CN100454216C - 受测试集成电路的预测性自适应电源 - Google Patents

受测试集成电路的预测性自适应电源 Download PDF

Info

Publication number
CN100454216C
CN100454216C CNB038064588A CN03806458A CN100454216C CN 100454216 C CN100454216 C CN 100454216C CN B038064588 A CNB038064588 A CN B038064588A CN 03806458 A CN03806458 A CN 03806458A CN 100454216 C CN100454216 C CN 100454216C
Authority
CN
China
Prior art keywords
signal
size
clock signal
edge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038064588A
Other languages
English (en)
Other versions
CN1643389A (zh
Inventor
本杰明·N·埃尔德里奇
查尔斯·A·米勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FormFactor Inc
Original Assignee
FormFactor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/062,999 external-priority patent/US7342405B2/en
Application filed by FormFactor Inc filed Critical FormFactor Inc
Publication of CN1643389A publication Critical patent/CN1643389A/zh
Application granted granted Critical
Publication of CN100454216C publication Critical patent/CN100454216C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31721Power aspects, e.g. power supplies for test circuits, power saving during test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31924Voltage or current aspects, e.g. driver, receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31903Tester hardware, i.e. output processing circuits tester configuration
    • G01R31/31905Interface with the device under test [DUT], e.g. arrangements between the test head and the DUT, mechanical aspects, fixture

Abstract

一主电源,其通过通道电阻向一受测试集成电路器件(DUT)的功率终端提供电流。IC内的晶体管响应时钟信号边沿而开关,测试期间,在提供给DUT的时钟信号边沿之后,该DUT在功率输入终端对电流的需求暂时性地增加。为了限制功率输入终端处的电压变化(噪声),一辅助电源向该功率输入终端提供一附加电流脉冲,以满足每个时钟信号周期期间所增加的需求。该电流脉冲幅值是一个关于该时钟周期期间电流需求的预测增长与由一反馈电路控制的用来限制DUT功率输入终端处发生的电压变化的自适应信号幅值的函数。

Description

受测试集成电路的预测性自适应电源
技术领域
本发明大体上讲,涉及用来测试集成电路的系统,特别而言,涉及一种用来降低由受测试集成电路执行逻辑的状态转换所导致的受测试集成电路中的电源噪声的装置。
背景技术
一集成电路(IC)测试器可同时测试一组以半导体晶元上的管芯形式存在的IC。图1是一方框图,其图解阐明了一般的IC测试器10,该测试器10通过探针卡12连接到一组相似的受测试IC器件(DUT)14上,该等受测试IC器件14可形成于一半导体晶元上。测试器10使用弹簧针15或其它构件,将不同的输入与输出终端连接到探针卡12上的一组接点16上。探针卡12包括一组用于接触每个DUT 14的表面上的输入/输出(I/O)垫19的探针18并且提供将接点16链接至探针18的传导性通道20。该等通道通过探针卡12,允许测试器10向DUT 14( )发送测试信号并允许其监控由DUT所产生的输出信号 因为数字集成电路通常包括时控的同步逻辑门来响应周期性主时钟信号(CLOCK)的脉冲,所以探针卡12也提供一通道22,通过它,测试器10可向每个DUT 14提供一CLOCK信号。该测试系统还包括用于在正测试DUT 14时向DUT 14供电的电源24并且探针卡12通过探针18将电源24连接到每个DUT 14的功率输入垫26。
DUT 14内的每个开关晶体管均具有一固有输入电容,并且为了开关晶体管,晶体管驱动器必须对晶体管的输入电容充电或放电。当驱动器对晶体管的输入电容充电时,其从电源24中引出充电电流。一旦晶体管的输入电容充满,则其驱动器只需提供一相对少量的保持晶体管的输入电容带电使得晶体管保持开或关所需的漏电流。在执行同步逻辑的DUT中,多数晶体管在每个CLOCK信号脉冲的边沿后迅速发生开关转换。这样,在每一CLOCK信号脉冲后,输入每个DUT 14的电源电流I1立即有一个暂时性地增长,以提供改变受测试器件(DUT)中不同晶体管开关状态所需的充电电流。此后在CLOCK信号循环周期中,在该等晶体管已改变状态之后,对电源电流I1的需求降低至一“静止的”稳定状态级别并且保持该级别直到下一CLOCK信号周期开始为止。
探针卡12通过信号通道28将电源24连接到每个DUT 14,该等信号通道28具有一固有电阻,在图1中由电阻R1表示。因为电源24的输出与DUT 14的功率输入26间存在一电压降,所以DUT 14的电源电压输入VB在某种程度上低于电源24的输出电压VA,而且虽然VA可以是调整完好的,但VB随电流I1的幅值变化。在每一CLOCK信号周期开始以后,为给开关晶体管输入电容充电所需的I1中的暂时性地增长,增加了经过R1而产生的电压降,从而暂时性地降低了VB。因为发生在每个CLOCK信号脉冲边沿后的电源电压VB的降低是一种噪声形式,其能造成对DUT 14性能的不利影响,所以期望限制其幅值与持续时间。可通过降低电源24与DUT 14间的通道28的电抗,例如通过增加导线尺寸或通过减小通道28的长度来限制噪声。但是实际上可减弱该电抗的量存在限制。
也可通过在每一DUT 14功率输入26附近的探针卡12上放置一电容器C1来降低电源噪声。图2图解阐明了当电容器C1不够大时,IC 14的功率输入26处的供电电压VB和电流I1响应输入IC 14的一个CLOCK信号脉冲的行为。注意在T1时刻在CLOCK信号的边沿之后,I1在静止级IQ上方的暂时性地上升造成了经过R1而产生的电压降的暂时性地增加,其接下来造成电源电压VB在其静止级VQ下方的暂时性地下降。
图3图解阐明了当电容器C1足够大时,VB和I1的行为。在CLOCK信号脉冲之间,当DUT 14是静止时,电容器C1充电至VB的静止级VQ。在T1时刻,随CLOCK信号的上升(或下降)沿之后,当DUT 14暂时需要更多电流时,电容器C1将一些其储存的电荷供应给DUT 14,从而降低了电源24为满足增长的需求而必须提供的附加电流量。正如图3中可见,C1的出现降低了经过R1而产生的暂时性地电压降的幅值并且从而降低了输入到DUT 14的供电电压VB的下降幅值。
对于电容器C1,为了充分限制VB中的变化,电容器必须足够大到能够向DUT 14供应所需电荷而且必须使其放置在DUT 14附近,以使C1与DUT 14间的通路电阻非常低。不幸的是,通常不方便或不可能在每个DUT 14的电源输入终端26附近的探针卡12上安放一大电容器。图4是一般探针卡12的简化俯视图。IC测试器10位于探针卡上方且包含DUT 14的晶元挂在探针卡下方。由于图1中IC测试器10的I/O终端分布在较受测试的晶元的表面积相对大的区域上,所以探针卡12提供了一相对大的上表面25来支持测试器所访问的接点16。另一方面,在晶元上接触DUT 14的探针卡12下侧的探针18(来显示)集中在探针卡12的一个相对小的中心区域的下面。
探针卡12的上表面25上的接点16与区域27下的探针18之间的通道电阻是每个接点16及其相应探针间的距离的一个函数。为了最小化电容器C1与DUT间的距离,应将电容器安装在小中心区域27附近(或上方)的探针卡12上。然而,当一个晶元包括大量欲测试的IC或包括一个具有大量稠密堆积的终端的IC时,不存在足够空间来安装足够数目的具有足够尺寸、足够接近中心区域27的电容器C1。
发明内容
在使用同步逻辑对受测试集成电路器件(DUT)测试期间,在输入到DUT的时钟信号的每一连续上升沿或下降沿之后,DUT在其对电源电流的需求上经历一暂时性地增加。DUT需要额外电流,以便当形成逻辑器件的晶体管经历响应时钟信号边沿的状态转换时,对晶体管的输入电容充电。本发明限制了DUT功率输入终端处的电源电压的改变,该电压改变是由随每个时钟信号脉冲后的电源电流的瞬态增加所致。本发明由此降低DUT的功率输入终端处的电源噪声。
按照本发明,每个时钟信号边沿之后,向DUT的功率输入终端供应充电电流脉冲,以连续地补偿测试期间由主电源供应的电流。由一辅助电源提供适当功率的充电电流脉冲,降低了对主电源增加其输出电流来满足DUT增长的需求的需要、尽管DUT对电流的需求已增加,但主电源的输出电流保持大体上为常数,主电源与DUT间的经过通道电阻而产生的电压降保持大体上为常数。这样DUT的功率输入终端处的供电电压也保持大体上为常数。
每一时钟信号边沿后,一DUT所需的附加充电电流量,根据其内部逻辑器件响应该时钟信号边沿所经历的状态变换的数量与本质的不同而不同。既然IC测试需要IC执行一预定状态来改变顺序,那么测试期间,IC的行为,包括其在每个时钟信号边沿期间对电流的需求,是可以预测的。因而在每一时钟信号边沿之后,调节电流脉冲的幅值,以适合随每个时钟信号脉冲后,DUT所需的附加充电电流的预测量。由一DUT随每个时钟信号边沿之后引出的电流增长的预测可基于,例如,由一类似DUT在类似测试条件下引出的电流的测量,或基于该DUT经历的一模拟测试的仿真。
虽然任何测试周期期间,可以用十分高的精确度来预测一特别类型的IC可能引出的充电电流量,但是由该类型的任意给定的DUT引出的实际附加充电电流量,可能在某种程度上较预测量高或低。IC制造中随机的工艺变化,使得所有IC在某种程度上行为相异,特别是考虑到状态改变期间其晶体管所需的充电电流量相异。为了补偿DUT间的该等差异,提供一反馈电路来监控DUT功率输入终端处的电压且适当地按一定比例放大或缩小该等电流脉冲的预测幅值,以使电压变动最小化。
这样,随每一时钟信号周期之后,供应到DUT功率输入终端的电流脉冲幅值是在该时钟信号周期期间,由该类型的DUT所引出的附加电流的预测幅值的一个函数,但是该预测脉冲幅值由反馈按比例放大或缩小,从而使预测适应每一正受测试的特殊DUT的充电电流需求的变化。
本发明说明书的结论部分,特别指出并明确声明本发明的标的物。但是所属领域的技术人员,通过参看相同符号表示相同元件的所附图式来阅读本说明书的其余部分,将最好地了解本发明的构成与其操作方法以及本发明进一步的优点及目标。
附图说明
图1是一图解阐明一典型的现有技术测试系统的方框图,该测试系统包括一通过一探针卡连接到一组受测试集成电路器件(DUT)的集成电路测试器;
图2和图3是图1中现有技术测试系统内信号行为的时序图;
图4是一图1中现有技术探针卡的简化的俯视图;
图5是一根据本发明的第一实施例图解阐明了一执行用于降低一组DUT电源输入噪声的系统的测试系统的方框图;
图6是一图解阐明图5中测试系统内的信号行为的时序图;
图7是一图解阐明在一校准过程中,图5中测试系统的操作的方框图;
图8是一图5中探针卡的简化的俯视图;
图9与图10是图解阐明执行本发明的第二和第三具体实施例的测试系统的方框图;
图11是一图解阐明图10中测试系统内的信号行为的时序图;
图12是一图解阐明一个执行本发明的第四具体实施例的测试系统的方框图;
图13是一图解阐明图12中测试系统内信号行为的时序图;
图14是一图解阐明本发明的第五具体实施例的方框图;
图15是一图解阐明本发明的第六具体实施例的方框图;
图16是一图解阐明本发明的第七具体实施例的方框图;和
图17是一图解阐明图16中电路内信号行为的时序图;
图18是一图解阐明本发明的第八具体实施例的方框图;
图19是一图解阐明本发明的第九具体实施例的方框图;
图20A图解阐明一实例性探针卡;
图20B图解阐明另一实例性探针卡;
图21是一图解阐明本发明的第九具体实施例的方框图;
图22是一图解阐明图21中反馈控制电路的一实例性具体实施例的方框图;
图23-25是图解阐明图21中电流脉冲发生器的另一实例性具体实施例的方框图;和
图26是一图解阐明本发明的一第十具体实施例的方框图。
具体实施方式
系统体系结构
图5以方框图形式图解阐明,一通过一探针卡32链接到一组以半导体晶元上管芯形式存在的相似的IC受测试器件(DUT)34上的集成电路(IC)测试器30。探针卡32包括一组用于访问DUT 34表面上的输入/输出终端垫39的探针37并且还包括将测试器30链接到探针37的信号通道46以允许IC测试器30将一时钟信号(CLOCK)和其它测试信号发送到DUT 14,并将DUT输出信号传送回测试器30,以使测试器可以监控DUT的行为。
探针卡34还通过穿过探针卡通向探针37并延伸到终端41的导线,将一主电源链接到每一DUT 34的一功率输入终端41。电源36产生一调整完好的输出电压VA并连续向DUT 34供应一电流I2。为图解阐明起见,图5将通过探针卡32,在主电源36与每一DUT34间的通道43的内电阻表示为R1。由于经过每个电阻R1而产生的电压降,所以每一DUT 34的输入供电电压VB通常在某种程度上较VA低。
按照本发明,安装在探针卡32上的一第一晶体管开关SW1,将一辅助电源38链接到一组安装在探针卡32中的电容器C2上。同样安装在探针卡32上的一组第二晶体管开关SW2将每一个电容C2链接到一相应的DUT 34的功率输入终端。图5中所示的电阻器R2,表示当开关SW2关闭时,探针卡32内每一电容器C2与DUT 34功率输入终端41间固有的信号通道电阻。IC测试器30提供一输出控制信号CNT1给SW1,提供一控制信号CNT2来控制开关SW2,提供控制数据CNT3来控制辅助电源38的输出电压VC的幅值。如下文详述,当需要满足任何预期的DUT对电源电流的增长时,辅助电源38、开关SW1与SW2、电容器C2充当了一辅助电流源来将一电流脉冲注入IC测试器30的每一受控制DUT的功率输入端子41。
电源噪声
DUT 34执行同步逻辑,其中开关晶体管形成逻辑门,其响应由测试器30提供的周期性主CLOCK信号脉冲而打开与关闭。每一开关晶体管具有一固有输入电容而且为了打开或关闭晶体管,其驱动器必须既为晶体管的输入电容充电,又使其放电。当DUT 34内的驱动器为晶体管的输入电容充电时,其增加必须供应给每一DUT的功率输入终端41的电流I1量。当晶体管的输入电容充满时,其驱动器只需供应相对小的漏电流量,以保持晶体管的输入电容带电,使得该晶体管保持开或关。这样,在每一CLOCK信号脉冲之后,输入到每一DUT 34的电源电流I1立即存在一暂时性地增加,以提供改变不同晶体管开关状态所必需的充电电流。在随后的一CLOCK信号周期中,该等晶体管已改变状态之后,对于电源电流的需求降至一“静止的”稳定状态级别并且保持该级别直到下一CLOCK信号周期开始为止。因为DUT 34在每一CLOCK信号周期开始所需的附加电流I1量,是根据该特定CLOCK信号周期期间,晶体管的开与关的数量与本质而定,所以对于充电电流的需求,可随周期不同而不同。
如果测试器30必须一直使开关SW1和SW2保持开启,那么主电源36将一直向每一DUT 34提供所有电流输入I1。在此情况下,由于在每一CLOCK信号脉冲之后,在每一DUT 34内增加了的开关行为而导致的电源电流I1的暂时性地增加,将导致主电源36与DUT 34之间的信号通道43的内电阻R1上的电压降暂时性增加。接下来此将导致DUT的功率输入终端41处电压VB的暂时性地下降。图2代表当SW2一直开启时,VB与I1的行为。由于发生在每一CLOCK信号脉冲边沿后的供应电压VB的下降是一种可反过来影响DUT34的性能的噪声形式,所以期望限制电压降的幅值。
预测电流补偿
按照本发明的一个具体实施例,IC测试器30控制辅助电源38和开关SW1与SW2的状态,以使电容器C2在每一测试周期开始时,都向DUT 34供应附加充电电流I3。仅在每一CLOCK信号周期的初始部分流动的充电电流I3,连同主电源的输出电流I2一起,向DUT 34提供电流输入I1。当充电电流I3提供与DUT 34内的开关晶体管的电容随一CLOCK信号脉冲之后所需的大约等量的电荷时,那么随该CLOCK信号脉冲后,在由主电源36产生的电流I2中的变化相对小,因此在供电电压VB中的变化非常小。
这样,在每一CLOCK信号边沿前,测试器30向辅助电源38提供一指示辅助供电电压VC的一期望幅值的数据CNT3并于是关闭开关SW1。电源38于是给所有电容器C2充电。电容器C2存储的电荷量与VC的幅值成比例。当电容器C2已经充过了可充满的时间时、测试器30开启开关SW1。此后,随着下一CLOCK信号周期的开始,测试器30关闭所有开关SW2,使得存储在电容器C2中的电荷,可作为电流I3流入DUT 34。此后,当不需要瞬态充电电流时,测试器30开启开关SW2,使得在该CLOCK信号周期的剩余部分期间、仅主电源36向DUT 34供应电流。此过程在每一CLOCK信号周期期间重复,随着测试器30经由控制输入CNT3为每一时钟周期调节VC幅值,以提供一大小满足该特定时钟信号周期期间的预测充电电流需求的电流脉冲I3。这样I3电流脉冲的幅值可随周期不同而不同。
图6图解阐明供电电压VB和电流I1、I2与I3在一CLOCK信号周期初始部分的行为。电流I1表示出其在CLOCK脉冲边沿之后的T1时刻,在其静止级别IQ1的上方的一个暂时性地大的增长,来向DUT 34内的电容充电。电流I3快速上升,来基本上提供所有附加充电电流。主电源36的输出电流I2仅表示出较其静态值一相对小的摄动,该摄动由I3与I2的暂态组件间小的不匹配所致。由于I2中的变化小,所以VB中的变化小。这样,本发明基本上限制了由DUT 34中开关瞬态所引起的电源噪声。
测试器编程
如上所述,每一DUT 34在CLOCK信号周期开始引出的附加充电电流量是根据在该CLOCK信号周期期间晶体管的开关次数而定而且充电电流随周期的不同而不同。为了提供DUT终端41处的适当电压调整,测试器30必须预测随着每一CLOCK信号边沿,DUT 34打算存储多少电荷,因为必须调节辅助电源输出VC的幅值才能使电容器C2在每一CLOCK信号周期之前存储适量的电荷。
图7描述了一测试系统,其建立是为允许测试器30实验性地判定每一测试周期应将VC建立在哪个级别。已知一操作正常的参考DUT 40而且其类似于欲测试的IC,其通常经由探针卡32连接到测试器30,这与将要测试的DUT 34连接方式相同,以便测试器30可以在参考IC 40上执行相同的测试。但是探针卡32也将参考IC 40的电源终端链接到测试器30的一输入终端以便测试器30可监控电源电压VB。然后,在使用VC的最小值来观察VB的同时,测试器30仅执行测试的第一个CLOCK周期。如果在CLOCK信号周期期间,VB降至一期望的下限之下,那么测试器30使用一较高的VC值来重复测试的第一CLOCK信号周期。反复重复此过程,直到为第一CLOCK信号周期建立了一适当的VC值。然后,测试器反复执行本测试的前两个CLOCK信号周期,同时在第二个CLOCK信号周期期间监控VB并且相应地调节VC。使用相同的程序来为本测试的每个连续的CLOCK信号周期建立适当的VC值,然后当测试DUT 34时,可使用该等VC值。
设计者通常使用电路模拟器来在制造IC之前模拟IC。当电路模拟器在模拟IC上执行与IC测试器将在模拟IC的真实副本上所执行的测试相同的测试时,可以用一比拟的方式来使用电路模拟器,以判定在对真实IC测试期间,要使用的VC值的序列。
探针卡
图4图解阐明一一般现有技术的探针卡12,其将电压调整电容器C1连接到DUT的功率输入终端,以限制电源噪声。此探针卡必须使电压调整电容器与DUT间的距离最小化,以使电容器与DUT间的电阻最小化。这样,较佳地,电容器布置在探针卡上访问DUT的探针上方的小区域27之内或附近。由于探针卡上探针附近的空间小,所以可配置在探针卡上的调整电容器C1的大小和数目是有限的。这一电容器安装空间的限制可限制能够同时测试的DUT的数目。
图8是根据本发明的图5中探针卡32的一个简化俯视图。图7中IC测试器30所访问的接点45,分布在探针卡32的上表面43的一个相对大的区域内,而接触DUT 34的探针37(未图示)集中在探针卡的一个相对小的中心区域47的下面。由于可使电容器C2的充电电压VC调节到适应任何开关SW2与DUT 34的终端41之间的相当大的通道电阻R2(图5),电容器C2可以以比图4中电容器C1离DUT探针上方的中心区域47更远的距离安装在探针卡32上。同样由于使电容器C2充到比电容器C1高的电压,所以其可以比电容器C1小。由于图8中探针卡32的电容器C2可以比图4中现有技术探针卡12的电容器C1小且离探针卡中心远,所以在探针卡32上可安装更多的电容器32。这样,根据本发明的使用了探针卡32的测试系统,较使用图4中现有技术探针卡12的测试系统,可同时测试更多的DUT。
带有板上模式发生器的探针卡
图9图解阐明本发明的另一具体实施例,其包括一通常与图7中探针卡32类似的探针卡50,只是探针卡50上还安装了一“功率控制IC”52。为了产生控制信号和数据CNT1、CNT2及CNT3来控制开关SW1和SW2以及辅助电源38,功率控制IC 52包括一执行图7中IC测试器30的模式产生功能的模式发生器54。功率控制IC 52包括一个由在测试开始以前,经由一传统计算机总线56提供的外部产生的编程数据而编程的传统模式发生器54。模式发生器54开始产生其输出数据模式,以响应来自IC测试器58的、标志着测试开始的START信号,并产生其输出CNT1、CNT2、CNT3数据模式,以响应为测试器58的操作计时的相同系统时钟(SYSCLK)。
当所需电容C2充分小时,可在功率控制IC 52内建构开关SW1和SW2以及电容器C2(如图9中所示)。应尽可能地靠近DUT探针将IC 52置于探针卡上。将开关SW1与SW2及电容器C2以及测试器30的模式发生功能合并为一单个的IC 52,减少了探针卡32的成本与复杂性,并减少了所需测试器30输出通道的数目。但是当必要时,电容器C2可由功率控制IC 52外部的分立组件来建构。
脉宽调制的充电电流
图10图解阐明了一个通常类似于图5中具体实施例的本发明的具体实施例。但是在图10中,从探针卡60中省略了开关SW1使得辅助电源38的输出VC直接连接到电容器C2。同样使输出电压VC固定并且不受IC测试器30调节,使得C2在每一CLOCK信号脉冲前均充电达到相同的值。在此配置中,IC测试器30经由控制信号CNT2,通过脉宽调制开关SW2来控制电容器C2在每一CLOCK脉冲开始,传送到DUT 34的电荷量。测试器30随着CLOCK信号脉冲的上升沿关闭开关SW2的时间的长短,决定了电容器C2传递到DUT 34的电荷量的多少。另外,如图11所图解阐明的是,当测试器30快速增加且随后减少CNT2信号的占空度时,其会更加接近图6中图解阐明的I3电流的形状。
模拟调制的充电电流
图12图解阐明了本发明的一个基本上类似于图10中具体实施例的具体实施例。但是在图12中,当DUT 34正在经历状态改变而且需要附加电流I3时,将晶体管开关SW2用工作在其活性区中的晶体管Q2来替代。在此配置中,IC测试器30的CNT2输出是作为输出施加至置于探针卡61上的模数(A/D)转换器63的一数据序列。数据序列CNT2代表在每一CLOCK信号周期期间,对充电电流I3的一个预测的需求。A/D转换器63,通过产生一输入晶体管Q2的基极的模拟信号CNT4(如图13中图解阐明)来响应CNT2数据序列,该讯号在每一CLOCK信号周期期间均不同。模拟信号CNT4控制每一晶体管Q2允许流出电容器C2的电流I3的量使得其大体上匹配DUT 34所需求的电流I1的预测瞬态组件。可将A/D转换器63建构在IC测试器30内,而不是将其安装在探针卡61上。
使用参考DUT的充电预测
图14图解阐明本发明的一个具体实施例,其中一个类似于DUT 34的参考DUT 60以一类似的方式接受测试,只是测试器30通过将CLOCK和其施加到参考DUT 60的其它输入信号提前来略微先于其它DUT测试参考DUT 60。主电源62向所有DUT 34供电,而一辅助电源64向参考DUT 60供电。置于探针卡66上、位于参考DUT 60附近的电容器C4在参考DUT 60功率输入终端68处,以一传统方式调整电压VREF,使其处于其容许工作范围之内。电容器C5将VREF链接到一组放大器A1上并且电容器C6将每一放大器A1的输出链接到每一DUT 34的功率输入终端70上。
虽然调整完好,但由于参考DUT的瞬态充电电流需求,参考DUT 60输入终端68处的供电电压VREF随着每一CLOCK信号周期的开始,小量降低到其静止级别下方。VREF中电压的下降量与由参考DUT 60所引出的瞬态充电电流成比例。由于参考DUT 60类似于DUT 34,且略先于DUT 34受测试,所以VREF的下降预测了短时间之后每一DUT 34的瞬态充电电流量。
通过电容器C5及C6起作用的放大器A1,放大VREF的AC组件,以产生增加主电源62的电流输出I2的输出电流I3,以向每个DUT 34提供电流输入I1。使测试器30提前参考DUT 60的测试时间的长短设置为等于参考电压VREF变化与电流I3的相应的变化之间的延时。随着将每一放大器A1的(负)增益由一外部生成信号(GAIN)适当地调节,电流I3将大体上匹配DUT 34所需的瞬态充电电流。
非测试环境中的充电预测
本发明的具体实施例,除了用于在测试集成电路时降低电源噪声外,也可用于在集成电路经过一连串可预测的状态的应用中,降低电源噪声。
图15图解阐明本发明的一个实例性具体实施例,其中一集成电路80为响应作为输入而供应的一个外部生成的CLOCK信号边沿而经过一连串可预测状态。IC 80接收来自主电源82的供电。当开关SW1关闭时,由一辅助电源84经由开关SW1给电容器C2充电。当开关SW2关闭时,电容器C2将其电荷作为附加电流输入IC 80中。一“充电预测器”电路86,通过在每一CLOCK信号周期中IC 80未改变状态的部分周期期间,断定一信号CNT1来关闭开关SW1并且改变一控制信号CNT2来打开开关SW2,响应CLOCK信号。这就允许辅助电源84在状态变换之间,给电容器C2充电。充电预测器电路86在每一CLOCK信号周期中IC 80正变换状态的部分周期期间,断定控制信号CNT2来关闭开关SW2且改变该控制信号CNT1来打开开关SW1,从而允许电容器C2向IC 80的功率输入传输电流,以提供其瞬态电流需要。充电预测器86也向辅助电源84提供控制数据CNT3,以调节辅助电源84的输出电压VC,使得其将电容器C2充电到一个根据下一状态变换期间,IC 80所期望引出的电流量而确定的级别。充电预测器86适合由传统模式发生器或其它任何能产生输出数据序列CNT1、CNT2及CNT3的器件来建构,该等输出数据序列CNT1、CNT2及CNT3适于IC 80由于期望状态序列而对于瞬态电流的需求。开关SW1及SW2与/或电容器C2,可如图15中所示在IC 80外部建构,或者可在IC 80内部建构。
充电均衡
图16图解阐明了本发明的一个简单形式,其适用于IC 80在每一CLOCK信号周期开始、期望引出的充电电流量处于一相对有限的、可预测的范围内的应用中。如图16中所示,转换器90转换CLOCK信号,以向将一辅助电源耦合到一电容器C2的开关SW1提供CNT1控制输入。该CLOCK信号直接将CNT2控制信号输入提供给将电容器C2连接到通常由主电源82驱动的IC 80的功率输入的开关SW2。如图17中所示,CLOCK信号在每一CLOCK信号周期的前半部分期间,将CNT2信号驱动到高电平,以关闭开关SW2;而在每一CLOCK信号周期后半部分期间,将CNT1驱动到高电平,以关闭开关SW1。
将辅助电源84的输出电压VC设置为常值使得其在每一CLOCK信号周期之前均将电容器C2充电到一个相同的级别。将VC的级别设置为在每一CLOCK信号周期开始、当IC80正引出附加充电电流时电源输入电压VB的摆动范围的适当的位置。例如,当我们想让VB的静止值处于其范围的中间时,我们可调节VC,使得电容器C2供应充电电流量处于IC 80期望引出的充电电流的范围中间。另一方面,如果我们想防止VB降到其静止值之下太多,但愿意允许VB升高到其静止值之上,我们可以调节VC,使得电容器C2供应IC 80期望引出的充电电流的最大量。虽然电容器C2在一些CLOCK信号周期期间,可能提供太少的充电电流,而在其它CLOCK信号周期期间提供太多的充电电流,但在许多应用中,当对VC作出适当的调节时,图16中阐明的系统仍能使VB的摆动保持在可接受范围内。注意,通过对每一CLOCK信号周期都将控制数据CNT3设置为相同值,可对图5、图9、图14及图15中的系统编程,使之以一种类似的方式工作。
自适应电流补偿
图18图解阐明本发明的另一个具体实施例,如图18中所示,电源36通过探针卡50,向受测试半导体器件(DUT)34上的功率输入终端1806供电。图18中,用R1来表示通过探针卡50上的输电线1812的内电阻。同样如图18中所示,IC测试器58通过探针卡50,向DUT 34提供时钟及其它信号。将实例性DUT 34上的一个时钟输入终端图解表示为终端1808。IC测试器58也通过探针卡50接收来自于DUT 34的信号。图18中DUT 34上显示了一个输入/输出(I/O)终端1810。但是DUT 34可具有附加I/O终端1810或可具有只用于输入的端子及其它只用于输出的终端或只用于输入和只用于输出的终端的组合以及其它既作为输入终端也作为输出终端起作用的端子。应明确,探针卡50可与一个DUT连接(如图18所示)或与复数个DUT连接(例如,如图14所示)。
如图18所示,一电流感测器件1804(例如,一电流感测耦合器或一变流器)感测通过旁路电容器C1的电流。放大器1802,其优选反向放大器(例如,具有一负增益的放大器),其通过电容器C7,将电流提供至传输线1812。辅助电源38向放大器1802供电  当然,可用其它方法,给放大器1802供电,包括由电源36、IC测试器58、位于探针卡50上的电源供电,或由除了位于电源36,IC测试器58或探针卡50上以外的电源来供电
在操作中,功率终端1806通常引出少量电流,如上所述(假设DUT 34包括主场效应晶体管)。仅在某些情况下,功率终端1806才确实会引出大量电流。如上论述,这些情况最普遍地发生在当DUT 34中的至少一个晶体管改变状态时,而此改变状态通常对应于时钟终端1808处的时钟的上升沿或下降沿而发生。
当DUT 34并未改变状态时,功率终端1806处引出的少量电流通常导致仅有小的主导静态直流(DC)流过或没有电流流过旁路电容器C1。此会导致电流感测器件1804感测到很少的电流,或感测不到电流,并且因此很少或没有电流流出反向放大器1802。
但当DUT 34正在状态变换之时,功率终端1806暂时性地引出大量电流(如上所述)。此会导致暂时性地相当大的且改变的电流流过旁路电容器C1(如上所述)。该电流由电流感测器件1804感测并且由反向放大器1802反向并放大,最终通过隔离电容器C7,供给输电线1812。如上所述,由放大器1802在输电线1812上所提供的附加电流在功率终端1806处减少了电压变化。
图19图解阐明图18中所展示的实例性具体实施例的一个变化。如图,图19大体上与图18类似,并且也包括一电流感测元件1804和一配置用于向探针卡50上的输电线1812提供电流的反向放大器1802。但是,在图19中,电流感测元件1804感测流过输电线1812的电流,而不是感测流过旁路电容器C1的电流。
图19中具体实施例的工作与图18中的类似。当DUT 34并未改变状态时,由电流感测器件1804感测到的是功率终端1806处经由输电线1812所引出的通常是小的主导静态直流(DC)中的少量电流。因而,反向放大器1802提供少量或不提供充电电流。但是,当DUT 34正改变状态时,电流感测器件1804,通过输电线1812感测功率终端1806处电流的重大变化。反向放大器1802放大并反向所感测的电流,以通过隔离电容器C7,向输电线1812提供附加充电电流。如上所述,附加充电电流减少了功率终端1806处的电压变化。
相互连接系统
上述具体实施例中,用于提供集成电路测试器、电源与DUT间信号通道的探针卡是实例性的。可连同具有多种其它设计的相互连接的系统来一起实施本发明。例如,图20A图解阐明了一个相对简单的探针卡,此探针卡包含一基板2002,其带有用于连接到一IC测试器(图20A中未图示)的终端2004以及用于与一DUT(图20A中未图示)建立电连接的探针元件2008。如图所示,终端2004通过相互连接元件2006与探针元件2008电连接。
基板2002可以是,例如,一单层或多层的印刷电路板、陶瓷或其它材料。应该明确,本发明不苛求基板的材料成分。探针元件2008可以是任何类型的能与DUT建立电连接的探针、不加限制地包括:针状探针,眼镜蛇(COBRA)风格探针,块形、螺栓形、柱形,弹簧触点等。合适的弹簧触点的无限制性实例在美国专利第5,476,211号、1997年2月18日申请的美国专利申请案第08/802,054号(其对应于PCT公开案WO 97/44676)、美国专利第6,268,051B1号、及1999年7月30日申请的美国专利申请案第09/364,855号(其对应于PCT公开案WO 01/09952号)中公开揭示,此等专利/专利申请案以引用的方式并入本文中。可把此等弹簧触点视为描述于美国专利第6,150,186号或2001年12月21日申请的美国专利申请案第10/027,476号中的弹簧触点,此等专利/专利申请案也以引用的方式并入本文中。另外,“探针”可以是用于与DUT上凸起的元件接触的焊垫或终端,例如,在DUT上形成的弹簧接点。相互连接通道2006的无限制性实例包括,通路与/或通路与位于基板2002表面上或基板2002之内的导电性轨道的组合。
图20B图解阐明了可连同本发明一起使用的探针卡的另一个非限制性的实例。如所示,图20B中展示的实例性探针卡包括基板2018、内插机构2012以及探头2032。终端2022与一IC测试器(图20B中未图示)接触并且与上面所论述的探针元件2008类似的探针元件2034与一DUT(图20B中未图示)接触。相互连接通道2020、弹性连接元件2016、相互连接通道2014、弹性连接元件2010及相互连接通道2036提供了从终端2022到探针元件2034的导电性通道。
基板2018,内插机构2012及探头2032可由类似于上文中有关2002描述的那些类似材料制成。实际上,本发明不苛求基板2018,内插机构2012及探头2032的材料成分并且可使用任何成分。相互连接通道2020、2014、2036可与上述相互连接通道2006类似。弹性连接元件2016及2010优选拉伸、弹性元件。此等元件的非限制性实例在美国专利第5,476,211号、1997年2月18日申请的美国专利申请案第08/802,054号中阐明(其对应于PCT公开案WO第97/44676号)、美国专利第6,268,015B1号及1999年7月30日申请的美国专利申请案第09/364,855号(其对应于PCT公开案WO第01/09952号)中说明,所有此等专利/专利申请案都以引用的方式并入本文中。包含复数个诸如图20B中所示的基板的实例性探针卡的更为详细的论述,可见于美国专利第5,974,662号中,其以引用的方式并入本文中。图20B中所示的实例性设计可作很多变化。仅举一实例而言,相互连接通道2014可用一个孔及一个或多个固定于孔中且从孔中延伸出去与2018及探头2032建立连接的弹性元件2016与/或2010代替。
但是,应显而易见,本发明不苛求相互连接系统的结构或设计并且可以使用任何结构或设计。正如这里所描述的具体实施例中所示,较佳地,用于减少DUT上功率终端处电压变化的电路安装在探针卡上。如果使用一个多基板探针卡,例如图20B中所示的实例性探针,那么电路可位于任一基板上,或可以分布在两个或多个基板之间。这样,例如电路可位于图20B中的探头2032、内插机构2012、或基板2018中的一个上,或者电路可位于两个或多个探头、内插机构与/或基板的组合物上。应该显而易见,该电路可以完全由相互连接的隔离电路元件形成、可以完全在一集成电路上形成或者可以由一部分是隔离电路元件、一部分形成于一个集成电路上的元件组成。
预测/自适应电流补偿
如上所述,用于控制DUT的功率输入终端处供电电压变化的预测系统,预测每一时钟信号周期期间DUT将需要的充电电流量,并且然后根据该预测,测量在该时钟信号周期期间,施加到DUT的功率输入终端的补偿电流脉冲的大小。另一方面,一自适应系统监控施加到DUT终端的功率信号,并且使用反馈来调节补偿电流脉冲的幅值,以保持功率信号的电压为常数。
图21图解阐明本发明的一个具体实施例,其中,DUT 34的功率输入终端26处所需的附加充电电流量由预测与自适应组合来确定。辅助电源38向一电流脉冲发生器2102供应功率VC,该电流脉冲发生器在需要放大来自主电源36的正常供电电流时,向DUT功率输入终端26供应一电流脉冲I3。在每一测试周期开始,IC测试器58向电流脉冲发生器2102供应一信号CNT5,以指示电流脉冲的预测幅值,并且在每一测试周期期间,IC测试器58断定一控制信号CNT6,以告诉电流脉冲发生器2102何时产生电流脉冲。
为IC测试器58编程,以测试一特别类型的DUT 34以及其所做的关于每一测试周期期间电流脉冲I3所需大小及持续时间的预测,如前所讨论,此种预测可基于对该种类型DUT所引出电流的测量,或基于对DUT行为的仿真。但是,由于DUT制造工艺变化及其它因素,该类型的每一DUT在每一测试周期期间,可能需要的附加充电电流的幅值可能与预测的充电电流不同。对任何给定的DUT,实际引出的充电电流与预测充电电流的比例基于周期复周期基础之上会趋于相对一致。例如,一个DUT在每一测试周期期间,可能始终如一地比预测充电电流多引出5%充电电流,而同一时间的另一DUT,在每一测试周期期间,可能始终如一地引出比预测充电电流少5%的充电电流。
反馈控制器2104通过向电流脉冲发生器2102供应一自适应增益(或“自适应”)信号G来补偿充电电流需要量与预测值间的变化,该电流脉冲发生器2102适当地增加或减少电流脉冲I3的幅值,使电流脉冲适应当前受测试的特定DUT 34的需要。这样,预测信号CNT5表示正在受测试的类型的DUT需求的充电电流的预测幅值,而增益(“自适应”)信号幅值表示正在受测试的DUT特例的预测误差。
在测试DUT 34之前,IC测试器58执行一预测试程序,该程序可类似于执行如下测试:发送测试与CLOCK信号脉冲给DUT 34,使之一般以和DUT在测试期间相同的方式工作。在该预测试程序期间,反馈控制电路2104监控DUT的功率输入终端26处的电压VB,并调节增益信号G的幅值,以使发生在I3幅值太大或太小之时的VB变化最小化。该预测试程序提供给反馈控制器2104时间,以调节增益信号G的幅值,适应受测试的特定DUT 34对于充电电流的需求。此后,在测试期间,反馈控制器2104继续监控VB并调节增益信号,但所做的是小调节。这样,虽然在每一测试周期期间所供应的充电电流脉冲I3的幅值,主要是DUT预测的充电电流需求的一个函数,但由控制器2104提供的增益控制反馈会很好地调节电流脉冲幅值,以适应DUT的实际充电电流需求的任何一贯倾向来不同于预测的需求。
所属领域的技术人员会体会到,图21中的反馈控制器2104可以是能够产生一个将使VB变化最小化的输出增益控制信号G的多种设计中的任何一个。所属领域的技术人员还会体会到,电流脉冲发生器可以是能产生电流脉冲I3的多种设计中的任何一个,其中I3的时间长短由一输入信号CNT6来控制并且I3的幅值是一由控制信号CNT5表示的电流脉冲与一自适应增益信号G的幅值的函数。
图22图解阐明反馈控制器2104的一个非限制性实例,其将VB的AC组件集成,以产生增益控制信号G。一DC隔直流电容器C10使VB的AC组件通到一积分器2106上,该积分器2106是由一运算放大器A1、与其并联的电容器C8和R5及与其一输入端串联的电阻器R4组成。
图23描述图21中电流脉冲发生器2102的一个非限制性实例。在此实例中,控制信号CNT5传输代表所需电流脉冲I3的预测幅值的数据。一数模转换器(DAC)2108将电流测试周期所用的预测数据,转换成模拟信号P,其幅值与预测数据成比例。当IC测试器58断定了CNT6信号以表明何时将产生电流脉冲I3时,开关2110关闭,以提供信号P给可变增益放大器2112的一个输入,该放大器2112由图21中辅助电源38的VC输出供电。图21中反馈控制器2104的增益控制信号输出控制放大器2112的增益。放大器2112产生一输出电流脉冲I3,I3幅值与P和G的乘积成比例。电容器C7将I3信号脉冲传给图21中探针卡50内的向DUT 34传输功率的信号通道2114。
图24描述了图21中电流脉冲发生器2102的另一个非限制性实例。在该实例中,图21中IC测试器58断定CNT5控制信号的时间的长度是与下一CLOCK信号周期期间所需电流脉冲I3的预测幅值成比例的。电流脉冲发生器2102产生每一I3信号的脉冲之后,IC测试器58断定CNT5信号,以关闭将辅助供应输出信号VC经由一电阻器R5耦合到一电容器C8上的开关2116。IC测试器58继续断定CNT5信号一段时间,这段时间长度随下一I3信号脉冲的预测幅值而增加。这样,图21中辅助电源38将电容器C8充电到一个与下一I3信号脉冲的预测幅值成比例的电压值。此后,当IC测试器58断定CNT6信号,以指示将要产生下一I3信号脉冲时,开关2117将电容器C8连接到放大器2118的输入上。该放大器2118具有一个由图21中反馈控制器2104的增益控制信号输出G控制的增益。一耦合电容器C9将所产生的I3信号传输到将功率传输到图21中DUT 34的探针卡导线2114。控制信号CNT6在电容器C8已具有充分放电的时间后,打开开关2117。由于I3电流脉冲的幅值迅速上升,而且随后当C8放电时,幅值下降,所以I3脉冲的时变行为与DUT的时变充电电流需求趋于一致。
图25描述了图21中电流脉冲发生器2102的另一个非限制性实例。其中由CNT5信号输送的数据代表I3信号脉冲的预测幅值。增益控制信号G充当DAC 2120将由CNT5信号传输的数据转化为模拟信号P的参考电压。增益控制信号G标定的电压,界定了DAC输出信号P的范围,以使P和G与CNT5的乘积成比例。开关2122暂时性地将P信号传输到放大器2124,以响应控制信号CNT6的脉冲,从而使放大器2124经由一耦合电容器C10向功率导体2114发送一I3信号脉冲。该I3信号脉冲幅值与G及P的幅值之积成比例。
图26图解阐明了根据本发明的预测/自适应系统地另一个实例性具体实施例,其中辅助电源38向可变增益放大器2126提供功率并且IC测试器58每当预测到DUT 34的功率输入终端26处需要附加充电电流时,便向放大器2126提供一控制信号脉冲CNT6。电容器C11将I3信号脉冲传输给探针卡50内将主电源36链接到DUT功率输入终端26的功率信号通道2114。反馈控制电路2104监控出现在终端26处的电压VB,并调节放大器2126的增益,以使VB变动最小化。IC测试器58将控制信号CNT5作为输入在每一CLOCK期间供应给辅助电源38,以根据由CNT5控制信号所传递的数据的幅值,设置其输出电压VC。I3的幅值因而是增益控制信号G的幅值与辅助供应电压VC的幅值的乘积的函数。
这样,图21-26描述了根据本发明的一个用来通过在每一CLOCK信号边沿之后,向DUT的功率输入端子26提供附加充电电流,来调整施加至DUT 34的功率信号VB的电压来满足由于CLOCK信号边沿引起的开关切换所带来的电流暂时性地增长的需求的预测/自适应控制系统的多种实例性具体实施例。控制系统是“预测性的”,是因为其预测每一测试用期期间,DUT将需要的附加电流量。该控制系统也是“自适应的”,是因为其用反馈来改变其响应预测所产生的电流脉冲的比例,以适应观测到的各受测试DUT所实际引出的电流幅值的变化。
尽管这里阐述的本发明是在一个仅用一个主电源的系统中降低噪声,但应意识到本发明可用在不止一个主电源向DUT供电的环境中。
尽管这里所阐述的本发明是与具有一个单一功率输入的DUT一起操作,但应意识到该装置可适合于与具有多个功率输入的DUT一起操作。
尽管所描述的本发明,是在CLOCK信号脉冲的上升沿之后提供附加电流,但可使其容易地适用于在CLOCK信号脉冲的下降沿之后提供附加充电电流,以用于在下降CLOCK信号边沿切换的DUT上。
尽管已描述了用于连同IC测试器一起使用的本发明的不同方案,该类型的测试器使用一探针卡访问在半导体晶元上形成的IC终端,但所属领域的技术人员应意识到,本发明可用于使其它类型的提供对IC的DUT终端访问的接口装备的IC测试器,端子可仍在晶元级别形成,或其可已经从形成的晶元上分离,在测试之时,其可封装,可不封装。该等接口装备包括而不局限于负载板、烧附板及最后测试板。本发明在其最广阔方面上并非期望限于包括任何特殊类型的IC测试器、任何特殊类型的测试器-DUT相互连接系统、或任何特殊类型IC DUT的应用。所属领域的技术人员还应了解,尽管上面所述的本发明是用于关于集成电路的测试,但其也可在测试任何种类的电子器件,例如测试触发器组件,电路板等,随时当测试期间器件的功率输入终端电压期望精确调整时使用。
因此,尽管前面的说明已描述本发明的较佳具体实施例,但所属领域的技术人员可在不背离本发明较广方面的前提下,对较佳具体实施例作许多修改。因而所附权利要求是期望覆盖属于本发明的真实范围及精神的所有该等修改。

Claims (24)

1、一种在通过一集成电路测试器对一半导体器件进行一测试期间向所述半导体器件供应电流的装置,所述集成电路测试器经由在输入/输出(I/O)终端与所述集成电路测试器之间提供信号通道的接口构件来访问所述半导体器件的所述I/O终端,其中所述半导体器件包含一功率输入终端以用于经由一由所述接口构件所提供的电源导线来接收电源电流,且其中所述半导体器件在一作为输入被施加至所述半导体器件的时钟信号的一组边缘的每个边缘之后暂时性地增加其对电源电流的需求,所述时钟信号在所述测试的测试循环的开始处,所述装置包括:
第一构件,其用于在所述测试期间向所述功率输入终端供应一第一电流;
第二构件,其用于在每个所述测试循环期间在所述时钟信号的所述边缘的每个边缘之后向所述功率输入终端供应一电流脉冲以增补所述第一电流,其中所述电流脉冲的大小是一关于由一预测信号及一自适应信号所表示出的大小的函数;及
第三构件,其用于在每个所述测试循环期间响应于一在所述测试循环期间出现在所述功率输入终端处的电压来调节由所述自适应信号所表示出的大小;
其中,在所述测试循环之前将由所述预测信号所表示出的所述大小设置为与一预测量成正比,所述半导体器件将在所述测试循环期间按所述预测量来增加其在其功率输入终端处对电流的需求。
2、根据权利要求1所述的装置,其中所述集成电路测试器产生所述预测信号。
3、根据权利要求1所述的装置,其中所述电流脉冲的所述大小与由所述预测信号及所述自适应信号所表示出的所述大小的一乘积成正比。
4、根据权利要求1所述的装置,其中由所述自适应信号所表示出的所述大小是一关于出现在所述功率输入终端处的电压的一时变部分对时间积分的函数。
5、根据权利要求4所述的装置,其中所述第三构件包括:
滤波构件,其用于对出现在所述功率输入终端处的所述电压加以滤波以产生一滤波后电压,所述滤波后电压的大小与出现在所述功率输入终端处的所述电压的大小变化成正比;及
积分构件,其用于对所述滤波后电压进行积分以产生所述自适应信号。
6、根据权利要求1所述的装置,其中所述第二构件包括:
一数模转换器,其用来接收所述预测信号,且用来产生一大小与由所述预测信号所表示的大小成正比的模拟信号;
一放大器,其具有一由所述自适应信号控制的增益;及
用于在所述时钟信号边缘的每个边缘之后暂时性地将所述模拟信号作为输入施加至所述放大器的构件,以使所述放大器在所述时钟信号边缘的每个边缘之后产生一电流脉冲,其中所述电流脉冲的所述大小是一关于所述模拟信号的所述大小与由所述自适应信号所表示的所述大小的函数。
7、根据权利要求1所述的装置,其中所述第二构件包括:
一放大器;
用于响应所述预测信号与所述自适应信号以产生一具有一大小的模拟信号的构件,所述大小是一关于由所述预测信号及所述自适应信号所表示出的所述大小的函数,及
用于在所述时钟信号边缘的每个边缘之后暂时性地将所述模拟信号作为输入施加至所述放大器的构件,以使所述放大器在所述时钟边缘的每一边缘之后产生一电流脉冲,其中所述电流脉冲的大小是一关于所述模拟信号的所述大小的函数。
8、根据权利要求1所述的装置,其中所述第二构件包括:
一放大器,其具有一由所述自适应信号控制的增益;
一电容器;
用于在所述时钟信号边缘的每个时钟信号边缘之前响应所述预测信号以将所述电容器充电至一电容器电压的构件,所述电容器电压是一关于由所述预测信号所表示出的所述大小的函数;及
用于在所述时钟信号边缘的每个时钟信号边缘之后暂时性地将所述电容器作为输入连接至所述放大器的构件,以使所述放大器在所述时钟信号边缘的每个时钟信号边缘之后产生一电流脉冲,其中所述电流脉冲的大小是一关于所述电容器电压的所述大小和由所述自适应信号表示出的所述大小的函数。
9、根据权利要求1所述的装置,其中所述第二构件包括:
一电源,其产生一电压输出信号,所述电压输出信号是一关于由所述预测信号所表示出的所述大小的函数;
一放大器,其由所述电源的所述输出信号供电且具有一由所述自适应信号控制的增益;及
用于在所述时钟信号边缘的每个时钟信号边缘之后暂时性地将一模拟信号作为输入施加至所述放大器的构件,以使所述放大器在所述时钟信号边缘的每个时钟信号边缘之后产生一电流脉冲,其中所述电流脉冲的大小是一关于所述电源的输出信号的电压及由所述自适应信号表示出的所述大小的函数。
10、根据权利要求1所述的装置,其中所述接口构件包括一探针板且其中所述第二构件安装于所述探针板上。
11、根据权利要求1所述的装置,其中所述接口构件包括一探针板且其中所述第三构件安装于所述探针板上。
12、根据权利要求1所述的装置,其中由所述第三构件提供的反馈调节由所述自适应信号所表示出的所述大小,以使出现在所述功率输入终端处的所述电压的变化最小化。
13、根据权利要求1所述的装置,
其中所述集成电路测试器产生所述预测信号,
其中所述电流脉冲的所述大小与由所述预测信号及所述自适应信号所表示出的所述大小的一乘积成正比,及
其中由所述第三构件提供的反馈调节由所述自适应信号表示出的所述大小,以使出现在所述功率输入终端处的所述电压的变化最小化。
14、根据权利要求13所述的装置,其中所述接口构件包括一探针板且其中所述第二及第三构件安装在所述探针板上。
15、一种用于在通过一集成电路测试器对一半导体器件进行一测试期间向所述半导体器件提供电流的方法,所述集成电路测试器经由在输入/输出(I/O)终端与所述集成电路测试器之间提供通道的接口构件来访问所述半导体器件的所述I/O终端,其中所述半导体器件包含一功率输入终端,以经由一由所述接口构件提供的电源导线来接收电源电流,且其中所述半导体器件在一作为输入被施加至所述半导体器件的时钟信号的一组边缘的每个边缘之后暂时性地增加其对电源电流的需求,所述时钟信号在所述测试的测试循环的开始处,该方法包括如下步骤:
a、在所述测试期间向所述功率输入终端供应一第一电流;
b、在所述测试循环的每一个之前产生一预测信号,其表示一与一预测量成正比的大小,在所述测试循环的开始处的所述时钟信号边缘之后,所述半导体器件将按所述预测量增加其在其功率输入终端处对电流的需求;
c、在每个所述测试循环期间产生一自适应信号,其表示一根据一在所述测试循环期间出现在所述功率输入终端处的电压而确定出的大小;及
d、在所述测试循环期间,向所述功率输入终端供应一电流脉冲以增补所述第一电流,其中所述电流脉冲的大小是一关于由所述预测信号与所述自适应信号所表示出的所述大小的函数。
16、根据权利要求15所述的方法,其中所述集成电路测试器执行步骤b。
17、根据权利要求15所述的方法,其中所述电流脉冲的所述大小与由所述预测信号及所述自适应信号所表示出的所述大小的乘积成正比。
18、根据权利要求15所述的方法,其中由所述自适应信号所表示出的所述大小是一关于出现在所述功率输入终端处的所述电压的一时变部分对时间的积分的函数。
19、根据权利要求18所述的方法,其中步骤c包括如下子步骤:
c1、对出现在所述功率输入终端处的电压进行滤波以生成一滤波后电压,所
述滤波后电压的大小与出现在所述功率输入终端处的所述电压的大小变化成正比;及
c2、对所述滤波后电压进行积分,以产生所述自适应信号。
20、根据权利要求15所述的方法,其中步骤d包括如下子步骤:
d1、响应于所述预测信号生成一模拟信号,该模拟信号的大小与由所述预测信号表示出的所述大小成正比;
d2、在所述时钟信号边缘的每个时钟信号边缘之后暂时性地将所述模拟信号作为输入施加至一放大器,以使所述放大器在所述时钟信号边缘的每个时钟信号边缘之后产生一电流脉冲,其中所述电流脉冲的所述大小是一关于所述模拟信号的所述大小及由所述自适应信号所表示出的所述大小的函数。
21、根据权利要求15所述的方法,其中步骤d包括如下子步骤:
d1、响应于所述预测信号与所述自适应信号而产生一模拟信号,该模拟信号的大小是一关于由所述预测信号及所述自适应信号所表示出的所述大小的函数,及
d2、在所述时钟信号边缘的每个时钟信号边缘之后,暂时性地将所述模拟信号作为输入施加至所述放大器,以使所述放大器在所述时钟信号边缘的每个时钟信号边缘之后产生一电流脉冲,其中所述电流脉冲的所述大小是一关于所述模拟信号的所述大小的函数。
22、根据权利要求15所述的方法,其中步骤d包括如下子步骤:
d1、在所述时钟信号边缘的每个时钟信号边缘之前,通过将一电容器充电至一电容器电压来响应所述预测信号,所述电容器电压是一关于由所述预测信号所表示出的所述大小的函数;及
d2、在所述时钟信号边缘的每个时钟信号边缘之后,暂时性地将所述电容器作为输入连接至所述放大器,以使所述放大器在所述时钟信号边缘的每个时钟信号边缘之后产生一电流脉冲,其中所述电流脉冲的大小是一关于所述电容器电压的所述大小及由所述自适应信号所表示出的所述大小的函数。
23、根据权利要求15所述的方法,其中步骤d包括如下子步骤:
d1、通过产生一电压输出信号来响应所述预测信号,所述电压输出信号是一关于由所述预测信号所表示出的所述大小的函数;
d2、通过调节由在步骤d1处所产生的所述输出信号供电的一放大器的增益来响应所述自适应信号;及
d3、在所述时钟信号边缘的每个时钟信号边缘之后,暂时性地将一信号脉冲作为输入施加至所述放大器,以使所述放大器响应于每一信号脉冲而产生一电流脉冲,其中所述电流脉冲的大小是一关于所述输出信号的电压的所述电压及由所述自适应信号所表示出的所述大小的函数。
24、根据权利要求15所述的方法,其中由所述自适应信号表示出的所述大小通过反馈进行调节,以使出现在所述功率输入终端处的所述电压的变化最小化。
CNB038064588A 2002-01-30 2003-01-29 受测试集成电路的预测性自适应电源 Expired - Fee Related CN100454216C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/062,999 2002-01-30
US10/062,999 US7342405B2 (en) 2000-01-18 2002-01-30 Apparatus for reducing power supply noise in an integrated circuit
US10/206,276 2002-07-25
US10/206,276 US6657455B2 (en) 2000-01-18 2002-07-25 Predictive, adaptive power supply for an integrated circuit under test

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101404708A Division CN101101313A (zh) 2002-01-30 2003-01-29 受测试集成电路的预测性自适应电源

Publications (2)

Publication Number Publication Date
CN1643389A CN1643389A (zh) 2005-07-20
CN100454216C true CN100454216C (zh) 2009-01-21

Family

ID=27667769

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038064588A Expired - Fee Related CN100454216C (zh) 2002-01-30 2003-01-29 受测试集成电路的预测性自适应电源

Country Status (6)

Country Link
US (4) US6657455B2 (zh)
EP (1) EP1470432B1 (zh)
JP (1) JP2005516226A (zh)
KR (1) KR101024872B1 (zh)
CN (1) CN100454216C (zh)
WO (1) WO2003065064A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI824624B (zh) * 2021-08-18 2023-12-01 仁寶電腦工業股份有限公司 模擬測試系統以及模擬測試方法

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
US6657455B2 (en) 2000-01-18 2003-12-02 Formfactor, Inc. Predictive, adaptive power supply for an integrated circuit under test
JP4509437B2 (ja) * 2000-09-11 2010-07-21 Hoya株式会社 多層配線基板の製造方法
DE20114544U1 (de) 2000-12-04 2002-02-21 Cascade Microtech Inc Wafersonde
WO2003052435A1 (en) 2001-08-21 2003-06-26 Cascade Microtech, Inc. Membrane probing system
US6965244B2 (en) * 2002-05-08 2005-11-15 Formfactor, Inc. High performance probe system
US6724205B1 (en) * 2002-11-13 2004-04-20 Cascade Microtech, Inc. Probe for combined signals
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
KR100407284B1 (en) * 2003-06-25 2003-12-03 From 30 Co Ltd Clamping force measuring apparatus of molding press for manufacturing semiconductor package
KR100532447B1 (ko) * 2003-07-11 2005-11-30 삼성전자주식회사 높은 테스트 전류 주입이 가능한 집적 회로 소자의 병렬테스트 장치 및 방법
DE10355296B3 (de) 2003-11-27 2005-06-09 Infineon Technologies Ag Testeinrichtung zum Wafertest von digitalen Halbleiterschaltungen
JP2007517231A (ja) 2003-12-24 2007-06-28 カスケード マイクロテック インコーポレイテッド アクティブ・ウェハプローブ
KR100555544B1 (ko) * 2004-01-02 2006-03-03 삼성전자주식회사 피시험 장치의 내부 임피던스 변화에 무관한 전류 소스를갖는 테스트 자극 신호를 발생하는 장치
JP2005321379A (ja) * 2004-04-07 2005-11-17 Agilent Technol Inc 半導体特性測定装置の統合接続装置およびケーブルアセンブリ
US7173446B2 (en) * 2004-06-24 2007-02-06 Intel Corporation Mechanism to stabilize power delivered to a device under test
US7365556B2 (en) * 2004-09-02 2008-04-29 Texas Instruments Incorporated Semiconductor device testing
DE202005021435U1 (de) 2004-09-13 2008-02-28 Cascade Microtech, Inc., Beaverton Doppelseitige Prüfaufbauten
US7247956B2 (en) * 2004-11-30 2007-07-24 Infineon Technologies Ag Performance test board
US7414418B2 (en) * 2005-01-07 2008-08-19 Formfactor, Inc. Method and apparatus for increasing operating frequency of a system for testing electronic devices
KR100688517B1 (ko) * 2005-01-11 2007-03-02 삼성전자주식회사 전압공급유닛 분할을 통한 반도체 소자의 병렬검사 방법
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
GB0502829D0 (en) * 2005-02-11 2005-03-16 Ibm Connection error avoidance in apparatus connected to a power supply
US7005879B1 (en) * 2005-03-01 2006-02-28 International Business Machines Corporation Device for probe card power bus noise reduction
US7609080B2 (en) * 2005-03-22 2009-10-27 Formfactor, Inc. Voltage fault detection and protection
US7425834B2 (en) 2005-08-26 2008-09-16 Power Integrations, Inc. Method and apparatus to select a parameter/mode based on a time measurement
US7621733B2 (en) * 2005-09-30 2009-11-24 3D Systems, Inc. Rapid prototyping and manufacturing system and method
JP4598645B2 (ja) * 2005-10-13 2010-12-15 富士通セミコンダクター株式会社 試験方法および試験装置
KR100735749B1 (ko) * 2005-11-28 2007-07-06 삼성전자주식회사 반도체 메모리 장치, 메모리 시스템, 및 데이터 송수신시스템
JP4940643B2 (ja) * 2005-12-08 2012-05-30 日本電気株式会社 電源ノイズ耐性検査回路及び電源ノイズ耐性検査方法
US7859277B2 (en) * 2006-04-24 2010-12-28 Verigy (Singapore) Pte. Ltd. Apparatus, systems and methods for processing signals between a tester and a plurality of devices under test at high temperatures and with single touchdown of a probe array
US7557592B2 (en) * 2006-06-06 2009-07-07 Formfactor, Inc. Method of expanding tester drive and measurement capability
TW200745572A (en) * 2006-06-09 2007-12-16 Visera Technologies Co Ltd Manufacturing method of wafer-level testing circuit board, and the structure thereof
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US7737715B2 (en) * 2006-07-31 2010-06-15 Marvell Israel (M.I.S.L) Ltd. Compensation for voltage drop in automatic test equipment
US7956628B2 (en) * 2006-11-03 2011-06-07 International Business Machines Corporation Chip-based prober for high frequency measurements and methods of measuring
US7852094B2 (en) * 2006-12-06 2010-12-14 Formfactor, Inc. Sharing resources in a system for testing semiconductor devices
US7812628B2 (en) * 2006-12-13 2010-10-12 Renesas Electronics Corporation Method of on-chip current measurement and semiconductor IC
WO2008109341A2 (en) * 2007-03-01 2008-09-12 Rambus Inc. Optimized power supply for an electronic system
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
US7859318B2 (en) * 2008-02-14 2010-12-28 International Business Machines Corporation Delay line regulation using high-frequency micro-regulators
US7962110B2 (en) * 2008-02-14 2011-06-14 Advantest Corporation Driver circuit and test apparatus
TWI362496B (en) * 2008-03-05 2012-04-21 Nanya Technology Corp Apparatus for testing chip and circuit of probe card
JP5446112B2 (ja) * 2008-03-31 2014-03-19 富士通セミコンダクター株式会社 半導体装置及び半導体装置の動作監視方法
US8154315B2 (en) * 2008-04-08 2012-04-10 Formfactor, Inc. Self-referencing voltage regulator
US7872481B1 (en) * 2008-05-01 2011-01-18 Keithley Instruments, Inc. Low glitch multiple form C summing node switcher
JPWO2009150694A1 (ja) * 2008-06-09 2011-11-04 株式会社アドバンテスト 半導体集積回路および試験装置
WO2010007654A1 (ja) * 2008-07-14 2010-01-21 株式会社アドバンテスト 信号出力回路、タイミング発生回路、試験装置、および受信回路
US7924035B2 (en) * 2008-07-15 2011-04-12 Formfactor, Inc. Probe card assembly for electronic device testing with DC test resource sharing
WO2010029597A1 (ja) * 2008-09-10 2010-03-18 株式会社アドバンテスト 試験装置および回路システム
US8344746B2 (en) * 2008-09-29 2013-01-01 Thermo Fisher Scientific Inc. Probe interface for electrostatic discharge testing of an integrated circuit
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
US8410806B2 (en) 2008-11-21 2013-04-02 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
JP2011058803A (ja) * 2009-09-04 2011-03-24 Advantest Corp 試験装置および電源装置
KR101647302B1 (ko) * 2009-11-26 2016-08-10 삼성전자주식회사 프로브 카드 및 이를 포함하는 테스트 장치
US8564319B2 (en) * 2010-06-17 2013-10-22 Taiwan Semiconductor Manufacturing Company, Ltd. Probe card for simultaneously testing multiple dies
US8896336B2 (en) * 2010-07-06 2014-11-25 Formfactor, Inc. Testing techniques for through-device vias
JP2012019600A (ja) * 2010-07-07 2012-01-26 Sony Corp 充電装置、及び充電制御方法
JP2011059124A (ja) * 2010-10-14 2011-03-24 Advantest Corp 試験装置および電源装置
JP2012098220A (ja) * 2010-11-04 2012-05-24 Advantest Corp 試験装置
US20130120010A1 (en) * 2011-11-10 2013-05-16 Qualcomm Incorporated Power Measurement System for Battery Powered Microelectronic Chipsets
JP2013181831A (ja) * 2012-03-01 2013-09-12 Advantest Corp 試験装置
JP6104578B2 (ja) * 2012-11-30 2017-03-29 日置電機株式会社 検査装置および検査方法
US9297846B2 (en) 2012-12-01 2016-03-29 Keysight Technologies, Inc. Continuous broken sense lead detection system
US9024678B2 (en) * 2013-05-22 2015-05-05 Infineon Technologies Ag Current sensing circuit arrangement for output voltage regulation
US9651596B2 (en) * 2013-08-30 2017-05-16 Keysight Technologies, Inc. System and apparatus for measuring capacitance
TWI531803B (zh) * 2013-12-17 2016-05-01 致伸科技股份有限公司 電路板之測試系統
US20150247886A1 (en) 2014-02-28 2015-09-03 International Business Machines Corporation Transformer Phase Permutation Causing More Uniform Transformer Phase Aging and general switching network suitable for same
KR101553352B1 (ko) * 2014-05-16 2015-09-15 주식회사 씨자인 테스트 기능을 구비한 반도체 회로
DE102014111675A1 (de) * 2014-08-15 2016-02-18 Dspace Digital Signal Processing And Control Engineering Gmbh Simulationsvorrichtung und Verfahren zur Simulation einer an ein Regelungsgerät anschließbaren peripheren Schaltungsanordnung
CN105548864B (zh) * 2016-02-03 2018-06-08 中国电子科技集团公司第三十八研究所 一种数字阵列雷达dam接收数字电路测试系统
US9958487B2 (en) * 2016-02-04 2018-05-01 Dialog Semiconductor (Uk) Limited Method and apparatus for powering an electronic device
FR3047633B1 (fr) * 2016-02-08 2019-03-22 Continental Automotive France Circuit integre avec broches auxiliaires d'alimentation electrique
US10199995B2 (en) * 2016-03-30 2019-02-05 Mediatek Inc. Programmable amplifier circuit capable of providing large or larger resistance for feedback path of its amplifier
US10060968B2 (en) * 2016-08-26 2018-08-28 Teradyne, Inc. Combining current sourced by channels of automatic test equipment
KR102637795B1 (ko) * 2017-02-10 2024-02-19 에스케이하이닉스 주식회사 반도체 장치
KR102293671B1 (ko) 2017-11-29 2021-08-24 삼성전자주식회사 반도체 장치 테스트 장비 및 반도체 장치 테스트 방법
US11049386B2 (en) * 2018-06-14 2021-06-29 Eaton Intelligent Power Limited Switch with current and voltage collection
WO2020163360A1 (en) * 2019-02-04 2020-08-13 Nigam Vivek P Intelligent current limiter for a computing device
KR102565741B1 (ko) 2019-03-13 2023-08-09 주식회사 아도반테스토 전원, 자동화 테스트 장비, 전원 작동 방법, 전압 변동 보상 메커니즘을 사용한 자동화 테스트 장비 작동 방법 및 컴퓨터 프로그램
US11105844B2 (en) * 2019-06-28 2021-08-31 Microsoft Technology Licensing, Llc Predictive voltage transient reduction in integrated circuits
US11105843B2 (en) 2019-10-10 2021-08-31 Analog Devices International Unlimited Company Robust architecture for mode switching of a force and measure apparatus
KR20210143471A (ko) * 2020-05-20 2021-11-29 삼성전자주식회사 프로브 카드 검사 장치
KR102180582B1 (ko) * 2020-05-29 2020-11-18 (주)에이블리 반도체검사장비에서의 전류 인식 시스템 및 방법
CN114720851B (zh) * 2022-04-01 2023-01-17 珠海妙存科技有限公司 一种芯片电源兼容性验证系统及方法
WO2024055141A1 (en) * 2022-09-13 2024-03-21 Innoscience (suzhou) Semiconductor Co., Ltd. Semiconductor testing device and method of operating semiconductor testing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1016820B (zh) * 1988-03-10 1992-05-27 天津大学 便携式微机控制多功能继电保护测试仪
US5731700A (en) * 1994-03-14 1998-03-24 Lsi Logic Corporation Quiescent power supply current test method and apparatus for integrated circuits
US5917331A (en) * 1995-10-23 1999-06-29 Megatest Corporation Integrated circuit test method and structure
CN2403063Y (zh) * 1999-09-21 2000-10-25 阿姆斯戴尔公司 集成保护电源
CN2447848Y (zh) * 2000-10-31 2001-09-12 深圳市Tcl电脑科技有限责任公司 计算机用宽交流输入范围开关电源
US6339338B1 (en) * 2000-01-18 2002-01-15 Formfactor, Inc. Apparatus for reducing power supply noise in an integrated circuit

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144536A (en) 1977-11-21 1979-03-13 Probe-Rite, Inc. Inker network for probing machine
DE3234004A1 (de) 1982-09-14 1984-03-15 Christoph Emmerich GmbH & Co KG, 6000 Frankfurt Speicherbaustein fuer mikroprozessoren
US4646299A (en) * 1983-08-01 1987-02-24 Fairchild Semiconductor Corporation Method and apparatus for applying and monitoring programmed test signals during automated testing of electronic circuits
US5652624A (en) * 1985-09-23 1997-07-29 Lippel; Bernard Systems for dither-quantizing and reconstruction of digital television signals
US5476211A (en) * 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
US5101149A (en) 1989-07-18 1992-03-31 National Semiconductor Corporation Modifiable IC board
US5070297A (en) * 1990-06-04 1991-12-03 Texas Instruments Incorporated Full wafer integrated circuit testing device
JPH04218785A (ja) * 1990-12-19 1992-08-10 Advantest Corp Ic試験装置
JP2641816B2 (ja) 1991-07-23 1997-08-20 三菱電機株式会社 半導体集積回路の測定方法
US5254939A (en) * 1992-03-20 1993-10-19 Xandex, Inc. Probe card system
US5974662A (en) * 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
WO1996015458A1 (en) * 1994-11-15 1996-05-23 Formfactor, Inc. Probe card assembly and kit, and methods of using same
US5422562A (en) 1994-01-19 1995-06-06 Unitrode Corporation Switching regulator with improved Dynamic response
US6055661A (en) 1994-06-13 2000-04-25 Luk; Fong System configuration and methods for on-the-fly testing of integrated circuits
US5502671A (en) 1994-08-31 1996-03-26 Texas Instruments Incorporated Apparatus and method for a semiconductor memory configuration-dependent output buffer supply circuit
US5592077A (en) 1995-02-13 1997-01-07 Cirrus Logic, Inc. Circuits, systems and methods for testing ASIC and RAM memory devices
US6150186A (en) * 1995-05-26 2000-11-21 Formfactor, Inc. Method of making a product with improved material properties by moderate heat-treatment of a metal incorporating a dilute additive
JP3233559B2 (ja) * 1995-08-14 2001-11-26 シャープ株式会社 半導体集積回路のテスト方法および装置
US5721495A (en) * 1995-10-24 1998-02-24 Unisys Corporation Circuit for measuring quiescent current
US5652524A (en) 1995-10-24 1997-07-29 Unisys Corporation Built-in load board design for performing high resolution quiescent current measurements of a device under test
US5714888A (en) * 1995-12-26 1998-02-03 Motorola, Inc. Method and apparatus for testing electronic circuitry in a manufacturing environment
JP3743094B2 (ja) * 1996-04-11 2006-02-08 ソニー株式会社 信号処理装置と集積回路およびその自己診断方法
US5931962A (en) * 1996-09-23 1999-08-03 Xilinx, Inc. Method and apparatus for improving timing accuracy of a semiconductor test system
US5822166A (en) 1996-12-05 1998-10-13 Intel Corporation DC power bus voltage transient suppression circuit
US5926384A (en) 1997-06-26 1999-07-20 Harris Corporation DC-dC converter having dynamic regulator with current sourcing and sinking means
US6087843A (en) * 1997-07-14 2000-07-11 Credence Systems Corporation Integrated circuit tester with test head including regulating capacitor
JPH11133068A (ja) * 1997-10-31 1999-05-21 Hewlett Packard Japan Ltd 電圧電流特性測定装置
JP2000074997A (ja) * 1998-09-01 2000-03-14 Advantest Corp Ic試験装置及び複合ic試験装置
US6031361A (en) * 1998-10-30 2000-02-29 Volterra Semiconductor Corporation Voltage regulation using an estimated current
JP2000171493A (ja) * 1998-12-02 2000-06-23 Advantest Corp 電流測定方法及び電流測定装置
US6268015B1 (en) * 1998-12-02 2001-07-31 Formfactor Method of making and using lithographic contact springs
JP2001004692A (ja) * 1999-01-01 2001-01-12 Advantest Corp 半導体試験装置
US6232759B1 (en) * 1999-10-21 2001-05-15 Credence Systems Corporation Linear ramping digital-to-analog converter for integrated circuit tester
JP2001153915A (ja) * 1999-11-29 2001-06-08 Ando Electric Co Ltd Icテスタ、及びic試験方法
US6657455B2 (en) * 2000-01-18 2003-12-02 Formfactor, Inc. Predictive, adaptive power supply for an integrated circuit under test
US7342405B2 (en) 2000-01-18 2008-03-11 Formfactor, Inc. Apparatus for reducing power supply noise in an integrated circuit
WO2002043752A1 (fr) * 2000-11-29 2002-06-06 Morinaga Milk Industry Co., Ltd. Agents therapeutiques de potentialisation d'effet a base d'interferon
US6791344B2 (en) * 2000-12-28 2004-09-14 International Business Machines Corporation System for and method of testing a microelectronic device using a dual probe technique
JP4173726B2 (ja) * 2002-12-17 2008-10-29 株式会社ルネサステクノロジ インターフェイス回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1016820B (zh) * 1988-03-10 1992-05-27 天津大学 便携式微机控制多功能继电保护测试仪
US5731700A (en) * 1994-03-14 1998-03-24 Lsi Logic Corporation Quiescent power supply current test method and apparatus for integrated circuits
US5917331A (en) * 1995-10-23 1999-06-29 Megatest Corporation Integrated circuit test method and structure
CN2403063Y (zh) * 1999-09-21 2000-10-25 阿姆斯戴尔公司 集成保护电源
US6339338B1 (en) * 2000-01-18 2002-01-15 Formfactor, Inc. Apparatus for reducing power supply noise in an integrated circuit
CN2447848Y (zh) * 2000-10-31 2001-09-12 深圳市Tcl电脑科技有限责任公司 计算机用宽交流输入范围开关电源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI824624B (zh) * 2021-08-18 2023-12-01 仁寶電腦工業股份有限公司 模擬測試系統以及模擬測試方法

Also Published As

Publication number Publication date
JP2005516226A (ja) 2005-06-02
US7245120B2 (en) 2007-07-17
US20060022699A1 (en) 2006-02-02
EP1470432B1 (en) 2007-12-05
US20020186037A1 (en) 2002-12-12
EP1470432A2 (en) 2004-10-27
WO2003065064A3 (en) 2003-10-16
KR101024872B1 (ko) 2011-03-31
US6657455B2 (en) 2003-12-02
KR20040079960A (ko) 2004-09-16
US7714603B2 (en) 2010-05-11
WO2003065064A2 (en) 2003-08-07
US6949942B2 (en) 2005-09-27
CN1643389A (zh) 2005-07-20
US20040075459A1 (en) 2004-04-22
US20070257696A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
CN100454216C (zh) 受测试集成电路的预测性自适应电源
US7342405B2 (en) Apparatus for reducing power supply noise in an integrated circuit
CN206460351U (zh) 低压差电压调节器单元、电子设备及兼容usb c型标准的控制器
WO2001073929A2 (en) Apparatus for reducing power supply noise in an integrated circuit
CN100561842C (zh) 在开关电源中用于电流和电压控制的控制电路
CN101261908A (zh) 电磁接触器的线圈驱动装置
TWI287095B (en) Compensation for test signal degradation due to DUT fault
CN101577491B (zh) 用于向半导体集成电路器件提供多个电源电压的电源电路
US7053648B2 (en) Distributed, load sharing power supply system for IC tester
WO1996005553A1 (en) A high speed iddq monitor circuit
US6774612B1 (en) Device and method for reducing DC/DC converter initial set-point error and margining error
EP1466185B1 (en) High speed and high accuracy dut power supply with boost circuitry
CN101101313A (zh) 受测试集成电路的预测性自适应电源
US5821755A (en) Apparatus and method for obtaining power from a battery charger
US6051968A (en) Test board provided with a capacitor charging circuit and related test method
CN102098029A (zh) 软切换开关装置与方法及其应用的电源转换系统
EP3812872B1 (en) A system comprising a low drop-out regulator
JPH0545396A (ja) ノイズ試験器
Perol Integrated circuit for switching converters using conductance control
JPH10126965A (ja) 交流分配装置
JPH10341542A (ja) 太陽電池電源制御装置
JPH1138092A (ja) 電源装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090121

Termination date: 20120129