CN100383684C - 制造设计和生产过程分析系统 - Google Patents

制造设计和生产过程分析系统 Download PDF

Info

Publication number
CN100383684C
CN100383684C CNB038032562A CN03803256A CN100383684C CN 100383684 C CN100383684 C CN 100383684C CN B038032562 A CNB038032562 A CN B038032562A CN 03803256 A CN03803256 A CN 03803256A CN 100383684 C CN100383684 C CN 100383684C
Authority
CN
China
Prior art keywords
characteristic
workpiece
forecast
value
specification limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038032562A
Other languages
English (en)
Other versions
CN1628271A (zh
Inventor
史蒂夫·W·图申斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1628271A publication Critical patent/CN1628271A/zh
Application granted granted Critical
Publication of CN100383684C publication Critical patent/CN100383684C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B1/00Comparing elements, i.e. elements for effecting comparison directly or indirectly between a desired value and existing or anticipated values
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32058Execute program as function of deviation from predicted state, result
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/22Moulding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

简化与制造和其它过程相关的设计、生产和/或测量任务的方法和系统。在一个实施方案中,本发明涉及以计算机软件应用程序实现的决策和逻辑结构,从而便于按照规格生产的任意零件或其它工件的设计、开发、加工、试生产、鉴定、认证和生产过程的所有阶段。在一个实施方案中,本发明将给定过程输出的多个特性彼此如何相关的知识提供给规格界限和过程前输入。

Description

制造设计和生产过程分析系统
相关申请
本申请为共同未决并且共同所有的于2002年2月4日提交的题目为“Manufacturing Design and Process Analysis System”的美国专利10/067704的部分延续申请,该申请全文在这里被引用作为参考。
技术领域
本发明涉及制造、设计、加工和工艺过程,并且在一个实施方案中涉及简化了与制造和其它工艺相关的设计、加工、生产和/或测量任务的方法、设备和系统。在一个实施方案中,本发明涉及应用在计算机软件应用程序中的决策和逻辑结构,这些结构有利于所要按规范生产的任意部件或其它工件的设计、开发、加工、试生产、鉴定、认证和生产工艺的所有阶段。
背景技术
包括工艺过程的制造领域已经受到要提高质量并且降低成本的持续加大的压力。这个趋势表现出进一步加速而不是减速的迹象。从制造方面看,质量指的是生产出这样的产品:1)接近或达到工程设计目标;并且2)误差最小。工程设计领域也受到要提高质量和降低成本的持续压力。设计工程必须产生标准设计目标,并且建立公差限制条件,在这些条件下对于制造而言可以生产出1)正确并且2)落入在设计公差限制条件内的部件。换句话说。工程人员其任务不仅在于设计出符合形式、配合和功能的工件,而且在于设计出它们的生产能力。
在依照工程和物理学法则来产生出有用结果的任意制造或其它过程中,存在五个基本要素(参见图1):1)制作产品的过程(A);2)向该过程进行输入(B);3)从该过程输出(C);4)调节过程控制变量以影响过程输出(D);以及5)影响过程(E)的未受控过程变量(例如,未受控变量或由于时间、成本或其它因素而未受到控制的变量,它们统称为“干扰因素”)。
生产符合设计规范的工件例如零件或其它部件的传统方法是基于因果关系查找的逻辑方法。该方法基于以下原理,在影响过程的变量上的控制产生出在那个过程的输出上的控制。换句话说,如果人们可以控制起因,则人们就可以控制效果。图2显示出该现有技术原理,其中试图确定在控制变量和输出(例如,制造零件)特性之间的关系、联系或相关性。
不幸的是,许多制造过程作用就象一个黑匣子。在其中一些情况中难以确定过程控制变量和所得到的工件特性数值之间的关系。另外,即使在技术上可能是可行的,但是时间和经济约束会使得这种确定变得不切实际。
塑料注塑成形是这种情况的一个示例。在存在至少22个控制变量的情况下,即使在这些控制设定每个只具有两个等级(高和低温度、高和低压力等)时,仍然存在超过4百万种可能的组合。实际上,在考虑三个等级(高、中和低设定)时存在有几十亿种可能的组合。另外,过程变量的变化在所得到的工件特性方面具有不同的作用:例如,提高压力设定值能够提高第一工件特性,减小第二工件特性,并且不会影响第三特性。简单的相互作用、复杂的相互作用和非线性进一步使情况复杂化。另外,在单个模具中通常有多个型腔。最后,存在有许多必须满足的工件特性要求(尺寸、性能或其他要求)。从上面可以看出,往往非常难以从大量零件设计目标、零件公差限制、模具设计特性和注塑成型机设定值建立其各种因素的组合,从而生产出合格的工件。
已经在这方面对一些过程作出了改进。试验设计(DOE)方法学大大降低了必须进行以了解控制变量的选定子设定在所得到的过程输出上的影响的试验数量。不幸的是,即使在进行了所设计的试验之后,也仍然存在许多能够影响所得到的工件的控制变量。在任何情况下,供应商和OEM客户仍然要对所生产的零件进行广泛测量以确保生产出合格产品。
另外,实现提高制造质量存在两种主要途径。第一个途径在于在零件生产出之后对它们进行测量,然后将这些零件与规格要求(设计目标和公差)进行比较。这是利用反馈的“在线”过程。生产商和客户(OEM,第一级制造商、第二级制造商等)通常都在一定程度上对这些零件进行测量。但是测量零件、记录和分析数据、以及报告结果是非常昂贵和耗费资源的过程。
在他们努力提高质量的过程中,许多制造商已经开始使用统计过程控制(SPC)和过程能力研究的技术。实际上,许多客户需要他们的供应商进行SPC或其它等同的测量、记录、分析和报告程序。根据该技术,从生产线中获取试样,对它进行测量,然后进行分析以观察是否出现任意的异常(不正常分布)图案或数据点。如果检测到这些异常数据点,则认为该过程“失控”(即,不能生产出一致的可预测输出)并且要立即停止生产以调整该过程。采用在专门计算机程序中实现的高级SPC统计方法和制图工具来分析从制造零件中获得的测量数据。由于大多数零件具有许多不同的尺寸,所以通常对每个零件的许多零件尺寸进行测量和SPC分析,从而增加与生产相关的时间和花费。但是,SPC在长期中远远比运输不合格零件和/或必须从不合格零件中挑拣出合格产品费用更低。
制造商(及其客户)也难以确定:1)应该使用SPC来检测什么百分比的尺寸以及2)如果没有监测整套尺寸则应该测量出哪些尺寸。通常,使用SPC技术对有设计工程师调出的大部分(如果不是全部的话)“临界”尺寸进行测量和分析。但是,经济约束条件会导致比测量和分析的所要求尺寸数量更少。然后常常要针对选择哪些尺寸进行SPC或其他分析进行猜测。
提高制造质量的第二个途径在于减小在制造工件中的自然变量。可以提高维持过程控制因素的精度和/或可以消除或减小“干扰”因素。这是一种采用前馈的“离线”过程改进。由于变量存在许多相对较小的共同起因,所以减小自然变量也是一种昂贵的方案。通常通过一般在每个“临界”尺寸上进行的昂贵的过程能力研究来确定在所生产的零件中的自然变量所必须减小的程度。
从上面看出,在本领域中需要能够简化设计和制造过程更具体地说解决了上述问题的方法、设备和系统。例如,在本领域中需要能够降低在例如SPC研究、过程能力研究、运输检察并且接收检察方面与上述测量、记录、分析和报告过程相关的时间和成本的方法。本领域需要用来确定如何调节过程输入以便实现所要求的输出的方法。本领域还需要能够简化确定对给定过程应该测量多少工件特性(例如,尺寸、性能测量值等)的方法和系统。最后,本领域需要能够评估出针对给定过程应该测量哪些工件特性的方法。如在下面更详细地描述一样,本发明的实施方案基本上满足了这些需要。
发明概述
本发明提供了能够简化与制造和其他过程相关的设计、生产和/或测量任务的方法、设备和系统。在一个实施方案中,本发明设计以计算机软件应用程序实施的决策和逻辑结构,从而简化了按规范生产的任意零件或其他工件的设计、开发、加工、试生产、鉴定、认证和生产过程的所有阶段。在一个实施方案中,本发明提供一给定过程输出的多个特性如何相关、如何与规格界限和预先过程输入相关的知识。该知识还有利于降低在生产之前和生产过程中的测量、分析和报告成本。它还确定了预先过程输入所需要的变化,以便实现符合设计目标的生产。它提供了用于放宽设计公差的优先顺序。它评估了生产符合规格界限的零件的可行性。它评估了在性能和可生产性之间的权衡,并且提供了提高可生产性的设计目标。它确定了什么时候需要降低过程变量。它便于材料比较和选择。它为工艺工程师和操作人员提供了改进的操作指南。
本发明采用了分析法来实现前面的目的和优点。如下面所述一样,在一个实施方案中,可以选择地使用图解法来代替分析法。也可以使用图解法,包括但不限于图表、曲线和绘图,来显示分析结果。本发明采用了强大的统计方法,该统计方法在一个实施方案中能够确定应该测量哪些和多少工件特性,从而潜在地降低了与测量、记录、分析和报告相关的成本和资源耗费。本发明的实施方案还在设计工件的可生产性方面帮助设计工程师。本发明的实施方案还可以构成为给设计工程师和加工工程师提供临界要求信息以改变针对过程输入的设计要求,使得制造能够达到设计目标并且处于规格公差界限范围内。本发明的实施方案还可以用来采用系统工程方法来识别出哪些工件特性具有最严格的目标和规格公差界限。这种信息例如能够用来评价是否应该提高公差,并且如果是,则应该提高哪些公差以及在哪些工件特性上的公差。本发明还可以用来通过在一些情况中大大降低必须进行的过程能力研究数量来降低进行过程能力研究的成本。从本发明优选实施方案的以下说明中将了解本发明的这些方面和其他方面。
在一个实施方案中,本发明提供便于理解和分析预测工件特性和一个或多个预测工件特性之间的关系如何反映出实现所要求目的的过程的能力的方法、设备和系统(例如,生产符合目标规格和/或在规格公差范围内的产品)。在一个实施方案中,本发明提供了一种生成一组图形和/或表格(例如约束表、偏差表和松弛表)的过程分析系统,这些图形和/或表格使得用户能够理解和分析工件特性之间的关系,以针对可能的设计、加工或预先过程尺寸或过程变化作出有力且有见地的判断。如在下面更详细地说明的一样,预报特性和一个或多个给定预测工件特性之间的关系大体上可以归类于以下三种可能情况中的一种:1)可能生产出针对预测工件特性的规格界限之外的工件;2)预测工件特性稳定并且总是在规格界限内;以及3)预测工件特性约束了预报工件特性。在一个实施方案中,本发明提供用于分析在预报特性和剩余工件特性之间的可能关系的方法,以便确定例如可以安全地忽略哪些预测工件特性,哪些预测工件特性将约束与预报特性相关的操作范围或窗口,以及哪些预测工件特性会导致生产出处于设计规格界限之外的工件。通过对这些预测工件特性进行这样的归类,从而用户(例如设计工程师、加工工程师、工艺工程师、检察者等)现场针对如何处理每个预测工件特性作出决策。例如,在可能生产出次品的情况中,用户可以决定放宽规格公差和/或修改预先过程输入和/或约束过程变量。另外,如果给定的预测工件特性对于预报工件特性的所有可能数值(至少在设计规格界限范围内)而言是稳定的(在规格范围内),则在例如与鉴定前、鉴定、认证和生产活动相关的零件测量和分析的后处理任务期间可以忽略预测工件特性。本发明还便于对约束预报工件特性的许可范围的预测工件特性的影响进行分析。如在下面更详细地说明一样,本发明使得用户能够考虑约束预测工件特性和约束程度在在给定设计规格中调出的工件的可生产性上的影响,并且还能够评估给定过程对生产符合设计规格/要求的产品的适用性。如在下面所更详细地说明的一样,本发明的实施方案操作用来产生出图形、表格和曲线图,例如散点图、约束表、偏差表和松弛表,支持与制造和其他过程相关的分析和决策任务。
附图的简要说明
图1为大体上适用于制造和其他过程的过程流程图。
图2为一过程流程图,显示出与应用于制造过程的现有技术过程控制技术相关的原理。
图3为一过程流程图,显示出与应用于制造过程的本发明的概念。
图4为设定在两个工件特性之间的回归模型的散点图。
图5为对在过程控制设定值中的变化在过程输出上的影响进行建模的散点图。
图6为一散点图,显示出改变过程输入的作用。
图7为一散点图,显示出改变过程控制设定值和过程输入的组合作用。
图8为一散点图,它包括与回归模型相关的预测区间。
图9提供了一图形用户界面,该界面便于输入本发明实施方案所使用的工件特性数据。
图10为一散点图,显示出两种工件特性的简单线性回归模型。
图11为一功能方框图,显示出适用于本发明的计算机硬件系统的实施方案。
图12为一散点图,显示出与本发明实施方案相关的概念。
图13为一散点图,包括了线性回归模型、预测区间、目标交叉和上下规格界限。
图14为一散点图,显示出预报特性的许可操作范围和操作目标数值的确定。
图15显示出根据本发明一实施方案的系统架构。
图16为一流程图,给出了根据本发明一实施方案的方法。
图17为一流程图,显示出与将回归模型和相关分析要素显示给用户相关的方法。
图18为一流程图,说明了一种允许选择预报特性的方法。
图19为一电子表格,它包括针对多个工件特性、相关系数和表示每个工件特性的预测能力的一组工件特性数据。
图20为一流程图,给出了一种允许增加相关系数表的方法。
图21为一流程图,显示出与根据一个实施方案的本发明的使用相关的方法。
图22显示出根据本发明一实施方案的约束表。
图23为根据本发明一实施方案的一流程图,说明了涉及约束表的生成的方法。
图24为一图表,显示出包括与回归模型相关的边界数值的预报特性和预测特性的回归模型。
图25A至25G显示出在预报特性和预测特性之间的回归模型并且显示出其中存在缺陷条件的各种情况。
图26A和26B显示出在预报特性和预测特性之间的回归模型,并且显示出其中预测特性在预测特性的上下规格界限范围内稳定的各种情况。
图27A至27F显示出用于其中上、下或两个预测边界约束了最小和/或最大许可预报特性数值以便生产出在规格界限范围内的零件的各种情况的回归模型。
图28A为一流程图,说明了涉及根据本发明一个实施方案的偏差表生成的方法。
图28B为一流程图,说明了涉及根据本发明一个实施方案的偏差表。
图29为一流程图,显示出与根据本发明一个实施方案的松弛表生成相关的整个过程。
图30为由本发明一个实施方案生成的松弛表。
图31为一流程图,显示出从放宽预测特性的上下规格界限中的一个或两个中得出的新规格界限以及因此生产在规格界限内的零件所需要的相关最小和/或最大预报特性数值的确定方法。
图32A、32B、32C和32D为一些图表,它们以图形的方式显示出Pmax的增加和Pmin的降低,它们从放宽预测特性的上下规格界限中得出的。
图33A、33B、33C和33D为一些图表,它们以图形的方式显示出顺应性区域、回归区域和有界回归区域以及顺应性区域与有界回归区域的比较。
具体实施方案
I.背景和操作原理
A.原理和概念
本发明利用了几种用来分析在工件特性之间的关系的图形、统计和数学方法来实现新颖的设计和制造过程分析系统。在这些之中有散点图、相关系数、确定系数、线性、非线性和多元回归、预测区间、调节预测区间、采用回归的预测、采用预测区间的预测、DOE、平均值和加权平均值。图3为一过程图,显示出本发明的一个方面如何与现有技术不同。在许多制造过程尤其是注塑成型中,在由给定过程得到的工件特性之间往往存在很大的关系。本发明评价出这些关系的统计强度,并且当它们足够强时,利用它们的存在来简化与制造过程相关的各种设计、生产和测量任务。
在理解在图2中所例举的现有技术和在图3中所例举的本发明之间的差异中,应该注意的是,图3的重点在于存在于零件特性之间的关系。在注塑成型领域中,在图3中的不同输出(#1、#2等)通常涉及不同零件尺寸。在本发明中,不同零件特性不限于尺寸,而是可以是任意零件属性。另外,不同零件特性实际上可以包括在多型腔的一个单循环中制造的不同零件上的相同尺寸。
图4以图形的方式显示出如在散点图上给出的两个工件特性之间的关系。图4以一种形式显示出预报特性和预测特性之间的关系。如下面所述一样,通常采用至少两种不同的可能方法来生成用于产生回归模型的数据点。
第一方法包括在没有对过程设定值作任何变化的情况下产生出零件。这通常与正常生产过程相对应。所有过程在控制变量、环境条件、损耗以及许多其他因素方面受到改变。对过程的这些影响产生过程输出中的自然变化。然后测量出从该方法得出的过程输出。这个方法存在的一个问题在于,该测量过程与任意其他过程类似,测量过程具有导致测量误差的其自身的变化源。如果在零件特性中的自然变化大小相对于测量误差较小,则测量误差比自然变化更为占优。在该情况中,在零件特性之间将不可能建立任何统计明显相关性。
注塑成型过程与典型的测量误差相比具有相对较小的自然变量。因此,产生注塑成型零件以评价关系的第一方法没有效果。因此,用于生产零件的第二方法更适用于注塑成型零件。但是,其他过程可能具有足够的自然变量以便使用上面所指出的方法。
根据第二方法,导入在零件特性上的变化。在注塑成型中,通过有意改变过程控制设定值来引入变化。这样,零件特性数值上的变化相对于测量误差变得较大。它们之间所存在的相关性变得明显。
如上所述,DOE是一种帮助将难以处理的大量试验条件降低至可处理的较少试验条件的方法。由于在注塑成型中必须引入变化,所以使用DOE技术可以用来设计行之有效的试验。使用该方法具有进一步的实用性,因为存在许多商业上可获得的计算机应用软件,这些软件能够有效分析数据和报告分析结果。因此,由使用DOE带来的一个益处在于,可以从试验性的运行中提取有用的信息。具体来说,通常可以识别出至少一个能够用来明显影响所得到的输出的零件特性的过程控制设定值。如上所述,从DOE中获得的信息可以用来调节过程控制设定值以沿着回归模型来实现所期望的在零件特性数值的联合操作位置中的变化。
在试验性运行中引入变化的第二个优点在于,它不与使用DOE相关的任何有效测量相关联。第二个优点在于这样的事实,在一个实施方案中,本发明识别出在零件特性上具有最大影响或作用的过程控制设定值。本发明还可以部分依赖注塑成型机操作人员和相关制造和工艺人员的经验来选择哪些“高影响”控制设定值。应该注意的是,在注塑成型中,通常的模式是最小化压力机设定值的变化。相反,本发明使其影响最大化以便引入零件变量以作进一步分析。换句话说,为了引入变量,本发明找出“最差的”控制设定值。从生产方面看的“最差的”控制设定值从引入变化方面看是“最好的”控制设定值。
如上所述,在注塑成型领域中存在大量通常为22或更多的过程控制设定值。本发明在一个实施方案中引入“科学的”或“精密射出成型”原理来识别出高影响的压力机控制。至于DOE,不必采用“科学的”或“精密射出成型”原理,但是它潜在地提供其他识别优点。因此,当在试验过程中改变几个(通常为3-5个)最高影响控制设定值时,将把最大变化引进零件特性。这种变化将具有两种类型。第一种是沿着回归线的联合操作位置的平移。第二种可以引入数据点在回归线周围的分散。重要的是,产生出稳定的数据设定值以反过来产生出用于预测的稳定回归模型。
最后,采用DOE技术提供了附加信息。具体地说,采用DOE技术来引入零件变化还使得能够理解已经变化的这些过程控制变量如何影响零件特性并且潜在地理解这些控制变量如何相互作用。
如上所述,由于几个原因,所以难以在注塑成型控制设定值和零件特性之间建立关系,这些原因包括大量的控制变量、潜在的大量的零件特性、简单的相互作用、复杂的相互作用、非线性等影响。本发明的其中一个较大的实用性在于,即使存在许多影响一个零件特性的过程控制变量,并且哪些变化可能以非常复杂的方式影响任意一个零件特性,在这些变量中的变化也在预报特性和至少一个剩余工件特性之间的关系上具有可预测的作用。因此,如下面所更详细地说明的一样,本发明的系统和方法使得设计工程师和过程操作人员能够依靠预报特性的数值来确定一个或多个预测特性是否符合设计规格。另外,本发明的系统和方法使得设计工程师和过程操作人员能够集中精力于预测特性,以调节过程输出使其遵循设计规格。从下面给出的说明中将了解这些和其他优点。
图4的回归模型假设在两个变量之间是直线关系,并且所有数据点位于该直线上;但是,因为在真实世界中完全相关是很少见的,所以几乎不能实现完全线性模型。图10显示出在散点图上的数据点的散布。虽然这些数据点呈现散布,但是它们也表示出强烈的趋势或关系。换句话说,通过知道两个变量中的一个的数值,从而可以相对较高的精确度来预测其它变量。在应用于本发明时,知道预报特性的数值可以产生对相当精确的预测工件特性的数值了解。实际上,在这些数据点之间的散布是由许多因素引起的。这些因素包括由共同起因干扰、在控制变量中的共同起因波动、在过程输入中的共同起因变化以及在用来测量零件特性的测量系统中的共同起因变化引起的变化。图10还显示出通常用来限定回归模型的两个参数。这些参数是回归线的斜率和Y截距;但是也可以使用其他参数。在图10中所示的实施方案还显示出一种线性回归模型。但是,本发明并不限于使用线性模型。本发明也可以采用非线性回归模型例如多元模型。
图8显示为将上下预测区间加入到回归模型中。当包含有自然变量和测量误差时,由预测区间界定的区域表示关于x轴和y轴特性的过程输出的可行区域。换句话说,由于它们显示作为可行输出的界定区域,所以“消除”了该过程的所有复杂性。所“消除”的复杂性包括上述过程控制变量、简单相互作用、复杂相互作用、非线性等。这样对过程输出进行分析提供了各种便于设计和制造过程的有用信息。
例如,图4以及其他附图也包含有在用于预报特性的设计目标和预测特性之间交点的表示。目标交点的位置为设计工程师和过程操作人员提供了大量有用信息,对于图4所示的情况,它显示出不论如何改变过程控制设定值都不可能与目标交叉相交。
为了说明,优选实施方案的说明主要详细说明了本发明实施方案在注塑成型过程上的应用。但是,本发明可以应用于各种制造过程,例如镀覆、半导体制造、加工和其他加入、减去或者以其他方式在形式和结构方面改变材料的过程。另外,本发明可以用来帮助制造工件的设计、制造工件的工艺的开发和/或降低测量成本。而且,本申请可以应用于各种工件,包括独立的工件或物品以及用作以组合件的部件、元件或零件的工件。因此,在这里所给出的优选实施方案的说明涉及的“工件”和“零件”可互换。
本发明除了评估由压力机控制设定值的变化引起的变化之外的其他变化源的影响。实际上可以评价任意变化源,只要它在零件特性数值上引起了足够的变化。所选的实施例可以包括确定设定到设定的变化的作用,确定用于注塑成型的压力机到压力机变化的作用,确定例如季节作用的影响的暂时作用,并且评价不同原材料类型的影响或从不同供应商购买原材料或部件的影响。
另外,可以不用计算设备例如个人计算机的帮助就能够进行本发明的实施方案来执行在本文所提出的各种数学和统计计算。对于少量工件特性而言,用手和/或用电子表格来作出所有分析和/或制图是完全可行的。但是在优选实施方案中,给出大量数据和计算要求,以配置为执行本文所述的操作并且在用户界面显示器上显示出所得到的数据的计算装置进行与本发明相关的各种操作。
B.示例性系统架构
图15为一简化方框图,显示出根据本发明一个实施方案的系统架构。如图2一样,一种系统架构包括过程分析应用程序100和操作系统130。过程分析系统100包括数据输入模块102、回归模块104、相关模块106、显示模块108和界面应用程序模块110。数据输入模块102可操作用来接收工件特性数据以及格式,并且将数据以适当的格式存储以用于由与处理分析系统100相关的其他模块进行的操作。回归模块104可操作用来在给出一组输入的情况下计算回归模型。如在下面更详细地说明一样,相关模块106操作用来执行有关在工件特性之间的相关性的操作。在一个实施方案中,如将在下面所更全面地说明的一样,显示模块108操作用来产生对于一组给定数据以及其他数据元素的回归和/或相关性关系的图形显示。界面应用程序模块110操作用来根据从用户接收到的命令调整与过程分析系统100相关的其他模块的操作。
在一个实施方案中,上述系统架构与图11的计算机硬件系统800结合操作。操作系统130管理并且控制着系统800的操作,包括数据向处理分析应用程序100以及其它软件应用程序(未示出)的输入和输出。操作系统130在用户和在该系统执行的软件应用程序之间提供了一界面,例如一图形用户界面(GUI)。根据本发明的一个实施方案,操作系统130为可以从Redmond,Wash的微软公司中得到的
Figure C0380325600311
95/98/NT/XP操作系统。但是,本发明也可以使用其他普通的操作系统,例如可以从Cupertino,Calif的苹果计算机公司中得到的Apple Machintosh操作系统、UNIX操作系统、LINUX操作系统等。
图11显示出适用于本发明的计算机硬件系统的一个实施方案。在所示的实施方案中,硬件系统800包括如所示一样相互耦连的处理器802和高速缓存存储器804。另外,硬件系统800包括高性能输入/输出(I/O)总线806和标准I/O总线808。主桥810将处理器802与高性能I/O总线806耦连,而I/O总线桥812将两个总线806和808相互耦连。与总线806耦连的有网络/通信接口824、系统存储器814和视频存储器816。反过来,显示装置818与视频存储器816耦连。与总线808耦连的有大容量存储器820、键盘和指示装置822以及I/O端口826。总的来说,这些元件试图表示许多种计算机硬件系统,包括但不限于基于由Santa,Clara,Calif的Intel公司制造的
Figure C0380325600312
处理器以及任意其他合适的处理器的通用计算机系统。
计算机硬件系统800的元件执行其在本领域中公知的一般功能。具体地说,网络/通信接口824用来在系统800和任意一般网络例如以太网、令牌网和互联网等之间提供通信。大容量存储器820用来永久存储执行在系统控制器中实施的上述功能的数据和编程指令,而系统存储器814用来临时在由处理器802执行时的存储数据和编程指令。I/O端口826为一个或多个串行和/或并行通信端口,用来在可以与该硬件系统800耦连的其他外设之间提供通信。
硬件系统800可以包括多种系统架构,并且硬件系统800的各个部件可以重新布置。例如,缓存804可以与处理器802在同一芯片上。或者,缓存804和处理器802可以封装在一起作为“处理器模块”,并且处理器802被称为“处理器内核”。另外,本发明的某些应用可能不需要包括所有上述部件。例如,所示与标准I/O总线808耦连的外设可以与高性能I/O总线806耦连;另外,在一些应用中,只有一根总线,并且该硬件系统800的各个部件都与这单根总线连接。另外,在系统800中还可以包括其他部件,例如附加处理器、存储装置或存储器。
在一个实施方案中,本发明的这些元件以由图11的硬件系统800运行的一系列软件程序实现。这些软件程序包括多个或一系列由在硬件系统中的处理器,例如处理器802,执行的指令。首先,将一系列指令存储在一存储装置例如大容量存储器820中。但是,可以将这一系列指令存储在任意传统的存储媒介,例如磁盘、CD-ROM、ROM等上。另外,这一系列指令不必存储在当地,而是可以通过网络/通信接口824从远程存储装置例如在网络上的服务器中接收。从存储装置例如大容量存储器820中将这些指令复制进存储器814中,然后由处理器802访问并且执行。在一个实现方式中,这些软件程序用C++编程语言编写并且以经编译的形式存储在大容量存储装置820上。但是,这些程序可以采用许多编程语言例如Visual Basic、Java等语言来实现。在可选的实施方案中,本发明在离散的硬件或固件中实施。例如,可以对专用集成电路(ASIC)进行编程,使其带有本发明上述功能。
II.示例性实施方案的操作
A.产生一组在多个工件特性方面具有一定变化范围的工件
如上所述,本发明评价出与一组在工件特性方面具有一定变化范围的工件相关的工件特性之间的关系。根据本发明的一个实施方案,用户根据给定的过程产生出一组在多个工件特性方面具有一定变化范围的工件。例如,用户可以将一注塑成型工具安装在注塑成型机上并且生产出一组工件。然后在所感兴趣的工件特性方面测量或以其他方式观测或评价这组工件或其试样。然后记录所得到的这组数据(例如在Excel电子表格中),并且将这些数据用于随后的分析。
可以测量和分析各种工件特性。例如,所测量出的或以其他方式确定的工件特性,包括工件的尺寸(例如,工件的长度、高度、宽度、周长、整体直径等或工件的给定特征)、硬度、孔隙率、弯曲、光滑度、孔隙特性(是否存在孔隙及其数量)、颜色、强度、重量以及任意其他工件特性,包括性能特性,例如喷嘴的喷射图案或通过液压限制器的流速。
如上所述,本发明可以应用于这样一组工件,其中工件特性的变化自然出现或者由改变与产生该工件的过程相关的过程控制变量而引起。当用未改变的过程控制设定值生产工件时,通常在所得到的工件特性方面存在很小的自然变化。对注塑成型塑料件而言尤为如此。测量误差可能不清楚或者以其他方式使从给定一组工件中所观察到的自然变化不可靠。如果使用更精密的测量仪器在成本上不经济,则应该通过改变过程设定值来引入变化。因此,在优选实施方案中,在测量误差与自然零件变化相比较大时引起工件变化。
A.1引起变化
可以通过根据操作人员的经验来选择和改变压力机设定值来引入工件变化。也就是说,操作人员可以利用其经验来确定要改变哪些过程设定值以便在这些零件中引入变化。为了以优选的形式引入变化,操作人员在制造过程中改变过程设定值,并且使得该过程能够在选择用于测量的零件之前平衡设定值变化。另外,在该方法的优选实施方案中,操作人员在所感兴趣的工件特性中选择引入最大可变性的过程设定值的集合或子集。在优选实施方案中,这样选择用于这些过程设定值的上下界限,使该过程在不损害过程设备或工具的情况下生产出零件。而且,在优选的形式中,选择在过程设定值中的变化幅度以在用于每个所感兴趣的工件特性的工件特性上下规格界限之间的整个范围上引入变化。
至于注塑成型过程,在一个实施方案中,也可以通过采用科学/精密射出成型技术来选择和改变过程控制设定值,引入零件变化。可许/精密射出成型技术提供了一种将大量压力机设定值减少至三个或四个关键变量的方法。另外,可以结合模压力机操作人员的经验使用科学/精密射出成型技术来确定应该改变哪个压力机设定值。在优选实施方案中,所生产出的工件集合包括从在每组过程控制变量处进行足够数量的重复中产生的工件。
在优选实施方案中,采用试验设计(DOE)方法来产生一组具有一定变化范围的工件。可以不用考虑是否采用操作人员的经验、精密射出成型/科学成型原理或其一些组合来使用DOE。DOE限定了有效试验设定值,它们使得能够用相对较小的试验努力提取最大数量的信息。一旦已经确定要改变哪些压力机设定值,则DEO设定了有效的试验设定值,从而使得能够用相对较小的试验努力提取最大数量的信息。这适用于试验设计(例如,过程设定值的组合和在每个组合处的重复次数等)以及数据的分析。可以采用许多已知的DOE技术和可得到的软件工具来设计引入零件变化的试验过程。
如在下面所详细说明的一样,使用DOE生产用于分析的一组工件提供“额外有利”的信息,该信息可以在根据本发明的分析之后,用于使给定的工件输出更接近目标并且减小在工件中的变化。例如,这种信息使得操作人员能够调节压力机设定值以在生产过程中实现以下目的:1)使产品输出达到目标,和/或2)使产品变化最小化;和/或3)使成本最小化;和/或4)使压制循环时间最小化。
A.2接收工件特性数值
在一个实施方案中,本发明通过构成为执行在本文所述功能性计算装置(例如专用或通用计算机)来实施。在优选形式中,在生产出给定一组工件并且测量出工件特性之后,适当构成的计算装置即执行数据输入模块102接收与这组工件相关的工件特性数值并且将它们存储在存储器中。
图9给出了由本发明一实施方案提供的图形用户界面,它使得用户能够输入一组工件特性数值。如图9所示,本发明的一个实施方案使得用户能够打开数据输入数据库并且手动地将这组工件特性输入至表格中。但是,一个实施方案使得用户能够输入以各种文件格式例如以
Figure C0380325600351
电子表格或任意其他合适的文档格式,存储的工件特性数值数据。在一个形式中,数据输入模块102还操作用来验证数据集例如检验空白单元格和其他验证方法。
另外,如下面所述一样,数据输入模块102操作用来接收与本发明实施方案的操作相关的其他数据。例如,数据输入模块102操作用来接收目标数值,以及用于所有或一工件特性子集的上下规格界限。在一个实施方案中,使用这种数据来使用户能够评价对于给定一组过程输入而言在过程输出和设计规格之间的关系。
B.评价工件特性之间的关系
为了使得能够评价在与一组工件相关的工件特性之间的关系,在一个实施方式中过程分析应用程序100产生出一组散点图,每幅图都基于一对工件特性。参见图10。这组散点图可以表示工件特性的所有可能组合,或者它可以由一个所有可能组合的子集构成。
在一个实施方案中,显示模块108产生出包括用于显示在显示装置818上的散点图的图形显示,以使得用户能够在视觉上评价在这些工件特性之间的相关程度。参见图10,在一个形式中,呈现在显示装置818上的图形用户界面使得用户能够采用键盘和指示装置822来选择针对x轴线的第一工件特性,并且继而根据第一工件特性和在y轴线上的剩余工件特性来连续地观看这些散点图。用户可以使用从这个视觉观察中所看到的信息来评价第一特性作为剩余工件特性的充分预测的能力(参见下面)。
B.1确定在工件特性之间的回归模型
过程分析系统100还包括操作用来确定在所选工件特性之间的回归模型的回归模块104。如上所述,显示模块108可操作用来产生回归模型的图像显示并且将它们显示在显示装置818上。参见图10。如图10所示,回归模型可以用在下面加有(或任选没有)下划线的数据点来绘出和显示出。在优选的实施方案中,回归模块104采用“最小二乘方”曲线拟合方法来计算出回归模型。但是也可以采用其他方法。虽然各个附图显示出一种线性回归模型,但是该回归模型也可以是线性的、非线性的(更高阶多项式)模型或多元模型。
这样显示出在两个工件特性之间的关系给过程操作人员、设计工程师合其他与工件的设计和制造相关的人员提供有用的信息。另外,回归线的斜率(斜度)可以用来确定工件特性的灵敏度,以改变过程设定置。回归线的斜率(斜度)可以用来识别在考虑规格界限时(参见下面),在过程设定值的许可范围上更具限制性(对该许可范围更加灵敏)的工件特性。
B.1.a确定目标交点的位置
如上所述,工件设计一般产生每个工件特性的目标数值以及上下规格界限(或至少临界工件特性)。在一个形式中,过程分析系统100操作用来确定用于一对工件特性的目标数值相对于相应回归模型的交点。图4显示出包括相对于与第一(预报,参见下面)特性和第二工件特性相关的回归模型定位的目标交点的示例性回归模型显示。
如图4所示,目标交点的位置使得能够在视觉上和/或分析确定回归线与用于每个工件特性的目标交点的偏差方向和幅度。而且,在回归模型基本上代表了过程设定值的所有可能组合(也就是说,没有改变过程输入,例如改变型腔的尺寸)时,所得到的曲线图使得人们能够确定以目标数值生产具有给定一对工件特性的零件是否是可以实现的。
另外,如图5和6所示,由图4显示出的信息便于改变过程一个方面(例如,过程输入或控制设定值)的过程以使输出更接近设计目标。例如,如图5所示,操作人员可以改变过程控制设定值的组合以使得联合操作位置沿着回归模型更接近所要求的位置。在本发明的一个实施方案中,可以改变过程控制设定值来优化具有两个以上零件特性的联合操作位置。另外,通过改变过程输入,从而可以将回归线改变至更接近目标交点的位置或改变至使回归线穿过目标交点的位置。参见图6。在本发明的一个实施方案中,可以改变过程输入以优化一条以上回归线的位置。最后,如图7所示,可以采用在过程控制设定值和过程输入中的变化来将零件特性数值改变至更接近目标交点。在本发明的一个实施方案中,可以改变在过程控制设定值和过程输入中的变化以优化两个以上的特性数值。
在一个实施方案中,可以根据回归曲线离用于每个工件特性的目标交点有多远来产生出偏差表。该偏差以三种格式表示出:在X方向、Y方向和与回归线垂直的方向上。
B.1.b规格界限
过程分析系统100也构成为确定用于Y轴线工件特性的上下规格界限相对于在Y轴线工件特性和X轴线工件特性之间的回归模型的位置。参见图12。该图形示意图使得能够确定任意Y轴线工件特性相对于过程变量的变化是否稳定。在这些情况中,回归线通常具有一小斜率和/或与上或下Y轴线规格界限相交。
另外,过程分析系统100还操作用来确定用于X轴线工件特性的上下规格界限相对于回归模型的位置。这个示图使得人们能够确定回归线是否穿过了由四个规格界限界定的许可区域。换句话说,这个示图使得能够确定在给定当前过程和过程输入的情况下是否可能制造处处于规格界限范围内的零件。另外,相对于回归模型确定规格界限的位置使得能够确定用于X轴线特性的最大和最小值(因此,确定范围),这将产生出其中Y轴线特性处于规格界限范围内的工件。例如,这个范围确定使得制造商能够仅仅通过测量X轴线特性来确定该零件是否符合X和Y轴线特性的规格界限。为了计算出最小X轴线工件特性,过程分析系统100计算出X轴线工件特性的数值,在该数值下回归模型与用于Y轴线特性的下规格界限相交。同样,为了计算出最大X轴线工件特性的数值,过程分析系统100计算出X轴线特性的数值,在该数值下回归模型与用于Y轴线工件特性的上规格界限相交。在任一情况中,X轴线特性可以不大于用于X的上规格界限,并且也可以不小于用于X的下规格界限。
B.1.c.预测区间
如图8所示,过程分析系统100也可以将上下预测区间加入到回归模型图中以便确定关于该回归模型的可变幅度。在一个实施方案中,回归模型104进一步操作用来采用已知的统计方法根据一组工件特性数值对来计算出上下预测区间。如图8所示,确定预测区间的位置还能够评估相对于目标交点的可变性。例如,目标交点可以在高侧或低侧上位于预测区间外面。在该情况中,实际上不可能在给予相同过程输入的情况下一直到达目标交点。例如,假设图8为从注塑成型过程中得到的两个工件特性之间的关系建立了模型,确定目标交点的位置表明使用模具在其当前状态中将不会获得在两个工件特性方面达到目标的零件。另外,当目标交点位于预测区间内时,可以通过使用已知的统计技术来确定其中工件特性大于目标和小于目标的零件的百分比。
另外,预测区间还可以用来确定用于X轴线特性的最大和最小值(参见上文章节II.B.1.b.)。如图13所示,为了计算出最小X轴线工件特性,过程分析系统100计算出X轴线工件特性的数值,在该数值下下预测区间与用于Y轴线特性的规格界限相交。同样,为了计算出最大X轴线工件特性,过程分析系统100计算出X轴线特性的数值,在该数值下上预测区间与用于Y轴线特性的上规格界限相交。在任一情况下,X轴线特性可以不小于其下规格界限,并且不大于其上规格界限。
本发明的一实施方案使得用户能够通过输入包含在预测区间之间中的用户想要的分布面积百分比来确定预测区间的幅度。
B.2.预报特性
本发明的一个实施方案进行相关和回归分析以确定在制造过程中的预报特性。在一个实施方案中,预报特性从与零件相关的多个工件特性中选择出并且用作单个X轴线特性。如在下面所更详细地说明的一样,根据将要作为其他工件特性的预报者的给定工件特性的能力的评估来选择预报特性。因此选择预报特性将必须分析的工件特性组合数量降低至相对较小的子集。例如,具有31个工件特性的零件将需要对工件特性之间的900个以上的关系进行分析。预报特性的选择将这个数量减小至30个组合。另外,可以按照各种方式来使用预报特性的选择以便于与制造相关的设计、生产和测量任务。例如,可以使用预报特性来大大降低与测量零件相关的时间和费用,因为预报特性仅需要在生产期间进行测量以确定是否所有其他工件特性都在规格范围内。
图16显示出设计根据本发明一个实施方案的预报特性的选择的方法。如上所述,数据输入模块102操作用来接收并且存储与一组工件相关的工件特性数据(例如,工件特性数值和设计目标/规格界限)(步骤202)。在一个实施方案中,如将在后面所更详细地说明的一样,相关模块106进行计算(例如确定在所有工件特性组合之间的相关系数,计算每个工件特性的整体预测能力等)以根据其相对预测能力将工件特性分类。在一个实施方案中,显示模块108显示出工件特性的分类列表并且能够选择一工件特性作为预报特性(参见步骤204)。如上所述,用户可以根据包括相对预测能力、测量工件特性的可行性/成本等的许多考虑来选择预报特性。还有,可以根据其他方法(参见下面)来选择预报特性。
利用所选的预报特性,界面应用程序模块110引导回归模块104来确定在预报特性(在一个实施方案中,作为x轴线特性)和剩余工件特性的所有或子集之间的回归模型(参见步骤206、208、210和211)。当完成时,用户立即选择预测工件特性(步骤212)。在一个实施方案中,显示模块根据限定了回归模型的等式来产生出在预报特性和所选预测特性之间的回归模型的图形显示(步骤214)。
除了回归模型之外,显示模块108还操作用来将附加特征加入到呈现给用户的图形显示中。图17显示出一种用上述附加特征产生出用于说明在预报特性和预测特性之间的关系的图形表示的方法。显示模块108检索在所选预测特性和预报特性之间的回归模型(步骤302)。如图17所示,显示模块108还可以确定与预报和预测特性相关的目标数值相对于回归模型的交点的位置(步骤304)(参见部分II.B.1.a.,上文)。显示模块108还可以确定与回归模型相关的预测区间在显示器上的位置(步骤306)(参见上文章节II.B.1.c.)。还有,显示模块108可以确定与预测特性相关的上下规格界限(步骤308)以及与预报特性相关的上下规格界限(步骤310)的范围。参见上文章节II.B.1.b.。显示模块108还可以根据规格界限以及可选的是预测区间来用图形的方式显示出用于预测特性的最小和最大数值(步骤312)。参见上文章节II.B.1.b.&II.B.1.c.。
可以有多种界面显示。例如,可以将限定回归模型的等式显示给用户。而且,可以将最大和最小预报特性数值以及任意其他与工件特性和/或它们之间的关系相关的数据显示给用户。在一个实施方案中,出现在显示装置818上的图形用户界面使得用户能够选择要显示上面图形元素中的哪一个。
B.2.a.选择预报特性
可以采用直观推断或基于统计的方法来选择预报特性。而且,预报特性的选择可以根据对在工件特性之间的相关性的视觉评估或根据基于分析的评估。
B.2.a.1.图形选择
在一个实施方案中,用户可以采用散点图来在视觉上评价相关程度,从而相当于视觉评估每个散点图的相关系数。数据点周围的边界或周边越靠近直线,则相关系数越高。这个通用法则的例外情况是,回归线是水平的或近似水平的情况。参见上文章节II.B.。用户可以评价工件特性的所有可能组合的散点图。但是,在另一个实施方案中,可以通过选取一个工件特性作为基础变量可大大减少所用的散点图的数量。通过将该基础变量作为X轴线变量,从而可以为每个剩余工件特性生成散点图,这可以在Y轴线上绘制出。可以根据观看数据的“分布”来选取“基本”(等同于预报)工件特性,或者可以随机选取。在涉及少量工件特性的情况下视觉评价是切实可行的,而导致成千上万种组合的大量工件特性则需要(至少为了实用目的)使用计算装置来分析选择预报特性。
B.2.a.2.预报特性的分析选择
在一个实施方案中,为了便于选择预报特性,相关模块108计算出工件特性的全部或子集之间的相关系数;根据计算出的相关系数确定出表示第一工件特性相对于所有其他工件特性的预测能力的数值;并且针对这些工件特性的全部或子集重复该过程。图18给出了一种方法,显示出与预报选择相关的流程。如图18所示,如在下面所更详细地说明的一样,相关模块106计算出工件特性的全部或选定子集之间的相关系数(根据一组工件特性数值,参见图19,部分A),并且增加相关系数表(图19,部分B)(步骤402)。然后相关模块106计算出表示每个工件特性的相对预测能力的数值(步骤404)。在一个实施方案中,该数值为针对给定工件特性的相关系数的绝对值的平均值(参见图19,部分C)。当然,也可以采用其他用于计算该数值的方法,例如不用绝对值来计算平均值,计算加权平均值等。
相关模块106然后根据在步骤404中计算出的数值将这些工件特性分类(步骤406)。然后显示模块108在显示装置818上显示出分类列表以使得用户能够至少部分根据工件特性的预测能力来选择一预报特性(步骤408)。根据一个实施方案,用户作出自己的选择(步骤410),从而使得界面应用程序模块110指导回归模块104计算所选预报特性和剩余工件(预测)特性之间的回归模型(参见上面)。
可以采用任何合适的过程或技术增加相关系数表。但是,在优选实施方案中,相关模块106执行下面所述的方法。
B.2.a.3.相关系数表的增加
根据标准工业惯例,用于单个工件特性(例如,一个尺寸)的数据垂直布置成一列。因此,每列存储一个或仅存储一个工件特性的数据。所得到的测量数据阵列因此具有与工件特性数量相同的列。通常,将该数据存储以Excel电子表格或其他合适的文档格式存储。
通过这种约定,每列表示不同的工件特性。每行表示用于单个零件的工件特性数据(多个工件特性)。在注塑成型的情况中,每行存储有与单次冲压操作循环相关的数据。如果模具为单型腔模具,则每行将包含一单个零件的测量数据。但是,如果模具为4型腔模具,则每行存储了在一个加工循环期间生产出的所有四个零件的测量数据。通常,测量一个多型腔模具中每个零件的相同的工件特性;但是,对这个没有任何约束。
在一个实施方案中,相关模块106包括用来确定在所有工件特性中的相关系数(根据标准统计方法),计算出表示每个工件特性的预测能力的数值,并且根据其相对预测能力来将这些工件特性分类。
图20显示出一种如上所述增加相关系数表的方法。如图20所示,在一个实施方案中,相关模块106将相关系数表(步骤502)以及与表(A,B)的单元参数和工件特性(参见步骤506和508)相关的变量初始化。为了说明的目的,假设相关模块106在图19的工件特性数值上操作,章节A。在一个实施方案中,相关模块106根据在相应列中的工件特性数值计算在第一工件特性(X=1)和第二工件特性(Y=2)之间的相关系数(步骤510)。然后相关模块106将计算出的相关系数(在该实施例中为0.999232)存储在表(A=1,B=1)的左上角中(步骤512)。然后相关模块106计算出在第一工件系数(X=1)和剩余系数(Y)之间的相关系数,从而通过每次连续计算和存储增加行位置(B)(参见步骤514,516和518)。
在相关模块106到达最后剩余的工件特性(步骤514)之后,它取出在第一列(A=1)中的计算出的相关系数,将该列转换成一行,相对于相关系数表将该行移动一格,并且将该数据存储在该表格的适当单元格中(步骤518)。然后相关模块106将单元格列位置(A=2)和工件特性标识符(X=2)(步骤522),(Y=2)(步骤508)加一,并且将该单元格行位置设定为与列位置(B=2)相等(步骤524)。相关模块106然后计算出在第二工件特性(X=2)和第三工件特性(Y=3;步骤508)之间的相关系数(步骤510)并且将它存储在适当的单元格(A=2,B=2)中(步骤512)。相关模块106重复该过程直到已经计算出并且存储在倒数第二个工件特性数值和最后一个工件特性之间的相关系数(参见步骤520)。如图19所示,使得所得到的每列与工件特性对应的相关系数列能够相对容易地计算出表示工件特性的预测能力的数值(例如,平均值)(参见图19,部分C)。
从上面给出的说明中可以看出,用于增加相关系数表的过程降低了50%的必须计算出的相关系数量,因为对于每一个XY相关而言,存在一个对应的YX相关。还可以看出,相关系数表的紧凑标记大大有利于将增加该表格的子程序编程。如果在每行(XY和YX)中只有两个相关的情况下进行这些计算,则对于50个零件特性而言将有超过600行。
前述增加相关系数表的方法是表格增加/压缩算法的一个实施方案。如上所述,为了保持与工业标准一致的通常和习惯约定,用于单个工件特性的数据垂直布置在一列中。如果用于单个工件特性的数据水平布置在一行中并且采用该算法用于该数据结构的话,在这里所述的方法同样起作用。对于那样的情况,将通过将一行而不是一列相关系数取平均值来计算出平均相关系数。
B.2.a.4.可选实施方案
在一个实施方案中,用户可以使用上述功能来完成预报特性的选择并且观看散点图,其中预报特性作为x轴线变量并且包括规格界限以及任选预测区间。根据这些散点图,用户可以选择稳定(对过程设定值变化不敏感)的预测特性并且从数据集中消除这些工件特性以消除“干扰”。该选择也可以根据回归模型的斜率和Y截距、预测区间的位置和斜率以及用于x轴线和y轴线变量的上下规格界限的数值来分析完成。在一个形式中,这种工件特性具有没有与工件特性规格界限相交的预测区间。在这方面,它们在预报特性的选择中构成“干扰”。然后用户可以根据修改的(减少的)数据集来重新运行最佳预报的选择。
B.2.b.用于预报特性的最大和最小数值
为了便于理解本发明的实施方案,考虑一种其中只有两个感兴趣的工件特性的简单情况是有用的。采用上述方法将其中一个工件特性选作预报特性。该回归模型建立了在预报特性和剩余工件或预测特性之间的关系。在图12中显示出该情况。回归模型与预测特性(Y)上、下规格界限之间的交点确定了预报特性(X)的数值,高于它预测特性不满足规格。参见上文章节II.B.1.b.。在回归模型和用于Y的上规格界限之间的交点定为P-max。参见图12。在回归模型和用于Y的下规格界限之间的交点定为P-min。可以很容易看出,只要预报特性(X)在P-min和P-max数值之间,则预测特性必定在规格限制范围内。对于这个回归模型而言,在预报特性和预测特性之间存在理想的相关性,可以确定地说,如果预报特性大于P-max或小于P-min,则预测特性将处于其规格界限之外。其另一种表达方式为定义在P-min和P-max之间的距离作为P-范围。然后可以说,只要预报特性在P-范围内,则预测特性将在规格范围内。
因为回归模型很少具有理想的相关程度,所以在使用一个零件特性来预测其他零件特性时存在不确定性。与回归模型相关的预测区间在与预测给定用于其他零件特性数值的一个零件特性相关的不确定性上设置了限制。图13显示出使用与回归模型相关的预测区间来除去这种不确定性的作用。如图13所示,所示两条线位于回归线附近并且与之大致平行。这些线为上下预测区间,它们或多或少界定了回归线周围的数据点。为了说明目的,上下预测区间显示为直线;但是实际上,它们通常为曲线。如图13所示,因为数据点的散布,所以用于预报特性的最大许可范围受到更大限制。具体地说,预报特性不大于与上预测区间和预测特性的上规格界限的交点或预报特性的上规格界限(取较小的那个)相关的数值。同样,预报特性不小于与下预测区间和预测特性的下规格界限的交点或预报特性的下规格界限(取较大的那个)相关的数值。换句话说,P-max是更加约束了(更小)用于预报特性的上规格界限和上预测区间与用于预测特性的上规格界限的交点。同样,P-min更加约束了(更大)用于预报特性的下规格界限或下预测区间与用于预测特性的下规格界限的交点。只要预报特性位于P-min和P-max之间,则预测特性将在其规格界限范围内。在一个实施方案中,应该判断预测区间应该多“宽”。在一个实施方案中,过程分析应用程序100使用通常的“宽度”参数作为缺省设定值。但是,用户可选择替换这些缺省设置值。
B.2.c.用于预报特性的约束表
如上所述,前述说明的章节II.B.2.b.涉及一种只包含两种工件特性的简化情况。在实际中,给定零件往往具有许多感兴趣的工件特性。在一个实施方案中,过程分析系统100还操作用来生成一约束表。该约束表对于每个预测工件特性而言包含如上所确定的用于预报特性的最小(P-min)和最大(P-max)数值(参见上文章节II.B.2.b.)。
从约束表(参见图22)中,可以为预报特性确定最具约束力的最小(P-min*)和最大(P-max*)数值。如图14。也就是说,最具约束力的最小值(P-min*)为在约束表中的最大的最小值(P-min),而最具约束力的最大值(P-max*)为在约束表中的最小的最大值(P-max)。图22显示出根据本发明一个实施方案的约束表,其中“无”表示用于预报特性的上或下规格界限为对于相应工件特性最具约束力的数值。因此,通过确定这些最具约束力的最小值(P-min*)和最大值(P-max*),从而制造商可以确信,只要预报特性处于它们之间,剩余的预测特性将处于规格界限范围内。
如在下面更全面地描述的一样,在一个实施方案中,过程分析系统100针对每个预测工件特性进行操作以便1)确定是否有存在缺陷的可能性;2)确定预测工件特性是否稳定;并且3)如果不存在关系1)或2),则确定用于预测特性的最大和最小许可数值(分别为Pmax和Pmin)。在图形和在各种计算方面,过程分析系统100相对于在预报特性和预测工件特性之间的回归模型(以及它限定的面积)确定包括由用于预测工件特性和用于预报特性的上下规格界限界定的区域的顺应性区域的范围(参见图33A)。然后过程分析系统100确定一个有界回归区域,该区域由回归模型的上下预测边界和用于预报特性的上下规格界限界定的区域。如图33B所示,回归区域为在预报特性和预测特性之间由回归模型界定的区域,包括预测区间252和254。图33C显示出如上所述由预报特性的下(LSL(X))和上(USL(X))规格界限所界定的有界回归区域。
过程分析系统100然后将有界回归区域与顺应性区域进行比较,以评价在这两个区域之间的关系。如果有界回归区域完全位于顺应性区域内,则预测工件特性是稳定的。至于这个关系,过程分析系统100将与第一剩余工件特性相关的最小和最大预报特性数值分别设定为预报特性的下和上规格界限。如果有界回归区域的任意部分在顺应性区域上方和/或下方超过预报特性的规格界限范围延伸,则存在缺陷可能性,在一个实施方案中,引起过程分析系统100报告缺陷情况。图33D显示出存在缺陷可能性的情况。另外,如果有界回归区域的任意水平段完全在顺应性区域内延伸并且任意第二水平段完全或局部在顺应性区域外面延伸,则预测和预报特性具有约束关系。在该约束关系中,过程分析系统100计算出预测特性的最小和最大预报特性数值。
另外,本领域普通技术人员将认识到1)必须存在上述三种可能关系(稳定、有缺陷和约束)中的一种;2)上述三种可能关系相互排斥;以及3)如果已知没有存在两种情况,则第三种情况必然存在。因此,当确认存在其中一种可能关系时,过程分析系统100不必测试其他关系的存在。另外,过程分析系统100可以按照任意所要求的顺序测试这些关系。
本领域普通技术人员将认识到,测试上述关系存在许多种方法。例如,如果有界回归区域的所有垂直断面完全或部分位于顺应性区域之外,则过程分析系统100报告对于预测工件特性的缺陷可能性。如果有界回归区域的所有垂直断面完全位于顺应性区域内,则也可以确定预测工件特性是稳定的。最后,当有界回归区域的至少一个垂直断面完全位于顺应性区域之内并且有界回归区域的至少一个垂直断面完全或部分位于顺应性区域之外时,预测特性约束了预报特性。
过程分析系统100还可以采用已知的计算方法来确定上下预测边界是否与顺应性区域相交。例如,如果有界回归区域的上下边界位于顺应性区域内,则预测工件特性关于预报特性是稳定的。如果有界回归区域的上下边界中的一个或两个没有与顺应性区域相交,则存在缺陷可能性。如果有界回归区域的上边界与顺应性区域的上边界相交并且有界回归区域的下边界位于顺应性区域内,则存在约束关系。最后,如果有界回归区域的下边界与顺应性区域的下边界相交,并且有界回归区域的上边界位于顺应性区域之内,则存在约束关系。
在另一个实施方案中,过程分析系统100可以进行测试以确定上下预测边界数值在预报特性的上下规格界限处的数值,并且确定这些数值(坐标)是否处于顺应性区域之内。下面提供了用于说明目的的示例性实施例。图23为一流程图,显示出根据本发明一个实施方案用于生成约束表的方法。在一个实施方案中,从其他分析过程的输出中取出用于计算约束表的许多变量和其他输入。例如,在一个实施方案中相关程序包和其他程序计算出回归模型并且将回归模型的斜率、截距和边界区间偏差输入进一个阵列例如电子数据表格文件。过程分析系统100使用斜率、截距和边界区间偏差以及其他前面计算出的数值来计算Pmin和Pmax并且加入到约束表中。如图23所示,过程分析系统100从第一预测特性开始(参见步骤702)计算出在预报特性的上(USL)和下(LSL)规格界限处的用于预测特性的上下预测区间(边界)(步骤704)。为了说明目的,图24显示出左上边界数值241、右上边界数值242、最下边界数值243和右下边界数值244。在一个实施方案中,一种方法根据在预报特性和预测特性之间的包括上下预测区间的回归模型来计算出在预报特性的上下规格界限处的边界数值。过程分析系统100然后确定这些边界数值(参见图24)是否在由预报和预测特性的上下规格界限限定的顺应性区域250的四个角部内。在一个实施方案中,调用一个方法或功能来确定上面计算出的边界数值是否超出顺应性区域250的四个角。在一个实施方案中,该方法将与顺应性区域250的相应角部相对应的四个布尔(Boolean)数值返回并且指示这些边界数值是否处于其相应的角内。在一个实施方案中,过程分析系统100使用这些布尔数值来确定是否可能存在缺陷(步骤706)。图25A-G以图形的方式显示出在预报特性和预测特性之间的潜在缺陷条件(即,预测特性将超过在预报特性的规格界限内的规格界限的可能性)。图25A-G都包括由预报和预测特性的上(USL)和下(LSL)规格界限所限定的顺应性区域250。如图25A-C所示,由于上预测区间252没有落入在由顺应性区域250所界定的区域内而导致出现缺陷。图25D-F给出了其中与在预报和预测特性之间的回归模型相关的下预测区间254没有落入在顺应性区域250内的实施例。最后,图25G显示出其中上预测区间252和下预测区间都没有与顺应性区域250相交的情况。在一个实施方案中,过程分析系统评价上述布尔数值以确定是否存在缺陷条件。在一个实施方案中,如果超过两个顶角、两个底角或所有四个角,则存在缺陷的可能性。但是,如果只超过每对中的一个角,则将存在约束关系(参见下面)。
如果缺陷可能性存在,则在一个实施方案中,过程分析系统100通过针对瞬时预测特性将Pmin和Pmax设定为“DEFECT”来报告该缺陷可能性。如果没有检测到任何缺陷条件,则在一个实施方案中过程分析系统100确定预测特性至少在规格界限250框内是否稳定(步骤710)。在一个实施方案中,一种单独的方法或功能通过确定上述边界数值是否位于预测特性的规格界限范围内来测试这种稳定性。另外,图26A和26B以图形的方式显示出预测特性相对于预报特性是稳定的情况。如果预测特性是稳定的,则过程分析系统100将Pmin设定为预报特性的下规格界限,并且将Pmax设定为预报特性的上规格界限(步骤712)。
否则,如果没有检测到任何缺陷条件并且预测特性不稳定,则在一个实施方案中过程分析系统100计算出Pmin和Pmax(步骤714)。参见上文章节II.B.2.b.。如图23所示,然后过程分析系统100针对所有剩余的预测特性重复上述过程(参见步骤716和718)。图27A至图27F以图形的方式显示出其中上和/或下预测区间将Pmin和/或Pmax约束在预报特性的上下规格界限之间的各种情况。如图27A和27B所示,与回归模型相关的上下预测区间可以约束Pmin和Pmax。如图27A和27B进一步所示一样,回归模型的斜率可以影响上或下预测区间是否建立或确定了Pmin或Pmax。另外,图27C和27D以图形的方式显示出其中上预测区间约束了Pmin或Pmax的情况。同样,图27E和27F以图形的方式显示出其中下预测区间约束了Pmin或Pmax的情况。在一个实施方案中,过程分析系统100首先确定出回归模型预测区间的斜率的符号。在一个实施方案中过程分析系统100然后确定在上预测区间和用于预测特性的上规格界限的交点处的预报特性的数值。同样,在一个实施方案中,过程分析系统100还计算在下预测区间和用于预测特性的下规格界限的交点处的预报特性的数值。过程分析系统100然后确定上和/或下预测区间是否约束了Pmin和/或Pmax,如果是,则计算出Pmin和Pmax的数值。在一个实施方案中,如果预测区间的斜率为正,则过程分析系统100将与第一剩余工件特性相关的最大预报特性数值设定为在预报特性的上规格界限或与回归模型相对应的上预测区间与用于第一剩余工件特性的上规格界限相交处的预报特性的数值中的较小一个,并且将与第一剩余工件特性相关的最小预报特性数值设定为在预报特性的下规格界限或在那里与回归模型相对应的下预测区间与用于第一剩余工件特性的下规格界限相交的预报特性的数值中的较大一个。相反,如果预测区间的斜率为负,则过程分析系统100将与第一剩余工件特性相关的最大预报特性数值设定为在预报特性的上规格界限或与回归模型相对应的下预测区间与用于第一剩余工件特性的下规格界限相交处的预报特性的数值中的较小一个,并且将与第一剩余工件特性相关的最小预报特性数值设定为在预报特性的下规格界限或在那里与回归模型相对应的上预测区间与用于第一剩余工件特性的上规格界限相交处的预报特性的数值中的较大一个。
B.2.d.确定生产能力目标和范围
可以从P-min*和P-max*导出其它的参数,可以用于简化工件设计以及过程输入,并用于设定过程控制变量。通过从最具约束的最大值(P-max*)中减去最具约束的最小值(P-min*)可以计算最大的可以允许的范围(P-范围*)。图14示意性的表示了用于两个预测特性的简单情况的最具约束的最小和最大值以及范围的确定。
另外,可以确定预报生产目标(P-目标*)。P-目标*是将作为用于过程平均输出的目标的点。在一个实施方案中,它是最佳“生产能力”点,它使得生产出符合规格界限的零件的机会最大化。当适当的选择时,P-目标*会使得在生产过程中在P-范围*之外的数据点的百分比最小化。
为了避免在设计目标和用于预报尺寸的目标(P-目标*)之间造成混淆,应当指出术语中的区别。预报特性(P)基本总是具有工程设计目标(P-目标)。工程设计目标(或者正常值)是由设计工程师所要求的值(例如在图中或者在说明书中的数目)。相反,P-目标*是用于过程的目标操作点,使得生产输出最优化,如上所述。
在一个实施方案中,预报生产目标(P-目标*)被选择作为P-范围*的中点。见图14。这对于生产过程的输出关于其平均值对称的情况是适合的。通常的过程具有大致标准的对称分布。如果工件特性的分布不是对称的,目标预报特性值会被设定至平均的工件特性值。
B.2.e偏差表
如下详细讨论的,在一个实施方案中,过程分析系统100还可操作产生偏差表,该表指示了预加工尺寸要被调整以实现给定的设计目标的调整量。换句话说,偏差表提供了与回归线必须移动以经过目标交点的距离相对应的值。例如,在注塑过程中,偏差值是给定模具尺寸要被改变(例如通过经焊接加入钢或者经机械加工除去钢)的量,从而它可以实现在预报尺寸和给定的预测尺寸之间的目标交点。这对于制造用于医学工业的零件、例如当模具有时被改变以按照如0.001英寸这样小来改善零件尺寸的情况来说是关键的信息。该信息可以由模具设计者和模具制造商来使用。对于类似镀覆的其它过程,偏差表可以告诉工程师对于零件的预镀覆尺寸的所需改变。
在本发明的一个实施方案中,通过确定在目标交点和回归模型之间的竖直距离,计算偏差表中偏差的幅度和方向。在本发明的第二实施方案中,通过确定目标交点和回归模型之间的水平距离来计算偏差表中偏差的幅度和方向。在本发明的第三通过确定目标交点和回归模型之间的沿着回归模型垂直的方向的距离来计算偏差表中偏差的幅度和方向。
从另一个方面来讲,在偏差表中包含的信息也是有用的。预测特性值在用于该预测特性的设计目标值之上、在该值处或者在该值之下,取决于为每个过程设定值所选择的具体数值。换句话说,所实现的预测值与设计目标值之间的偏差依赖于为过程设定值而选择的值。对于一组过程设定值,可决定要通过除去钢而提高模具尺寸。对于不同组的过程设定值,可决定通过增加钢而减少同样模具的尺寸。可以想象,这是不希望的事情。采用此处描述的新技术,通过确定回归模型与目标交点之间的距离和方向而计算偏差。利用此处描述的方法,可以独立于为过程设定值所选择的值而确定偏差。
图28A提出了本发明的一个实施方案产生偏差表的方法。图28B提供本发明一个实施方案所得到的偏差表。如图28A所示,在一个实施方案中,过程分析系统100首先初始化偏差表阵列(步骤802)。在一个实施方案中,偏差表是两列阵列,包括一列中的工件特性标志符以及第二列中的对应偏差值。对偏差表方法或者函数的输入包括工件特性的目标值以及在预报特性和剩余的预测特性之间的相应回归模型。如图28A所提供的,过程分析系统100为所有预测特性(见步骤804)计算在预报特性的目标值处预测特性相距回归模型的值(步骤806)。然后过程分析系统100通过计算在预测特性的计算值和预测特性的目标(设计规格)值之间的差而确定用于该预测特性的偏差值(步骤808)。然后过程分析系统100将所得到的偏差值存储在阵列中或者其它适当的数据结构中(步骤810),并为下一个预测特性重复该过程。
B.2.f设计公差松弛表
在许多情况下,在给定的零件上松弛设计公差而不是改变例如模具的尺寸等预加工要素是更快捷和廉价的。当然设计工程师必须鉴于用于任何给定工件特性的公差松弛对形式、装配或功能的潜在影响而确定这是否可行。另外在某些情况下,操作范围(上述P-范围*)可以是如此小的尺寸以致于难以、不一定或甚至不可能制造出具有完全处于规格界限之内的工件特性的零件或者组件。如果决定通过松弛公差而提高操作范围来提高生产能力,那么设计公差松弛表的一个实施方案通过提供一个公差应当被松弛的最佳顺序的优先表而简化了对设计公差松弛的评估,也有利于每个增加的公差松弛的操作范围中的增量的分析。
在一个实施方案中,过程分析系统100可操作为产生设计公差松弛表,它简化了在与每个预测工件特性的设计公差的松弛相关的操作范围内可实现增益的分析。最具约束的预测特性(也就是具有最高的Pmin或者最低的Pmax)应当被首先松弛。另外,要被松弛的第一个公差是在最具约束预报特性的工件特性上的公差。然后设计公差松弛表告知工程师,作为松弛该公差的结果,在操作范围内要有多大的增量(Pmin*和Pmax*之间的差)。设计公差松弛表也可以告知工程师通过依次松弛每个变量而实现的累积增益。
图30提供了本发明一个实施方案的设计公差松弛表。如图30所示,在一个实施方案中,松弛表被分成两个主要部分,也就是按照最具约束的Pmin值的工件特性排列表,以及同样的工件特性按照最具约束的Pmax值的排列表。在该实施例中,变量12是预报特性,它置于两个表中最后的位置。对于在Pmin或者Pvmax列的每个工件特性,该松弛表包括以下区:1)工件特性标志符;2)所计算的Pmin/Pmax值;3)在通过松弛对应的工件特性的公差实现的操作范围内的单个增益;以及4)与对应的工件特性的公差松弛相关的累积增益。本领域技术人员从此处提供的描述中可以认识到,与每个工件特性相关的单个增益假设Pmin/Pmax已经被松弛至为后序的工件特性相关的Pmin/Pmax值。对应于给定工件特性的累积增益指示在通过将Pmin/Pmax松弛为与后续的工件特性相关的值而获得的操作范围中的合计增益。例如,为了实现在操作范围中的0.0030英寸的累积增益,对应于工件特性变量16、变量13、变量11、变量9和变量10的规格界限应当被松弛至Pmin等于6.3741英寸的点。或者,为了实现操作范围内的0.0043英寸的累积增益,对应于工件特性变量2和变量4的规格界限应当被松弛至Pmax等于6.3819英寸的点。或者,通过松弛变量16、变量2和变量4上的适当公差,可以实现操作范围内的0.0053英寸的增益。操作范围内的0.005英寸的增益在一定情况下可以是相当显著和有效的。例如,如果操作范围在公差松弛之前是0.005英寸,则0.005英寸的提高相当于将操作范围加倍,或者有效地使其加倍易于获得生产处于规格界限之内的工件特性的过程设定值。
图29显示了用于生成本发明一个实施方案的设计公差松弛表的示例性方法。如图29所示,在一个实施方案中,过程分析系统100将设计公差松弛表格式化或者初始化(步骤830),并将上述计算的Pmin和Pmax(见上述章节II.B.2.d)移至松弛表(步骤832)。随后,过程分析系统100计算通过将用于工件特性的松弛Pmin所实现的单个增益(步骤834)。在一个实施方案中,过程分析系统100将工件特性从最具约束至最不具约束(最高)的Pmin值排序,然后将预报特性标志符和相关的规格界限加入到排序表的端部。接下来,过程分析系统100计算通过将用于每个工件特性的规格界限松弛至与所排序的表中的下一个工件特性的Pmin对应的值而实现的单个增益。例如,通过将变量16的规格界限松弛至与变量13对应的Pmin水平而实现的单个增益是在变量16的Pmin和变量13的Pmin之间的差。在这种情况中,该差是0.0005英寸;图30的表显示0.0004英寸,这是因为计算机的电子表格对用于Pmin的值进行了舍入。按照相似的方式计算剩余工件特性的后序单个增益,直至到达最后一个(预报)特性。
然后过程分析系统100计算通过松弛Pmax,以及因此松弛预测工件特性的规格界限而实现的单个增益(步骤836)。在一个实施方案中,过程分析系统100将工件特性按照最具约束(最低)Pmax值进行排序,然后将预报特性标志符和相关的上规格界限加到所排序列表的端部。过程分析系统100然后计算通过将给定的工件特性的规格界限松弛至与该所排序的表中的下一个工件特性的Pmax相对应的值而实现的单个增益。例如,通过将变量2的规格界限松弛至与变量4相对应的Pmax水平而实现的单个增益是变量2的Pmax以及变量4的Pmax之间的差。该差是0.0006英寸;要指出,在此用于Pmax的情况中,没有计算机的舍入。按照类似的方式计算后续的用于剩余工件特性的后面的单个增益,直至到达最后的(预测)特征。然后过程分析系统100计算与用于Pmin和Pmax松弛的每个连续公差松弛相关的累积增益(步骤838)。
该领域技术人员可以认识到:设计公差松弛表不显示用于预测特性的下/上规格界限,该预测特性是从这些界限松弛至一给定的Pmin或者Pmax而得到的;而且,图30中的设计公差松弛表便于对于那些以及多少工件特性设计公差要松弛以实现在操作范围内的所需增益的确定。
在一个实施方案中,过程分析系统100可以操作为在用户已经选择了某个工件特性的规格界限要松弛之后,计算所得到的下和/或上规格界限。例如,用户可以选择仅松弛下规格界限,仅松弛上规格界限,或者是松弛上和下规格界限的结合,以提高可允许的操作范围(P-范围*)。在一个实施方案中,过程分析系统100促使用户从设计公差松弛表的Pmin列选择一工件特性和/或从其Pmax列选择一工件特性,然后计算用于所排序列表中的每个工件特性的新的下或者上规格界限,直至所选择的工件特性。具体地说,对于在所排序列表中直至所选择的工件特性的每个工件特性,过程分析系统100利用回归模型计算在回归模型的边界(上和下预测区间)与Pmin或者Pmax相交之处的工件特性值。为了进行说明,图32A、32B、32C和32D图解法说明从Pmin和Pmax的松弛计算新的上和下规格界限。如这些图所示,回归模型的斜率确定了Pmin/Pmax的松弛是否导致了与给定工件特性相关的上或者下规格界限的松弛。如图32A所示,对于具有正斜率的回归模型,USL(Y)至USL’(Y)的松弛导致Pmax至Pmax’的松弛。操作范围的幅度会按照与Pmax’一Pmax相等的量增加。类似的,如图32B所示,对于具有正斜率的回归模型,LSL(Y)至LSL(Y)’的松弛导致Pmin至Pmin’的松弛。操作范围的幅度会按照与Pmin-Pmin’相等的量增加。对于具有负斜率的回归模型,USL(Y)至USL’(Y)的松弛导致Pmin至Pmin’的松弛(见图32C),而LSL(Y)至LSL(Y)’的松弛导致Pmax至Pmax’的松弛(见图32D)。
如图31所示,在一个实施方案中,过程分析系统100接收从Pmin和/或Pmax松弛列选择的预测特性(步骤850)。如果用户选择预测工件特性以松弛Pmin(步骤852),过程分析系统100将Pmin设定至与所排序列表中的下一个工件特性相对应的Pmin值(步骤854)。例如并参考图30,如果变量13是所选择的预报特性,Pmin应当被设定为6.3761英寸(对应于变量11)。然后过程分析系统100对于直至并且包括所选择的工件特性的每个工件特性(步骤856)计算所得到的新的规格界限。具体地说,过程分析系统100确定回归模型的斜率,以酌情选择下或者上预测区间(见上文)(步骤857),并计算在预报特性和预测特性之间的回归模型的适当的(例如下或者上)预测区间(边界)的Pmin处的值(步骤858),并将新的规格界限与对应的预测工件特性相结合存储在表中(步骤860)以最终显示给用户。
如果用户选择预测的工件特性以松弛Pmax(步骤862),过程分析系统100将Pmax设定为与所排序列表中的下一个工件特性相对应的Pmax值(步骤864)。然后过程分析系统100对于直至并且包括所选择的工件特性的每个工件特性(步骤866)计算所得到的新的规格界限。具体地说,过程分析系统100确定回归模型的斜率,以酌情选择下或者上预测区间(见上文)(步骤867),并计算在回归模型的适当的预测区间(边界)的Pmax处的值(步骤868),将新的规格界限存储在表或者其它的数据结构中(步骤870)以最终显示给用户。该领域的技术人员可以认识到,按照这种方式使用设计公差松弛表会得到新的Pmin*和/或Pmax*值。
C.利用最大可允许范围(P-范围*)以及预报生产目标(P-目标*)
为了进行说明,阐明和限定如下某些参数是有用的:
1.P-范围*是用于预报特性的最大可允许范围。它是这样一种范围,在该范围内,预报特性必须能确保剩余零件特性保持为与规格界限相符合;
2.P-目标*是预报特性生产目标值的值。P-目标*可以在P-范围*内的几个值处设定。P-目标*通常被设定在P-范围*的中点;
3.变量是与生产条件下的实际过程输出相关的预报特性的可变性范围。其通过评估生产输出来确定;
4.X-BAR是在生产条件下的预报特征的平均值。期通过评估生产输出来确定;
5.P-目标是用于预报特性的工程设计目标值。它由设计工程师确定,为最优化形式、装配和功能;及
6.USL和LSL是基于工程设计公差的用于预报特性的上和下规格界限。它们由设计工程师确定,并通常考虑多种因素,包括由该结构使用的历史公差、零件的临界性、该制造结构的能力以及其它因素。
知道用于预报特性的最大可允许范围(P-范围*)是非常有用的。实际过程输出显示出一定量的可变性(变量),并有一个代表预报特性平均过程输出(X-BAR)的值。拥有这个信息有助于按照使得产生出符合规格的零件的可能性最大化的方式改变至少一个过程控制设定值。
如果已经确定P-范围*过于“约束”,则可以测量第二零件特性以“打开”在P-范围*上的“约束”。
将用于预报特性的实际过程可变性(变量)的大小与最大可允许范围(P-范围*)进行比较有极大的实用性。以下情况是可能存在的:
1.如果实际过程可变性(变量)大于最大可允许范围(P-范围*),则该过程所产生的部分零件始终不符合要求。
2.如果实际过程可变性(变量)等于最大可允许范围(P-范围*),并且平均过程输出(X-BAR)处于最大可允许范围内的中间,则该过程所制造的基本所有的零件都是符合要求的,但是将会没有用于误差或者用于过程输出的偏移的余地。
3.如果实际过程可变性(变量)小于并且位于最大可允许范围(P-范围*)内,则基本所有的零件都符合要求,并且相对于误差或过程输出中的偏移会有较大的安全余量。
对于情况3,本发明为过程工程师提供一个非常好的机会,研究将平均过程输出(X-BAR)操作向更接近用于预报零件特性的工程设计目标(P-目标)。
对用于预报特性的平均过程输出(X-BAR)与它的生产目标(P-目标*)进行比较也具有大的实用性。以下情况是可能存在的,假设过程输出分布是对称的,预报特性目标值(P-目标*)设定在它的最大可允许范围的中点处。
1.用于预报特性的平均过程输出(X-BAR)越接近预报生产目标(P-目标*),该过程会生产出符合要求的零件的可能性越大。
2.当平均过程输出(X-BAR)等于预报生产目标(P-目标*)时,该过程会生产出符合要求的零件的机率最大。
即使过程输出分布不是对称的,可以获得类似的结论。在这种情况下,P-目标*应当被设定在该分布的尾部在P-范围*之外具有相等面积的点处。
因此本发明有助于确定在平均过程输出(X-BAR)和预报生产目标(P-目标*)的差。该差建立了平均过程输出(X-BAR)应当移动的幅度和方向。利用该信息,可以调整一个或者多个过程控制设定值以将平均过程输出沿着回归线移动至或靠近预报生产目标(P-目标*)。
本发明提供更多的实用性。现在可以确定实际过程可变性(变量)相对于最大可允许范围(P-范围*)来说是否过大。如果是这种情况,则第一选择是减少过程变化。第二个选择是提高设计公差的幅度。第三个选择进行前两个选择的某些结合。通过将本章讨论的各过程能力分析按照一次仅为一个预报特性、而不是为所涉及的30或40或许多总的零件特性来进行,本发明可以极大的有助于效率和成本节约。
另外,约束表值为设计工程师提供其它的有用信息。例如,如果决定提高设计公差的大小,约束表便于就1)哪一个规格界限(上或者下)和2)哪个工件特性是最具约束的并且应当首先被松弛做出优先确定。可以在每次需要的时候重复该步骤,从最具约束的“向外”工作至最不具约束的零件特性。设计工程师也可以评估松弛每个公差对于产品性能的影响,并把这个信息计算在决策过程中。
本发明还产生更多的实用性。设计工程师现在拥有的信息能够进行关于在产品性能和生产能力之间权衡的研究。另外,如果条件许可,设计工程师也可以将设计目标改变为所确定的预报特性目标(P-目标*),并且在系统的其他地方作出改变以进行补偿(如果甚至需要补偿,用于在设计目标中的改变)。
为了精简下一系列的评论,将P-范围*、变量和TOL(上下规格界限之间的差)由A、B和C表示。按照类似的方式,P-目标*、X-BAR和P-目标将由X、Y和Z表示。本发明简化了以下的比较:
1.A对B
2.A对C
3.B对C
4.X对Y
5.X对Z;以及
6.Y对Z
如前所指出的,从这些比较中可以得到格外有价值的信息。
D.应用综述和总结
图21总结了上述讨论的概念,并说明了本发明一个实施方案的方法。为了进行说明,描述一种注塑过程。如图21所示,例如零件的设计产生工件特性的各种设计目标和规格界限(602),形成了包括至少一个限定零件的空腔的模具的设计和制造(604)。对该过程的其它输入包括干扰变量(606)和过程控制设定值(607)。过程(208)产生了试验输出(610)或者生产输出(630),如下所述。
如图21所示,本发明的实施方案可以用于简化与零件设计和/或用于最终产生用于生产输出的可接受零件的过程的操纵相关的设计和工程过程。如上所述,在一个实施方案中,过程操作者针对多个工件特性生产具有变化范围的一组零件(试验输出610)。利用上述讨论的相关性和回归分析方法评估和分析与试验输出610或者其样品相关的工件特性(612)。利用从这些分析方法收集的信息,用户在上述约束和/或松弛表的帮助下,可以决定改变公差界限(618)和/或设计目标(620)。另外,用户在上述偏差表中设置的信息的帮助下,可以决定改变过程输入(616)和/或调整控制变量(614)。
如上所讨论的,在一个实施方案中,在试验生产运行过程中在零件特性中产生变化。该试验生产运行的副产物之一是用户知道哪个过程设定值对零件特性有主要影响。这种认知使得用户能够调整少量的过程设定值而将产品输出沿着回归模型定位在任意预定点上。例如在注塑的情况下,用户可以发现仅改变一个压力设定值,或者一个温度设定值,或者一个速度设定值,就足以沿着回归线转换工件特性的联合输出。
另外,用户可以根据相关性和回归分析(612)选择预报特性(636),以简化产品输出的测量(630)。例如,通过分析与预报特性相关的剩余的工件特性,用户可以识别稳定的预测特性(也就是会始终处于公差界限之内的工件特性),并从测量结果中消除它们(步骤634)。可选择地,或者与其结合,用户可以确定该预报特性的最大可允许范围,并且通过测量单个工件特性(预报特性)确定生产输出(630)是否符合规格界限(632)。
如上所讨论的,为了沿着回归线移动输出,注塑操作者可以改变一个或者多个过程控制变量,例如压力、温度、速度等。为了进行说明,改变在注塑工业中的过程输入的一个示例可以是改变模型腔的内部尺寸。回归线可以竖直平移。在图6中,可以通过改变剩余工件特性的大小来实现这一点。可以通过向模具的内部该工件特性的位置处加入金属来减小大小。这会减小所产生的工件的大小,并会将回归线竖直向下平移。通过确定回归线距离目标交点的偏移量,可以计算所需移动的大小。因此,回归线相对于目标交点的位置提供了可以用于确定回归线要向哪个方向移动以及该移动的幅度。
图6中移动回归线的另一种方法可以是将其水平推移。为了使得回归线穿过图6中的目标交点,必须将其向右推移。通过改变预报特性的模具尺寸,可以实现该移动。向右移动意味着预报特性的大小增大了。大小的增大需要用于该预报特性(此处是尺寸)的模型腔的大小的增加。通过从模具的内部除去材料可以实现这一点。通过计算在回归线和目标交点之间的水平距离,可以确定所需推移的大小。
推移回归线的另一个方法是通过改变预报特性以及至少一个剩余工件特性的模具尺寸的某些结合来产生该推移。在图6所示的具体的实施例中,回归线沿着与其自身垂直的方向推移。实际上,这是将回归线穿过目标交点定位所进行的最短可能的移动。在这种情况下,可以通过减少预测特性的大小以及增加预报特性的大小而实现该推移。在镀覆零件的情况下,例如,两个工件特性可以是零件的后镀覆长度以及宽度尺寸。在这种情况下,零件的前镀覆长度和宽度尺寸可以作为过程输入考虑。
图7显示了用于制造具有叠加在目标交点上的或者与目标交点相一致的特性的工件的方法。图7所显示的该实施方案由两步过程构成。在步骤一,移冬回归线从而使其与目标交点相交。在该实施例中,向下和向右推移回归线。如前所指示的,可以水平、竖直或者同时水平和竖直推移该回归线。在步骤二中,对于这个具体实施例,特性位置在较小尺寸的方向上沿着回归线推移直到该位置与目标交点一致。当然实际上,特性位置将需要推移的方向将取决于初始特性相对于目标交点的位置和回归线的斜率。
为了进行说明,包含在该申请中的语言涉及使用技术来“设置”或“定位”或“确定交点”或“确定范围”或其它可以从图解透视中使用的术语。实际上,此处文献中所描述的所有分析法可以通过图解法或者分析法来实现。可以理解,当描述图解法时可以使用分析法,当描述分析法时可以使用图解法。实际上,本发明的一个优选实施方案采用分析法进行所有的计算、设置和确定。为了用户的方便和理解而进行图解显示。
为了进行说明,本申请的语言涉及回归线。上面已经指出,回归“线”不必是直线,可以是曲线。也应当指出,为了进行说明,回归模型通常被显示为一条线。应当指出,在本发明的优选实施方案中,回归模型包括使用预测区间。
需要指出,为了进行说明,已经就过程控制设定值的改变对单个剩余(预测)工件特性的影响说明了过程控制设定值改变的效果。可以理解,可以针对两个以上的工件特性确定过程控制设定值改变的效果。类似的,可以理解,已经就过程输入的改变对单个回归模型的影响说明了过程输入改变的效果。可以理解,可以为一个以上的回归模型确定过程控制设定值改变的效果。
为了进行说明,已经假设在过程控制设定值和/或过程输入中引入改变的目的是将联合操作位置和/或回归模型移动至更靠近一个或者多个目标交点。还可以理解,可以作出这些改变以将联合操作位置和/或回归模型移动至任何所需位置。
为了进行说明,已经将与工件特性相关的上和下规格界限描述为恒定值,得到一个矩形的顺应性区域。但是本发明也可以用于一个或多个这样的规格界限基于一个或者多个因素而变化的情况,得出具有(例如)梯形或者其它形状的顺应性区域。
最后,为了说明,如前面刚刚指出的,已经假设已经引入变化来相对于一个或者多个标准来优化工件特性。可以理解,本文所述的算法、模型和概念可以用于实现相反的效果。例如,可以确定在需要的连接操作点和/或回归模型位置中的所需改变,以实现过程设定值和/或过程输入中所需的改变。这样作的一个目的是将过程控制设定移动至远离危险的或者有害的设定值。这样做的另一个目的是将生产过程和/或工程设计参数与例如预设原材料形状的特定过程输入相匹配。
最后,尽管已经将本发明描述为与注塑过程相结合的操作,但是如上所述,本发明可以用于多种过程。例如,本发明可以用于镀覆和半导体制造,以及增加材料、除去材料或者改变形状或结构的其它过程。本发明可以用于涉及到输出特性的其它非制造过程。因此,本发明参考具体实施方案进行描述。本发明的其它实施方案对于本领域的技术人员来说是显而易见的。因此以下的权利要求不限于上述实施方案。

Claims (105)

1.一种简化设计和制造过程的方法,所述方法包括:
接收与一组工件相关的多个工件特性值,该组工件关于多个由一个过程产生的工件特性具有一变化范围;
评估所述多个工件特性之间的相关性;
基于所述多个工件特性之间的相关性、从所述多个工件特性中选择一预报特性;以及
确定在所述预报特性和所述多个工件特性中的至少一个剩余工件特性之间的回归模型。
2.如权利要求1所述的方法,其特征在于,还包括:
接收用于所述预报特性的目标值以及用于所述至少一个剩余工件特性的目标值;
相对于所述预报特性和一第一剩余工件特性之间的回归模型,确定用于预报特性的目标值和所述第一剩余工件特性的目标值的交点。
3.如权利要求1所述的方法,其特征在于,还包括:
确定关于所述预报特性与至少一个剩余工件特性之间回归模型相应的上预测区间和下预测区间。
4.如权利要求2所述的方法,其特征在于,还包括:
确定关于所述预报特性与至少一个剩余工件特性之间回归模型相应的上预测区间和下预测区间。
5.如权利要求4所述的方法,其特征在于,还包括:
接收用于所述预报特性与至少一个剩余工件特性的下规格界限和上规格界限;
定位关于所述至少一个剩余工件特性的下规格界限和上规格界限;
定位关于所述预报特性的上规格界限和下规格界限。
6.如权利要求1所述的方法,其特征在于,还包括:
接收用于至少一个剩余工件特性的下规格界限和上规格界限;
相对于所述预报特性和所述至少一个剩余工件特性之间的回归模型定位关于所述至少一个剩余工件特性的下规格界限和上规格界限。
7.如权利要求6所述的方法,其特征在于,还包括:
确定所述预报特性的、对应的回归模型与用于至少一个剩余工件特性的上规格界限相交处的值。
8.如权利要求6或7所述的方法,其特征在于,还包括:
确定所述预报特性的、对应的回归模型与用于至少一个剩余工件特性的下规格界限相交处的值。
9.如权利要求3所述的方法,其特征在于,还包括:
接收用于至少一个剩余工件特性的下规格界限和上规格界限;
相对于所述预报特性和所述至少一个剩余工件特性之间的回归模型定位关于所述至少一个剩余工件特性的下规格界限和上规格界限。
10.如权利要求9所述的方法,其特征在于,还包括:
确定所述预报特性的、关于所述预报特性与所述至少一个剩余工件特性之间回归模型的上预测区间与用于所述至少一个剩余工件特性的上规格界限相交处的值。
11.如权利要求9或10所述的方法,其特征在于,还包括:
确定所述预报特性的、关于所述预报特性与所述至少一个剩余工件特性之间回归模型的下预测区间与用于所述至少一个剩余工件特性的下规格界限相交处的值。
12.如权利要求6所述的方法,其特征在于,还包括:
接收用于所述预报特性的下规格界限和上规格界限;
定位关于所述预报特性的上规格界限和下规格界限。
13.如权利要求8的所述的方法,其特征在于,还包括:
接收用于所述预报特性的下规格界限和上规格界限;
定位关于所述预报特性的上规格界限和下规格界限。
14.如权利要求3所述的方法,其特征在于,还包括:
接收用于所述至少一个剩余工件特性的下规格界限和上规格界限;
定位关于所述至少一个剩余工件特性的下规格界限和上规格界限;
接收用于所述预报特性的下规格界限和上规格界限;
定位关于所述预报特性的上规格界限;以及
通过选择以下(1)和(2)中的较小值,确定一用于所述预报特性的最大工件特性值,其中(1)用于所述预报特性的上规格界限,以及(2)所述预报特性的、所述上预测区间与用于所述至少一个剩余工件特性的上规格界限相交处的值。
15.如权利要求14所述的方法,其特征在于,还包括:
按照在多个工件特性中的剩余工件特性的所需数量,重复确定最大工件特性值的步骤;以及
通过选择最低的最大工件特性值,确定用于预报特性的最具约束的最大工件特性值。
16.如权利要求14所述的方法,其特征在于,还包括:
接收用于至少一个剩余工件特性的下规格界限和上规格界限;
定位关于所述预报特性的下规格界限;
通过选择以下(1)和(2)中较大值,确定用于所述预报特性的最小工件特性值,其中(1)用于所述预报特性的下规格界限,以及(2)所述预报特性的、所述下预测区间与用于所述至少一个剩余工件特性的下规格界限相交处的值。
17.如权利要求16所述的方法,其特征在于,还包括:
从最大工件特性值减去最小工件特性值,确定一用于所述预报特性的允许范围。
18.如权利要求16所述的方法,其特征在于,还包括:
按照在多个工件特性中的剩余工件特性的所需数量,重复确定最小工件特性值的步骤;以及
通过选择最高的最小工件特性值,确定用于预报特性的最具约束的最小工件特性值。
19.如权利要求18所述的方法,其特征在于,还包括:
从最具约束的最大工件特性值减去最具约束的最小工件特性值,确定用于预报特性的最大允许范围。
20.如权利要求19所述的方法,其特征在于,还包括:
通过在用于预报特性的最具约束的最小和最大工件特性值中选择一个值,确定用于预报特性的目标制造值。
21.如权利要求19所述的方法,其特征在于,还包括:
通过选择用于预报特性的最具约束的最小和最大值的中点值,确定用于预报特性的目标制造值。
22.如权利要求21所述的方法,其特征在于,还包括:
接收用于预报特性的目标值和用于至少一个剩余工件特性的目标值;
相对于所述预报特性和第一剩余工件特性之间的回归模型,确定用于预报特性的目标值与用于第一剩余工件特性的目标值的交点。
23.如权利要求1所述的方法,其特征在于,其中选择步骤包括:
至少部分基于多个工件特性中的所有工件特性或者工件特性子集的每个待预测工件特性能力的评估,选择预报特性。
24.如权利要求23所述的方法,其特征在于,还包括:
计算在所有工件特性或者工件特性子集之间的相关系数;
基于所计算的相关系数,确定指示一第一工件特性相对于所有其它工件特性的预测能力的值;
对所述所有工件特性或工件特性子集重复该确定步骤;以及
至少部分基于所述的指示工件特性的预测能力的值选择一预报特性。
25.如权利要求24所述的方法,其特征在于,将所述预报特性选择作为与指示最高预测能力的值相关的工件特性。
26.如权利要求24所述的方法,其特征在于,还包括:
基于在所述确定步骤中计算的值,排列工件特性。
27.如权利要求24所述的方法,其特征在于,所述确定步骤包括:
计算每个工件特性的平均相关系数。
28.如权利要求24所述的方法,其特征在于,所述确定步骤包括:
计算每个工件特性的相关系数绝对值的平均值。
29.如权利要求23所述的方法,其特征在于,基于具有最高预测能力的工件特性的图解确定法,选择所述预报特性。
30.如权利要求23所述的方法,其特征在于,所述预报特性的选择还基于与评价每个工件特性相关的因素。
31.如权利要求30所述的方法,其特征在于,所述因素包括与评价每个工件特性相关的经济因素。
32.如权利要求30所述的方法,其特征在于,所述因素包括与评价每个工件特性相关的技术因素。
33.如权利要求28所述的方法,其特征在于,还包括:
根据在所述确定步骤中计算的值,排列工件特性;以及
预报特性的选择还基于与评价每个工件特性相关的经济或者技术因素。
34.一种简化设计和制造过程的方法,所述方法包括:
接收与一组工件相关的多个工件特性值,该组工件关于多个由一个过程产生的工件特性具有一变化范围;
确定在一第一工件特性和所述多个工件特性中的至少一个剩余工件特性之间的回归模型;
接收用于所述第一工件特性的目标值和用于所述至少一个剩余工件特性的目标值;以及
确定所述用于第一工件特性的目标值和用于所述至少一个剩余工件特性的目标值之间的交点。
35.如权利要求34所述的方法,其特征在于,为所述多个工件特性中的所有工件特性的可能结合确定回归模型。
36.如权利要求34所述的方法,其特征在于,为所述多个工件特性中的所有工件特性的可能结合的子集确定回归模型。
37.如权利要求34、35或36所述的方法,其特征在于,还包括:
在一用户界面显示器上显示所述回归模型。
38.如权利要求37所述的方法,其特征在于,所述回归模型在所述用户界面显示器上以散点图图解显示。
39.如权利要求34所述的方法,其特征在于,还包括:
接收用于所述至少一个剩余工件特性的下规格界限和上规格界限;
定位关于所述至少一个剩余工件特性的规格界限。
40.如权利要求39所述的方法,其特征在于,还包括:
接收用于第一工件特性的下规格界限和上规格界限;
定位用于第一工件特性的下规格界限和上规格界限。
41.如权利要求39所述的方法,其特征在于,还包括:
(a)确定第一工件特性的、所述回归模型与用于所述至少一个剩余工件特性的上规格界限相交处的值。
42.如权利要求39或41所述的方法,其特征在于,还包括:
确定第一工件特性的、所述回归模型与用于所述至少一个剩余工件特性的下规格界限相交处的值。
43.如权利要求41所述的方法,其特征在于,还包括:
按照剩余工件特性的所需数量,重复步骤(a);以及
通过选择与所述确定步骤(a)相关的第一工件特性的最低值,确定用于第一工件特性的最具约束的最大值。
44.如权利要求43所述的方法,其特征在于,还包括:
(b)确定所述第一工件特性的、所述回归模型与用于所述至少一个剩余工件特性的下规格界限相交处的值;
按照剩余工件特性的所需数量,重复所述确定步骤;以及
通过选择与所述确定步骤(b)相关的第一工件特性的最高值,确定用于第一工件特性的最具约束的最小值。
45.如权利要求44所述的方法,其特征在于,还包括:
通过选择用于第一工件特性的最具约束的最小和最大值的中点,确定用于所述第一工件特性的目标制造值。
46.如权利要求44所述的方法,其特征在于,还包括:
通过从用于第一工件特性的最具约束的最大值中减去用于第一工件特性的最具约束的最小值,确定用于所述第一工件特性的最大允许范围。
47.如权利要求44所述的方法,其特征在于,还包括:
通过在用于第一工件特性的最具约束的最小和最大值之间选择一个值,确定用于所述第一工件特性的目标制造值。
48.如权利要求41所述的方法,其特征在于,还包括:
接收用于所述第一工件特性的下规格界限和上规格界限;
定位关于所述第一工件特性的下规格界限和上规格界限;
按照剩余工件的所需数量,重复所述确定步骤(a);以及
通过在(1)和(2)中选择较低值,确定用于第一工件特性的最具约束的最大值,其中(1)为用于第一工件特性的上规格界限,以及(2)为在所述确定步骤(a)中计算的最低值。
49.如权利要求47所述的方法,其特征在于,还包括:
(b)确定所述第一工件特性的、所述回归模型与用于所述至少一个剩余工件特性的下规格界限相交处的值;
按照剩余工件特性的所需数量,重复所述确定步骤(b);以及
通过在(1)和(2)中选择较高值,确定用于第一工件特性的最具约束的最小值,其中(1)为用于所述第一工件特性的下规格界限,以及(2)为在所述确定步骤(b)中计算的所述第一工件特性的最高值。
50.一种简化设计和制造过程的方法,所述方法包括:
接收与一组工件相关的多个工件特性值,该组工件关于多个由一个过程产生的工件特性具有一变化范围;
确定在第一工件特性和第二工件特性之间的一第一回归模型;
确定在第一工件特性和至少一个剩余工件特性之间的至少一第二回归模型;以及
在一用户界面显示器上显示所述回归模型。
51.如权利要求50所述的方法,其特征在于,为该多个工件特性中的所有工件特性的可能结合确定回归模型。
52.如权利要求50所述的方法,其特征在于,为该多个工件特性中的所有工件特性的可能结合的子集确定回归模型。
53.如权利要求50所述的方法,其特征在于,所述回归模型在所述用户界面显示器上以散点图图解显示。
54.如权利要求50所述的方法,其特征在于,还包括:
接收关于至少两个工件特性的目标值;
关于一第一工件特性和一第二工件特性,相对于与所述第一和第二工件特性相关的回归模型,定位所述第一和第二工件特性的目标值的交点。
55.如权利要求54所述的方法,其特征在于,还包括:
关于所述第一工件特性和一第三工件特性,相对于与所述第一和第三工件特性相关的回归模型,定位所述第一和第三工件特性的目标值的交点。
56.如权利要求50所述的方法,其特征在于,还包括:
接收用于所述第二工件特性和一第三工件特性的下规格界限和上规格界限;
相对于所述第一工件特性和第二工件特性之间的回归模型,定位与所述第二工件特性相关的规格界限;
相对于所述第三工件特性和第一工件特性之间的回归模型,定位与所述第三工件特性相关的规格界限。
57.如权利要求55所述的方法,其特征在于,还包括:
接收用于所述第一工件特性的下和上规格界限;
相对于所述第一工件特性和第二工件特性之间的回归模型,定位用于所述第一工件特性的规格界限;
相对于所述第一工件特性和第三工件特性之间的回归模型,定位用于所述第一工件特性的规格界限。
58.一种简化与制造工件相关的设计和制造过程的方法,所述工件具有多个工件特性,其中至少两个工件特性具有目标值以及上规格界限和下规格界限,所述方法包括:
产生一组关于多个由一个过程产生的工件特性具有一变化范围的工件;
关于所述多个工件特性中的全部工件特性或者工件特性子集评估该组工件;
从所述多个工件特性中选择一预报特性;以及
确定在所述预报特性和所述多个工件特性中的至少一个剩余工件特性之间的回归模型。
59.如权利要求58所述的方法,其特征在于,还包括:
相对于所述预报特性和所述至少一个剩余工件特性之间的回归模型,确定用于所述预报特性的目标值和用于该至少一个剩余工件特性的目标值的交点。
60.如权利要求58所述的方法,其特征在于,还包括:
确定与所述预报特性和所述至少一个剩余工件特性之间的回归模型相关的相应上预测区间和下预测区间。
61.如权利要求59所述的方法,其特征在于,还包括:
确定与所述预报特性和所述至少一个剩余工件特性之间的回归模型相关的相应上预测区间和下预测区间。
62.如权利要求61所述的方法,其特征在于,还包括:
定位与所述至少一个剩余工件特性相关的下规格界限和上规格界限;
定位与所述预报特性相关的上规格界限和下规格界限。
63.如权利要求58所述的方法,其特征在于,还包括:
定位与所述至少一个剩余工件特性相关的规格界限。
64.如权利要求63所述的方法,其特征在于,还包括:
确定所述预报特性的值,在该值处,所述回归模型与用于所述至少一个剩余工件特性的上规格界限相交。
65.如权利要求63或64所述的方法,其特征在于,还包括:
确定所述预报特性的值,在该值处,所述回归模型与用于所述至少一个剩余工件特性的下规格界限相交。
66.如权利要求60所述的方法,其特征在于,还包括:
定位与所述至少一个剩余工件特性相关的规格界限。
67.如权利要求66所述的方法,其特征在于,还包括:
确定所述预报特性的、与所述预报特性和所述至少一个剩余工件特性之间的回归模型相关的上预测区间与用于所述至少一个剩余工件特性的上规格界限相交处的值。
68.如权利要求66或67所述的方法,其特征在于,还包括:
确定所述预报特性的、与所述预报特性和所述至少一个剩余工件特性之间的回归模型相关的下预测区间与用于所述至少一个剩余工件特性的下规格界限相交处的值。
69.如权利要求63所述的方法,其特征在于,还包括:
定位与所述预报特性相关的上规格界限和下规格界限。
70.如权利要求65所述的方法,其特征在于,还包括:
定位与所述预报特性相关的上规格界限和下规格界限。
71.如权利要求60所述的方法,其特征在于,还包括:
定位与所述至少一个剩余工件特性相关的下规格界限和上规格界限;
定位与所述预报特性相关的上规格界限;以及
通过在以下(1)和(2)中选择较小值,确定用于所述预报特性的最大工件特性值,其中(1)为用于所述预报特性的上规格界限,以及(2)为所述预报特性的、所述上预测区间与用于所述至少一个剩余工件特性的上规格界限相交处的值。
72.如权利要求71所述的方法,其特征在于,还包括:
按照所述多个工件特性中的剩余工件特性的所需数量,重复所述确定最大工件特性值的步骤;以及
通过选择最低的最大工件特性值,确定用于所述预报特性的最具约束的最大工件特性值。
73.如权利要求71所述的方法,其特征在于,还包括:
定位与所述预报特性相关的下规格界限;以及
通过选择(1)和(2)中较高值,确定用于所述预报特性的最小工件特性值,其中(1)为用于所述预报特性的下规格界限,以及(2)为所述预报特性的、所述下预测区间与用于所述至少一个剩余工件特性的下规格界限相交处的值。
74.如权利要求73所述的方法,其特征在于,还包括:
通过从所述最大特性值中减去最小工件特性值,确定用于所述预报特性的允许范围。
75.如权利要求73所述的方法,其特征在于,还包括:
按照剩余工件特性的所需数量,重复所述确定最小工件特性值的步骤;以及
通过选择最高的最小工件特性值,确定用于所述预报特性的最具约束的最小工件特性值。
76.如权利要求75所述的方法,其特征在于,还包括:
通过从最具约束的最大特性值中减去最具约束的最小工件特性值,确定用于所述预报特性的最大允许范围。
77.如权利要求75所述的方法,其特征在于,还包括:
通过在用于预报特性的最具约束的最小和最大值之间选择一个数值,确定用于所述预报特性的目标制造值。
78.如权利要求75所述的方法,其特征在于,还包括:
通过选择用于预报特性的最具约束的最小和最大值之间的中点值,确定用于预报特性的目标制造值。
79.如权利要求78所述的方法,其特征在于,相对于所述预报特性和所述至少一个剩余工件特性之间的回归模型,确定所述用于预报特性的目标值和用于所述至少一个剩余工件特性的目标值之间的交点。
80.如权利要求58所述的方法,其特征在于,所述选择步骤包括:
至少部分基于所述多个工件特性中的其它工件特性的每个待预测工件特性的能力的评估,选择所述预报特性。
81.如权利要求80所述的方法,其特征在于,所述选择步骤包括:
计算在所有工件特性或者工件特性子集之间的相关系数;
基于所计算的相关系数,确定一指示第一工件特性相对于所有其它工件特性的预测能力的值;
对所述所有工件特性重复所述确定步骤;以及
至少部分基于指示所述工件特性的预测能力的值选择一预报特性。
82.如权利要求81所述的方法,其特征在于,将所述预报特性选择作为与所述指示最高预测能力的值相关的工件特性。
83.如权利要求81所述的方法,其特征在于,还包括:
基于在所述确定步骤中计算的值,排列所述工件特性。
84.如权利要求81所述的方法,其特征在于,所述确定步骤包括:
计算用于每个工件特性的平均相关系数。
85.如权利要求81所述的方法,其特征在于,所述确定步骤包括:
计算用于每个工件特性的相关系数的绝对值的平均值。
86.如权利要求80所述的方法,其特征在于,基于具有所述最高预测能力的工件特性的图解确定法,选择所述预报特性。
87.如权利要求80所述的方法,其特征在于,其中预报特性的选择还基于与评价每个工件特性相关的因素。
88.如权利要求87所述的方法,其特征在于,所述因素包括与评价每个工件特性相关的经济因素。
89.如权利要求87所述的方法,其特征在于,所述因素包括与评价每个工件特性相关的技术因素。
90.一种简化设计和制造过程的方法,所述方法包括:
产生一组关于多个由一个过程产生的工件特性具有一变化范围的工件;
评估所述工件特性之间的相关程度;
基于所述评估步骤,从所述多个工件特性中选择一预报特性;以及
确定所述预报特性与所述多个工件特性中至少其中一个剩余工件特性之间的回归模型。
91.如权利要求90所述的方法,其特征在于,还包括:
确定用于所述预报特性的最大允许范围;以及
在所述确定步骤之后,检验随后产生的工件符合与所述基于预报特性评估的工件相关的至少一个设计规格。
92.一种简化设计、制造和其它过程的装置,所述装置包括:
处理器;
存储器;
软件应用系统,该软件应用系统物理上存储在所述存储器中,包括使所述处理器以及所述装置进行如下工作的指令:
接收与一组工件相关的多个工件特性值,该组工件关于多个由一个过程产生的工件特性具有一变化范围;
评估所述多个工件特性之间的相关性;
基于所述多个工件特性之间的相关性、从所述多个工件特性中选择一个预报特性;以及
确定所述预报特性与所述多个工件特性中至少其中一个剩余工件特性之间的回归模型。
93.如权利要求92所述的装置,其中所述软件应用系统还包括可操作使所述处理器以及所述装置进行如下工作的指令:
接收用于所述预报特性的目标值以及用于至少一个剩余工件特性的目标值;以及
相对于所述预报特性和第一剩余工件特性之间的回归模型,确定所述用于预报特性的目标值与第一剩余工件特性的目标值之间的交点。
94.如权利要求92所述的装置,其中所述软件应用系统还包括可操作使所述处理器以及所述装置进行如下工作的指令:
确定与所述预报特性和至少其中一个剩余工件特性之间的回归模型相关的对应的上、下预测区间。
95.如权利要求94所述的装置,其中所述软件应用系统还包括可操作使所述处理器以及所述装置进行如下工作的指令:
接收用于所述至少其中一个剩余工件特性的下规格界限和上规格界限;
定位与所述至少其中一个剩余工件特性相关的上规格界限和下规格界限;
接收用于所述预报特性的下规格界限和上规格界限;
定位与所述预报特性相关的上规格界限;以及
通过选择(1)用于所述预报特性的上规格界线和(2)在上预测区间与用于所述至少其中一个剩余工件特性的上规格界线相交处的预报特性的值中较小者而确定用于所述预报特性的最大工件特性值。
96.如权利要求95所述的装置,其中所述软件应用系统还包括可操作使所述处理器以及所述装置进行如下工作的指令:
重复确定多个工件特性中所需数量的剩余工件特性的最大工件特性值;以及
通过选择最低的最大工件特性值而确定最具约束的预报特性的最大工件特性值。
97.如权利要求92所述的装置,其中所述软件应用系统还包括可操作使所述处理器以及所述装置进行如下工作的指令:
至少部分地基于多个工件特性中的所有工件特性或一个工作特性子集之要进行预测的每个工件特性的能力的评估而选择所述预报特性。
98.如权利要求97所述的装置,其中所述软件应用系统还包括可操作使所述处理器以及所述装置进行如下工作的指令:
计算在所有工件特性或者工件特性子集之间的相关系数;
基于所计算的相关系数,确定指示一第一工件特性相对于所有其它工件特性的预测能力的值;
对所述所有工件特性或工件特性子集重复确定指示所述预测能力的值;以及
至少部分基于所述的指示工件特性之预测能力的值来选择一预报特性。
99.一种简化设计和制造过程的计算机实现的方法,所述方法包括:
接收与一组工件相关的多个工件特性值,该组工件关于多个由一个过程产生的工件特性的具有一变化范围;
对每个工件特性,用计算机计算指示所述多个工件特性中的所有工件特性或一个工件特性子集的要进行预测的一个工件特性之能力的预报特性值;
由所述多个工件特性中接收一预报特性的选择物;以及
确定该预报特性和所述多个工件特性中至少其中一个剩余工件特性间的回归模型。
100.如权利要求99所述的计算机实现的方法,其中所述计算机计算步骤包括:
计算在所有工件特性或者工件特性子集之间的相关系数;
基于所计算的相关系数,确定指示一第一工件特性相对于所有其它工件特性之预测能力的值;以及
对所述所有工件特性或工件特性子集重复该确定步骤。
101.如权利要求99所述的计算机实现的方法,其还包括:
基于对应的预报值对工件特性进行分类。
102.如权利要求99所述的计算机实现的方法,其还包括:
将预报值显示给用户。
103.如权利要求99所述的计算机实现的方法,其进一步包括:以图表显示所述回归模型。
104.如权利要求99所述的计算机实现的方法,其进一步包括:
接收用于所述预报特性的目标值以及用于至少一个剩余工件特性的目标值;以及
相对于所述预报特性和一第一剩余工件特性之间的回归模型,确定所述用于预报特性的目标值与用于第一工件特性的目标值之间的交点。
105.如权利要求99所述的计算机实现的方法,其进一步包括
确定与所述预报特性和至少其中一个剩余工件特性之间的回归模型相关的对应的上、下预测区间。
CNB038032562A 2002-02-04 2003-02-04 制造设计和生产过程分析系统 Expired - Fee Related CN100383684C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/067,704 2002-02-04
US10/067,704 US7072808B2 (en) 2002-02-04 2002-02-04 Manufacturing design and process analysis system

Publications (2)

Publication Number Publication Date
CN1628271A CN1628271A (zh) 2005-06-15
CN100383684C true CN100383684C (zh) 2008-04-23

Family

ID=27658901

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038032562A Expired - Fee Related CN100383684C (zh) 2002-02-04 2003-02-04 制造设计和生产过程分析系统

Country Status (15)

Country Link
US (6) US7072808B2 (zh)
EP (1) EP1481294B1 (zh)
JP (2) JP2005518007A (zh)
KR (1) KR20040088491A (zh)
CN (1) CN100383684C (zh)
AT (1) ATE342531T1 (zh)
AU (1) AU2003208974A1 (zh)
BR (1) BR0307426A (zh)
CA (1) CA2474812C (zh)
DE (1) DE60309002T2 (zh)
ES (1) ES2274211T3 (zh)
MX (1) MXPA04007419A (zh)
PL (1) PL371861A1 (zh)
RU (1) RU2321886C2 (zh)
WO (1) WO2003067344A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11734622B2 (en) 2021-05-27 2023-08-22 Changxin Memory Technologies, Inc. Method, apparatus and device for determining production capacity boundaries

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693225B2 (ja) * 2000-11-06 2011-06-01 株式会社東芝 製造ラインの自動品質制御方法及びその装置並びに記憶媒体、自動品質制御プログラム
US6748279B2 (en) * 2001-01-31 2004-06-08 Red X Technologies, Inc. Method for improving a manufacturing process by conducting a full factorial experiment to optimize process variable settings
US7072808B2 (en) * 2002-02-04 2006-07-04 Tuszynski Steve W Manufacturing design and process analysis system
US6804570B2 (en) * 2002-02-04 2004-10-12 Hewlett-Packard Development Company, L.P. Predicting manufacturing process failures
US8744867B2 (en) 2002-06-07 2014-06-03 Health Outcomes Sciences, Llc Method for selecting a clinical treatment plan tailored to patient defined health goals
US7257548B2 (en) 2002-06-14 2007-08-14 Oldcastle Glass, Inc. Method, apparatus and system for selecting, ordering and purchasing glass products
US6834212B1 (en) * 2002-07-03 2004-12-21 Blue Control Technologies, Inc. Method and apparatus for APC solver engine and heuristic
US6901308B1 (en) * 2002-07-09 2005-05-31 The Regents Of The University Of California System level analysis and control of manufacturing process variation
JP2004249718A (ja) * 2003-01-30 2004-09-09 Toshiba Mach Co Ltd 産業機械の表示装置及び履歴収集システム
WO2005013070A2 (en) * 2003-07-30 2005-02-10 Tuszynski Steve W Manufacturing design and process analysis and simulation system
US10806404B2 (en) 2004-03-05 2020-10-20 Health Outcomes Sciences, Inc. Systems and methods for utilizing wireless physiological sensors
US7853456B2 (en) 2004-03-05 2010-12-14 Health Outcomes Sciences, Llc Systems and methods for risk stratification of patient populations
US7799273B2 (en) 2004-05-06 2010-09-21 Smp Logic Systems Llc Manufacturing execution system for validation, quality and risk assessment and monitoring of pharmaceutical manufacturing processes
US7444197B2 (en) 2004-05-06 2008-10-28 Smp Logic Systems Llc Methods, systems, and software program for validation and monitoring of pharmaceutical manufacturing processes
US6961626B1 (en) * 2004-05-28 2005-11-01 Applied Materials, Inc Dynamic offset and feedback threshold
US7096085B2 (en) * 2004-05-28 2006-08-22 Applied Materials Process control by distinguishing a white noise component of a process variance
US8195426B1 (en) 2004-09-30 2012-06-05 John Antanies Data analysis systems and related methods
US7283928B2 (en) 2004-09-30 2007-10-16 John Antanies Computerized method and software for data analysis
US7555405B2 (en) * 2004-09-30 2009-06-30 John Antanies Computerized method for creating a CUSUM chart for data analysis
US7957932B1 (en) 2004-09-30 2011-06-07 John Antanies Data analysis systems and related methods
US7890310B2 (en) * 2004-11-17 2011-02-15 The Mathworks, Inc. Method for analysis of control systems
US20060129461A1 (en) * 2004-12-10 2006-06-15 Gerold Pankl Data entry and system for automated order, design, and manufacture of ordered parts
US20060129270A1 (en) * 2004-12-10 2006-06-15 Gerold Pankl Processes and systems for creation of machine control for specialty machines requiring manual input
JP2006172344A (ja) * 2004-12-20 2006-06-29 Sumitomo Rubber Ind Ltd 製品形状の設計方法
US7685075B2 (en) * 2005-01-10 2010-03-23 Taiwan Semiconductor Manufacturing Co., Ltd. Costing system and method
US20060155520A1 (en) * 2005-01-11 2006-07-13 O'neill Peter M Model-based pre-assembly testing of multi-component production devices
US8015566B2 (en) * 2005-01-13 2011-09-06 Lenovo (Singapore) Pte. Ltd. Attributing energy consumption to individual code threads in a data processing system
US7643969B2 (en) 2005-03-04 2010-01-05 Health Outcomes Sciences, Llc Methods and apparatus for providing decision support
US8943163B2 (en) * 2005-05-02 2015-01-27 S-Matrix System for automating scientific and engineering experimentation
US7784183B2 (en) * 2005-06-09 2010-08-31 General Electric Company System and method for adjusting performance of manufacturing operations or steps
US7458046B2 (en) * 2005-07-19 2008-11-25 Fujitsu Limited Estimating the difficulty level of a formal verification problem
US8209149B2 (en) 2005-10-28 2012-06-26 S-Matrix System and method for automatically creating data sets for complex data via a response data handler
US7606685B2 (en) * 2006-05-15 2009-10-20 S-Matrix Method and system that optimizes mean process performance and process robustness
US7613574B2 (en) * 2005-10-28 2009-11-03 S-Matrix System and method for automating scientific and engineering experimentation for deriving surrogate response data
US7660642B1 (en) 2005-11-04 2010-02-09 Tuszynski Steve W Dynamic control system for manufacturing processes
JP2007188405A (ja) * 2006-01-16 2007-07-26 Nec Electronics Corp 異常検出システムおよび異常検出方法
US7672745B1 (en) 2006-03-20 2010-03-02 Tuszynski Steve W Manufacturing process analysis and optimization system
US7653450B2 (en) * 2006-03-30 2010-01-26 International Business Machines Corporation System and method for creation of optimal range boundaries in a range management system
US7437691B2 (en) * 2006-04-11 2008-10-14 International Business Machines Corporation VLSI artwork legalization for hierarchical designs with multiple grid constraints
US8145358B2 (en) * 2006-07-25 2012-03-27 Fisher-Rosemount Systems, Inc. Method and system for detecting abnormal operation of a level regulatory control loop
US20080103847A1 (en) * 2006-10-31 2008-05-01 Mehmet Sayal Data Prediction for business process metrics
US8032340B2 (en) 2007-01-04 2011-10-04 Fisher-Rosemount Systems, Inc. Method and system for modeling a process variable in a process plant
US8032341B2 (en) * 2007-01-04 2011-10-04 Fisher-Rosemount Systems, Inc. Modeling a process using a composite model comprising a plurality of regression models
US20080294396A1 (en) * 2007-03-23 2008-11-27 Shingchi Hsu System and method for validating design requirements
US8219328B2 (en) 2007-05-18 2012-07-10 S-Matrix System and method for automating scientific and engineering experimentation for deriving surrogate response data
US20080294361A1 (en) * 2007-05-24 2008-11-27 Popp Shane M Intelligent execution system for the monitoring and execution of vaccine manufacturing
EP2019367A1 (en) * 2007-06-28 2009-01-28 Siemens Aktiengesellschaft A method to improve the performance of a distributed scheduler
US20090089697A1 (en) * 2007-09-28 2009-04-02 Husky Injection Molding Systems Ltd. Configurable User Interface Systems and Methods for Machine Operation
JP4894709B2 (ja) 2007-10-04 2012-03-14 株式会社Ihi 製品設計支援システム及びコンピュータにおける製品設計支援のための動作方法
JP4917527B2 (ja) * 2007-12-21 2012-04-18 東京エレクトロン株式会社 情報処理装置、情報処理方法、およびプログラム
US7840297B1 (en) 2008-03-14 2010-11-23 Tuszynski Steve W Dynamic control system for manufacturing processes including indirect process variable profiles
JP2010191535A (ja) * 2009-02-16 2010-09-02 Mazda Motor Corp 車両用サスペンションの設計支援装置、車両用サスペンションの設計支援方法、及び車両用サスペンションの設計支援プログラム
US8433434B2 (en) * 2009-07-09 2013-04-30 Taiwan Semiconductor Manufacturing Company, Ltd. Near non-adaptive virtual metrology and chamber control
US8433547B2 (en) * 2009-12-03 2013-04-30 Schneider Electric It Corporation System and method for analyzing nonstandard facility operations within a data center
JP5045770B2 (ja) * 2010-02-24 2012-10-10 横河電機株式会社 プロセス解析システム
US8855804B2 (en) * 2010-11-16 2014-10-07 Mks Instruments, Inc. Controlling a discrete-type manufacturing process with a multivariate model
US9182757B2 (en) * 2011-03-30 2015-11-10 Fisher-Rosemount Systems, Inc. Methods and apparatus to transmit device description files to a host
RU2470352C1 (ru) * 2011-07-01 2012-12-20 Александр Владимирович Иванов Способ статистического регулирования технологического процесса (варианты)
US8725303B2 (en) * 2011-07-08 2014-05-13 Sharp Laboratories Of America, Inc. System and method for the multi-dimensional representation of energy control
JP5777491B2 (ja) * 2011-10-31 2015-09-09 ダイハツ工業株式会社 樹脂製バンパの変形予測式の設定方法、及び樹脂製バンパの変形予測方法
US8965550B2 (en) 2011-11-01 2015-02-24 United Microelectronics Corp. Experiments method for predicting wafer fabrication outcome
CN102608285B (zh) * 2012-02-21 2014-08-06 南京工业大学 基于支持向量机的有机混合物燃爆特性预测方法
US9429939B2 (en) 2012-04-06 2016-08-30 Mks Instruments, Inc. Multivariate monitoring of a batch manufacturing process
US9541471B2 (en) 2012-04-06 2017-01-10 Mks Instruments, Inc. Multivariate prediction of a batch manufacturing process
WO2012103854A2 (zh) * 2012-04-19 2012-08-09 华为技术有限公司 表格图形化管理方法和装置
JP5172051B1 (ja) 2012-05-17 2013-03-27 三菱電機株式会社 サーボパラメータ調整装置
US20130325498A1 (en) * 2012-06-05 2013-12-05 United States Of America, As Represented By The Secretary Of The Army Health Outcome Prediction and Management System and Method
GB2508219A (en) * 2012-11-26 2014-05-28 Taylor Hobson Ltd Analysing and machining an optical profile
CN103886168A (zh) * 2012-12-19 2014-06-25 腾讯科技(深圳)有限公司 基于层次分析法的多渠道分析方法及装置
JP6286643B2 (ja) * 2013-05-30 2018-03-07 東海光学株式会社 加工誤差を低減するための加工条件設定方法
RU2552167C2 (ru) * 2013-09-26 2015-06-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ компьютерного проектирования технологического цикла производства металлопродукции
RU2573140C2 (ru) * 2014-05-20 2016-01-20 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ проведения анализа долговечности радиоэлектронной аппаратуры
US20150355620A1 (en) * 2014-06-04 2015-12-10 Kinsus Interconnect Technology Corp. Management system for process recipe
US20150371418A1 (en) * 2014-06-18 2015-12-24 Honeywell International Inc. Apparatus and method for visualization of optimum operating envelope
US10082778B2 (en) 2014-06-20 2018-09-25 Veritone Alpha, Inc. Managing coordinated control by multiple decision modules
BR112017008380B1 (pt) * 2014-11-13 2022-06-28 Siemens Aktiengesellschaft Módulo, sistema e dispositivo de planejamento de produção, e, método de planejamento de fabricação de um produto intermediário ou produto final
US10230252B2 (en) 2015-01-30 2019-03-12 Symbol Technologies, Llc Method and system for charging a battery based on an identifier of a power cable
WO2016128020A1 (de) 2015-02-09 2016-08-18 Siemens Aktiengesellschaft Produktionsmodul, produktionssystem sowie verfahren zum betreiben eines produktionsmoduls
US10275565B2 (en) 2015-11-06 2019-04-30 The Boeing Company Advanced automated process for the wing-to-body join of an aircraft with predictive surface scanning
RU2626336C1 (ru) * 2016-02-16 2017-07-26 Виктор Николаевич Литуев Способ и устройство для определения взаимосвязей параметров производственного процесса
US20170271984A1 (en) 2016-03-04 2017-09-21 Atigeo Corp. Using battery dc characteristics to control power output
DE102016204392A1 (de) * 2016-03-16 2017-09-21 Trumpf Werkzeugmaschinen Gmbh + Co. Kg System und Verfahren zur Produktionsplanung
JP7222883B2 (ja) 2016-04-28 2023-02-15 ヴェリトーン アルファ インコーポレイテッド 予測を使用してターゲットシステムを制御すること
US10303131B2 (en) 2016-05-13 2019-05-28 Veritone Alpha, Inc. Using sensor data to assist in controlling a target system by modeling the functionality of the target system
RU2632124C1 (ru) * 2016-06-10 2017-10-02 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Способ прогнозной оценки эффективности многоэтапных процессов
US11042924B2 (en) * 2017-03-10 2021-06-22 Johnson Controls Technology Company Building controller for optimizing equipment upgrades with design of experiments
JP6880892B2 (ja) * 2017-03-23 2021-06-02 富士通株式会社 工程計画生成プログラム及び工程計画生成方法
DE102017213583A1 (de) * 2017-08-04 2019-02-07 Siemens Aktiengesellschaft Verfahren zur Produktionsplanung
US10908562B2 (en) 2017-10-23 2021-02-02 Honeywell International Inc. Apparatus and method for using advanced process control to define real-time or near real-time operating envelope
US11610273B2 (en) 2018-04-26 2023-03-21 InfinityQS International, Inc. Enterprise-wide process stream analysis and grading engine with interactive user interface method, system, and computer program product
EP3570227A1 (en) * 2018-05-16 2019-11-20 Ernst & Young GmbH Wirtschaftsprüfungsgesellschaft Interactive user interface for regression planning and evaluation system
RU2701089C1 (ru) * 2018-05-31 2019-09-24 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МО РФ Способ ситуационного анализа устойчивости технической системы с многоэтапным характером целевого применения
US10666076B1 (en) 2018-08-14 2020-05-26 Veritone Alpha, Inc. Using battery state excitation to control battery operations
US10712730B2 (en) 2018-10-04 2020-07-14 The Boeing Company Methods of synchronizing manufacturing of a shimless assembly
US10452045B1 (en) 2018-11-30 2019-10-22 Veritone Alpha, Inc. Controlling ongoing battery system usage while repeatedly reducing power dissipation
US10816949B1 (en) 2019-01-22 2020-10-27 Veritone Alpha, Inc. Managing coordinated improvement of control operations for multiple electrical devices to reduce power dissipation
US11097633B1 (en) 2019-01-24 2021-08-24 Veritone Alpha, Inc. Using battery state excitation to model and control battery operations
US11644806B1 (en) 2019-01-24 2023-05-09 Veritone Alpha, Inc. Using active non-destructive state excitation of a physical system to model and control operations of the physical system
US11069926B1 (en) * 2019-02-14 2021-07-20 Vcritonc Alpha, Inc. Controlling ongoing battery system usage via parametric linear approximation
US11429873B2 (en) 2019-03-15 2022-08-30 International Business Machines Corporation System for automatic deduction and use of prediction model structure for a sequential process dataset
US11846932B2 (en) 2019-07-05 2023-12-19 Industrial Technology Research Institute Part processing planning method, part processing planning system using the same, part assembly planning method, part assembly planning system using the same, and computer program product thereof
US11407327B1 (en) 2019-10-17 2022-08-09 Veritone Alpha, Inc. Controlling ongoing usage of a battery cell having one or more internal supercapacitors and an internal battery
DE102020216272A1 (de) * 2020-01-23 2021-07-29 Zf Friedrichshafen Ag Verfahren und System zur automatisierten Charakterisierung eines Werkstücks während eines Bearbeitungsvorgangs durch eine Werkzeugmaschine
US11642822B2 (en) * 2020-06-15 2023-05-09 iMFLUX Inc. Largest empty corner rectangle based process development
DE102020127799A1 (de) 2020-10-22 2022-04-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Bearbeitungseinrichtung für ein Kraftfahrzeugbauteil sowie Bearbeitungseinrichtung
US11892809B2 (en) 2021-07-26 2024-02-06 Veritone, Inc. Controlling operation of an electrical grid using reinforcement learning and multi-particle modeling
CN117314020B (zh) * 2023-11-28 2024-02-27 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种浮游生物的湿地碳汇数据监测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136686A (en) * 1990-03-28 1992-08-04 Koza John R Non-linear genetic algorithms for solving problems by finding a fit composition of functions
US5850339A (en) * 1996-10-31 1998-12-15 Giles; Philip M. Analysis of data in cause and effect relationships
JP2000315111A (ja) * 1999-04-30 2000-11-14 Nippon Steel Corp 設備及び製品プロセス異常状態の診断方法及び装置
US6311096B1 (en) * 1999-04-01 2001-10-30 Texas Instruments Incorporated Design of microelectronic process flows for manufacturability and performance
US6326160B1 (en) * 1998-09-30 2001-12-04 Cygnus, Inc. Microprocessors for use in a device for predicting physiological values

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546312A (en) * 1993-09-20 1996-08-13 Texas Instruments Incorporated Use of spatial models for simultaneous control of various non-uniformity metrics
US5526293A (en) * 1993-12-17 1996-06-11 Texas Instruments Inc. System and method for controlling semiconductor wafer processing
US6017143A (en) 1996-03-28 2000-01-25 Rosemount Inc. Device in a process system for detecting events
US5727128A (en) * 1996-05-08 1998-03-10 Fisher-Rosemount Systems, Inc. System and method for automatically determining a set of variables for use in creating a process model
JPH10228312A (ja) * 1997-02-17 1998-08-25 Mitsubishi Chem Corp バッチ・プロセス・プラントの運転支援装置
JP3449179B2 (ja) * 1997-07-08 2003-09-22 Jfeスチール株式会社 ライン入側の耳切り幅設定方法
GB9813454D0 (en) 1998-06-23 1998-08-19 Northern Telecom Ltd Dynamic prediction for process control
JP2000114338A (ja) * 1998-09-30 2000-04-21 Mitsubishi Electric Corp 半導体装置の特性変動評価方法、特性変動評価装置および特性変動評価プログラムを記憶した記録媒体
JP2000252180A (ja) * 1999-02-25 2000-09-14 Matsushita Electric Ind Co Ltd 加工プロセスにおける異常の抽出方法及びその装置
US6442445B1 (en) 1999-03-19 2002-08-27 International Business Machines Corporation, User configurable multivariate time series reduction tool control method
JP3420102B2 (ja) * 1999-04-09 2003-06-23 エヌイーシーマイクロシステム株式会社 モデルパラメータ抽出方法
JP3331191B2 (ja) * 1999-06-24 2002-10-07 株式会社日立製作所 圧延設備の形状制御装置および方法
US6424876B1 (en) 1999-07-22 2002-07-23 Advanced Micro Devices, Inc. Statistical process control system with normalized control charting
JP2001075611A (ja) * 1999-09-02 2001-03-23 Kawasaki Steel Corp セットアップモデルの自動構築方法及び装置
JP2001185595A (ja) * 1999-12-27 2001-07-06 Fujitsu Ltd 特性値の制御方法
US6760632B1 (en) * 2000-08-03 2004-07-06 International Business Machines Corporation Computer method for providing optimization for business processes
WO2002015458A2 (en) * 2000-08-15 2002-02-21 The Penn State Research Foundation Discovering hidden damage in machinery and predicting remaining life
US6616759B2 (en) * 2001-09-06 2003-09-09 Hitachi, Ltd. Method of monitoring and/or controlling a semiconductor manufacturing apparatus and a system therefor
US7072808B2 (en) * 2002-02-04 2006-07-04 Tuszynski Steve W Manufacturing design and process analysis system
WO2005013070A2 (en) * 2003-07-30 2005-02-10 Tuszynski Steve W Manufacturing design and process analysis and simulation system
US7594189B1 (en) * 2005-04-21 2009-09-22 Amazon Technologies, Inc. Systems and methods for statistically selecting content items to be used in a dynamically-generated display
US7660642B1 (en) * 2005-11-04 2010-02-09 Tuszynski Steve W Dynamic control system for manufacturing processes
US7672745B1 (en) * 2006-03-20 2010-03-02 Tuszynski Steve W Manufacturing process analysis and optimization system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136686A (en) * 1990-03-28 1992-08-04 Koza John R Non-linear genetic algorithms for solving problems by finding a fit composition of functions
US5850339A (en) * 1996-10-31 1998-12-15 Giles; Philip M. Analysis of data in cause and effect relationships
US6326160B1 (en) * 1998-09-30 2001-12-04 Cygnus, Inc. Microprocessors for use in a device for predicting physiological values
US6311096B1 (en) * 1999-04-01 2001-10-30 Texas Instruments Incorporated Design of microelectronic process flows for manufacturability and performance
JP2000315111A (ja) * 1999-04-30 2000-11-14 Nippon Steel Corp 設備及び製品プロセス異常状態の診断方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11734622B2 (en) 2021-05-27 2023-08-22 Changxin Memory Technologies, Inc. Method, apparatus and device for determining production capacity boundaries

Also Published As

Publication number Publication date
US7187992B2 (en) 2007-03-06
CN1628271A (zh) 2005-06-15
CA2474812A1 (en) 2003-08-14
AU2003208974A1 (en) 2003-09-02
RU2321886C2 (ru) 2008-04-10
KR20040088491A (ko) 2004-10-16
JP2010049693A (ja) 2010-03-04
US7321848B2 (en) 2008-01-22
JP4764502B2 (ja) 2011-09-07
ES2274211T3 (es) 2007-05-16
DE60309002T2 (de) 2007-05-24
DE60309002D1 (de) 2006-11-23
US20110178622A1 (en) 2011-07-21
EP1481294A1 (en) 2004-12-01
RU2004126675A (ru) 2005-07-20
US8768500B2 (en) 2014-07-01
US20030149501A1 (en) 2003-08-07
EP1481294A4 (en) 2005-06-22
US20070219657A1 (en) 2007-09-20
US20040167648A1 (en) 2004-08-26
WO2003067344A1 (en) 2003-08-14
ATE342531T1 (de) 2006-11-15
US20050246149A1 (en) 2005-11-03
JP2005518007A (ja) 2005-06-16
CA2474812C (en) 2011-12-06
US7917234B2 (en) 2011-03-29
PL371861A1 (en) 2005-06-27
US6687558B2 (en) 2004-02-03
EP1481294B1 (en) 2006-10-11
US7072808B2 (en) 2006-07-04
MXPA04007419A (es) 2005-06-03
US20030176938A1 (en) 2003-09-18
BR0307426A (pt) 2004-12-28

Similar Documents

Publication Publication Date Title
CN100383684C (zh) 制造设计和生产过程分析系统
US7239991B2 (en) Manufacturing design and process analysis and simulation system
Keats Statistical process control in automated manufacturing
US7788070B2 (en) Product design optimization method and system
US7672745B1 (en) Manufacturing process analysis and optimization system
US20040034555A1 (en) Hierarchical methodology for productivity measurement and improvement of complex production systems
EP3425466B1 (en) Design support device, design support method and design support program
Shmeleva et al. Industrial management decision support system: From design to software
Ryabchikov et al. Big data-driven assessment of proposals to improve enterprise flexibility through control options untested in practice
Sun et al. A multi-criteria decision-making system for selecting cutting parameters in milling process
Gyulai et al. Simulation-based flexible layout planning considering stochastic effects
Dépincé et al. Virtual manufacturing: tools for improving design and production
Wei Concurrent design for optimal quality and cycle time
Kitriastika et al. A Redesign Layout to Increase Productivity of a Company
US20160342716A1 (en) Computer-aided resin behavior analyzer
Kelbel et al. Applicability of Advanced Manufacturing Technologies for Agile Product Development in the Internet of Production: A Strategic Framework
Faishal et al. A combine MCDM and robust optimization approach for capacity planning
Ehtesham Rasi et al. Analysis of Response Robustness for a Multi-Objective Mathematical Model of Dynamic Cellular Manufacturing
Fountas et al. Comparison of non-conventional intelligent algorithms for optimizing sculptured surface CNC tool paths
Lotfi et al. Optimization Multicriteria Scheduling Criteria through Analytical Hierarchy Process and Lexicographic Goal Programming Modeling
Wang et al. Integrated operation planning and process adjustment for optimum cost with attention to manufacturing quality and waste
Havlik et al. Multi-criteria function for optimizing the number of workers in an e-maintenance
Dépincé et al. Virtual manufacturing
Quintana et al. Decision support tool for blank selection in workshop machining processes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080423

Termination date: 20170204

CF01 Termination of patent right due to non-payment of annual fee