CN100385635C - 用来提高晶体管沟道中的应变效应的方法和设备 - Google Patents

用来提高晶体管沟道中的应变效应的方法和设备 Download PDF

Info

Publication number
CN100385635C
CN100385635C CNB2005100043050A CN200510004305A CN100385635C CN 100385635 C CN100385635 C CN 100385635C CN B2005100043050 A CNB2005100043050 A CN B2005100043050A CN 200510004305 A CN200510004305 A CN 200510004305A CN 100385635 C CN100385635 C CN 100385635C
Authority
CN
China
Prior art keywords
gate stack
nitride film
stress
liner
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2005100043050A
Other languages
English (en)
Other versions
CN1641848A (zh
Inventor
杨海宁
朱慧珑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1641848A publication Critical patent/CN1641848A/zh
Application granted granted Critical
Publication of CN100385635C publication Critical patent/CN100385635C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate

Abstract

本发明公开了一种用来提高晶体管沟道中的应变效应的方法和设备,并提供了一种具有增大应力的晶体管沟道的半导体器件。为了得到增大了应力的晶体管沟道,氮化物膜被择优地形成在器件衬底上,而在栅叠层部分上很少有或没有氮化物。氮化物膜可以被择优地仅仅淀积在硅衬底上成为不共形层,其中,很少或没有氮化物被淀积在栅叠层的上部上。氮化物膜也可以被均匀地淀积在硅衬底和栅叠层上成为共形层,而在稍后的步骤中择优地清除栅叠层上部附近的氮化物膜。在某些实施方案中,借助于清除栅叠层的上部而清除栅叠层顶部附近的氮化物。在任何方法中,借助于最小化淀积在栅叠层上的氮化物,同时保留淀积在衬底上的氮化物,增大了晶体管沟道中的应力。

Description

用来提高晶体管沟道中的应变效应的方法和设备
技术领域
本发明一般涉及到晶体管性能的提高,更确切地说是涉及到借助于在晶体管沟道区中产生所希望的应力而提高晶体管性能。
背景技术
随着半导体器件的缩小,载流子迁移率已经成为改善器件速度的障碍。研究已经表明,借助于在晶体管沟道中产生张应力能够显著地提高电子迁移率,且借助于产生压应力能够改善空穴迁移率。于是,为了改善半导体器件的特性,就在n型器件(例如nFET)和/或p型器件(例如pFET)的沟道中产生张应力和/或压应力。此外,沟道中的应力越大,可能实现的迁移率改善就越多
利用淀积在晶体管顶部上的Si3N4或氮化物,可以引入沟道应力。沟道中引入的应力的符号(伸张或压缩)与氮化物膜中应力的符号相同。但引入的沟道应力的幅度仅仅是氮化物膜中应力的一小部分。典型的应力约为张应力1-2 GPa和压应力1-2.5GPa,因此,最大应变效应受到了限制。
例如,具有加有应力的晶体管沟道的相关技术的晶体管包括其上表面上形成有栅氧化物的硅衬底。接着在栅氧化物上淀积多晶硅栅。偏置衬垫或栅侧壁被形成为临近多晶硅栅的二侧。栅侧壁可以被用来在硅衬底内形成适当的离子注入延伸结构。此外,Si3N4衬垫被充分地形成在多晶硅栅的各个侧壁上。应该指出的是,通常在离子注入之前将Si3N4衬垫固定到栅侧壁。接着用离子注入来形成多晶硅栅二侧上硅衬底中的源区/漏区。
进一步的加工包括在源/漏区附近形成衬底硅化物区以及形成在多晶硅栅上的栅硅化物区。衬底和栅硅化物区可以包括CoSi或NiSi。衬底和栅硅化物区被形成为自对准于源/漏区和多晶硅栅区。
接着,高度受应力的Si3N4或氮化物膜以相同的厚度被均匀地淀积在硅衬底、源区和漏区、偏置衬垫、以及多晶硅栅上。受应力的氮化物膜被淀积成共形层,包括被淀积在侧壁衬垫上。此氮化物膜通过硅衬底与氮化物膜的晶格结构的失配而在包括晶体管沟道区的硅衬底中引起应力。晶体管沟道区中诱发的应力正比于氮化物膜中的应力且与氮化物膜中应力的符号相同(伸张或压缩)。诱发应力的幅度是氮化物膜中应力的一小部分。
应该指出的是,在上述器件中,晶体管沟道区中诱发的应力是氮化物膜应力的一小部分。由于载流子迁移率的改善随着晶体管沟道区中应力幅度的增大而增大,故在晶体管沟道区中产生更大的应力的方法有可能进一步改善晶体管的性能。
发明内容
本发明包括在具有排列在衬底上的栅叠层的半导体器件中增大应力的方法,它包括沿衬底和栅叠层的表面淀积氮化物膜,其中的氮化物膜在衬底表面上更厚,而在栅叠层部分上更薄。
本发明还包括在具有排列在衬底上的栅叠层的半导体器件中增大应力的方法,它包括在栅叠层上和衬底表面上淀积氮化物膜层以及清除部分栅叠层和淀积于其上的氮化物膜。
本发明还包括一种半导体器件,它具有硅衬底、排列在硅衬底上的栅叠层、排列在硅衬底和栅叠层上的受应力的氮化物膜,其中,受应力的氮化物膜在硅衬底上更厚,而在部分栅叠层上更薄。
附图说明
图1示出了形成根据本发明的实施方案的过程中的一个步骤;
图2示出了形成根据本发明的实施方案的过程中的一个步骤;
图3示出了形成根据本发明的实施方案的过程中的一个步骤;
图4示出了形成根据本发明的实施方案的过程中的一个步骤;
图5示出了形成根据本发明的实施方案的过程中的一个步骤;
图6示出了形成根据本发明的实施方案的过程中的一个步骤;
图7示出了根据本发明制作的半导体器件中应力对距离的关系;
图8示出了形成根据本发明的实施方案的过程中的一个步骤;
图9示出了形成根据本发明的实施方案的过程中的一个步骤;
图10示出了形成根据本发明的实施方案的过程中的一个步骤;
图11示出了形成根据本发明的实施方案的过程中的一个步骤;
图12示出了形成根据本发明的实施方案的过程中的一个步骤;
图13示出了形成根据本发明的实施方案的过程中的一个步骤。
具体实施方式
借助于在晶体管沟道区中产生应力,可以提高晶体管的性能。因此,可以将栅结构形成为从受应力的氮化物膜在晶体管沟道中诱发增大的应力。为了得到此增大了的应变效应,本发明的一个实施方案包括在形成硅化物之后从晶片清除栅衬垫,然后淀积不共形的Si3N4膜,包括在栅叠层顶部处的栅侧壁上形成很少或不形成氮化物。以这种方式,借助于在器件的晶体管沟道区中产生所希望的应力,提供了晶体管性能的提高。应该指出的是,用来增大晶体管沟道中的应变效应的这种方法和设备,适用于n型器件或p型器件二者。因此,如本技术领域熟练人员众所周知的那样,借助于适当地调整淀积参数,能够使氮化物伸张或压缩。
在另一实施方案中,借助于在淀积受应力的氮化物膜之后用旋涂材料涂敷晶片,可以得到这种结构。栅二侧上下方区域处的受应力的氮化物膜在后续的材料清除步骤中受到旋涂材料保护。在此方法的另一实施方案中,在已经涂敷旋涂材料之后,利用CMP(化学机械整平)工艺从栅顶部区域清除氮化物叠层,可以得到增大了应力的结构。后一种技术也可以被用来代替栅工艺。
现在参照附图,图1示出了硅衬底12,其上表面上形成有栅氧化物14。接着,多晶硅栅16被形成在栅氧化物14上。偏置衬垫即栅侧壁18被形成在多晶硅栅16的侧面上。此偏置衬垫18被用来在硅衬底12内形成适当的离子注入延伸结构。
图2示出了形成在多晶硅栅16的每一侧面上的Si3N4衬垫20。在离子注入之前,Si3N4衬垫20被固定到偏置衬垫18。接着,离子注入被用来在多晶硅栅16二侧处的硅衬底12内形成源/漏区22。对于n型晶体管,例如浅而高剂量的砷离子可以被用来形成源/漏区。对于p型晶体管,例如浅而高剂量的BF2离子可以被用来形成源/漏区。
图3示出了在Si3N4衬垫20二侧上清除的栅氧化物14。还示出了形成在源/漏区22附近的衬底硅化物区24和形成在多晶硅栅16上的栅硅化物区26。衬底和栅硅化物区24和26可以包括CoSi或NiSi。衬底和栅硅化物区24和26被形成为自对准于源/漏区22和多晶硅栅区16。
图4示出了形成受应力的晶体管沟道之前的半导体器件,它具有带掺杂的硅化物区24的硅衬底12。在硅衬底12的顶部上是栅氧化物14,而在栅氧化物14顶部上是多晶硅栅16。栅侧壁18被形成在多晶硅栅16的侧面上。栅硅化物区26被形成在多晶硅栅16上,从而完成栅叠层。多晶硅栅16和栅侧壁18一起形成栅叠层。为此描述,栅叠层也可以包括例如多晶硅栅16、栅侧壁18、以及栅硅化物区26。以本技术领域熟练人员所知的任何常规方法来形成所述的结构。
如图4所示,利用对CoSi和氧化物有选择性的各向同性Si3N4RIE(反应离子刻蚀)工艺,从栅侧壁18清除可能存在的任何Si3N4衬垫(图2中参考号20所指)。Si3N4衬垫可以用RIE方法完全清除、减小尺寸,或简单的退缩。应该指出的是,如本技术领域熟练人员应该知道的那样,可以采用从栅叠层顶部清除或减少Si3N4衬垫的任何工艺。
参照图5,用PECVD(等离子体增强的化学气相淀积)工艺在晶体管栅上淀积不共形的Si3N4或氮化物膜32。可以用PECVD淀积方法在比较低的温度下来形成不共形的Si3N4膜,在晶片加工的这一阶段,这是可取的。虽然PECVD被用作例子,但应该指出的是,可以采用任何能够淀积不共形氮化物膜的工艺。在一种执行过程中,氮化物膜32应该被淀积成在栅侧壁18上只有很少或没有Si3N4。如下面进一步描述的那样,由于在栅侧壁18上不存在氮化物膜32或被减少了,故由于材料的突然终止而产生应力聚集器或提升器,使更大的应力被诱发在晶体管沟道34中。
图6示出了对于可能是本发明一个执行特征的60nm宽的多晶硅栅和50nm厚的衬垫在栅氧化物以下5nm区域内,清除氮化物帽之前(实线)和之后(虚线)晶体管沟道中的应力数字模拟Sxx与沿器件衬底的单位为微米的水平距离的函数关系的结果曲线,其中,氮化物膜形成在晶体管沟道中的应力Sxx为2.0GPa,这在栅氧化物以下大约5nm处大于大约每平方厘米4.5×109达因。在另一执行过程中,在栅氧化物以下大约5nm处,晶体管沟道中增大了的应力大于大约每平方厘米5.5×109达因。
如图6的曲线所示,数字模拟示出了当Si3N4叠层从栅的顶部区被清除时,特别是当Si3N4从靠近栅叠层顶部的栅侧壁被清除时,相应晶体管沟道中的应力增大了39%。
参照图7-8,示出了晶体管沟道应力增大的另一实施方案,其中,图7示出了一种半导体器件,它具有其上带栅氧化物14的硅衬底12。硅衬底12具有硅化物区24。具有栅侧壁18的多晶硅栅16位于栅氧化物14上。栅硅化物区26被形成在多晶硅栅16的顶部上。
在图4器件的一个变种中,Si3N4衬垫36被添加到图7所示器件。图7的衬垫36占据了硅衬底12和栅侧壁18表面上的一个小区域,并被形成在栅叠层的下部区域上。亦即没有沿整个侧壁提供衬垫。这种构造尽量减少了形成在栅叠层顶部附近的Si3N4的量。可以借助于诸如用对二氧化硅和硅化物有选择性的RIE工艺来使Si3N4衬垫36退缩之类的各种工艺来形成Si3N4衬垫36。如本技术领域熟练人员能够实现的那样,可以采用任何其它可将Si3N4衬垫36接近栅叠层底部形成的工艺。
参照图8,用例如PECVD工艺,不共形的Si3N4或氮化物层38被淀积在器件上,致使只有很少或没有Si3N4淀积在栅侧壁18上。再次借助于将尽量少的氮化物淀积在栅侧壁18上,氮化物结构终止得很突然,产生应力聚集器或提升器,这增大了形成在晶体管沟道40中的应力。
虽然PECVD工艺被用于例子中,但也可以采用可淀积不共形氮化物膜的诸如高密度等离子体淀积之类的任何工艺。而且,可以采用择优减少淀积在栅侧壁18上的氮化物量的任何工艺。
参照图9,示出了另一种提高晶体管沟道中的应力的方法,其中,氮化物膜28淀积在具有栅氧化物14、Si3N4衬垫20、侧壁衬垫18、以及顶部上具有栅硅化物区26的多晶硅栅16的硅衬底12上。在已经淀积氮化物膜28之后,诸如ARC(抗反射涂层)、氧化物、或SILKTM(一种硅和低k介质材料的组合物)的旋涂材料42被涂敷。
借助于用旋涂技术涂敷一种材料,此材料被择优淀积在低的位置,使高位置仍然未被涂敷。此外,可以在氮化物膜28随后被清除时用作抗蚀剂的任何材料都可以是适当的旋涂材料。于是,旋涂涂敷方法使氮化物膜28的高处仍然被暴露为了进一步加工。将材料择优淀积在低区中并使高区暴露的其它方法,可以用来在氮化物膜28的顶部上形成膜。
参照图10,通过Si3N4 RIE工艺,氮化物膜28的暴露部分被清除,使仅仅从栅叠层的顶部择优地清除氮化物膜28。借助于清除氮化物膜28的暴露部分,栅叠层的上部免除了氮化物膜28,而硅衬底的顶部仍然被覆盖。氮化物膜28的这种选择性清除,形成了其中由于硅衬底12仍然被覆盖而具有增大的应力的晶体管沟道44。可以用择优清除氮化物膜28并留下旋涂材料42的任何工艺,来清除氮化物膜28。
图11-13示出了另一实施方案,用此实施方案可以形成具有增大的应力的晶体管沟道。参照图11,示出了如图9所示的半导体器件,它具有其上带有栅氧化物14的硅衬底12。硅衬底12具有硅化物区24。具有栅侧壁18的多晶硅栅16位于栅氧化物14上。栅硅化物区26被形成在多晶硅栅16的顶部上,所有这些都是本技术领域熟练人员所知的,且根据所知的实践被实现。此外,示出了具有暴露的高区的氮化物涂层28和旋涂材料42。或者,可以涂敷氧化物层(HDP(高密度等离子体)氧化物或BPSG(硼磷硅酸盐玻璃)),使氮化物膜28的高处仍然被暴露。此外,可在氮化物膜28被随后清除时用作抗蚀剂的任何材料,都可以是适当的旋涂材料。
如图12所示,用CMP清除氮化物膜28的暴露部分和栅叠层顶部区域,晶片被整平。因此,硅衬底12仍然被氮化物膜28覆盖,而栅叠层的顶部被清除。借助于一起清除栅叠层的顶部与其上形成的任何氮化物膜28,就在硅衬底12内形成增大了应力的晶体管沟道46。整平晶片的任何其它已知的方法,都可以被用来清除栅叠层的顶部。
最后,如图13所示,清除旋涂材料42,并在栅叠层的顶部上形成硅化物栅区48。任何择优清除旋涂材料的方法,都可以用于此步骤。得到的结构再次包括被氮化物膜覆盖的衬底,同时免去了栅叠层上部上的氮化物膜。应该指出的是,图11-13所述的方法可以被容易地用来代替栅工艺。
虽然就实施方案而言已经描述了本发明,氮本技术领域熟练人员可以理解的是,能够在所附权利要求的构思与范围内以修正的方式来实施本发明。例如本发明能够被容易地应用于体衬底。

Claims (21)

1.一种在具有设置在衬底上的栅叠层的半导体器件中增大应力的方法,它包括:
沿衬底的表面和栅叠层淀积氮化物膜,其中的氮化物膜在衬底表面上更厚,而在栅叠层部分上更薄,
其中,氮化物膜是不共形的氮化物膜。
2.权利要求1的方法,还包括形成仅仅临近栅叠层下部的衬垫。
3.权利要求2的方法,其中,形成衬垫包括减小衬垫的尺寸。
4.权利要求3的方法,其中,减小衬垫的尺寸包括反应离子刻蚀。
5.权利要求1的方法,其中,淀积氮化物膜包括等离子体增强气相淀积工艺。
6.权利要求1的方法,其中,氮化物膜的淀积在晶体管沟道内提供了增大了的应力。
7.一种在半导体器件中增大应力的方法,它包括:
在栅叠层和衬底表面上淀积氮化物膜层;
在衬底上方的氮化物膜表面上淀积抗蚀剂材料,同时使栅叠层上部附近的氮化物膜的表面暴露;以及
清除栅叠层上的氮化物膜,以便在栅叠层下方的晶体管沟道中提供增大了的应力。
8.权利要求7的方法,还包括清除栅叠层的上部以及设置在其上的氮化物膜。
9.权利要求7的方法,其中,淀积抗蚀剂包括淀积旋涂材料、抗反射涂层、氧化物膜、以及低k材料之一。
10.权利要求9的方法,还包括在栅叠层侧壁的下部处形成衬垫。
11.权利要求9的方法,其中形成衬垫包括沿基本上所有的侧壁形成衬垫并蚀刻衬垫,以便在侧壁的下部处形成衬垫。
12.权利要求9的方法,其中,淀积抗蚀剂包括在低处淀积氧化物层或硼磷硅酸盐玻璃中的至少一种,并使高处仍然被暴露。
13.权利要求8的方法,其中,清除栅叠层部分和设置在其上的氮化物膜包括反应离子刻蚀。
14.权利要求8的方法,其中,清除栅叠层部分和设置在其上的氮化物膜包括化学机械抛光。
15.权利要求7的方法,还包括形成临近栅叠层侧壁的衬垫以及蚀刻衬垫的上部以便仅仅在侧壁下部处形成侧壁。
16.权利要求7的方法,其中,栅的宽度约为60nm,衬垫的宽度约为50nm,且氮化物膜提供约为2.0GPa的应力,晶体管沟道中增大了的应力在栅氧化物下方约5nm处约为每平方厘米4.5×109达因。
17.权利要求7的方法,其中,对于半导体器件的栅宽度约为60nm,衬垫的宽度约为50nm,且氮化物膜应力约为2.0GPa的情况,晶体管沟道中增大了的应力在栅氧化物下方约5nm处大于大约每平方厘米5.5×109达因。
18.一种半导体器件,它包括:
硅衬底;
设置在硅衬底上的栅叠层;
硅衬底和栅叠层上的受应力的氮化物膜,其中,受应力的氮化物膜在硅衬底上更厚,而在栅叠层部分上更薄,
其中,受应力的氮化物膜基本上不存在于栅叠层的上部上。
19.权利要求18的半导体器件,还包括设置在衬底上受应力的氮化物膜与栅叠层之间的使栅叠层的上部仍然被暴露的衬垫。
20.权利要求18的半导体器件,还包括仅仅栅叠层的下部。
21.权利要求20的半导体器件,还包括设置在受应力的氮化物膜上使栅叠层暴露的旋涂材料。
CNB2005100043050A 2004-01-16 2005-01-14 用来提高晶体管沟道中的应变效应的方法和设备 Active CN100385635C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/707,842 2004-01-16
US10/707,842 US7118999B2 (en) 2004-01-16 2004-01-16 Method and apparatus to increase strain effect in a transistor channel

Publications (2)

Publication Number Publication Date
CN1641848A CN1641848A (zh) 2005-07-20
CN100385635C true CN100385635C (zh) 2008-04-30

Family

ID=34749150

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100043050A Active CN100385635C (zh) 2004-01-16 2005-01-14 用来提高晶体管沟道中的应变效应的方法和设备

Country Status (3)

Country Link
US (3) US7118999B2 (zh)
CN (1) CN100385635C (zh)
TW (1) TWI377596B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118999B2 (en) * 2004-01-16 2006-10-10 International Business Machines Corporation Method and apparatus to increase strain effect in a transistor channel
US7361973B2 (en) * 2004-05-21 2008-04-22 International Business Machines Corporation Embedded stressed nitride liners for CMOS performance improvement
EP1717864A1 (en) * 2005-04-27 2006-11-02 STMicroelectronics ( Crolles 2) SAS Method for managing the stress configuration in the channel of a MOS transistor, and corresponding integrated circuit.
US7262484B2 (en) * 2005-05-09 2007-08-28 International Business Machines Corporation Structure and method for performance improvement in vertical bipolar transistors
US20070013070A1 (en) * 2005-06-23 2007-01-18 Liang Mong S Semiconductor devices and methods of manufacture thereof
US7615432B2 (en) * 2005-11-02 2009-11-10 Samsung Electronics Co., Ltd. HDP/PECVD methods of fabricating stress nitride structures for field effect transistors
US8729635B2 (en) * 2006-01-18 2014-05-20 Macronix International Co., Ltd. Semiconductor device having a high stress material layer
US7410875B2 (en) * 2006-04-06 2008-08-12 United Microelectronics Corp. Semiconductor structure and fabrication thereof
US7361539B2 (en) * 2006-05-16 2008-04-22 International Business Machines Corporation Dual stress liner
US7514370B2 (en) * 2006-05-19 2009-04-07 International Business Machines Corporation Compressive nitride film and method of manufacturing thereof
US20070275530A1 (en) * 2006-05-24 2007-11-29 Wen-Han Hung Semiconductor structure and fabricating method thereof
US7768041B2 (en) * 2006-06-21 2010-08-03 International Business Machines Corporation Multiple conduction state devices having differently stressed liners
WO2008027471A1 (en) * 2006-08-31 2008-03-06 Advanced Micro Devices, Inc. A field effect transistor having a stressed contact etch stop layer with reduced conformality
DE102006040762B4 (de) * 2006-08-31 2009-05-07 Advanced Micro Devices, Inc., Sunnyvale N-Kanalfeldeffekttransistor mit einer Kontaktätzstoppschicht in Verbindung mit einer Zwischenschichtdielektrikumsteilschicht mit der gleichen Art an innerer Verspannung
DE102006040765B4 (de) * 2006-08-31 2011-02-03 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Herstellung eines Feldeffekttransistors mit einer verspannten Kontaktätzstoppschicht mit geringerer Konformität und Feldeffekttransistor
JP2008140854A (ja) * 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US7935588B2 (en) * 2007-03-06 2011-05-03 International Business Machines Corporation Enhanced transistor performance by non-conformal stressed layers
KR20090008568A (ko) * 2007-07-18 2009-01-22 주식회사 동부하이텍 반도체 소자의 제조방법
US7820518B2 (en) * 2008-05-29 2010-10-26 Infineon Technologies Ag Transistor fabrication methods and structures thereof
JP5913980B2 (ja) * 2008-10-14 2016-05-11 ジェネンテック, インコーポレイテッド 免疫グロブリン変異体及びその用途
DE102009046241B4 (de) * 2009-10-30 2012-12-06 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Verformungsverstärkung in Transistoren, die eine eingebettete verformungsinduzierende Halbleiterlegierung besitzen, durch Kantenverrundung an der Oberseite der Gateelektrode
CN102299154B (zh) * 2010-06-22 2013-06-12 中国科学院微电子研究所 半导体结构及其制作方法
KR101815527B1 (ko) * 2010-10-07 2018-01-05 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8448124B2 (en) 2011-09-20 2013-05-21 International Business Machines Corporation Post timing layout modification for performance
HRP20211641T1 (hr) 2012-07-13 2022-02-04 Roche Glycart Ag Bispecifična protutijela anti-vegf/anti-ang-2 i njihova primjena u liječenju vaskularnih očnih bolesti
US8937369B2 (en) * 2012-10-01 2015-01-20 United Microelectronics Corp. Transistor with non-uniform stress layer with stress concentrated regions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198368A (ja) * 2000-12-26 2002-07-12 Nec Corp 半導体装置の製造方法

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3602841A (en) 1970-06-18 1971-08-31 Ibm High frequency bulk semiconductor amplifiers and oscillators
US4853076A (en) 1983-12-29 1989-08-01 Massachusetts Institute Of Technology Semiconductor thin films
US4665415A (en) 1985-04-24 1987-05-12 International Business Machines Corporation Semiconductor device with hole conduction via strained lattice
DE3676781D1 (de) 1985-09-13 1991-02-14 Siemens Ag Integrierte bipolar- und komplementaere mos-transistoren auf einem gemeinsamen substrat enthaltende schaltung und verfahren zu ihrer herstellung.
US4958213A (en) 1987-12-07 1990-09-18 Texas Instruments Incorporated Method for forming a transistor base region under thick oxide
US5354695A (en) 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
US5459346A (en) 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
US5006913A (en) 1988-11-05 1991-04-09 Mitsubishi Denki Kabushiki Kaisha Stacked type semiconductor device
US5108843A (en) 1988-11-30 1992-04-28 Ricoh Company, Ltd. Thin film semiconductor and process for producing the same
US4952524A (en) 1989-05-05 1990-08-28 At&T Bell Laboratories Semiconductor device manufacture including trench formation
US5310446A (en) 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
US5060030A (en) 1990-07-18 1991-10-22 Raytheon Company Pseudomorphic HEMT having strained compensation layer
US5081513A (en) 1991-02-28 1992-01-14 Xerox Corporation Electronic device with recovery layer proximate to active layer
US5371399A (en) 1991-06-14 1994-12-06 International Business Machines Corporation Compound semiconductor having metallic inclusions and devices fabricated therefrom
US5134085A (en) 1991-11-21 1992-07-28 Micron Technology, Inc. Reduced-mask, split-polysilicon CMOS process, incorporating stacked-capacitor cells, for fabricating multi-megabit dynamic random access memories
US5391510A (en) 1992-02-28 1995-02-21 International Business Machines Corporation Formation of self-aligned metal gate FETs using a benignant removable gate material during high temperature steps
US6008126A (en) 1992-04-08 1999-12-28 Elm Technology Corporation Membrane dielectric isolation IC fabrication
US5264395A (en) * 1992-12-16 1993-11-23 International Business Machines Corporation Thin SOI layer for fully depleted field effect transistors
US6153501A (en) * 1998-05-19 2000-11-28 Micron Technology, Inc. Method of reducing overetch during the formation of a semiconductor device
US5561302A (en) 1994-09-26 1996-10-01 Motorola, Inc. Enhanced mobility MOSFET device and method
US5670798A (en) 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
US5679965A (en) 1995-03-29 1997-10-21 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
US5557122A (en) 1995-05-12 1996-09-17 Alliance Semiconductors Corporation Semiconductor electrode having improved grain structure and oxide growth properties
US6403975B1 (en) 1996-04-09 2002-06-11 Max-Planck Gesellschaft Zur Forderung Der Wissenschafteneev Semiconductor components, in particular photodetectors, light emitting diodes, optical modulators and waveguides with multilayer structures grown on silicon substrates
US5880040A (en) 1996-04-15 1999-03-09 Macronix International Co., Ltd. Gate dielectric based on oxynitride grown in N2 O and annealed in NO
US5861651A (en) 1997-02-28 1999-01-19 Lucent Technologies Inc. Field effect devices and capacitors with improved thin film dielectrics and method for making same
US5940736A (en) 1997-03-11 1999-08-17 Lucent Technologies Inc. Method for forming a high quality ultrathin gate oxide layer
US6309975B1 (en) 1997-03-14 2001-10-30 Micron Technology, Inc. Methods of making implanted structures
US6025280A (en) 1997-04-28 2000-02-15 Lucent Technologies Inc. Use of SiD4 for deposition of ultra thin and controllable oxides
US6277720B1 (en) * 1997-06-30 2001-08-21 Texas Instruments Incorporated Silicon nitride dopant diffusion barrier in integrated circuits
US5960297A (en) 1997-07-02 1999-09-28 Kabushiki Kaisha Toshiba Shallow trench isolation structure and method of forming the same
JP3139426B2 (ja) 1997-10-15 2001-02-26 日本電気株式会社 半導体装置
US6066545A (en) 1997-12-09 2000-05-23 Texas Instruments Incorporated Birdsbeak encroachment using combination of wet and dry etch for isolation nitride
US6274421B1 (en) 1998-01-09 2001-08-14 Sharp Laboratories Of America, Inc. Method of making metal gate sub-micron MOS transistor
KR100275908B1 (ko) 1998-03-02 2000-12-15 윤종용 집적 회로에 트렌치 아이솔레이션을 형성하는방법
US6165383A (en) 1998-04-10 2000-12-26 Organic Display Technology Useful precursors for organic electroluminescent materials and devices made from such materials
US6361885B1 (en) 1998-04-10 2002-03-26 Organic Display Technology Organic electroluminescent materials and device made from such materials
US5989978A (en) 1998-07-16 1999-11-23 Chartered Semiconductor Manufacturing, Ltd. Shallow trench isolation of MOSFETS with reduced corner parasitic currents
JP4592837B2 (ja) 1998-07-31 2010-12-08 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US6319794B1 (en) 1998-10-14 2001-11-20 International Business Machines Corporation Structure and method for producing low leakage isolation devices
US6235598B1 (en) 1998-11-13 2001-05-22 Intel Corporation Method of using thick first spacers to improve salicide resistance on polysilicon gates
US6117722A (en) 1999-02-18 2000-09-12 Taiwan Semiconductor Manufacturing Company SRAM layout for relaxing mechanical stress in shallow trench isolation technology and method of manufacture thereof
US6255169B1 (en) 1999-02-22 2001-07-03 Advanced Micro Devices, Inc. Process for fabricating a high-endurance non-volatile memory device
US6284626B1 (en) 1999-04-06 2001-09-04 Vantis Corporation Angled nitrogen ion implantation for minimizing mechanical stress on side walls of an isolation trench
US6362082B1 (en) 1999-06-28 2002-03-26 Intel Corporation Methodology for control of short channel effects in MOS transistors
US6656822B2 (en) 1999-06-28 2003-12-02 Intel Corporation Method for reduced capacitance interconnect system using gaseous implants into the ILD
US6228694B1 (en) 1999-06-28 2001-05-08 Intel Corporation Method of increasing the mobility of MOS transistors by use of localized stress regions
US6281532B1 (en) 1999-06-28 2001-08-28 Intel Corporation Technique to obtain increased channel mobilities in NMOS transistors by gate electrode engineering
KR100332108B1 (ko) 1999-06-29 2002-04-10 박종섭 반도체 소자의 트랜지스터 및 그 제조 방법
US6521540B1 (en) * 1999-07-01 2003-02-18 Chartered Semiconductor Manufacturing Ltd. Method for making self-aligned contacts to source/drain without a hard mask layer
TW426940B (en) 1999-07-30 2001-03-21 United Microelectronics Corp Manufacturing method of MOS field effect transistor
US6483171B1 (en) 1999-08-13 2002-11-19 Micron Technology, Inc. Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same
US6198144B1 (en) * 1999-08-18 2001-03-06 Micron Technology, Inc. Passivation of sidewalls of a word line stack
US6284623B1 (en) 1999-10-25 2001-09-04 Peng-Fei Zhang Method of fabricating semiconductor devices using shallow trench isolation with reduced narrow channel effect
US6476462B2 (en) 1999-12-28 2002-11-05 Texas Instruments Incorporated MOS-type semiconductor device and method for making same
US6221735B1 (en) 2000-02-15 2001-04-24 Philips Semiconductors, Inc. Method for eliminating stress induced dislocations in CMOS devices
US6531369B1 (en) 2000-03-01 2003-03-11 Applied Micro Circuits Corporation Heterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe)
US6368931B1 (en) 2000-03-27 2002-04-09 Intel Corporation Thin tensile layers in shallow trench isolation and method of making same
US6493497B1 (en) 2000-09-26 2002-12-10 Motorola, Inc. Electro-optic structure and process for fabricating same
US6501121B1 (en) 2000-11-15 2002-12-31 Motorola, Inc. Semiconductor structure
US7312485B2 (en) 2000-11-29 2007-12-25 Intel Corporation CMOS fabrication process utilizing special transistor orientation
US6563152B2 (en) 2000-12-29 2003-05-13 Intel Corporation Technique to obtain high mobility channels in MOS transistors by forming a strain layer on an underside of a channel
US20020086497A1 (en) 2000-12-30 2002-07-04 Kwok Siang Ping Beaker shape trench with nitride pull-back for STI
US6265317B1 (en) 2001-01-09 2001-07-24 Taiwan Semiconductor Manufacturing Company Top corner rounding for shallow trench isolation
US6482739B2 (en) 2001-02-21 2002-11-19 United Microelectronics Corp. Method for decreasing the resistivity of the gate and the leaky junction of the source/drain
US6403486B1 (en) 2001-04-30 2002-06-11 Taiwan Semiconductor Manufacturing Company Method for forming a shallow trench isolation
US6586289B1 (en) * 2001-06-15 2003-07-01 International Business Machines Corporation Anti-spacer structure for improved gate activation
US6531740B2 (en) 2001-07-17 2003-03-11 Motorola, Inc. Integrated impedance matching and stability network
US6498358B1 (en) 2001-07-20 2002-12-24 Motorola, Inc. Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating
US6908810B2 (en) 2001-08-08 2005-06-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of preventing threshold voltage of MOS transistor from being decreased by shallow trench isolation formation
JP2003060076A (ja) 2001-08-21 2003-02-28 Nec Corp 半導体装置及びその製造方法
US6831292B2 (en) 2001-09-21 2004-12-14 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
US20030057184A1 (en) 2001-09-22 2003-03-27 Shiuh-Sheng Yu Method for pull back SiN to increase rounding effect in a shallow trench isolation process
US6656798B2 (en) 2001-09-28 2003-12-02 Infineon Technologies, Ag Gate processing method with reduced gate oxide corner and edge thinning
US6461936B1 (en) 2002-01-04 2002-10-08 Infineon Technologies Ag Double pullback method of filling an isolation trench
US7388259B2 (en) * 2002-11-25 2008-06-17 International Business Machines Corporation Strained finFET CMOS device structures
US6717216B1 (en) 2002-12-12 2004-04-06 International Business Machines Corporation SOI based field effect transistor having a compressive film in undercut area under the channel and a method of making the device
US6974981B2 (en) 2002-12-12 2005-12-13 International Business Machines Corporation Isolation structures for imposing stress patterns
US6825529B2 (en) 2002-12-12 2004-11-30 International Business Machines Corporation Stress inducing spacers
US6887798B2 (en) 2003-05-30 2005-05-03 International Business Machines Corporation STI stress modification by nitrogen plasma treatment for improving performance in small width devices
US7279746B2 (en) 2003-06-30 2007-10-09 International Business Machines Corporation High performance CMOS device structures and method of manufacture
US7119403B2 (en) 2003-10-16 2006-10-10 International Business Machines Corporation High performance strained CMOS devices
US6977194B2 (en) * 2003-10-30 2005-12-20 International Business Machines Corporation Structure and method to improve channel mobility by gate electrode stress modification
US8008724B2 (en) 2003-10-30 2011-08-30 International Business Machines Corporation Structure and method to enhance both nFET and pFET performance using different kinds of stressed layers
US7015082B2 (en) 2003-11-06 2006-03-21 International Business Machines Corporation High mobility CMOS circuits
US7122849B2 (en) 2003-11-14 2006-10-17 International Business Machines Corporation Stressed semiconductor device structures having granular semiconductor material
US20050136583A1 (en) * 2003-12-23 2005-06-23 Taiwan Semiconductor Manufacturing Co. Advanced strained-channel technique to improve CMOS performance
US7247912B2 (en) 2004-01-05 2007-07-24 International Business Machines Corporation Structures and methods for making strained MOSFETs
US7118999B2 (en) 2004-01-16 2006-10-10 International Business Machines Corporation Method and apparatus to increase strain effect in a transistor channel
US7205206B2 (en) 2004-03-03 2007-04-17 International Business Machines Corporation Method of fabricating mobility enhanced CMOS devices
US7504693B2 (en) 2004-04-23 2009-03-17 International Business Machines Corporation Dislocation free stressed channels in bulk silicon and SOI CMOS devices by gate stress engineering
US7354806B2 (en) * 2004-09-17 2008-04-08 International Business Machines Corporation Semiconductor device structure with active regions having different surface directions and methods
US7518193B2 (en) 2006-01-10 2009-04-14 International Business Machines Corporation SRAM array and analog FET with dual-strain layers comprising relaxed regions
US7585773B2 (en) 2006-11-03 2009-09-08 International Business Machines Corporation Non-conformal stress liner for enhanced MOSFET performance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198368A (ja) * 2000-12-26 2002-07-12 Nec Corp 半導体装置の製造方法

Also Published As

Publication number Publication date
TWI377596B (en) 2012-11-21
US20060286786A1 (en) 2006-12-21
US20050158955A1 (en) 2005-07-21
US7118999B2 (en) 2006-10-10
CN1641848A (zh) 2005-07-20
US7462915B2 (en) 2008-12-09
US7790558B2 (en) 2010-09-07
US20060281272A1 (en) 2006-12-14
TW200534348A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
CN100385635C (zh) 用来提高晶体管沟道中的应变效应的方法和设备
US7179703B2 (en) Method of forming shallow doped junctions having a variable profile gradation of dopants
US7465620B2 (en) Transistor mobility improvement by adjusting stress in shallow trench isolation
KR100791441B1 (ko) 격자 부정합 소스 및 드레인 영역을 가진 변형된 반도체의cmos 트랜지스터를 형성하는 구조물 및 방법
JP2638004B2 (ja) 絶縁体上半導体集積回路構造を製造する方法
US5793089A (en) Graded MOS transistor junction formed by aligning a sequence of implants to a selectively removable polysilicon sidewall space and oxide thermally grown thereon
US5882973A (en) Method for forming an integrated circuit having transistors of dissimilarly graded junction profiles
US7691712B2 (en) Semiconductor device structures incorporating voids and methods of fabricating such structures
US20020056879A1 (en) Field effect transistor with an improved gate contact and method of fabricating the same
US20040104442A1 (en) Drain/source extension structure of a field effect transistor including doped high-k sidewall spacers
CN104241250B (zh) 用于形成接触件的掺杂保护层
KR100718823B1 (ko) 실리콘-게르마늄 트랜지스터 및 관련 방법들
JP2009517860A (ja) 半導体デバイス用の自己整合ショットキー接合の形成方法
US9159830B2 (en) Field effect transistor
US20230261055A1 (en) Semiconductor Device with Implant and Method of Manufacturing Same
US6593175B2 (en) Method of controlling a shape of an oxide layer formed on a substrate
US6410410B1 (en) Method of forming lightly doped regions in a semiconductor device
JPH06177377A (ja) 絶縁ゲート電界効果トランジスタ
JPH1197380A (ja) デバイスの製造方法
US6110786A (en) Semiconductor device having elevated gate electrode and elevated active regions and method of manufacture thereof
JPH023935A (ja) 自己整合形シリサイドと低濃度ドープドレンを備えるmos装置の製法
US7081392B2 (en) Method for fabricating a gate structure of a FET and gate structure of a FET
US20060194398A1 (en) Semiconductor device and its manufacturing method
KR100674645B1 (ko) 반도체 소자 제조 방법
KR20030095445A (ko) 반도체 소자의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171120

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171120

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

TR01 Transfer of patent right