CN100499028C - 用于衬底的各向异性蚀刻的非晶蚀刻停止 - Google Patents

用于衬底的各向异性蚀刻的非晶蚀刻停止 Download PDF

Info

Publication number
CN100499028C
CN100499028C CNB200480039534XA CN200480039534A CN100499028C CN 100499028 C CN100499028 C CN 100499028C CN B200480039534X A CNB200480039534X A CN B200480039534XA CN 200480039534 A CN200480039534 A CN 200480039534A CN 100499028 C CN100499028 C CN 100499028C
Authority
CN
China
Prior art keywords
substrate
etch
crystal face
groove
ionised species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB200480039534XA
Other languages
English (en)
Other versions
CN1902736A (zh
Inventor
S·基廷
C·奥特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1902736A publication Critical patent/CN1902736A/zh
Application granted granted Critical
Publication of CN100499028C publication Critical patent/CN100499028C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Abstract

描述了用在衬底中为电中性的元素注入衬底来形成非晶蚀刻停止层的方法。使用在衬底中为电中性的元素防止在元素扩散到衬底中的其它区域时由该元素引起的电干扰。在晶体管或其它器件如悬臂的制造中,非晶蚀刻停止层可以用作硬掩模。

Description

用于衬底的各向异性蚀刻的非晶蚀刻停止
技术领域
本发明涉及蚀刻用在集成电路中的衬底的领域,且尤其涉及各向异性湿法蚀刻以及使用非晶蚀刻停止区的领域。
背景技术
在蚀刻其上已经形成了结构的衬底中发现的问题是微负载。微负载是在单个衬底上不同区域中不同密度结构对这些不同区域中的蚀刻几何形状的影响。在具有不同结构密度的区域中的不同蚀刻几何形状的实例在图1中示出。区域1是具有形成于衬底120上的相对高密度的结构110的区域。用于图1中的实例的结构110是具有侧壁间隔物140的晶体管栅130。在该实例中,蚀刻衬底以形成随后用掺杂的材料回填的凹槽,从而形成源/漏区。区域2是具有形成于衬底120上的相对低密度的结构110的区域。可以是晶体管栅130的源/漏区的蚀刻区域150在区域1和2中具有不同的蚀刻几何形状。在相对稠密区域1中的蚀刻区域150对侧壁间隔物和晶体管栅的底切比区域2中的蚀刻区域150的底切面积更小,并且也倾向于具有比区域2中的蚀刻区域150小的深度。例如,如图1中所示,在区域1中的底切区域160只底切侧壁间隔物140,但是区域2中的底切区170底切了侧壁间隔物140和晶体管栅130。由于微负载导致在衬底上形成与在相同衬底上的其它器件相比具有不相容结构的器件,因此微负载是影响集成电路性能的明显问题。
在过去已通过在衬底上形成虚拟结构来处理微负载,以使在衬底上的结构密度在衬底上处处相等。由于虚拟结构在衬底上占用可更好地利用的空间并且由于在结构之间的大空间是为特定器件要求所需要的,因此虚拟结构不理想。
在过去已通过在衬底内部形成蚀刻停止以控制蚀刻深度来处理微负载。现有技术已经通过用外来元素如硼(B)、磷(P)和砷(As)掺杂衬底来在衬底中形成蚀刻停止。该蚀刻停止有助于控制各向异性湿法蚀刻的深度。通过使用具有各向异性湿法蚀刻的蚀刻停止,可以控制被蚀刻区域的深度以及被蚀刻区域的宽度(底切)。使用元素如硼、磷和砷的缺点在于它们会从蚀刻停止区扩散到它们可以引起对形成于衬底中或衬底上的器件的电干扰的区域中。
双间隔物工艺已经用于抵抗由微负载引起的横向底切效果。在该方法中,由首先在栅电极的任一侧上形成窄的侧壁间隔物来控制横向底切。然后,用各向异性干法蚀刻来蚀刻孔并然后用感兴趣的材料填充该孔。然后形成另一个侧壁间隔物,并用外来元素注入间隔物之间的衬底。但是,该方法要求很多步骤,而且不能完全地防止由于微负载导致的不相容底切的问题,而且当底切用于结构如源/漏尖端扩展区域时不能使用该方法。
发明内容
根据本发明的第一方面,提供了一种方法,包括:
将凹槽蚀刻到衬底中,该凹槽具有底部;
将从包括贵重元素、周期表的第I列的碱金属和周期表的第II列的碱土金属的组中选取的至少一种离子化物质注入到凹槽的底部中,以形成非晶蚀刻停止区,该离子化物质在衬底中为电中性;和
用各向异性湿法蚀刻来蚀刻衬底。
根据本发明的第二方面,提供了一种方法,包括:
将从包括贵重元素、周期表的第I列的碱金属和周期表的第II列的碱土金属的组中选取的至少一种离子化物质注入到衬底中,以形成非晶蚀刻停止区,该离子化物质在衬底中为电中性;
在将所述至少一种离子化物质注入到所述衬底中之后,将凹槽蚀刻到衬底中;和
用各向异性湿法蚀刻来蚀刻衬底。
根据本发明的第三方面,提供了一种方法,包括:
在具有垂直[100]晶面、水平[110]晶面和对角线[111]晶面的单晶硅衬底上方形成栅和在栅的两侧上形成一对侧壁间隔物;
在单晶硅衬底中沿着垂直[100]晶面用各向异性干法等离子体蚀刻来蚀刻凹槽;
将硅注入到凹槽的底部中以形成非晶蚀刻停止;
沿着对角线[111]晶面用具有至少接近10的pH且没有氧化剂的各向异性湿法蚀刻来蚀刻凹槽;和
用电子掺杂的硅锗材料填充凹槽以形成源/漏区。
根据本发明的第四方面,提供了一种方法,包括:
提供具有晶格的衬底;和
用从包括贵重元素、周期表的第I列的碱金属和周期表的第II列的碱土金属的组中选取的至少一种在衬底中为电中性的离子化物质断裂衬底中的晶格,以形成蚀刻停止区。
根据本发明的第五方面,提供了一种结构,包括:
衬底,具有多个垂直[100]晶面、多个水平[110]晶面和多个对角线[111]晶面,该衬底具有成形为反截顶锥体的凹槽,其中反截顶锥体沿着对角线[111]平面具有四壁和沿着水平[110]平面具有平坦的底部;和
非晶蚀刻停止区,含有从包括贵重元素、周期表的第I列的碱金属和周期表的第II列的碱土金属的组中选取的至少一种在凹槽的平坦底部中的衬底中为电中性的元素,其中非晶蚀刻停止区用作掩模以保护衬底表面。
根据本发明的第六方面,提供了一种晶体管,包括:
结晶半导体衬底,具有多个垂直[100]晶面、多个水平[110]晶面和多个对角线[111]晶面以及电中性的离子化物质形成的蚀刻停止区;
栅电极,形成于结晶半导体衬底上方;
一对侧壁间隔物,在栅电极的每一侧壁上都有一个;和
一对源/漏区,在每个侧壁间隔物的下方都有一个源/漏区,且其中源/漏区由间隔物的底部和对角线[111]晶面限定。
附图说明
图1是示出在现有技术的蚀刻之后的微负载的衬底的例图。
图2a-2j示例了形成具有源/漏注入区并使用非晶注入区作为蚀刻停止的晶体管。
图3a-3g示例了形成没有源/漏注入区的晶体管并使用非晶注入区作为蚀刻停止的可选实施例。
图4a-4d示例了形成悬臂的方法。
具体实施方式
这里描述的是使用通过注入在衬底中为电中性的元素形成的非晶蚀刻停止层的方法和器件。在以下的描述中,列举出很多具体细节。然而本领域技术人员将理解这些具体细节对于实施本发明的实施例不是必要的。虽然描述了本发明的某些示范性实施例并示于附图中,但是应当理解,这种实施例仅仅是示例性的而不限制当前发明,且本发明不限于示出和描述的具体结构和设置,这是由于本领域技术人员可作出修改。在其它情况下,为了不必要的使得本发明的实施例含糊不清,没有特别详细地列举出公知的半导体制造工艺、技术、材料、设备等。
描述了通过用在衬底中为电中性的元素注入衬底的形成非晶蚀刻停止层的方法。在它们扩散到衬底中的其它区域中的情况下,在衬底中为电中性的元素的使用防止了元素的电干扰。非晶蚀刻停止层可用在晶体管的制造中或用作硬掩模以形成其它器件,如悬臂。
在一个实施例中,非晶蚀刻停止区域可形成于衬底中以制造晶体管。衬底200提供于图2a中。该衬底200可以是单晶或多晶半导体材料,如硅或锗。在图2a中,示例出单晶硅衬底200在y平面中具有[100]晶向,在x平面中具有[110]晶向,且在x和y平面的对角线平面中具有[111]晶向。衬底200根据形成的是PMOS或NMOS晶体管而含有p型和n型阱。在图2a中示例的衬底的区域可以是掺杂有p型掺杂剂如硼或镓的p型,或可选地是掺杂有n型掺杂剂如磷或砷的n型阱。栅电介质205形成于衬底200上。栅电介质205可以是如氮氧化层的材料。栅电极210形成于栅电介质205上方。栅电极210可以通过多晶硅层的毯覆沉积和随后将多晶硅层图案化成为栅电极210来形成。隔离区215形成于衬底200中,以将n型阱与p型阱分离,并因此隔离相邻的晶体管。场隔离区215例如是通过将沟槽蚀刻到衬底200中以及随后用沉积的氧化物来填充沟槽和平坦化来形成的浅沟槽隔离(STI)区。
如图2b中示例的,硬掩模220形成于栅电极210上方以在随后的注入工艺中保护栅电极210。掺杂剂230注入到衬底200中以形成源-漏尖端区225。对于PMOS晶体管,掺杂剂230是p型掺杂剂如硼或镓,衬底200在隔离区215之间的该区域中是n型阱。对于NMOS晶体管,掺杂剂230是n型掺杂剂如磷或砷,衬底200在隔离区215之间的该区域中是p型阱。源/漏尖端注入区225可具有小于接近10nm的深度和跨越栅电极210和隔离区215之间区域的宽度。
图2c示例了将凹槽235蚀刻到衬底中的实施例。在通过本领域技术人员公知的常规工艺蚀刻凹槽235之前形成侧壁间隔物240。然后蚀刻衬底以形成凹槽235。可通过使用化合物如气态的Cl2、SF6或HBr的各向异性等离子体蚀刻来蚀刻凹槽235,该气态的化合物将蚀穿源/漏尖端注入区域225和衬底200。凹槽235可具有接近40nm和1000nm范围内的宽度,和在接近40nm和200nm范围内的深度。
然后可将离子化物质245注入到在图2d中示例的衬底200中的凹槽235的底部中,以形成非晶蚀刻停止区250。在注入离子化物质245之前,在栅电极310上方形成硬掩模325,以在注入期间保护栅电极。通过用注入工艺断裂衬底200的键来形成非晶蚀刻停止区250。将衬底200的键断裂至它们对于湿法各向异性蚀刻剂产生蚀刻停止区的程度。在断裂衬底200的键中包括的参数包括离子化物质245的加速能量、离子半径和质量。对于不从衬底200的表面反射的注入的几乎所有低能量条件都将断裂衬底200的键,并形成非晶区如非晶蚀刻停止区250。可以以接近5×e14原子/cm2和1×e15原子/Cm2之间的剂量、和接近1KeV和20KeV范围的注入能量将离子化物质245注入到凹槽235的底部中,以在非晶蚀刻停止区250中形成接近1×e21原子/cm3浓度的离子化物质245。注入能量可取决于被注入的离子化物质245,且在一个实施例中,注入能量尽可能地低,以避免对衬底200的不必要的损伤。离子化物质245可注入到接近50nm的深度或可沉积到凹槽235的底部表面上。
离子化物质245是在衬底中为电中性的元素,以使在其扩散到衬底中时,不会电干扰在衬底200中或上的器件。在一个实施例中,在衬底200中为电中性的离子化物质245可以是与形成衬底的元素相同的元素。在该实施例中,注入到硅衬底200中的元素可以是硅,或可选地,注入到锗衬底200中的元素可以是锗。在可选实施例中,在衬底中为电中性的离子化物质245可以是在衬底200中具有低溶解度的元素,并由此不取代在衬底的晶格中的原子。在硅中为电中性的元素是具有大于硅的共价半径尺寸1.2倍的离子半径的元素,和具有小于硅的共价半径尺寸的0.7倍的离子半径的元素。硅的共价半径接近111微微米(pm),因此在硅中为电中性的元素是具有离子半径大于130pm的元素和离子半径小于80pm的元素。具有这些特定离子半径的元素不取代硅晶格中的原子,并在硅中具有非常低的溶解度,由此使得这种元素在硅中为电中性。对于硅衬底符合离子半径标准的离子化物质245例如包括氧、氮、贵重元素(Ne、Ar、Kr等)和周期表中第I列(H、Li、Na、K、Rb、Cs、Fr)的碱金属和周期表的第II列的碱土金属(Be、Mg、Ca、Sr、Ba、Ra)。离子化物质245可以是一种类型的元素或是元素组合。
图2e和2f示例了可选实施例,其中代替如图2c中示例的第一蚀刻凹槽235和随后如图2d中示例的用离子化物质245注入凹槽235的底部,在将凹槽235蚀刻到衬底200中之前将离子化物质245注入到衬底200中。在图2e中,可将离子化物质245注入到衬底200中以形成非晶蚀刻停止区250。可以以1×e15原子/cm2和1×e16原子/cm2之间的剂量、和在接近10KeV和40KeV范围内的注入能量将离子化物质245注入到衬底200中。注入能量可以取决于被注入的杂质材料245,且注入能量可以尽可能地低以避免对衬底200的损伤。可将离子化物质245注入至稍超出凹槽235深度的深度以形成图2e的非晶蚀刻停止区250。如上关于图2c和2d所述,离子化物质245是在衬底200中为电中性的材料,且可以是上述的特定元素中的任一种。如图2f中所示例的,然后通过使用化合物如Cl2、SF6或HBr的各向异性等离子体蚀刻,穿过非晶蚀刻停止区250的上部部分在衬底200中蚀刻凹槽235。非晶蚀刻停止区250不用作各向异性等离子体蚀刻的蚀刻停止,但是将用作各向异性湿法蚀刻的蚀刻停止,这是由于其用作掩模以保护衬底表面,如以下将描述的。凹槽235可以具有接近40nm和1000nm范围内的宽度,和接近40nm和200nm范围内的深度。
在图2g中,用各向异性湿法蚀刻来蚀刻衬底200,以形成沿着[111]晶面具有陡峭斜面265的蚀刻底切区260。各向异性湿法蚀刻在非晶蚀刻停止区250上停止蚀刻,以使沟槽的底部是平坦的。侧壁间隔物240、源/漏尖端注入区225和STI隔离区215不通过各向异性湿法蚀刻来蚀刻。各向异性湿法蚀刻可以是pH接近10或更高的碱性湿法蚀刻。湿法蚀刻可以由含碱如KOH(氢氧化钾)、NaOH(氢氧化钠)、NH4OH(氢氧化氨)或TMAH(氢氧化四甲基氨)的水溶液配制而成。例如,重量百分比为30%的NH4OH溶液可与水混合,以形成具有体积百分比在接近10%-100%范围内的NH4OH浓度、或尤其重量百分比在接近3%-30%范围内的NH4OH浓度的各向异性蚀刻溶液270。为了控制各向异性湿法蚀刻的速度,可在接近室温下进行该蚀刻。为了增加蚀刻速度,可提高温度。进行各向异性湿法蚀刻的温度接近15℃和80℃之间,尤其接近24℃。蚀刻速度可以在接近10nm/分钟和100nm/分钟的范围内。在蚀刻溶液中不包括氧化剂,这是由于其会氧化衬底200并停止各向异性蚀刻,以使沿着[111]晶面不会产生陡峭面260。可以蚀刻衬底200达接近1分钟和10分钟范围内的时间。蚀刻的时间越长,就会获得越多的横向底切。横向蚀刻底切区260的距离可以是侧壁间隔物240的宽度,如图2g中所示。因此,底切区的宽度在接近5nm-100nm的范围内,且尤其在接近10nm-30nm的范围内。
如图2h中所示例的,底切区260可以在栅电极210下方延伸至接近栅210的宽度的10%到20%范围内的距离。由于蚀刻衬底200至源/漏尖端注入区225的底部,因此源/漏尖端注入区225会影响底切区260的几何形状。因此,由于底切区260延伸出源/漏尖端注入区225并在栅电极210下方延伸,因此其将留下在底切区260和栅电介质205之间的衬底200的距离270。这防止底切区260被蚀刻得过于接近栅电极。在栅电极210下方的底切区260可以是在用掺杂的半导体回填充材料275如外延硅锗回填充凹槽235和底切区260之后的晶体管的延伸尖端源/漏区,如图2i中所示例的。如2j中所示例的,在回填充材料275的回填充工艺期间,由于回填充工艺的温度,可再结晶非晶蚀刻停止区250。在回填充工艺期间,衬底200的温度可达到接近600℃和650℃范围内的温度。在杂质材料245与衬底200为相同元素的实施例中,非晶蚀刻停止区250的再结晶将使得该区域与衬底200的剩余区域相似。图2j中示例了具有源/漏区285和通过在由上述蚀刻工艺形成的区域中沉积掺杂的半导体回填充材料275形成的延伸的尖端源/漏区290的晶体管280。
在图3a-3g中示例的可选实施例中,可形成使用非晶蚀刻停止区制造的晶体管,而没有源/漏注入区,以使各向异性湿法蚀刻的底切区在晶体管的侧壁间隔物下方形成陡峭的蚀刻几何形状。衬底300提供于图3a中。衬底300可以是单晶或多晶半导体材料如硅或锗。在图3a中,示例出单晶硅衬底200在y平面内具有[100]晶向,在x平面内具有[110]晶向,和在x和y平面的对角线平面内具有[111]晶向。衬底300可根据形成的是PMOS还是NMOS晶体管而含有p型阱和n型阱。图3a中示例的衬底的区域可以是掺杂有p型掺杂剂如硼或镓的p型,或可选地可以是掺杂有n型掺杂剂如磷或砷的n型阱。栅电介质305形成于衬底300上。栅电介质305可以是例如氮氧化层的材料。栅电极310形成于栅电介质305上方。栅电极310可以通过毯覆沉积多晶硅层和随后将多晶硅层图案化成栅电极310来形成。隔离区315形成于衬底300中,以将n型阱与p型阱分离,并因此隔离相邻的晶体管。场隔离区315例如可以是通过将沟槽蚀刻到衬底300中以及随后用沉积氧化物填充沟槽来形成的浅沟槽隔离(SIT)区。
如图3b中所示例的,通过本领域技术人员公知的常规方法将一对侧壁间隔物320形成于栅电极310的任一侧上。另外,硬掩模325可以形成于栅电极310上。图3c示例出在用注入材料335注入衬底300之前将凹槽330蚀刻到衬底300中的实施例。凹槽330可以通过使用化合物如气态的Cl2、SF6或HBr的各向异性等离子体蚀刻来蚀刻。凹槽330可以具有在接近40nm和1000nm范围内的宽度,和在接近40nm和200nm范围内的深度。
然后可将离子化物质335注入到衬底300中的凹槽330的底部中,如图3d中所示例的,以形成非晶蚀刻停止区340。非晶蚀刻停止区340通过用注入工艺断裂衬底300的键来形成。将衬底300的键断裂至它们可以产生用于湿法各向异性蚀刻剂的蚀刻停止区的程度。在断裂衬底300的键中包括的参数包括离子化物质335的加速能量、离子半径和质量。对于不从衬底300的表面反射的注入的几乎所有低能量条件都可断裂衬底300的键,并形成非晶区如非晶蚀刻停止区340。以接近5×e14原子/cm2和1×e15原子/cm2之间的剂量、和在接近1KeV和20KeV范围内的注入能量可以将离子化物质335注入到凹槽330的底部中,以在非晶蚀刻停止区340内形成接近1×e21原子/cm3浓度的离子化物质335。注入能量可取决于被注入的离子化物质335,并在一个实施例中,注入能量尽可能地低,以避免对衬底300的不必要的损伤。离子化物质335可注入至达接近50nm的深度,或可沉积到凹槽330的底部表面上。
离子化物质335是一种在衬底中为电中性的元素,以使在其扩散到衬底中时不会电干扰在衬底300中或上的器件。在一个实施例中,在衬底300中为电中性的离子化物质335可以是与形成衬底的元素相同的元素。在该实施例中,注入到硅衬底300中的元素是硅,或可选地,注入到锗衬底300中的元素是锗。在可选实施例中,在衬底中为电中性的离子化物质335可以是在衬底300中具有低溶解度的元素,并由此可以不取代在衬底晶格中的原子。在硅中为电中性的元素是具有大于硅的共价半径尺寸1.2倍的离子半径的元素,和具有小于硅的共价半径尺寸的0.7倍的离子半径的元素。硅的共价半径接近111微微米(pm),因此在硅中为电中性的元素是具有离子半径大于130pm的元素和离子半径小于80pm的元素。具有这些特定离子半径的元素不取代在硅晶格中的原子并在硅中具有非常低的溶解度,由此使得这种元素在硅中为电中性。符合硅衬底的离子半径标准的离子化物质335例如包括氧、氮、贵重元素(Ne、Ar、Kr等)和周期表中第I列(H、Li、Na、K、Rb、Cs、Fr)的碱金属和周期表的第II列的碱土金属(Be、Mg、Ca、Sr、Ba、Ra)。离子化物质335可以是一种类型的元素或是元素组合。在可选实施例中,可以在蚀刻凹槽330之前,将离子化物质335注入到衬底300中,如上面关于图2c和2f所示例的那样。
在图3e中,用各向异性湿法蚀刻来蚀刻衬底300以形成沿着[111]晶面具有陡峭斜面350的蚀刻底切区345。由于在各向异性湿法蚀刻中不存在氧化剂,因此产生陡峭的斜面350。各向异性湿法蚀刻在非晶蚀刻停止区340上停止蚀刻,以使沟槽的底部是平坦的。非晶蚀刻停止区340用作掩模,以保护衬底表面。侧壁间隔物320和STI隔离区315不被各向异性湿法蚀刻所蚀刻。各向异性湿法蚀刻可以是具有pH接近10或更高的碱性湿法蚀刻。湿法蚀刻可以由含碱如KOH(氢氧化钾)、NaOH(氢氧化钠)、NH4OH(氢氧化氨)或TMAH(氢氧化四甲基氨)的水溶液配制而成。例如,重量百分比为30%的NH4OH溶液可与水混合,以形成具有体积百分比在接近10%-100%范围内的NH4OH浓度、或尤其重量百分比在接近3%-30%范围内的NH4OH浓度的各向异性蚀刻溶液270。为了控制各向异性湿法蚀刻的速度,可在接近室温下进行该蚀刻。为了增加蚀刻速度,可提高温度。进行各向异性湿法蚀刻的温度接近15℃和80℃之间,尤其接近24℃。蚀刻速度可以在接近10nm/分钟和100nm/分钟的范围内。可以蚀刻衬底300达足以在侧壁间隔物320下方形成底切区345的时间,但是没有长到蚀刻到栅电介质305的下方。在一个实施例中,蚀刻时间在接近1分钟和10分钟的范围内。蚀刻的时间越长,就会获得越大的横向底切。横向蚀刻底切区345的距离可以是侧壁间隔物320的宽度,如图3e中所示例的。因此,底切区的宽度在接近5nm-100nm的范围内,更尤其在接近10nm-30nm的范围内。
在图3f中,凹槽330和底切区345用掺杂的半导体回填充材料355来回填充。在回填充工艺期间,衬底300可以达到接近600℃和650℃范围内的温度。通过这些温度,非晶蚀刻停止区340可以再结晶。在离子化物质335是与衬底300相同元素的实施例中,非晶蚀刻停止区340的再结晶将使得该区域不能与衬底300的其它区域区分开,如图3g中所示例的那样。图3g示例了具有源/漏区360和通过在由上述蚀刻工艺形成的区域中沉积掺杂的半导体回填充材料355形成的源/漏尖端区365的晶体管。源/漏尖端区365具有尖角并且恰好沿着侧壁间隔物320的底部边缘形成。该几何形状提供最大掺杂的源/漏尖端区域刚好直到栅电介质305和栅电介质310,并会引起比具有圆形边缘的源/漏区更好的器件性能。
在另一实施例中,非晶蚀刻停止区可用作正的地貌特征的掩模,其中非晶蚀刻停止区是浅的且在衬底表面附近。如图4a-4d中示例的,可以使用非晶蚀刻停止层作为掩模和在单晶衬底上的湿法各向异性蚀刻来形成悬臂。衬底可以是单晶或多晶半导体材料如硅或锗。在一个具体实施例中,半导体材料是单晶硅衬底。在图4a中,提供单晶硅衬底400,单晶硅衬底400在y平面内具有[100]晶向,在x平面内具有[110]晶向,和在x和y平面的对角线平面内具有[111]晶向。图案化的光致抗蚀剂掩模410形成于衬底400上。可通过对光致抗蚀剂显影来图案化光致抗蚀剂掩模。示例出了衬底400和光致抗蚀剂掩模410的顶视图和相同衬底400和光致抗蚀剂掩模410沿着虚线I-I的截面图。如在顶视图中所示例的,光致抗蚀剂掩模410具有正方形的“U-形”图案。光致抗蚀剂掩模410可以是例如氧化硅或氮化硅的材料。光致抗蚀剂掩模410的厚度应当足够厚以阻挡由注入到衬底400中的离子化物质420穿透衬底400。光致抗蚀剂掩模410的厚度取决于注入能量,但是通常光致抗蚀剂掩模410可以具有小于接近10nm的厚度。在图4b中,用离子化物质420注入单晶硅衬底400以形成非晶区430。离子化物质420可以是与形成衬底的元素相同的元素。在一个实施例中,注入到硅衬底400中的元素是硅,和在另一实施例中,注入到锗衬底400中的元素是锗。在可选实施例中,注入到衬底中以形成非晶区的元素可以是在衬底中为电中性的元素。在衬底中为电中性的元素可以是在衬底中具有低溶解度的那些元素,并由此其不取代在衬底的晶格中的原子。在硅中为电中性的元素是具有大于硅的共价半径尺寸的1.2倍的离子半径的元素,和具有小于硅的共价半径尺寸的0.7倍的离子半径的元素。硅的共价半径接近111微微米(pm),因此在硅中为电中性的元素是具有离子半径大于130pm的元素和离子半径小于80pm的元素。具有这些特定离子半径的离子化物质420不取代硅晶格中的原子,并在硅中具有非常低的溶解度,由此使得这种元素在硅中为电中性。对于硅衬底符合离子半径标准的离子化物质420例如包括氧、氮、贵重元素(Ne、Ar、Kr等)、周期表中第I列(H、Li、Na、K、Rb、Cs、Fr)的碱金属和周期表的第II列的碱土金属(Be、Mg、Ca、Sr、Ba、Ra)。离子化物质420可以是一种类型的元素或是元素组合。以1×e15原子/cm2和1×e16原子/cn2之间的剂量、和在接近1KeV和20KeV范围内更尤其是接近5KeV的注入能量将离子化物质420注入到衬底400中,以在衬底400中形成接近1×e21原子/cm3浓度的离子化物质420。注入能量可以取决于被注入的离子化物质420,且注入能量尽可能地低,以避免对衬底400的损伤。离子化物质420可以注入至接近零纳米(只在衬底表面上)和50nm范围内的深度。
然后如图4c中所示例的除去光致抗蚀剂掩模410,以暴露出单晶硅衬底400的非注入区。在将光致抗蚀剂除去之前对衬底400的非注入区表现出光致抗蚀剂掩模410的“U形”区域,且二者具有相同的尺寸。在图4d中,用各向异性湿法蚀刻溶液来蚀刻单晶硅衬底400,且非晶区430用作硬掩模。各向异性湿法蚀刻溶液可以是pH大于大约10的碱性湿法蚀刻。各向异性湿法蚀刻溶液可以形成有碱如KOH(氢氧化钾)、NaOH(氢氧化钠)、NH4OH(氢氧化氨)或TMAH(氢氧化四甲基氨)。例如,体积百分比为30%的NH4OH溶液可与水混合,以形成具有体积百分比在接近10%-100%范围内的NH4OH浓度、或尤其重量百分比在接近3%-30%范围内的NH4OH浓度的各向异性湿法蚀刻溶液。为了控制备向异性湿法蚀刻的速度,可在接近室温下进行该蚀刻。为了增加蚀刻速度,可以提高各向异性湿法蚀刻溶液的温度。进行各向异性湿法蚀刻的温度接近15℃和80℃之间,尤其接近24℃。蚀刻速度可以在接近10nm/分钟和100nm/分钟的范围内。可以蚀刻衬底400达接近1分钟和10分钟范围内的时间。蚀刻的时间越长,凹槽450的尺寸越大。在各向异性湿法蚀刻溶液中不包括氧化剂,这是由于如果氧化了衬底400,则蚀刻会停止并且不会产生沿着[111]晶面的陡峭面460。对于如硅的衬底尤其是这样。各向异性湿法蚀刻溶液会沿着[111]对角晶面460和沿着[100]垂直晶面蚀刻,以形成悬臂475。在其最终的形成中,可以将悬臂475成形为类似于在凹槽450上方向外突起的跳板。由于通过各向异性湿法蚀刻形成了悬臂475的核心的非晶区430的横向底切,所以形成了悬臂475。由于沿着单晶硅衬底400的水平[110]晶面的各向异性湿法蚀刻溶液的几何形状,形成了凹槽450的平坦部分470.使用通过非晶区430形成的正方形“掩模”导致形成了凹槽450的平坦部分470。凹槽450可以具有在接近1:1和1:5范围内的纵横比。悬臂450可以用作施压部件或accellerometer。
由此,已经描述了本发明的几个实施例。然而,本领域技术人员应该认识到,本发明不限于描述的实施例,而是可通过在以下附属的权利要求的范围和精神内的修改和变化来实施。

Claims (19)

1.一种方法,包括:
将凹槽蚀刻到衬底中,该凹槽具有底部;
将从包括周期表的第I列的碱金属和周期表的第II列的碱土金属的组中选取的至少一种离子化物质注入到凹槽的底部中,以形成非晶蚀刻停止区,该离子化物质在衬底中为电中性;和
用各向异性湿法蚀刻来蚀刻衬底。
2.根据权利要求1的方法,其中离子化物质在衬底中具有低溶解度。
3.根据权利要求2的方法,其中离子化物质具有大于130pm的离子半径或小于80pm的离子半径。
4.根据权利要求1的方法,其中衬底是具有垂直[100]晶面、水平[110]晶面和对角线[111]晶面的单晶,且其中用碱性各向异性湿法蚀刻来蚀刻单晶,使得相对于[100]晶面形成沿着[111]晶面的面。
5.根据权利要求4的方法,其中碱性各向异性湿法蚀刻溶液具有10或更高的pH。
6.根据权利要求4的方法,其中碱性各向异性湿法蚀刻不包括氧化剂。
7.根据权利要求1的方法,其中将元素注入到衬底中以形成非晶蚀刻停止区的步骤包括在5×e14原子/cm2和1×e15原子/cm2范围内的元素剂量。
8.根据权利要求1的方法,其中将离子化物质注入到衬底中以形成非晶蚀刻停止区的步骤包括在1KeV和20KeV范围内的注入能量。
9.根据权利要求1的方法,其中将凹槽蚀刻到衬底中的步骤包括各向异性干法等离子体蚀刻。
10.一种方法,包括:
将从包括周期表的第I列的碱金属和周期表的第II列的碱土金属的组中选取的至少一种离子化物质注入到衬底中,以形成非晶蚀刻停止区,该离子化物质在衬底中为电中性;
在将所述至少一种离子化物质注入到所述衬底中之后,将凹槽蚀刻到衬底中;和
用各向异性湿法蚀刻来蚀刻衬底。
11.根据权利要求10的方法,其中用离子化物质注入凹槽的步骤包括在e15原子/cm2和1×e16原子/cm2范围内的离子化物质剂量。
12.根据权利要求10的方法,其中用离子化物质注入凹槽的步骤包括在10KeV和40KeV范围内的注入能量。
13.一种方法,包括:
在具有垂直[100]晶面、水平[110]晶面和对角线[111]晶面的单晶硅衬底上方形成栅和在栅的两侧上形成一对侧壁间隔物;
在单晶硅衬底中沿着垂直[100]晶面用各向异性干法等离子体蚀刻来蚀刻凹槽;
将硅注入到凹槽的底部中以形成非晶蚀刻停止;
沿着对角线[111]晶面用具有至少10的pH且没有氧化剂的各向异性湿法蚀刻来蚀刻凹槽;和
用电子掺杂的硅锗材料填充凹槽以形成源/漏区。
14.根据权利要求13的方法,还包括在侧壁间隔物下方的源/漏尖端注入区。
15.根据权利要求13的方法,还包括含有氧化物的浅沟槽隔离区且其中各向异性湿法蚀刻不蚀刻浅沟槽隔离区或保护栅的硬掩模。
16.根据权利要求13的方法,其中用电子掺杂的硅锗材料填充凹槽在栅下方形成外延源/漏尖端延伸区。
17.一种晶体管,包括:
结晶半导体衬底,具有多个垂直[100]晶面、多个水平[110]晶面和多个对角线[111]晶面以及电中性的离子化物质形成的蚀刻停止区;
栅电极,形成于结晶半导体衬底上方;
一对侧壁间隔物,在栅电极的每一侧壁上都有一个;和
一对源/漏区,在每个侧壁间隔物的下方都有一个源/漏区,且其中源/漏区由间隔物的底部和对角线[111]晶面限定。
18.根据权利要求17的结构,其中所述一对源/漏区在所述的一对侧壁间隔物下方延伸达到所述一对侧壁间隔物中的一个的宽度的距离。
19.根据权利要求17的结构,其中所述一对源/漏区在栅电极下方延伸达到在栅电极宽度的10%和20%范围内的距离。
CNB200480039534XA 2003-12-30 2004-12-23 用于衬底的各向异性蚀刻的非晶蚀刻停止 Active CN100499028C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/750,054 US7045407B2 (en) 2003-12-30 2003-12-30 Amorphous etch stop for the anisotropic etching of substrates
US10/750,054 2003-12-30

Publications (2)

Publication Number Publication Date
CN1902736A CN1902736A (zh) 2007-01-24
CN100499028C true CN100499028C (zh) 2009-06-10

Family

ID=34711193

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200480039534XA Active CN100499028C (zh) 2003-12-30 2004-12-23 用于衬底的各向异性蚀刻的非晶蚀刻停止

Country Status (6)

Country Link
US (1) US7045407B2 (zh)
KR (1) KR100810774B1 (zh)
CN (1) CN100499028C (zh)
DE (1) DE112004002611B4 (zh)
TW (1) TWI250576B (zh)
WO (1) WO2005067021A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969247A (zh) * 2011-08-31 2013-03-13 中芯国际集成电路制造(上海)有限公司 一种半导体结构及其形成方法,一种晶体管及其形成方法
CN107424913A (zh) * 2011-08-15 2017-12-01 阿卜杜拉国王科技大学 用于生产机械柔性的硅基底的方法

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473947B2 (en) * 2002-07-12 2009-01-06 Intel Corporation Process for ultra-thin body SOI devices that incorporate EPI silicon tips and article made thereby
US6909151B2 (en) 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
US7456476B2 (en) * 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US7244654B2 (en) * 2003-12-31 2007-07-17 Texas Instruments Incorporated Drive current improvement from recessed SiGe incorporation close to gate
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
KR100642747B1 (ko) * 2004-06-22 2006-11-10 삼성전자주식회사 Cmos 트랜지스터의 제조방법 및 그에 의해 제조된cmos 트랜지스터
JP4837902B2 (ja) 2004-06-24 2011-12-14 富士通セミコンダクター株式会社 半導体装置
TWI463526B (zh) * 2004-06-24 2014-12-01 Ibm 改良具應力矽之cmos元件的方法及以該方法製備而成的元件
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US7060579B2 (en) * 2004-07-29 2006-06-13 Texas Instruments Incorporated Increased drive current by isotropic recess etch
US7348284B2 (en) * 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
JP5203558B2 (ja) * 2004-08-20 2013-06-05 三星電子株式会社 トランジスタ及びこれの製造方法
KR100547934B1 (ko) * 2004-08-20 2006-01-31 삼성전자주식회사 트랜지스터 및 그의 제조 방법
US7422946B2 (en) 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US7361958B2 (en) * 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US20080121932A1 (en) * 2006-09-18 2008-05-29 Pushkar Ranade Active regions with compatible dielectric layers
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US20060202266A1 (en) 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
US20090206394A1 (en) * 2005-04-01 2009-08-20 Daniel Chanemougame Strained Channel PMOS Transistor and Corresponding Production Method
US9164051B2 (en) 2005-04-06 2015-10-20 Bioscale, Inc. Electrically responsive device
EP1872474A2 (en) * 2005-04-06 2008-01-02 Bioscale, Inc. Electrically responsive device
US7648844B2 (en) 2005-05-02 2010-01-19 Bioscale, Inc. Method and apparatus for detection of analyte using an acoustic device
US7749445B2 (en) 2005-05-02 2010-07-06 Bioscale, Inc. Method and apparatus for analyzing bioprocess fluids
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7402875B2 (en) 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US20070090416A1 (en) 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7659172B2 (en) * 2005-11-18 2010-02-09 International Business Machines Corporation Structure and method for reducing miller capacitance in field effect transistors
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US7303999B1 (en) * 2005-12-13 2007-12-04 Lam Research Corporation Multi-step method for etching strain gate recesses
US20070152266A1 (en) * 2005-12-29 2007-07-05 Intel Corporation Method and structure for reducing the external resistance of a three-dimensional transistor through use of epitaxial layers
US7494856B2 (en) * 2006-03-30 2009-02-24 Freescale Semiconductor, Inc. Semiconductor fabrication process using etch stop layer to optimize formation of source/drain stressor
US8017487B2 (en) 2006-04-05 2011-09-13 Globalfoundries Singapore Pte. Ltd. Method to control source/drain stressor profiles for stress engineering
US7528072B2 (en) * 2006-04-20 2009-05-05 Texas Instruments Incorporated Crystallographic preferential etch to define a recessed-region for epitaxial growth
WO2007127107A2 (en) * 2006-04-21 2007-11-08 Bioscale, Inc. Microfabricated devices and method for fabricating microfabricated devices
US7709341B2 (en) * 2006-06-02 2010-05-04 Micron Technology, Inc. Methods of shaping vertical single crystal silicon walls and resulting structures
US7625776B2 (en) * 2006-06-02 2009-12-01 Micron Technology, Inc. Methods of fabricating intermediate semiconductor structures by selectively etching pockets of implanted silicon
US7628932B2 (en) 2006-06-02 2009-12-08 Micron Technology, Inc. Wet etch suitable for creating square cuts in si
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
US7445973B2 (en) * 2006-09-29 2008-11-04 Micron Technology, Inc. Transistor surround gate structure with silicon-on-insulator isolation for memory cells, memory arrays, memory devices and systems and methods of forming same
US20080124874A1 (en) * 2006-11-03 2008-05-29 Samsung Electronics Co., Ltd. Methods of Forming Field Effect Transistors Having Silicon-Germanium Source and Drain Regions
US20080121042A1 (en) * 2006-11-27 2008-05-29 Bioscale, Inc. Fluid paths in etchable materials
US7999440B2 (en) * 2006-11-27 2011-08-16 Bioscale, Inc. Micro-fabricated devices having a suspended membrane or plate structure
US7919800B2 (en) 2007-02-26 2011-04-05 Micron Technology, Inc. Capacitor-less memory cells and cell arrays
US7732285B2 (en) * 2007-03-28 2010-06-08 Intel Corporation Semiconductor device having self-aligned epitaxial source and drain extensions
US7691752B2 (en) * 2007-03-30 2010-04-06 Intel Corporation Methods of forming improved EPI fill on narrow isolation bounded source/drain regions and structures formed thereby
US7553717B2 (en) * 2007-05-11 2009-06-30 Texas Instruments Incorporated Recess etch for epitaxial SiGe
US8187978B2 (en) 2007-07-27 2012-05-29 Freescale Semiconductor, Inc. Method of forming openings in a semiconductor device and semiconductor device
US20090035911A1 (en) * 2007-07-30 2009-02-05 Willy Rachmady Method for forming a semiconductor device having abrupt ultra shallow epi-tip regions
WO2009033056A1 (en) 2007-09-06 2009-03-12 Bioscale, Inc. Reusable detection surfaces and methods of using same
US7964910B2 (en) * 2007-10-17 2011-06-21 International Business Machines Corporation Planar field effect transistor structure having an angled crystallographic etch-defined source/drain recess and a method of forming the transistor structure
US7851313B1 (en) 2007-11-09 2010-12-14 Xilinx, Inc. Semiconductor device and process for improved etch control of strained silicon alloy trenches
DE102008011932B4 (de) * 2008-02-29 2010-05-12 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Erhöhung der Eindringtiefe von Drain- und Sourceimplantationssorten für eine gegebene Gatehöhe
CN101593702B (zh) * 2008-05-30 2010-12-22 中芯国际集成电路制造(北京)有限公司 应变金属氧化物半导体器件的制造方法
US20090302348A1 (en) * 2008-06-10 2009-12-10 International Business Machines Corporation Stress enhanced transistor devices and methods of making
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
DE102008049733B3 (de) * 2008-09-30 2010-06-17 Advanced Micro Devices, Inc., Sunnyvale Transistor mit eingebettetem Si/Ge-Material mit geringerem Abstand zum Kanalgebiet und Verfahren zur Herstellung des Transistors
DE102008049723B4 (de) * 2008-09-30 2012-01-26 Advanced Micro Devices, Inc. Transistor mit eingebettetem Si/Ge-Material mit einer besseren substratüberspannenden Gleichmäßigkeit
US20100109045A1 (en) * 2008-10-30 2010-05-06 Chartered Semiconductor Manufacturing Ltd. Integrated circuit system employing stress-engineered layers
US7977180B2 (en) * 2008-12-08 2011-07-12 GlobalFoundries, Inc. Methods for fabricating stressed MOS devices
DE102009010882B4 (de) * 2009-02-27 2012-04-19 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Transistor mit einer eingebetteten Halbleiterlegierung in Drain- und Sourcegebieten, die sich unter die Gateelektrode erstreckt und Verfahren zum Herstellen des Transistors
WO2011004474A1 (ja) * 2009-07-08 2011-01-13 株式会社 東芝 半導体装置及びその製造方法
US20110049582A1 (en) * 2009-09-03 2011-03-03 International Business Machines Corporation Asymmetric source and drain stressor regions
US8455859B2 (en) 2009-10-01 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Strained structure of semiconductor device
KR101096548B1 (ko) * 2009-11-06 2011-12-20 주식회사 비에스이 멤스 마이크로폰 및 그 제조방법
US8343872B2 (en) 2009-11-06 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming strained structures with compound profiles in semiconductor devices
KR101315473B1 (ko) * 2009-12-07 2013-10-04 성균관대학교산학협력단 전이 박막트랜지스터 및 그의 제조방법
US8765556B2 (en) * 2009-12-23 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating strained structure in semiconductor device
US8278164B2 (en) * 2010-02-04 2012-10-02 International Business Machines Corporation Semiconductor structures and methods of manufacturing the same
KR101668097B1 (ko) 2010-03-12 2016-10-24 삼성전자주식회사 전계 효과 트랜지스터를 포함하는 반도체 소자 및 그 형성 방법
DE102010029532B4 (de) * 2010-05-31 2012-01-26 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Transistor mit eingebettetem verformungsinduzierenden Material, das in diamantförmigen Aussparungen auf der Grundlage einer Voramorphisierung hergestellt ist
KR101703096B1 (ko) * 2010-09-02 2017-02-07 삼성전자 주식회사 반도체 장치의 제조방법
CN102443758A (zh) * 2010-10-06 2012-05-09 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
US8501570B2 (en) * 2010-10-20 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing source/drain structures
CN102487008A (zh) * 2010-12-01 2012-06-06 中芯国际集成电路制造(北京)有限公司 半导体器件及其形成方法
DE102010063772B4 (de) * 2010-12-21 2016-02-04 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG Verfahren zum Einbetten einer sigma-förmigen Halbleiterlegierung in Transistoren durch Anwenden einer gleichmäßigen Oxidschicht vor dem Ätzen der Aussparungen
KR20120073727A (ko) * 2010-12-27 2012-07-05 삼성전자주식회사 스트레인드 반도체 영역을 포함하는 반도체 소자와 그 제조방법, 및 그것을 포함하는 전자 시스템
US8455930B2 (en) * 2011-01-05 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Strained semiconductor device with facets
KR20120108338A (ko) 2011-03-23 2012-10-05 삼성전자주식회사 반도체 소자의 제조방법
DE102011076695B4 (de) * 2011-05-30 2013-05-08 Globalfoundries Inc. Transistoren mit eingebettetem verformungsinduzierenden Material, das in durch einen Oxidationsätzprozess erzeugten Aussparungen ausgebildet ist
CN102810513B (zh) * 2011-05-31 2014-09-24 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法
CN102810481B (zh) * 2011-06-02 2016-03-30 中芯国际集成电路制造(北京)有限公司 半导体器件的制造方法
CN102810480B (zh) * 2011-06-02 2016-01-06 中芯国际集成电路制造(北京)有限公司 半导体器件的制造方法
CN102810482B (zh) * 2011-06-02 2015-05-13 中芯国际集成电路制造(北京)有限公司 半导体器件的制造方法
US8450194B2 (en) * 2011-07-01 2013-05-28 Varian Semiconductor Equipment Associates, Inc. Method to modify the shape of a cavity using angled implantation
US9209083B2 (en) 2011-07-11 2015-12-08 King Abdullah University Of Science And Technology Integrated circuit manufacturing for low-profile and flexible devices
US8999794B2 (en) * 2011-07-14 2015-04-07 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned source and drain structures and method of manufacturing same
CN102881656B (zh) * 2011-07-15 2015-06-17 中芯国际集成电路制造(北京)有限公司 半导体器件及其制造方法
US8497180B2 (en) * 2011-08-05 2013-07-30 Globalfoundries Inc. Transistor with boot shaped source/drain regions
KR20130020221A (ko) 2011-08-19 2013-02-27 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8994123B2 (en) 2011-08-22 2015-03-31 Gold Standard Simulations Ltd. Variation resistant metal-oxide-semiconductor field effect transistor (MOSFET)
CN103035709B (zh) * 2011-09-30 2015-11-25 中国科学院微电子研究所 一种半导体结构及其制造方法
US8476169B2 (en) * 2011-10-17 2013-07-02 United Microelectronics Corp. Method of making strained silicon channel semiconductor structure
US20130095627A1 (en) * 2011-10-18 2013-04-18 Globalfoundries Inc. Methods of Forming Source/Drain Regions on Transistor Devices
US9263337B2 (en) * 2011-11-02 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture
JP5848680B2 (ja) * 2011-11-22 2016-01-27 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
CN103151264B (zh) * 2011-12-06 2017-06-13 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
US20130175640A1 (en) * 2012-01-06 2013-07-11 Globalfoundries Inc. Stress enhanced mos transistor and methods for fabrication
US20130175585A1 (en) * 2012-01-11 2013-07-11 Globalfoundries Inc. Methods of Forming Faceted Stress-Inducing Stressors Proximate the Gate Structure of a Transistor
US9263342B2 (en) * 2012-03-02 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having a strained region
TWI562244B (en) * 2012-03-15 2016-12-11 United Microelectronics Corp Method for fabricating mos device
US9373684B2 (en) 2012-03-20 2016-06-21 Semiwise Limited Method of manufacturing variation resistant metal-oxide-semiconductor field effect transistor (MOSFET)
US8841190B2 (en) 2012-03-30 2014-09-23 The Institute of Microelectronics Chinese Academy of Science MOS device for making the source/drain region closer to the channel region and method of manufacturing the same
CN103367151B (zh) * 2012-03-30 2015-12-16 中国科学院微电子研究所 使源/漏区更接近沟道区的mos器件及其制作方法
US8674447B2 (en) 2012-04-27 2014-03-18 International Business Machines Corporation Transistor with improved sigma-shaped embedded stressor and method of formation
CN103545212B (zh) * 2012-07-16 2016-09-21 中国科学院微电子研究所 半导体器件制造方法
US9269804B2 (en) 2012-07-28 2016-02-23 Semiwise Limited Gate recessed FDSOI transistor with sandwich of active and etch control layers
US9190485B2 (en) 2012-07-28 2015-11-17 Gold Standard Simulations Ltd. Fluctuation resistant FDSOI transistor with implanted subchannel
US9263568B2 (en) 2012-07-28 2016-02-16 Semiwise Limited Fluctuation resistant low access resistance fully depleted SOI transistor with improved channel thickness control and reduced access resistance
CN103681327B (zh) * 2012-09-06 2017-02-08 中芯国际集成电路制造(上海)有限公司 一种半导体结构及其形成方法
KR102059526B1 (ko) 2012-11-22 2019-12-26 삼성전자주식회사 내장 스트레서를 갖는 반도체 소자 형성 방법 및 관련된 소자
TWI605592B (zh) 2012-11-22 2017-11-11 三星電子股份有限公司 在凹處包括一應力件的半導體裝置及其形成方法(二)
US10134896B2 (en) * 2013-03-01 2018-11-20 Taiwan Semiconductor Manufacturing Co., Ltd. Cyclic deposition etch chemical vapor deposition epitaxy to reduce EPI abnormality
CN104183493B (zh) * 2013-05-21 2016-10-05 中芯国际集成电路制造(上海)有限公司 Pmos晶体管的制作方法
FR2998090A1 (fr) * 2013-06-26 2014-05-16 Commissariat Energie Atomique Procede de structuration de surface par modification locale de selectivite a la gravure
US9012276B2 (en) * 2013-07-05 2015-04-21 Gold Standard Simulations Ltd. Variation resistant MOSFETs with superior epitaxial properties
US20150017774A1 (en) * 2013-07-10 2015-01-15 Globalfoundries Inc. Method of forming fins with recess shapes
US9299784B2 (en) * 2013-10-06 2016-03-29 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device with non-linear surface
US9059234B2 (en) 2013-10-22 2015-06-16 International Business Machines Corporation Formation of a high aspect ratio trench in a semiconductor substrate and a bipolar semiconductor device having a high aspect ratio trench isolation region
CN103887341A (zh) * 2014-03-20 2014-06-25 上海华力微电子有限公司 一种场效应晶体管的制备方法
CN103871902A (zh) 2014-03-24 2014-06-18 上海华力微电子有限公司 半导体处理工艺及半导体器件的制备方法
CN105097539B (zh) * 2014-05-21 2020-06-09 中芯国际集成电路制造(上海)有限公司 一种制作半导体器件的方法
US9984917B2 (en) * 2014-05-21 2018-05-29 Infineon Technologies Ag Semiconductor device with an interconnect and a method for manufacturing thereof
KR102265687B1 (ko) 2014-07-25 2021-06-18 삼성전자주식회사 반도체 소자의 제조 방법
CN105869991B (zh) 2015-01-23 2018-05-11 上海华力微电子有限公司 用于改善SiGe厚度的均匀性的方法和系统
CN105990172B (zh) 2015-01-30 2018-07-31 上海华力微电子有限公司 嵌入式SiGe外延测试块的设计
CN105990342B (zh) 2015-02-13 2019-07-19 上海华力微电子有限公司 具有用于嵌入锗材料的成形腔的半导体器件及其制造工艺
CN104851884A (zh) 2015-04-14 2015-08-19 上海华力微电子有限公司 用于锗硅填充材料的成形腔
CN104821336B (zh) 2015-04-20 2017-12-12 上海华力微电子有限公司 用于使用保形填充层改善器件表面均匀性的方法和系统
WO2016209220A1 (en) 2015-06-24 2016-12-29 Intel Corporation Replacement channel etch for high quality interface
US11049939B2 (en) 2015-08-03 2021-06-29 Semiwise Limited Reduced local threshold voltage variation MOSFET using multiple layers of epi for improved device operation
CN105097554B (zh) 2015-08-24 2018-12-07 上海华力微电子有限公司 用于减少高浓度外延工艺中的位错缺陷的方法和系统
CN106601681A (zh) * 2015-10-20 2017-04-26 上海新昇半导体科技有限公司 Cmos结构及其制备方法
US20170141228A1 (en) * 2015-11-16 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Field effect transistor and manufacturing method thereof
FR3044163B1 (fr) * 2015-11-25 2018-01-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de gravure selective d’un materiau semi-conducteur en solution.
WO2017111871A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Transistors with heteroepitaxial iii-n source/drain
US10141426B2 (en) * 2016-02-08 2018-11-27 International Business Macahines Corporation Vertical transistor device
CN107275399B (zh) 2016-04-06 2022-06-28 联华电子股份有限公司 半导体元件及其制作方法
US9842933B1 (en) 2016-06-13 2017-12-12 Globalfoundries Inc. Formation of bottom junction in vertical FET devices
US10147609B2 (en) 2016-12-15 2018-12-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor epitaxy bordering isolation structure
CN110164768B (zh) * 2018-02-12 2022-02-11 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
KR20200140976A (ko) 2019-06-07 2020-12-17 삼성전자주식회사 반도체 소자
US11315829B2 (en) * 2019-08-26 2022-04-26 Taiwan Semiconductor Manufacturing Co., Ltd. Amorphous layers for reducing copper diffusion and method forming same
US11373696B1 (en) 2021-02-19 2022-06-28 Nif/T, Llc FFT-dram
US20230035288A1 (en) * 2021-07-31 2023-02-02 Applied Materials, Inc. Methods for removing etch stop layers

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363983A (en) * 1976-11-19 1978-06-07 Toshiba Corp Semiconductor device
US4397075A (en) * 1980-07-03 1983-08-09 International Business Machines Corporation FET Memory cell structure and process
JPS6292361A (ja) * 1985-10-17 1987-04-27 Toshiba Corp 相補型半導体装置
JP3333560B2 (ja) * 1992-10-23 2002-10-15 リコーエレメックス株式会社 シリコン基板のエッチング方法
JP3761918B2 (ja) * 1994-09-13 2006-03-29 株式会社東芝 半導体装置の製造方法
SE513072C2 (sv) * 1996-05-09 2000-07-03 Acreo Ab Förfarande för tillverkning av kaviteter under membran
US6309975B1 (en) * 1997-03-14 2001-10-30 Micron Technology, Inc. Methods of making implanted structures
US5869359A (en) * 1997-08-20 1999-02-09 Prabhakar; Venkatraman Process for forming silicon on insulator devices having elevated source and drain regions
US6060403A (en) * 1997-09-17 2000-05-09 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device
US6071783A (en) * 1998-08-13 2000-06-06 Taiwan Semiconductor Manufacturing Company Pseudo silicon on insulator MOSFET device
WO2002034667A1 (en) * 2000-10-25 2002-05-02 University Of Maryland, College Park Method for microstructures fabrication
US6599789B1 (en) 2000-11-15 2003-07-29 Micron Technology, Inc. Method of forming a field effect transistor
US6784076B2 (en) * 2002-04-08 2004-08-31 Micron Technology, Inc. Process for making a silicon-on-insulator ledge by implanting ions from silicon source
US6774000B2 (en) * 2002-11-20 2004-08-10 International Business Machines Corporation Method of manufacture of MOSFET device with in-situ doped, raised source and drain structures

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
. .
ETCH STOP BARRIERS IN SILICON PRODUCED BY IONIMPLANTATION OF ELECTRICALLY NON-ACTIVESPECIES. FEIJOO D ET AL.JOURNAL OF THE ELECTROCHEMICAL SOCIETY,Vol.139 No.8. 1992
ETCH STOP BARRIERS IN SILICON PRODUCED BY IONIMPLANTATION OF ELECTRICALLY NON-ACTIVESPECIES. FEIJOO D ET AL.JOURNAL OF THE ELECTROCHEMICAL SOCIETY,Vol.139 No.8. 1992 *
INVESTIGATION OF BURIED ETCH STOP LAYER INSILICON MADE BY NITROGEN IMPLANTATION. SODERBARG A.JOURNAL OF THE ELECTROCHEMICAL SOCIETY,Vol.139 No.2. 1992
INVESTIGATION OF BURIED ETCH STOP LAYER INSILICON MADE BY NITROGEN IMPLANTATION. SODERBARG A.JOURNAL OF THE ELECTROCHEMICAL SOCIETY,Vol.139 No.2. 1992 *
SYNTHES IS OF SIC MICROSTRUCTURES IN SITECHNOLOGY BY HIGH DOSE CARBONIMPLANTATION:ETCH-STOP PROTERTIES. SERRE C ET AL.JOURNAL OF THE ELECTROCHEMICAL SOCIETY,Vol.144 No.6. 1997

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107424913A (zh) * 2011-08-15 2017-12-01 阿卜杜拉国王科技大学 用于生产机械柔性的硅基底的方法
CN102969247A (zh) * 2011-08-31 2013-03-13 中芯国际集成电路制造(上海)有限公司 一种半导体结构及其形成方法,一种晶体管及其形成方法
CN102969247B (zh) * 2011-08-31 2015-06-03 中芯国际集成电路制造(上海)有限公司 一种半导体结构及其形成方法,一种晶体管及其形成方法

Also Published As

Publication number Publication date
KR100810774B1 (ko) 2008-03-06
US20050148147A1 (en) 2005-07-07
KR20060105042A (ko) 2006-10-09
DE112004002611B4 (de) 2009-12-31
DE112004002611T5 (de) 2006-11-09
WO2005067021A1 (en) 2005-07-21
TWI250576B (en) 2006-03-01
CN1902736A (zh) 2007-01-24
US7045407B2 (en) 2006-05-16
TW200522196A (en) 2005-07-01

Similar Documents

Publication Publication Date Title
CN100499028C (zh) 用于衬底的各向异性蚀刻的非晶蚀刻停止
KR100822079B1 (ko) 단일 면 매립 스트랩
US6020246A (en) Forming a self-aligned epitaxial base bipolar transistor
US5077228A (en) Process for simultaneous formation of trench contact and vertical transistor gate and structure
KR100792402B1 (ko) 듀얼폴리게이트를 갖는 반도체소자의 제조 방법
KR20160023525A (ko) 임베디드 트랜지스터
EP3306670B1 (en) Semiconductor device structure with non planar side wall and method of manufacturing using a doped dielectric
KR100843879B1 (ko) 반도체 소자 및 그 제조 방법
US20060046428A1 (en) Trench sidewall passivation for lateral rie in a selective silicon-on-insulator process flow
US6946338B2 (en) Method for manufacturing semiconductor device
KR100497877B1 (ko) 단단계 임플랜테이션을 이용한 자체 정렬 엘디디를 이용하여 형성되는 트랜지스터
KR100636674B1 (ko) 반도체 소자의 게이트 및 이의 형성 방법
KR100585156B1 (ko) 보이드가 없는 게이트 전극을 구비한 mos 트랜지스터의제조방법
KR20080061377A (ko) 게이트 도핑이 감소한 반도체 구조 및 이를 형성하기 위한방법
JP3063276B2 (ja) 半導体装置の製造方法
KR20000019080A (ko) 모스 트랜지스터 제조방법
KR20060027525A (ko) 함몰된 채널 영역을 갖는 반도체 소자의 제조방법
JPH1140662A (ja) 半導体装置の製造方法
KR930006276B1 (ko) 메모리 셀 제조방법
KR100771813B1 (ko) 플래시 메모리 소자의 제조방법
KR970000463B1 (ko) 트랜치를 이용한 mosfet 및 그 제조방법
KR100745930B1 (ko) 반도체 소자의 제조 방법
KR930008538B1 (ko) 사이드월 폴리실리콘을 사용한 셀프 ldd셀 제조방법
JPH0384925A (ja) 半導体装置の製造方法
KR950002033A (ko) 다중 트렌치형 캐패시터 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant