Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationCN100445783 C
Type de publicationOctroi
Numéro de demandeCN 200710055943
Date de publication24 déc. 2008
Date de dépôt9 août 2007
Date de priorité9 août 2007
Autre référence de publicationCN101105553A
Numéro de publication200710055943.4, CN 100445783 C, CN 100445783C, CN 200710055943, CN-C-100445783, CN100445783 C, CN100445783C, CN200710055943, CN200710055943.4
Inventeurs孔光明, 赵虎旦, 邓文渊, 鄂书林
Déposant中国科学院长春光学精密机械与物理研究所
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes:  SIPO, Espacenet
Waveguide optical switch and making method thereof
CN 100445783 C
Résumé  Langue du texte original : Chinois
本发明涉及一种三维垂直耦合型波导光开关及其制作方法,波导光开关采用五层膜结构,从基底硅片至金属电极依次为下波导下包层、下波导芯层、垂直耦合层、上波导芯层、上波导上包层;下波导包层和上波导包层、垂直耦合层选用聚酯类聚合物,上波导和下波导均采用环化橡胶类聚合物,两者之间的夹角为0.2°~1.8°。 The present invention relates to a three-dimensional vertical coupling type waveguide switch its production methods, waveguide optical switch with five membrane structure, from a base of silicon to metal electrodes were under the waveguide lower cladding layer, the lower waveguide core layer, vertical coupling layer, the waveguide core, the waveguide cladding; lower waveguide cladding and the waveguide cladding, vertical coupling layer selection polyester polymer, the waveguide and the waveguide are used under cyclized rubber-like polymer, between the two angle of 0.2 ° ~ 1.8 °. 五层膜采用涂敷方法制作,上波导和下波导采用光刻技术,制作工艺简单、制作成本低,并且开关驱动功率低、响应速度快、消光比高、插入损耗小。 Five films produced using the coating method, the waveguide and lower waveguide using photolithography techniques, the production process is simple, low production costs, and the switch drive low power, fast response, high extinction ratio, insertion loss. 本发明的波导光开关可以作为基本单元应用于大规模集成光波导回路中。 Waveguide optical switch of the present invention can be applied to large-scale as the basic unit integrated optical waveguide circuit.
Revendications(3)  Langue du texte original : Chinois
1、一种波导光开关,包括下波导芯层、垂直耦合层、上波导芯层、上波导上包层,下波导下包层,其中下波导芯层包括下波导及下波导侧包层,上波导芯层包括上波导及上波导侧包层;其特征在于下波导下包层(2)、下波导侧包层(3)、垂直耦合层(4)、上波导侧包层(5)、上波导上包层(6)均采用聚酯类聚合物BCB;上波导(8)和下波导(7)均采用环化橡胶类聚合物Su8;下波导下包层(2)厚度为3~5μm;下波导芯层厚度为3.5~4.5μm;垂直耦合层(4)厚度为1~2μm;上波导芯层厚度为3.5~4.5μm;上波导上包层(6)厚度为3~5μm;上波导(8)和下波导(7)之间的夹角为0.2°~1.8°。 A waveguide optical switch, including lower waveguide core layer, vertical coupling layer, the waveguide core, the waveguide cladding layer, lower waveguide lower cladding layer, wherein the lower waveguide core includes a lower side of the waveguide and the lower waveguide cladding layer, including the waveguide core waveguide and the waveguide side cladding layer; wherein the lower waveguide lower cladding layer (2), lower waveguide-side cladding layer (3), the vertical coupling layer (4), the waveguide-side cladding layer (5) , the waveguide cladding (6) are made of polyester polymers BCB; the waveguide (8) and the lower waveguide (7) are made of a ring of rubber-like polymer Su8; lower waveguide lower cladding layer (2) having a thickness of 3 ~ 5μm; lower waveguide core layer having a thickness of 3.5 ~ 4.5μm; vertical coupling layer (4) having a thickness of 1 ~ 2μm; on the waveguide core layer having a thickness of 3.5 ~ 4.5μm; upper waveguide cladding layer (6) having a thickness of 3 ~ 5μm ; angle (7) between the waveguide (8) and lower waveguide is 0.2 ° ~ 1.8 °.
2、 根据权利要求1所述的波导光开关,其特征在于下波导下包层(2)厚度为4ym;下波导芯层厚度为3.8um;垂直耦合层(4)厚度为1.5um;上波导芯层厚度为3. 8 um;下波导(7)和上波导(8)之间的夹角为0.7°;上波导上包层(6)厚度为4um。 On the waveguide; 2, according to claim 1, wherein the waveguide switch, characterized in that the lower waveguide lower cladding layer (2) having a thickness of 4ym; lower waveguide core layer having a thickness of 3.8um; vertical coupling layer (4) having a thickness of 1.5um the core layer having a thickness of 3. 8 um; angle (8) between the lower waveguide (7) and the waveguide is 0.7 °; the waveguide cladding layer (6) having a thickness of 4um.
3、 一种权利要求1所述的波导光开关的制作方法,其特征在于包括下列步骤:a、 对基底硅片1表面进行常规清洁处理;b、 在步骤a处理过的基底表面上旋涂BCB作为下波导下包层(2);旋涂采用匀胶机; 匀胶机旋转速度为500〜700转/分时旋涂5〜9s,然后匀胶机旋转速度为1000〜2000转/分时旋涂8〜12s;C、对经过步骤b得到的片子进行坚膜处理;坚膜采用烘箱,对烘箱先抽真空,然后通入氮气;在常压氮气条件下,温度205〜215'C时烘38〜42分钟,自然降温至室温后取出片子;d、 在经过步骤c得到的片子上表面旋涂一层Su8,并进行前烘;旋涂采用匀胶机,匀胶机旋转速度为500〜700转/分时旋涂5〜7s,然后匀胶机旋转速度为4000〜6000转/分时旋涂5〜7s;前烘采用烘箱,在暗室中常压条件下,温度65〜70'C时烘8〜12分钟,然后温度95〜10(TC时烘8〜12分钟,自然降温至室温后取出片子;e、 对经过步骤d得到的片子上表面进行光刻,刻出下波导(7)图形后进行显影和后烘; 显影时间为25s〜35s;后烘采用烘箱,在暗室中常压条件下,温度65〜7(TC时烘8〜12分钟,然后温度95〜10(TC时烘8〜12分钟,自然降温至室温后取出片子;f 、在经过步骤e得到的片子上表面旋涂一层BCB并进行坚膜处理;旋涂采用匀胶机, 匀胶机旋转速度为500〜700转/分时旋涂5〜9s,然后匀胶机旋转速度为2000〜4000转/分时旋涂8〜12s;坚膜采用烘箱,对烘箱先抽真空,然后通入氮气;在常压氮气条件下,温度205〜215t:时烘38〜42分钟,然后温度245〜255。C时烘58〜62分钟,自然降温至室温后取出片子;g、 在经过步骤f得到的片子上表面旋涂一层Su8并进行前烘;旋涂采用匀胶机,匀胶机旋转速度为500〜700转/分时旋涂5〜7s,然后旋转速度为4000〜6000转/分时旋涂5〜 7s;前烘采用烘箱,在暗室中常压条件下,温度65〜70'C时烘8〜12分钟,然后温度95〜 10(TC时烘8〜12分钟,自然降温至室温后取出片子;h、 对经过步骤g得到的片子上表面进行光刻,刻出上波导(8)图形后进行显影和后烘; 显影时间为25s〜35s;后烘采用烘箱,在暗室中常压条件下,温度65〜7(TC时烘8〜12分钟,然后温度95〜100'C时烘8〜12分钟,自然降温至室温后取出片子;i、 在经过步骤h得到的片子上表面旋涂BCB;旋涂采用匀胶机,匀胶机旋转速度为500〜 700转/分时旋涂5〜9s,然后匀胶机旋转速度为1000〜2000转/分时旋涂8〜12s;j、对经过步骤i得到的片子进行坚膜处理;坚膜采用烘箱,对烘箱先抽真空,然后通入氮气;在常压氮气条件下,温度205〜215'C时烘38〜42分钟,然后温度245〜255'C时烘58〜62分钟,自然降温至室温后取出片子;k、在经过步骤j处理的片子上表面蒸镀金属电极(9)。 3, 1, wherein the method of manufacturing the optical waveguide switch of claims, comprising the steps of: a, on a surface of the substrate wafer cleaning routine; the b, in step a treated substrate surface spin coating BCB as the lower waveguide lower cladding layer (2); spin coating using a spin coater; a rotational speed of a spin coater 500~700 rev / timeshare spin coating 5~9s, then spin coater rotation speed of 1000~2000 rev / min When spin coating 8~12s; C, after step b to be hardened to give the film processing; hardening using the oven, on the oven evacuated and then purged with nitrogen; nitrogen under atmospheric conditions, temperature 205~215'C When baking 38~42 minutes, remove the film after natural cooling to room temperature; d, in step c obtained through the surface of the wafer and spin-coated Su8, and before baking; spin coating using a spin coater, a spin coater rotation speed 500~700 rev / timeshare spin coating 5~7s, then spin coater rotation speed of 4000~6000 rev / timeshare spin coating 5~7s; use before baking oven, in a dark room under atmospheric conditions, temperature 65~70 'bake C when 8~12 minutes, then the temperature of 95~10 (TC bake 8~12 minutes when taken out of the film after natural cooling to room temperature; e, after step d of the film surface was subjected to photolithography, carved lower waveguide (7) after image development and post-baking; developing time is 25s~35s; after drying using an oven, in a dark room under ambient conditions, the temperature 65~7 (TC bake 8~12 minutes, the temperature was then 95~10 ( TC bake at 8~12 minutes, remove the film after natural cooling to room temperature; f, after step e obtained on the surface of the film spin-coated BCB and hardening treatment; spin coating using a spin coater, a spin coater rotation speed is 500~700 rev / timeshare spin coating 5~9s, then spin coater rotation speed 2000~4000 rev / timeshare spin coating 8~12s; Kennedy membrane using an oven to oven evacuated and then purged with nitrogen; nitrogen at atmospheric pressure conditions, temperature 205~215t: bake when 38~42 minutes, then bake 58~62 min temperature 245~255.C, remove the film after natural cooling to room temperature; g, the film obtained through step f in and spin-coated on the surface before Su8 and bake; spin coating using a spin coater, a spin coater and a rotational speed of 500~700 rev / timeshare spin coating 5~7s, then the rotational speed of 4000~6000 rev / timeshare spin After using the oven before baking, atmospheric conditions, temperature 65~70'C bake 8~12 minutes in the dark, and then the temperature 95~ 10 (TC bake 8~12 minutes, the natural cooling to room temperature; Tu 5~ 7s Remove the film; h, after step g on the surface of the resulting film lithography, and developed and after baking carve the waveguides (8) after the graphic; developing time is 25s~35s; after using the oven drying, atmospheric pressure in a dark room Under the conditions, the temperature 65~7 (TC bake 8~12 minutes, then bake 8~12 min temperature 95~100'C, natural cooling to room temperature, remove the film after; i, the surface spin on the film obtained after step h Tu BCB; spin coating using a spin coater, a spin coater 500~ rotational speed of 700 rev / timeshare spin coating 5~9s, then spin coater rotation speed of 1000~2000 rev / timeshare spin coating 8~12s; j , i get to go through the steps of the film were hardening treatment; hardening using the oven, on the oven evacuated and then purged with nitrogen; nitrogen under atmospheric conditions, temperature 205~215'C bake 38~42 minutes, then 245~255'C 58~62 minutes when the temperature bake, natural cooling to room temperature after removal of the film; k, j on the wafer surface treated after step vapor-deposited metal electrode (9).
Description  Langue du texte original : Chinois

波导光开关及其制作方法 Waveguide optical switch and its manufacturing method

技术领域 Technical Field

本发明涉及一种波导光开关,特别涉及一种三维垂直耦合型波导光开关及其制作方法。 The present invention relates to a waveguide optical switch, and more particularly to a three-dimensional vertical coupling type waveguide switch its production methods. 背景技术 Background

传统的波导光开关局限于二维平面集成结构,对微制作技术而言它能够实现较高的精确度。 Conventional waveguide optical switch limited to two-dimensional planar integrated structure, in terms of micro-production technology that can achieve high accuracy. 但是,在二维平面结构的波导光开关中,电极不能淀积在一个波导的正顶部,而且它也非常靠近另一个波导,因而电极会同时影响到两个波导,从而需要较高的电极驱动功率。 However, in the two-dimensional structure of the waveguide optical switches, the electrodes can not be deposited on top of a waveguide positive, but it's also very close to another waveguide, thus electrode will also affect the two waveguides, which require a higher electrode driving power.

随着三维集成光学的发展,光电子领域科技工作者越来越多地关注三维垂直耦合型光波导器件的研究。 With the development of three-dimensional integrated optics, photonics field scientists study more and more attention to the three-dimensional vertical coupling type optical waveguide device. (Keil N , Weinert C , Wirges W , et al. Thermo-optical coupler switches using hybrid polymer/silica integration technology [J]. Electron. Lett, 2000 , 36 (5): 430-431.)报道了一种混合式垂直耦合波导光开关,其采用四层膜结构,从基底硅片至金属电极依次为下波导芯层、垂直耦合层(公共包层)、上波导芯层、上波导上包层。 (. Keil N, Weinert C, Wirges W, et al Thermo-optical coupler switches using hybrid polymer / silica integration technology [J] Electron Lett, 2000, 36 (5):... 430-431) reported a mixed Vertical coupled waveguide optical switch, which uses four membrane structure, from a base of silicon to metal electrodes were lower waveguide core layer, vertical coupling layer (public cladding), the waveguide core, the waveguide cladding. 下波导芯层包括下波导及下波 Lower waveguide core waveguide includes a lower and lower wave

导侧包层,上波导芯层包括上波导及上波导侧包层;下波导芯层、垂直耦合层(公共包层)、 Guide side cladding layer, the waveguide comprises a waveguide core and cladding on the waveguide side; lower waveguide core layer, vertical coupling layer (public cladding),

上波导芯层、上波导上包层选用的材料依次为二氧化硅(sio」)、硅(sn、氟丙烯酸酯 On the waveguide core layer on the cladding layer of the waveguide material chosen in the order of silica (sio "), silicon (sn, fluoro-acrylate

(fluoracrylate)、氟丙烯酸酯(fluoracrylate)。 (Fluoracrylate), fluoro-acrylate (fluoracrylate). 下波导为位于下波导侧包层内的矩形直波导,上波导为位于上波导侧包层内的矩形直波导,两者之间的相对夹角为0.4。 Lower waveguide is a rectangular waveguide located within the lower side cladding straight waveguide, the waveguide is located on a rectangular waveguide side cladding layer straight waveguide, the relative angle between the two is 0.4. . 这种波导光开关由于下波导由二氧化硅构成,上波导是由聚合物组成,垂直耦合层(公共包层)由硅组成,因而存在制作工艺较复杂,制作成本高,开关驱动功率高,响应速度慢,消光比低, 插入损耗大等缺点。 Since under such a waveguide optical switch waveguide composed of silica, the waveguide is made of a polymer composition, vertical coupling layer (public cladding) composed of silicon, so there is relatively complicated production process, high production costs, high power switch driver, slow response, low extinction ratio, insertion loss and other shortcomings. 发明内容 DISCLOSURE

本发明要解决的技术问题是提供一种制作工艺简单、制作成本低,并且开关驱动功率低、 响应速度快、消光比高、插入损耗小的波导光开关及其制作方法。 The technical problem to be solved is to provide a simple manufacturing process, low production cost, and low power switch drive, fast response, high extinction ratio, insertion loss of the optical waveguide switch its production methods.

本发明的波导光开关采用五层膜结构,从基底硅片至金属电极依次为下波导下包层、下波导芯层、垂直耦合层、上波导芯层、上波导上包层:其中下波导芯层包括下波导及下波导侧包层,上波导芯层包括上波导及上波导侧包层;下波导下包层、下波导侧包层、垂直耦合层、上波导侧包层、上波导上包层均采用聚酯类聚合物BCB;上波导和下波导均采用环化橡胶类聚合物Su8。 Waveguide optical switch of the present invention employs a five-film structure from the silicon substrate to the metal electrode in order to lower waveguide lower cladding layer, the lower waveguide core layer, vertical coupling layer, the waveguide core, the waveguide cladding: where lower waveguide including lower waveguide core and the lower side cladding layer waveguide, the waveguide core includes a waveguide and the waveguide side cladding layer; a lower waveguide lower cladding layer, a lower waveguide-side cladding layer, vertical coupling layer on the waveguide side cladding layer, the waveguide the upper cladding layer are made of polyester polymers BCB; upper and lower waveguide ring waveguides are made of rubber polymer Su8. 所述下波导下包层厚度为3〜5 um;下波导芯层厚度为3. 5〜4. 5 um;垂直耦合层厚度为1〜2um;上波导芯层厚度为3,5〜4.5um;上波导上包层厚度为3〜5 um;上波导和下波导之间的夹角为0.2"〜1.8"。 The lower waveguide lower cladding layer having a thickness of 3~5 um; lower waveguide core layer having a thickness of 3. 5~4 5 um;. Vertical coupling layer thickness 1~2um; the waveguide core thickness 3,5~4.5um ; the waveguide cladding thickness 3~5 um; the angle between the waveguide and the lower waveguide is 0.2 "~1.8."

所述波导光开关制作方法具体包括以下步骤: The waveguide optical switch manufacturing method includes the following steps:

a、 对基底硅片1表面进行常规清洁处理; a, on a surface of the substrate wafer cleaning routine;

b、 在歩骤a处理过的基底表面上旋涂BCB作为下波导下包层2;旋涂采用匀胶机;匀胶机旋转速度为500〜700转/分时旋涂5〜9s,然后匀胶机旋转速度为1000〜2000转/分时旋涂8〜12s; b, ho step in the surface of a treated substrate was spin-coated BCB as the lower waveguide lower cladding layer 2; spin coating using a spin coater; a spin coater and a rotational speed of 500~700 rev / timeshare spin coating 5~9s, then the rotational speed of spin coater 1000~2000 rev / timeshare spin coating 8~12s;

C、对经过步骤b得到的的片子进行坚膜处理;坚膜采用烘箱,对烘箱先抽真空,然后 C, for the film after step b obtained were hardening treatment; Kennedy membrane using an oven to oven evacuated, then

通入氮气;在常压氮气条件下,温度205〜215。 Nitrogen gas; nitrogen under atmospheric conditions, temperature 205~215. C时烘38〜42分钟,自然降温至室温后取出片子; C bake 38~42 minutes, the natural cooling to room temperature after removal of the film;

d、 在经过歩骤c得到的片子上表面旋涂一层Su8,并进行前烘;旋涂采用匀胶机,匀胶机旋转速度为500〜700转/分时旋涂5〜7s,然后匀胶机旋转速度为4000〜6000转/分时旋涂5〜7s;前烘采用烘箱,在暗室中常压条件下,温度65〜7(TC时烘8〜12分钟,然后温度95〜10(TC时烘8〜12分钟,自然降温至室温后取出片子; d, in step c ho obtained through the surface of the film spin-coated Su8, and before baking; spin coating using a spin coater, a spin coater and a rotational speed of 500~700 rev / timeshare spin coating 5~7s, then the rotational speed of spin coater 4000~6000 rev / timeshare spin coating 5~7s; use before baking oven, in the darkroom, atmospheric conditions, temperature 65~7 (TC bake 8~12 minutes, the temperature was then 95~10 (TC 8~12 minutes when baked, remove the film after natural cooling to room temperature;

e、 对经过步骤d得到的片子上表面进行光刻,刻出下波导7图形后进行显影和后烘; 显影时间为25s〜35s;后烘采用烘箱,在暗室中常压条件下,温度65〜7(TC时烘8〜]2分钟,然后温度95〜10(TC时烘8〜12分钟,自然降温至室温后取出片子; e, of the films obtained after step d surface lithography, carved lower waveguide 7 graphics development and post-baking; developing time is 25s~35s; using oven after baking, in a dark room under atmospheric conditions, a temperature of 65 ~ 7 bake (TC when 8~] 2 minutes, then bake temperature 95~10 8~12 minutes (TC when taken out of the film after natural cooling to room temperature;

f 、在经过步骤e得到的片子上表面旋涂一层BCB并进行坚膜处理;该BCB将下波导7 包住,下波导7与下波导侧包层3构成下波导芯层,下波导芯层上表面的BCB为垂直耦合层4;旋涂采用匀胶机,匀胶机旋转速度为500〜700转/分时旋涂5〜9s,然后匀胶机旋转速度为2000〜4000转/分时旋涂8〜12s;坚膜采用烘箱,对烘箱先抽真空,然后通入氮气; 在常压氮气条件下,温度205〜215。 f, after step e on the surface of the resulting spin-coated BCB film and film processing firm; the BCB would wrap lower waveguide 7, 7 and lower waveguide at the waveguide side cladding layer 3 is formed under the waveguide core, lower waveguide core BCB layer surface is vertical coupling layer 4; spin coating using a spin coater, a spin coater and a rotational speed of 500~700 rev / timeshare spin coating 5~9s, then spin coater rotation speed 2000~4000 rev / min When spin coating 8~12s; Kennedy membrane using an oven, on the oven evacuated and then purged with nitrogen; nitrogen under atmospheric conditions, temperature 205~215. C时烘38〜42分钟,然后温度245〜255。 When baked C 38~42 minutes, then the temperature 245~255. C时烘58〜62 分钟,自然降温至室温后取出片子: C bake at 58~62 minutes, remove the film after natural cooling to room temperature:

g、 在经过步骤f得到的片子上表面旋涂--层Su8并进行前烘;旋涂采用匀胶机,^J胶 g, and the film obtained after step f spin-coated surface - layer Su8 and before baking; spin coating using a spin coater, ^ J glue

机旋转速度为500〜700转/分时旋涂5〜7s,然后旋转速度为4000〜6000转/分时旋涂5〜 7s;甜烘采用烘箱,在暗室中常压条件下,温度65〜70。 Rotational speed of 500~700 rev / timeshare spin coating 5~7s, then the rotational speed of 4000~6000 rev / timeshare spin coating 5~ 7s; sweet bake oven use in the dark, atmospheric conditions, temperature 65~ 70. C时烘8〜12分钟,然后温度95〜 10(TC时烘8〜12分钟,自然降温至室温后取出片子; C bake at 8~12 minutes, then the temperature 95~ 10 (TC bake 8~12 minutes when taken out of the film after natural cooling to room temperature;

h、 对经过步骤g得到的片子上表面进行光刻,刻出上波导8图形后进行显影和后烘:显影时间为25s〜35s;后烘采用烘箱,在暗室中常压条件下,温度65〜7CTC时烘8〜12分钟,然后温度95〜10(TC时烘8〜12分钟,自然降温至室温后取出片子; h, on a through step g to give the film surface lithography, and developed and after baking carve the waveguides after 8 graphics: the development time was 25s~35s; using oven after baking, in a dark room under atmospheric conditions, a temperature of 65 ~7CTC bake at 8~12 minutes, then bake temperature 95~10 8~12 minutes (TC when taken out of the film after natural cooling to room temperature;

i、在经过步骤h得到的片子上表面旋涂BCB;旋涂采用匀胶机,匀胶机旋转速度为500〜 700转/分时旋涂5〜9s,然后匀胶机旋转速度为1000〜2000转/分时旋涂8〜12s; i, h obtained in the step after the film surface was spin-coated BCB; spin coating using a spin coater, a spin coater 500~ rotational speed of 700 rev / timeshare spin coating 5~9s, then the rotational speed of spin coater 1000~ 2000 r / min spin coating 8~12s;

j、对经过步骤I得到的片子进行坚膜处理;坚膜采用烘箱,对烘箱先抽真空,然后通入氮气;在常压氮气条件下,温度205〜215。 j, I get to go through the steps of the film were hardening treatment; hardening using the oven, on the oven evacuated and then purged with nitrogen; nitrogen under atmospheric conditions, temperature 205~215. C时烘38〜42分钟,然后温度245〜255。 When baked C 38~42 minutes, then the temperature 245~255. C吋烘58〜62分钟,自然降温至室温后取出片子: C inch baking 58~62 minutes, remove the film after natural cooling to room temperature:

k、在经过歩骤j处理的片子上表面蒸镀金属电极9,金属电极9在位于上波导8和下波导7交叉处的上方并且其纵向与上波导8相同。 k, j step in the process after ho film surface deposited metal electrode 9, 8 and 9 at the top of the waveguide at the waveguide 7 and is located at the intersection of the longitudinal and the waveguide of the same metal electrode 8.

有益效果:本发明制作该波导光开关所选用的材料全部是聚合物材料,因此只需要一种 Beneficial effects: the production of the present invention, the optical waveguide switch all of the selected material is a polymeric material, and therefore only need a

技术,即聚合物技术,从而降低了技术上的要求,制作工艺简单,成本低;电极淀积在上波 Technology, namely polymer technology, which reduces the technical requirements, the production process is simple, low cost; an electrode is deposited on the wave

导的顶部,下波导和上波导被垂直耦合层隔离,降低了电极驱动功率,并且响应速度快、消光比高、插入损耗小。 The top of the guide, under the waveguide and the waveguide is isolated vertical coupling layer, reducing the electrode driving power and fast response, high extinction ratio, insertion loss. 本发明的波导光开关可以作为基本单元应用于大规模集成光波导回路中。 Waveguide optical switch of the present invention can be applied to large-scale as the basic unit integrated optical waveguide circuit.

下面结合附图和具体实施方式对本发明作进一步详细说明。 Below in conjunction with the accompanying drawings and specific embodiments of the present invention will be described in further detail. 附图说明 Brief Description

图1为本发明结构示意图。 Figure 1 Schematic diagram of the present invention. 图中1基底硅片,2下波导下包层,3下波导侧包层,4垂直耦合层,5上波导侧包层,6上波导上包层,7下波导,8上波导,9金属电极。 FIG. 1 substrate wafer, lower waveguide lower cladding layer 2, 3 lower waveguide-side cladding layer, vertical coupling layer 4 and 5 on the waveguide side cladding layer, the waveguide cladding 6, 7 under the waveguide, the waveguide 8, 9 metal electrodes.

图2本发明上波导8和下波导7相对位置示意图。 7 a schematic view of the relative position of the waveguide 8 and the lower waveguide 2 of the present invention. 图中7下波导,8上波导,77、 77 '、88、 88'为端口。 Figure 7 lower waveguide, the waveguide 8, 77, 77 ', 88, 88' for the port.

具体实施方式 DETAILED DESCRIPTION

如图1所示,本发明采用五层膜结构,从基底硅片1至金属电极9依次为下波导下包层2、下波导芯层、垂直耦合层4 (公共包层)、上波导芯层、上波导上包层6。 1, the present invention uses five-layer film structure, the silicon wafer 1 from the base to the metal electrode 9 were lower waveguide lower cladding layer 2, the lower waveguide core layer, vertical coupling layer 4 (common cladding), the waveguide core layer, the waveguide cladding layer 6. 基底硅片i采用的是高纯度硅片。 I is a silicon substrate using high-purity silicon. 下波导下包层2选用聚酯类聚合物BCB,厚度可以为3um、 4ym或者5 ym。 Lower waveguide lower cladding layer 2 selection polyester polymers BCB, the thickness can be 3um, 4ym or 5 ym. 下波导芯层厚度为3.6um、 3. 8 u ra、 4. 0 tun、或者4.2ym,包括位于该层内的下波导7及其周围的下波导侧包层3,下波导7采用环化橡胶类聚合物Su8,下波导侧包层3采用聚酯类聚合物BCB。 Lower waveguide core layer having a thickness of 3.6um, 3. 8 u ra, 4. 0 tun, or 4.2ym, includes a lower waveguide 7 and around the lower cladding layer 3 side of the waveguide layer, the lower waveguide 7 cyclized using rubber-like polymer Su8, lower waveguide-side cladding layer 3 polyester polymer BCB. 垂直耦合层4选用聚酯类聚合物BCB,厚度为1. 2 ym、 i. 5 um、 1. 6 um 或者1.9ym。 Vertical coupling layer 4 is chosen polyester polymers BCB, the thickness of 1. 2 ym, i. 5 um, 1. 6 um or 1.9ym. 上波导芯层厚度为3. 6um、 3. 8"m、 4. 0 um或者4. 2 y ni,包括位于该层内的上波导8及其周围的上波导侧包层5,上波导8采用环化橡胶类聚合物Su8,上波导侧包层5采用聚酯类聚合物BCB。下波导7和上波导8均为矩形直波导,上波导8和下波导7之间由垂直耦合层4隔离,两者之间的夹角为0. 2 ° 、 0. 7 n、 1. 5 6或者1. 8"。 The thickness of the waveguide core 3. 6um, 3. 8 "m, 4. 0 um or 4. 2 y ni, including 8 located on and around the waveguide on the waveguide side cladding layer 5 is the layer within the waveguide 8 using cyclized rubber polymer Su8, the waveguide side cladding layer 5 of polyester polymer BCB. lower waveguide 7 and 8 are rectangular waveguide straight waveguide, the waveguide between 7 and 8 and the lower waveguide layer 4 by the vertical coupling isolation, the angle between the two of 0. 2 °, 0. 7 n, 1. 5 6 or 1.8. " 上波导上包层6选用聚酯类聚合物BCB,厚度为3um、 4nm或者5"m。金属电极9位于上波导上包层6表面上的上波导8和下波导7交叉处,并且其纵向与上波导8相同。本发明的工作过程:如图2所示,当金属电极9没有施加电流时,从端口77 (或端口88)输入的光信号经下波导7 (或上波导8)传输后由端口77'或(端口88')输出。此时上波导8和下波导7之间没有光波的耦合,光波的这种传输方式称为关闭状态。当给金属电极9施加电流时,上波导8、下波导7和垂直耦合层4被加热,温度上升,热光效应引起波导折射率发生变化,从端口77 (或端口88)输入的部分光信号会经过下波导7 (或上波导8) 和垂直耦合层4耦合进入上波导8 (或下波导7),然后由端口88'(或端口77')输出。 光波的这种传输方式称为开启状态(cross state)状态。所述的步骤b,旋涂条件最佳为匀胶机旋转速度500转/分时旋涂7s,然后匀胶机旋转速度为1000转/分时旋涂10s。所述的步骤c,坚膜条件中,温度和时间条件可以选择温度21(TC时烘40分钟。所述的步骤d,旋涂条件最佳为匀胶机旋转速度500转/分时旋涂7s,然后匀胶机旋转速度为4000转/分时旋涂7s;前烘条件最佳为在暗室中常压条件下,温度65'C时烘10分钟, 然后温度95。C时烘IO分钟;所述的步骤e,显影时间最佳为30s;后烘条件最佳为在暗室中常压条件下,温度65'C 时烘10分钟,然后温度95'C时烘10分钟。所述的步骤f,旋涂条件最佳为匀胶机旋转速度500转/分时旋涂7s,然后匀胶机旋转速度为3000转/分时旋涂10s;坚膜条件中,温度和时间条件可以选择温度21(TC时烘40分钟,然后温度250°C时烘60分钟;所述的步骤g,旋涂条件最佳为匀胶机旋转速度50O转/分时旋涂7s,然后旋转速度为400()转/分时旋涂7s;前烘条件最佳为在暗室中常压条件下,温度65'C吋烘10分钟,然后温度95。C时烘IO分钟。所述的步骤h,显影时间最佳为30s;后烘条件最佳为在暗室中常压条件下,温度65'C 时烘10分钟,然后温度95'C时烘10分钟。所述的步骤i,旋涂条件最佳为匀胶机旋转速度500转/分时旋涂7s,然后匀胶机旋转速度为1000转/分时旋涂10s。所述的步骤j,坚膜条件中,温度和时间条件可以选择温度21(TC时烘40分钟,然后f显度250'C时烘60分钟。 The waveguide cladding 6 selection polyester polymers BCB, thickness 3um, 4nm or 5 "m. Metal electrode 9 is located on the upper waveguide cladding on the waveguide 8 and the lower waveguide 7 at the intersection of 6 on the surface, and having a longitudinal 8 Working with the same procedure on the waveguide of the present invention: 2, when no current is applied to the metal electrode 9 from the port 77 (or port 88) of the optical signal at the input waveguide 7 (or the waveguide 8) Transmission After the port 77 'or (port 88') output. In this case the waveguide 8 and under no such transmission waveguide coupling of light waves, light waves called off between 7 when a current is applied to the metal electrode 9, on waveguide 8, 7 and vertical coupling lower waveguide layer 4 is heated, the temperature rose, the thermo-optic effect caused by changes in the refractive index of the waveguide, from port 77 (or port 88) Enter the part of the optical signal will pass through the waveguide at the waveguide 7 8 (or on ) and coupled vertical coupling layer 4 into the upper waveguide 8 (or lower waveguide 7), and then by the port 88 '(or port 77') output. This transmission of light waves called on state (cross state) state said step b, the best conditions for the spin coating, spin coating machine rotation speed of 500 rev / timeshare spin coating 7s, then spin coater rotation speed of 1000 rev / timeshare spin coating step c 10s. said, hardening conditions, temperature and time can select a temperature of 21 (bake 40 minutes when TC step according to d, spin coating, the best conditions for the spin coating machine rotation speed of 500 rev / timeshare spin coating 7s, then spin coater rotational speed of 4000 rpm / timeshare spin coating 7s; before baking the best conditions for the atmospheric conditions, bake 10 minutes at a temperature of 65'C in a dark room, then bake IO min temperature 95.C; said step e, the best development time the 30s;. After baking the best conditions for the atmospheric conditions, bake 10 minutes at a temperature of 65'C in a dark room, then bake 10 minutes at a temperature of 95'C said step f, spin coating, optimum conditions for the spin coating rotational speed 500 rev / min spin coating 7s, then the rotational speed of spin coater was 3000 rpm / min spin coating 10s; hardening conditions, temperature and time can be selected temperature 21 (TC bake 40 minutes, the temperature was then 250 ° C bake for 60 minutes; said step g, spin coating, spin coating conditions are optimal for the rotational speed 50O r / time spin coating 7s, and a rotational speed of 400 () r / time spin coating 7s; ago optimal conditions for the drying in the dark under ambient conditions, the temperature of 65'C inch bake 10 minutes, then baked at a temperature of 95.C minute IO said step h, the optimum developing time is 30s;. After best drying conditions step under atmospheric conditions, bake 10 minutes at a temperature of 65'C in a dark room, then bake 10 minutes at a temperature of 95'C. said i, spin coating, optimum conditions for the spin coating machine rotation speed of 500 rev / time-sharing spin coating 7s, then the rotational speed of spin coater was 1000 rpm / min spin coating 10s. said step j, hardening conditions, temperature and time can be selected at 21 (40 minutes bake time TC, then significant degree f 250'C bake 60 minutes. 由于Su8本身既是可作为芯层聚合物材料,又可作为光刻胶。 Since Su8 itself both as a core polymer material, but also as a photoresist. 这样就省去了RIE以及蒸铝掩膜等复杂的工艺过程,简化了器件制备流程。 This process eliminates the need for complex masking RIE and steamed aluminum, etc., simplifies the preparation process of the device. 本发明不局限于上述具体实施方式,所属技术领域的技术人员根据上述实施方式很容易联想到下波导下包层、下波导侧包层、垂直耦合层、上波导侧包层及上波导上包层还可以选用EPOXY、 PMMA、 ZP49等其他聚酯类聚合物;下波导和上波导还可以采用BCB、 ZP51、 PMMA等聚酯类聚合物。 The present invention is not limited to the above embodiment, the skilled in the art will readily associate to the next waveguide lower cladding layer according to the above embodiment, the lower waveguide-side cladding layer, vertical coupling layer on the waveguide side cladding layer and the upper cladding on the waveguide layer can also choose other polyesters EPOXY, PMMA, ZP49 and other polymers; lower waveguide and the waveguide can also use BCB, ZP51, PMMA and other polyester polymers.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
CN1135426C30 mars 200021 janv. 2004布里斯托尔大学Optical crosspoint switch with vertical coupled waveguide structure and its control method and array
US58548667 juin 199529 déc. 1998Texas Instruments IncorporatedMulti-level architecture for optical time delays in integrated circuits
US638537622 oct. 19997 mai 2002The Regents Of The University Of CaliforniaFused vertical coupler for switches, filters and other electro-optic devices
US659321229 oct. 200115 juil. 2003The United States Of America As Represented By The Secretary Of The NavyMethod for making electro-optical devices using a hydrogenion splitting technique
US70652663 oct. 200520 juin 2006Infinera CorporationBenzocyclobutene polymer (BCB) as a passivation layer for optical passive elements
Classifications
Classification internationaleG02B6/13, G02B6/35, G02B6/12
Événements juridiques
DateCodeÉvénementDescription
16 janv. 2008C06Publication
5 mars 2008C10Request of examination as to substance
24 déc. 2008C14Granted
12 oct. 2011C17Cessation of patent right