memory
US20080246104A1 (en) * 2007-02-12 2008-10-09 Yadav Technology High Capacity Low Cost Multi-State Magnetic Memory
US8183652B2 (en) * 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
US8120949B2 (en) * 2006-04-27 2012-02-21 Avalanche Technology, Inc. Low-cost non-volatile flash-RAM memory
US8542524B2 (en) * 2007-02-12 2013-09-24 Avalanche Technology, Inc. Magnetic random access memory (MRAM) manufacturing process for a small magnetic tunnel junction (MTJ) design with a low programming current requirement
US20090218645A1 (en) * 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
US7869266B2 (en) * 2007-10-31 2011-01-11 Avalanche Technology, Inc. Low current switching magnetic tunnel junction design for magnetic memory using domain wall motion
US8367506B2 (en) 2007-06-04 2013-02-05 Micron Technology, Inc. High-k dielectrics with gold nano-particles
US20090121266A1 (en) * 2007-11-13 2009-05-14 Freescale Semiconductor, Inc. Methods and structures for exchange-coupled magnetic multi-layer structure with improved operating temperature behavior
US8802451B2 (en) 2008-02-29 2014-08-12 Avalanche Technology Inc. Method for manufacturing high density non-volatile magnetic memory
US8659852B2 (en) 2008-04-21 2014-02-25 Seagate Technology Llc Write-once magentic junction memory array
US7855911B2 (en) 2008-05-23 2010-12-21 Seagate Technology Llc Reconfigurable magnetic logic device using spin torque
US7852663B2 (en) 2008-05-23 2010-12-14 Seagate Technology Llc Nonvolatile programmable logic gates and adders
US7881098B2 (en) 2008-08-26 2011-02-01 Seagate Technology Llc Memory with separate read and write paths
US7985994B2 (en) 2008-09-29 2011-07-26 Seagate Technology Llc Flux-closed STRAM with electronically reflective insulative spacer
US8169810B2 (en) 2008-10-08 2012-05-01 Seagate Technology Llc Magnetic memory with asymmetric energy barrier
US7880209B2 (en) * 2008-10-09 2011-02-01 Seagate Technology Llc MRAM cells including coupled free ferromagnetic layers for stabilization
US8089132B2 (en) 2008-10-09 2012-01-03 Seagate Technology Llc Magnetic memory with phonon glass electron crystal material
US8039913B2 (en) 2008-10-09 2011-10-18 Seagate Technology Llc Magnetic stack with laminated layer
US8045366B2 (en) 2008-11-05 2011-10-25 Seagate Technology Llc STRAM with composite free magnetic element
US8043732B2 (en) 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US7826181B2 (en) 2008-11-12 2010-11-02 Seagate Technology Llc Magnetic memory with porous non-conductive current confinement layer
US8289756B2 (en) 2008-11-25 2012-10-16 Seagate Technology Llc Non volatile memory including stabilizing structures
US7826259B2 (en) 2009-01-29 2010-11-02 Seagate Technology Llc Staggered STRAM cell
KR101144211B1 (ko) * 2009-04-08 2012-05-10 에스케이하이닉스 주식회사 자기저항소자
US7999338B2 (en) 2009-07-13 2011-08-16 Seagate Technology Llc Magnetic stack having reference layers with orthogonal magnetization orientation directions
JP2012015213A (ja) * 2010-06-29 2012-01-19 Sony Corp 記憶素子、記憶素子の製造方法、及び、メモリ
US8508221B2 (en) 2010-08-30 2013-08-13 Everspin Technologies, Inc. Two-axis magnetic field sensor having reduced compensation angle for zero offset
US8345471B2 (en) 2010-10-07 2013-01-01 Hynix Semiconductor Inc. Magneto-resistance element and semiconductor memory device including the same
US9780299B2 (en) * 2015-11-23 2017-10-03 Headway Technologies, Inc. Multilayer structure for reducing film roughness in magnetic devices
US10347825B2 (en) 2017-02-17 2019-07-09 International Business Machines Corporation Selective deposition and nitridization of bottom electrode metal for MRAM applications
CN112670403A (zh) 2019-10-16 2021-04-16 联华电子股份有限公司 半导体结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294390A (zh) * 1999-10-21 2001-05-09 摩托罗拉公司 场响应增强的磁元件及其制造方法
CN1308317A (zh) * 1999-09-16 2001-08-15 株式会社东芝 磁电阻元件和磁存储装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264070A (en) * 1990-10-09 1993-11-23 Motorola, Inc. Method of growth-orientation of a crystal on a device using an oriented seed layer
JP2924785B2 (ja) * 1996-04-25 1999-07-26 日本電気株式会社 磁気抵抗効果素子薄膜及びその製造方法
JPH1041132A (ja) 1996-07-18 1998-02-13 Sanyo Electric Co Ltd 磁気抵抗効果膜
US5861328A (en) 1996-10-07 1999-01-19 Motorola, Inc. Method of fabricating GMR devices
DE69820524T2 (de) * 1997-05-09 2004-09-23 Kabushiki Kaisha Toshiba, Kawasaki Magnetisches Element und Magnetkopf oder Speicherelement die dieses Element verwenden
US6127045A (en) * 1998-05-13 2000-10-03 International Business Machines Corporation Magnetic tunnel junction device with optimized ferromagnetic layer
US6072671A (en) * 1998-07-31 2000-06-06 International Business Machines Corporation Write head with high thermal stability material
US6181537B1 (en) 1999-03-29 2001-01-30 International Business Machines Corporation Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers
DE19941046C1 (de) * 1999-08-28 2001-01-11 Bosch Gmbh Robert Magnetisch sensitive Schichtanordnung mit GMR-Effekt und Verfahren zu deren Herstellung
US6519121B1 (en) * 1999-11-22 2003-02-11 International Business Machines Corporation Spin valve sensor with composite pinned layer structure for improving biasing of free layer structure with reduced sense current shunting
US6727105B1 (en) * 2000-02-28 2004-04-27 Hewlett-Packard Development Company, L.P. Method of fabricating an MRAM device including spin dependent tunneling junction memory cells
US20020101689A1 (en) * 2000-04-05 2002-08-01 Xuefei Tang High sensitivity spin valve stacks using oxygen in spacer layer deposition
JP3694440B2 (ja) * 2000-04-12 2005-09-14 アルプス電気株式会社 交換結合膜の製造方法、及び前記交換結合膜を用いた磁気抵抗効果素子の製造方法、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッドの製造方法
JP2001325704A (ja) * 2000-05-15 2001-11-22 Nec Corp 磁気抵抗効果センサ、磁気抵抗効果センサの製造方法、磁気抵抗検出システム、および磁気記憶システム
JP2001345494A (ja) * 2000-05-30 2001-12-14 Sony Corp 磁気抵抗効果素子とその製造方法、及び磁気抵抗効果型磁気ヘッドとその製造方法、並びに磁気記録再生装置
JP3839644B2 (ja) * 2000-07-11 2006-11-01 アルプス電気株式会社 交換結合膜と、この交換結合膜を用いた磁気抵抗効果素子、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッド
US6538859B1 (en) * 2000-07-31 2003-03-25 International Business Machines Corporation Giant magnetoresistive sensor with an AP-coupled low Hk free layer
US6710987B2 (en) * 2000-11-17 2004-03-23 Tdk Corporation Magnetic tunnel junction read head devices having a tunneling barrier formed by multi-layer, multi-oxidation processes
JP3756757B2 (ja) * 2000-12-01 2006-03-15 アルプス電気株式会社 交換結合膜と、この交換結合膜を用いた磁気抵抗効果素子、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッド
JP4423658B2 (ja) * 2002-09-27 2010-03-03 日本電気株式会社 磁気抵抗素子及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308317A (zh) * 1999-09-16 2001-08-15 株式会社东芝 磁电阻元件和磁存储装置
CN1294390A (zh) * 1999-10-21 2001-05-09 摩托罗拉公司 场响应增强的磁元件及其制造方法

Also Published As

Publication number Publication date
EP1547102B1 (en) 2007-05-02
AU2003304170A1 (en) 2005-01-21
TW200405335A (en) 2004-04-01
CN1679121A (zh) 2005-10-05
DE60313636D1 (de) 2007-06-14
TWI311754B (en) 2009-07-01
JP2006506828A (ja) 2006-02-23
US20040042128A1 (en) 2004-03-04
KR101036124B1 (ko) 2011-05-23
AU2003304170A8 (en) 2005-01-21
KR20050036985A (ko) 2005-04-20
DE60313636T2 (de) 2007-08-30
WO2004107370A3 (en) 2005-02-03
US6801415B2 (en) 2004-10-05
WO2004107370A2 (en) 2004-12-09
ATE361536T1 (de) 2007-05-15
EP1547102A2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
CN100339915C (zh) 隧道结磁电阻元件及其制备方法
CN100339916C (zh) 用于磁性器件的非晶形合金
US7098495B2 (en) Magnetic tunnel junction element structures and methods for fabricating the same
US9455400B2 (en) Magnetic tunnel junction for MRAM applications
EP3002755B1 (en) Tunneling magnetoresistive (tmr) device with mgo tunneling barrier layer and nitrogen-containing layer for minimization of boron diffusion
KR101166356B1 (ko) 고성능 자기 터널링 접합 mram을 위한 새로운 하층
KR100975804B1 (ko) 고성능 자기 터널링 접합 mram을 제조하기 위한 새로운 버퍼(시드)층
EP2366199B1 (en) Magnetic memory cells with radial barrier
EP2073285A2 (en) A high performance MTJ element for STT-RAM and method for making the same
WO2012151099A1 (en) Composite free layer within magnetic tunnel juction for mram applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090306

Address after: Arizona USA

Patentee after: EVERSPIN TECHNOLOGIES, Inc.

Address before: Texas in the United States

Patentee before: FREESCALE SEMICONDUCTOR, Inc.

ASS Succession or assignment of patent right

Owner name: EVERSPIN TECHNOLOGIES, INC.

Free format text: FORMER OWNER: FREESCALE SEMICONDUCTOR INC.

Effective date: 20090306

CX01 Expiry of patent term

Granted publication date: 20070926

CX01 Expiry of patent term