CN100573749C - 软磁性材料、压粉铁心、制造软磁性材料的方法以及制造压粉铁心的方法 - Google Patents

软磁性材料、压粉铁心、制造软磁性材料的方法以及制造压粉铁心的方法 Download PDF

Info

Publication number
CN100573749C
CN100573749C CNB2006800015693A CN200680001569A CN100573749C CN 100573749 C CN100573749 C CN 100573749C CN B2006800015693 A CNB2006800015693 A CN B2006800015693A CN 200680001569 A CN200680001569 A CN 200680001569A CN 100573749 C CN100573749 C CN 100573749C
Authority
CN
China
Prior art keywords
insulating coating
magnetic material
soft magnetic
dust core
silsesquioxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006800015693A
Other languages
English (en)
Other versions
CN101091226A (zh
Inventor
前田彻
前田和幸
饼田恭志
三村浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN101091226A publication Critical patent/CN101091226A/zh
Application granted granted Critical
Publication of CN100573749C publication Critical patent/CN100573749C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F2003/145Both compacting and sintering simultaneously by warm compacting, below debindering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer
    • Y10T428/325Magnetic layer next to second metal compound-containing layer

Abstract

一种软磁性材料,其包括多个复合磁性颗粒(40),每个所述复合磁性颗粒都具有金属磁性颗粒(10)以及包围在该金属磁性颗粒表面的绝缘涂层(20),其中所述绝缘涂层(20)含有Si(硅),并且该绝缘涂层中所含有的大于或等于80%的Si构成了硅倍半氧烷骨架。因此,可以在抑制涡流损耗增加的同时有效地减小磁滞损耗。

Description

软磁性材料、压粉铁心、制造软磁性材料的方法以及制造压粉铁心的方法
技术领域
本发明涉及一种软磁性材料、压粉铁心、制造软磁性材料的方法以及制造压粉铁心的方法。
背景技术
由粉末冶金技术制造的软磁性材料被应用于具有电磁阀、电机或电路的电器中。这种软磁性材料都含有多个复合磁性颗粒,每个复合磁性颗粒都具有金属磁性颗粒(例如由纯铁构成)以及覆盖在该金属磁性颗粒表面的绝缘涂层(例如由磷酸盐构成)。为了提高软磁性材料的能量转换效率和减小其发热量,需要软磁性材料具有在使用弱磁场时可得到高磁通密度的磁性能,以及在磁通密度波动时能量损耗低的磁性能。
当将由这种软磁性材料制成的压粉铁心用于交流磁场时,会发生所谓“铁耗”的能量损耗。该铁耗可表示为磁滞损耗与涡流损耗之和。磁滞损耗是由改变软磁性材料的磁通密度所需的能量产生的一种能量损耗,涡流损耗是涡流在流过构成软磁性材料的金属磁性颗粒之间时产生的能量损耗。磁滞损耗与工作频率成正比,而涡流损耗与工作频率的平方成正比。由此,磁滞损耗在低频范围内占主要部分,而涡流损耗在高频范围内占主要部分。压粉铁心需要具有降低铁耗产生的磁性能,即高的交流磁性能。
为了减少软磁性材料铁耗中的磁滞损耗,可以除去金属磁性颗粒中的畸变和偏移,以有利于磁畴壁的移动并减小软磁性材料的矫顽磁力Hc。为了充分地除去金属磁性颗粒内的畸变和偏移,必须在高温(例如400℃或更高、优选为600℃或更高、更优选为800℃或更高)下对软磁性材料进行热处理。
然而,对于通常使用的具有绝缘涂层的铁粉,其绝缘涂层的耐热性低到约400℃,因此在高温下对软磁性材料进行热处理会使绝缘涂层的绝缘性丧失。因此,存在的问题是当减小磁滞损耗时,软磁性材料的电阻率ρ降低,从而使涡流损耗增大。特别的是,近来,人们要求电器具有更小的尺寸、更高的效率和更高的输出功率,为了满足这些要求,电器必须在高频范围内使用。在高频范围内涡流损耗的增加会妨碍电器的尺寸的减小、效率的提高和输出功率的增大。
因此,一般通过在金属磁性颗粒的表面上形成这样一种绝缘涂层来提高软磁性材料的耐热性,所述绝缘涂层由组成式为(R2SiO)n的有机硅构成。有机硅具有优异的绝缘性和耐热性,并且有机硅即使在高温下通过热处理而发生分解时也能以氧化硅无定形材料(Si-Ox)n的形式保持绝缘性和耐热性。因此,当形成由有机硅构成的绝缘涂层后,通过在约550℃的高温下对软磁性材料进行热处理可以抑制绝缘涂层的绝缘性变差,从而抑制软磁性材料涡流损耗的增加。由于有机硅具有优异的变形追从性并具有润滑剂的作用,所以,具有由有机硅构成的绝缘涂层的软磁性材料的优点在于其模塑性优异,并且在模制过程中其绝缘涂层不易破坏。
在金属磁性颗粒的表面上形成由有机硅构成的绝缘涂层的技术在(例如)日本未审查专利申请公开No.7-254522(专利文献1)、日本未审查专利申请公开No.2003-303711(专利文献2)和日本未审查专利申请公开No.2004-143554(专利文献3)中有所披露。
专利文献1:日本未审查专利申请公开No.7-254522
专利文献2:日本未审查专利申请公开No.2003-303711
专利文献3:日本未审查专利申请公开No.2004-143554
发明内容
本发明要解决的问题
然而,由有机硅构成的绝缘涂层的耐热性是不够的。在高温(例如600℃)下对传统的软磁性材料进行热处理会产生这样的问题:由有机硅构成的绝缘涂层发生破坏(降低绝缘性),从而增加了涡流损耗。因此,传统的软磁性材料的问题在于在抑制涡流损耗增加的同时不能有效地减小磁滞损耗。
此外,由于由有机硅构成的绝缘涂层不具有足够的硬度,所以,存在的问题是不能增强通过对软磁性材料压制成型所获得的压粉铁心的强度。
因此,本发明的一个目的是提供软磁性材料、压粉铁心、制造软磁性材料的方法以及制造压粉铁心的方法,从而在抑制涡流损耗增加的同时能够有效地减小磁滞损耗。
本发明的另一个目的是提供软磁性材料、压粉铁心、制造软磁性材料的方法以及制造压粉铁心的方法,从而能够制造强度高和磁滞损耗低的压粉铁心。
解决上述问题的手段
本发明的软磁性材料包含多个复合磁性颗粒,每个复合磁性颗粒都具有金属磁性颗粒以及包围该金属磁性颗粒表面的绝缘涂层,该绝缘涂层含有Si(硅),并且该绝缘涂层中所含有的大于或等于80%的Si构成了硅倍半氧烷骨架。
在本发明的一个方面中,压粉铁心包含多个复合磁性颗粒,每个复合磁性颗粒都具有金属磁性颗粒以及包围该金属磁性颗粒的绝缘涂层,该绝缘涂层含有Si(硅),并且该绝缘涂层中所含有的大于或等于80%的Si构成了硅倍半氧烷骨架和氧化硅骨架,该硅倍半氧烷骨架和氧化硅骨架合起来由(Si-Ox)n表示,其中x>1.5。
本发明的软磁性材料的制造方法包括在金属磁性颗粒上形成绝缘涂层的步骤,其中该绝缘涂层中所含有的大于或等于80%的Si构成了硅倍半氧烷骨架。
本发明的发明人发现绝缘性下降的起因是由于在高温下对由有机硅构成的绝缘涂层进行了热处理的缘故。有机硅聚合物基本上具有一维结构(该结构包括作为基础的骨架,其中,Si原子的四个键中的两个键通过氧原子与Si键合),因此Si-O-Si链的密度低。因此,当在高温下(例如高于550℃的温度)对软磁性材料进行热处理时,金属磁性颗粒的组成原子扩散到绝缘涂层中,从而降低了绝缘涂层的绝缘性。由于有机硅含有多种有机成分,所以,对软磁性材料进行的热处理使有机硅热分解,从而降低了绝缘涂层的厚度和绝缘涂层的绝缘性。此外,绝缘涂层由于碳化而表现出导电性,从而进一步降低了绝缘性。由于这些因素,使金属磁性颗粒之间的绝缘性不能得到保持,从而增加了因热处理引起的涡流损耗。
另一方面,在本发明中,绝缘涂层中含有的大于或等于80%的Si构成了硅倍半氧烷骨架(在该骨架中,Si原子四个键中的三个键通过氧原子与Si键合)。由于硅倍半氧烷聚合物具有二维或三维结构,所以,Si-O(氧)-Si链的密度高于有机硅的Si-O-Si链的密度。因此,与有机硅相比,所述硅倍半氧烷结构可以抑制金属磁性颗粒的组成原子向绝缘涂层内扩散。此外,硅倍半氧烷中有机成分的含量比有机硅中的有机成分的含量低。因此,当对软磁性材料进行热处理时,不会明显降低绝缘涂层的厚度,并且几乎不产生碳原子,从而抑制了绝缘涂层绝缘性的降低。此外,热处理前的硅倍半氧烷具有与有机硅相同的变形追从性程度,由此可在不破坏绝缘涂层的条件下形成软磁性材料。
因此,由于绝缘涂层中含有的大于或等于80%的Si构成了硅倍半氧烷骨架,所以,提高了绝缘涂层的耐热性。结果,可以在抑制涡流损耗增加的同时减小磁滞损耗。
由于绝缘涂层的耐热性(抑制软磁性颗粒的金属构成元素的扩散的能力)得到改善,因此,即使在绝缘涂层的厚度被降低时也能确保金属磁性颗粒之间的绝缘性。结果,可以尝试增加压粉铁心的密度,并由此减小磁滞损耗并改善磁导率。
此外,热处理(固化/分解)后的硅倍半氧烷的硬度比热处理(固化/分解)后的有机硅的硬度更高,因此可以得到具有足够强度的压粉铁心。这是因为当Si-O-Si链的结构(密度)更接近于结晶二氧化硅(SiO2)时,硅倍半氧烷的硬度增加,从而改善压粉铁心的强度。
在本发明的软磁性材料中,绝缘涂层的平均厚度优选为10nm到1μm。
当绝缘涂层的平均厚度为大于或等于10nm时,可以确保金属磁性颗粒之间的绝缘性。当绝缘涂层的平均厚度为小于或等于1μm时,可以防止绝缘涂层在压制成型过程中发生剪切断裂。由于绝缘涂层与软磁性材料之比并不过大,因此可以防止通过对软磁性材料压制成型而得到的压粉铁心的磁通密度发生明显下降。
在本发明的软磁性材料中,优选的是,多个复合金属磁性颗粒中的每个都还具有在金属磁性颗粒和绝缘涂层之间形成的底涂层。该底涂层由绝缘性无定形化合物构成。
由此,可增强金属磁性颗粒和绝缘涂层之间的粘合作用。此外,由于无定形化合物具有优异的变形追从性,因此,可以提高软磁性材料的模塑性。
在本发明的软磁性材料中,底涂层优选含有选自Al(铝)、Si、Mg(镁)、Y(钇)、Ca(钙)、Zr(锆)和Fe(铁)中的至少一种的磷酸盐无定形化合物、硼酸盐无定形化合物、或氧化物无定形化合物、或这些化合物的混合物。
这些材料具有优异的绝缘性和变形追从性,并且具有优异的偶联金属和有机化合物的作用,因此适用于底涂层。
在本发明的软磁性材料中,底涂层的平均厚度优选为10nm到1μm。
当底涂层的平均厚度为大于或等于10nm时,可以防止在涂敷过程中由于不均匀涂敷或物理损坏而发生的破坏。当底涂层的平均厚度为小于或等于1μm时,可以防止底涂层在压制成型中发生剪切断裂。由于绝缘涂层与软磁性材料之比并不过大,因此可以防止通过对软磁性材料压制成型而得到的压粉铁心的磁通密度发生明显下降。
在本发明的另一个方面中,用所述的软磁性材料制造压粉铁心。
在本发明的又一个方面中,制造压粉铁心的方法包括:压制成型步骤,其中对由制造软磁性材料的方法制造的软磁性材料压制成型,和在压制成型步骤后热固化由硅倍半氧烷构成的绝缘涂层的步骤。
在本发明的又一个方面中,制造压粉铁心的方法包括:压制成型步骤,其中在热模具中对由制造软磁性材料的方法制造的软磁性材料压制成型,并在该压制成型的同时热固化由硅倍半氧烷构成的绝缘涂层的。
根据制造本发明压粉铁心的方法,可以在抑制涡流损耗增加的同时减小磁滞损耗。另外,可以得到高强度的压粉铁心。此外,由于在压制成型步骤的同时或压制成型步骤后对由硅倍半氧烷构成的绝缘涂层进行热固化,所以,可以在由硅倍半氧烷构成的绝缘涂层具有优异的变形追从性的条件下压制形成软磁性材料。
本发明的效果
通过使用本发明的软磁性材料、压粉铁心、制造该软磁性材料的方法以及制造该压粉铁心的方法,可以在抑制涡流损耗增加的同时有效地减小磁滞损耗。此外,可以得到强度高和磁滞损耗低的压粉铁心。
附图简要说明
图1为示意性示出根据本发明实施方案的软磁性材料的图。
图2为示意性示出根据本发明实施方案的压粉铁心的剖视图。
图3为示出制造根据本发明实施方案的压粉铁心的方法的步骤顺序图。
图4为示意性示出在仅具有底涂层的软磁性材料中的Fe原子的扩散状态的图。
图5为示意性示出在具有由有机硅构成的绝缘涂层的软磁性材料中的Fe原子的扩散状态的图。
图6为示意性示出在根据本发明实施方案的软磁性材料中的Fe原子的扩散状态的图。
附图参考标号
10、110金属磁性颗粒;20、120绝缘涂层;30、130底涂层;40复合磁性颗粒;45润滑剂;50畸变。
本发明的最佳实施方式
以下将参照附图来说明本发明的实施方案。
图1为示意性示出根据本发明实施方案的软磁性材料的剖视图。参照图1,本实施方案的软磁性材料包括多个复合磁性颗粒40,每个复合磁性颗粒40都具有金属磁性颗粒10、包围该金属磁性颗粒10的表面的绝缘涂层20和在金属磁性颗粒10和绝缘涂层20之间形成的底涂层30。除了复合磁性颗粒40以外,所述的软磁性材料还可以具有润滑剂45。
图2为示意性示出根据本发明实施方案的压粉铁心的剖视图。通过对图1所示的软磁性材料实施压制成型和热处理来制造图2所示的压粉铁心。参照图1和图2,通过复合磁性颗粒40所具有的凹凸部分相啮合将本实施方案压粉铁心中的多个复合磁性颗粒30粘接在一起。
在图1所示的软磁性材料和图2所示的压粉铁心中,绝缘涂层20含有Si。在图1所示的软磁性材料中,绝缘涂层20中含有的大于或等于80%的Si构成了硅倍半氧烷骨架。在图2所示的压粉铁心中,绝缘涂层20中含有的大于或等于80%的Si构成了硅倍半氧烷骨架和氧化硅骨架,该硅倍半氧烷骨架和氧化硅骨架合起来由(Si-Ox)n表示,其中x>1.5。术语“硅倍半氧烷”是具有以下结构式1的聚硅氧烷的通用术语。如该结构式所示,将其中Si原子四个键中的三个键通过氧原子与Si原子键合的骨架称为“硅倍半氧烷骨架”。
[化学式1]
在化学式1中,R和R’各自代表由(例如)以下化学式2或3所表示的官能团。
[化学式2]
Figure C20068000156900111
[化学式3]
Figure C20068000156900112
如化学式1所示,构成硅倍半氧烷的各个Si原子与三个O原子和R或R’键合,从而形成聚合物。因此,硅倍半氧烷具有二维结构或三维结构。
硅倍半氧烷聚合物的结构的实例包括由化学式4表示的梯子状结构、由化学式5表示的无规结构和由化学式6到8表示的笼形结构。
[化学式4]
Figure C20068000156900113
[化学式5]
Figure C20068000156900114
[化学式6]
Figure C20068000156900121
[化学式7]
[化学式8]
Figure C20068000156900123
在制造压粉铁心的过程中,在压制成型后或压制成型期间进行热处理,从而使硅倍半氧烷在热处理中被热固化。对硅倍半氧烷热固化,从而通过由化学式1中的R或R’所代表的官能团发生的聚合形成了三维结构。
可以通过(例如)裂解气相色谱-质谱法(裂解GCMS)测定Si原子的键态。可供选用的另一种方式是,可以通过测定红外吸收分析中Si-O和Si-C的特征吸收峰间的峰之比和元素分析中的Si/O比来检测键态。在本发明的软磁性材料中,大于或等于80%的预定数量的Si原子构成了硅倍半氧烷骨架。
金属磁性颗粒10的平均颗粒尺寸优选为30μm到500μm。当金属磁性颗粒10的平均颗粒尺寸为大于或等于30μm时,可以降低矫顽磁力。当所述的平均颗粒尺寸为小于或等于500μm时,可以减小涡流耗损。还可以在压制成型过程中抑制混合粉末的压缩性变差。因此,由压制成型得到的模制制品的密度未被降低,从而避免使所得制品更难以处理的情况发生。
金属磁性颗粒10的平均颗粒尺寸是指在颗粒尺寸直方图中,从最小颗粒尺寸开始的累积质量达到颗粒总质量50%时所对应的颗粒尺寸,即50%颗粒尺寸。
金属磁性颗粒10由(例如)Fe、Fe-Si合金、Fe-Al合金、Fe-N(氮)合金、Fe-Ni(镍)合金、Fe-C(碳)合金、Fe-B(硼)合金、Fe-Co(钴)合金、Fe-P合金、Fe-Ni-Co合金、Fe-Cr(铬)或Fe-Al-Si合金构成。金属磁性颗粒10可由单质金属或合金构成。此外,可以使用两种或多种单质金属和合金的混合物。
绝缘涂层20和底涂层30在金属磁性颗粒10之间起到了绝缘层的作用。通过用绝缘涂层20和底涂层30覆盖各个金属磁性颗粒10的表面,就可以增大由对软磁性材料压制成型得到的压粉铁心的电阻率ρ。结果,可以阻止涡流在金属磁性颗粒10之间流动,从而减小压粉铁心的涡流损耗。
绝缘涂层20的平均厚度优选为10nm到1μm。当绝缘涂层20的平均厚度为大于或等于10nm时,可以确保金属磁性颗粒10之间的绝缘性。当绝缘涂层20的平均厚度为小于或等于1μm时,可以防止绝缘涂层20在压制成型过程中发生剪切断裂。此外,由于绝缘涂层20与软磁性材料之比并不过大,所以可以防止由对软磁性材料压制成型而得到的压粉铁心的磁通密度发生显著降低。
底涂层30除了起到金属磁性颗粒10之间的绝缘层作用外,还增强了金属磁性颗粒10和绝缘涂层20之间的粘合作用。此外,底涂层30改善了软磁性材料的模塑性。由于无定形化合物具有优异的变形追从性,所以,无定形化合物可以改善软磁性材料的模塑性。
底涂层30由绝缘的无定形化合物构成,这些化合物包括(例如)选自Al、Si、Mg、Y、Ca、Zr和Fe中的至少一种元素的磷酸盐、硼酸盐、或氧化物的无定形化合物。由于这些材料具有优异的绝缘性、变形追从性和偶联金属和有机化合物的充分效果,所以所述材料适用于底涂层30。底涂层30的平均厚度优选为10nm到1μm。当底涂层30的平均厚度为大于或等于10nm时,可以防止底涂层30在涂敷步骤中由于涂敷不均匀或物理损坏而发生破坏。当底涂层30的平均厚度为小于或等于1μm时,可以防止底涂层30在压制成型过程中发生剪切断裂。此外,由于底涂层30与软磁性材料之比并不过大,所以可以防止通过对软磁性材料压制成型而得到的压粉铁心的磁通密度发生显著降低。
以下将说明制造图1所示的软磁性材料的方法以及制造图2所示压粉铁心的方法。图3为示出制造根据本发明实施方案的压粉铁心的方法的步骤顺序图。
首先,参照图3,制备由(例如)纯铁、Fe-Si合金或Fe-Co合金构成的金属磁性颗粒10(步骤S1)。采用(例如)气雾化法或水雾化法制造金属磁性颗粒10。
接着,在400℃到低于金属磁性颗粒10的熔点100℃的温度下对金属磁性颗粒10进行热处理(步骤S2)。热处理的温度更优选为700℃到低于金属磁性颗粒10的熔点100℃的温度。当金属磁性颗粒10因热处理发生互相粘合而需要粉碎时,由于粉碎而产生的机械畸变使金属磁性颗粒的模塑性降低,因此优选的是在不引起粘合的温度下再次进行热处理。在进行热处理之前,金属磁性颗粒10的内部存在许多畸变(偏移和缺陷)。可通过对金属磁性颗粒10进行热处理来减少这些畸变。该热处理可以被省略。
在每个金属磁性颗粒10的表面上形成底涂层30(步骤S3)。可通过(例如)对金属磁性颗粒10进行磷酸盐化处理来形成底涂层30。磷酸盐化处理形成了无定形的底涂层30,该底涂层由(例如)含磷和铁的磷酸铁、磷酸铝、磷酸硅(硅磷酸盐)、磷酸镁、磷酸钙、磷酸钇或磷酸锆构成。可利用前体并采用溶剂喷雾或溶胶-凝胶处理来形成这种磷酸盐绝缘涂层。
还可以形成含氧化物的底涂层30。可将氧化物绝缘体(例如氧化硅、氧化钛、氧化铝和氧化锆)的无定形涂层用作这种含氧化物的底涂层30。可利用前体并采用溶剂喷雾或溶胶-凝胶处理来形成这种底涂层。形成底涂层的步骤可以被省略。
接着,在底涂层30的表面上形成由硅倍半氧烷构成的绝缘涂层20(步骤S4)。具体而言,将硅倍半氧烷化合物或硅倍半氧烷前体以相对于金属磁性颗粒10总质量的0.01质量%到0.2质量%的量溶解于二甲苯溶剂中。此时,也可以将热固化加速剂溶解于所述溶剂中。所溶解的热固化加速剂的量为(例如)硅倍半氧烷化合物或硅倍半氧烷前体总质量的约2质量%。通过湿法在底涂层30的表面上形成由硅倍半氧烷构成的绝缘涂层20。
可以将树脂(例如聚乙烯树脂、硅树脂、聚酰胺树脂、聚酰亚胺树脂、聚酰胺-酰亚胺树脂、环氧树脂、酚醛树脂、丙烯酸树脂和氟碳树脂)与硅倍半氧烷化合物或硅倍半氧烷前体一起溶解于所述溶剂中。在这种情况下,可形成由硅倍半氧烷和所述树脂构成的绝缘涂层。但是,即使在使用由硅倍半氧烷以外的材料构成的绝缘涂层时,也必须控制溶解的硅倍半氧烷化合物或硅倍半氧烷前体的比例,使得绝缘涂层中含有的80%的Si构成硅倍半氧烷骨架。
除了湿法以外,其它形成绝缘涂层20的方法的实例包括使用V型混合仪的干混法、机械合金化方法、振动球磨法、行星式球磨法、机械熔化法、共沉淀法、化学气相沉积法(CVD)、物理气相沉积法(PVD)、电镀法、溅射法、蒸发法和溶胶-凝胶法。
通过上述步骤得到图1所示的根据本实施方案的软磁性材料。如果要制造图2所示的压粉铁心时,则要进一步实施以下步骤。
接着,如果需要的话,混入粘结剂,然后将软磁性材料粉末置于模具中并在(例如)800MPa到1500MPa的条件下进行压制成型(步骤S5)。结果,可以得到其中软磁性材料被压紧的模制制品。压制成型所使用的气氛优选为惰性气体气氛或者减压气氛。在这种情况下,可以防止混合粉末被大气中的氧气氧化。
接着,将所述模制制品在(例如)70℃到300℃的温度下于空气中热处理1分钟到1小时(步骤S6)。结果,硅倍半氧烷发生热固化,从而增强了所述模制制品的强度。由于硅倍半氧烷在压制成型后被热固化,所以,可以在硅倍半氧烷的变形追从性因热固化而降低之前进行压制成型,由此可以对具有优异模塑性的软磁性材料进行压制成型。当同时进行热处理和压制成型时,可以达到同样的效果。在这种情况下,优选的是,对压制成型所用的模具和冲床加热,以进行热模制。
接着,将由压制成型得到的模制制品进行热处理(步骤S7)。当金属磁性颗粒10由纯铁构成时,在550℃到低于使绝缘涂层20电阻率减小的温度下进行热处理。由于压制成型后的模制制品中存在多种缺陷,所以可以通过热处理除去这些缺陷。在该热处理中,一部分硅倍半氧烷骨架中的非Si键互相键合而将该骨架转变为其中所有的键都通过氧原子与硅原子键合的二氧化硅骨架,从而有利于增强绝缘膜的耐热性。通过上述步骤得到图2所示的本实施方案的压粉铁心。
在本实施方案的软磁性材料中,所述绝缘涂层中含有的大于或等于80%的Si构成了硅倍半氧烷骨架。与具有相同的Si-O-Si链的有机硅相比,硅倍半氧烷具有优异的绝缘稳定性。以下将对此进行说明。
硅倍半氧烷具有由上述化学式1所表示的结构式。另一方面,有机硅具有由以下化学式9所表示的结构式,而无机二氧化硅具有由以下化学式10所表示的结构式。
[化学式9]
Figure C20068000156900171
[化学式10]
Figure C20068000156900172
参照化学式9,构成有机硅的各个Si原子通过两个氧原子与Si原子键合,并与R或R’键合,从而形成聚合物。因此,有机硅具有一维结构,并且具有比硅倍半氧烷低的Si-O-Si链密度。
Si-O-Si链具有抑制金属磁性颗粒的构成原子(例如Fe)扩散进入绝缘涂层的作用。图4为示意性示出在仅具有底涂层的软磁性材料中的Fe原子的扩散状态的图。参照图4(a),在具有畸变50的金属磁性颗粒110的表面上形成磷酸盐的底涂层130,而没有形成由具有Si-O-Si链的材料构成的绝缘涂层。在这种情况下,金属磁性颗粒110之间只存在底涂层130。如图4(b)所示,在为了除去畸变50而对软磁性材料进行的热处理中,金属磁性颗粒110的Fe原子扩散并进入底涂层130。结果,绝缘涂层因被金属化而降低了绝缘性,从而无法确保金属磁性颗粒之间的绝缘性。
图5为示意性示出在具有由有机硅构成的绝缘涂层的软磁性材料中的Fe原子的扩散状态的图。参照图5(a),在具有畸变50的金属磁性颗粒110的表面上形成磷酸盐的底涂层130,并且在该底涂层130的表面上形成由有机硅构成的绝缘涂层120。在这种情况下,在金属磁性颗粒110之间存在底涂层130和绝缘涂层120。如图5(b)所示,在为了除去畸变50而对软磁性材料进行的热处理中,金属磁性颗粒110中Fe原子的扩散在某种程度上被绝缘涂层120所抑制。但是,有机硅具有低的Si-O-Si链密度,和多种Fe原子扩散途径。因此,当热处理温度高时,Fe原子扩散并进入绝缘涂层120中,从而降低了绝缘涂层的绝缘性。此外,有机硅中的有机成分含量高,因此有机硅因热处理而发生热分解,从而降低了绝缘涂层的厚度,由此降低了绝缘涂层的绝缘性。另外,因碳化而产生了由碳原子(作为主要成分)构成的残渣,从而进一步降低了绝缘性。结果,不能确保金属磁性颗粒110之间的绝缘性。
图6为示意性示出在根据本发明实施方案的软磁性材料中的Fe原子的扩散状态的图。参照图6(a),在具有畸变50的金属磁性颗粒10的表面上形成磷酸盐的底涂层30,并且在底涂层30的表面上形成由硅倍半氧烷构成的绝缘涂层20。在这种情况下,金属磁性颗粒10之间存在底涂层30和绝缘涂层20。如图6(b)所示,在为了除去畸变50而对软磁性材料进行的热处理中,金属磁性颗粒10中Fe原子的扩散被绝缘涂层20所抑制。由于硅倍半氧烷具有比有机硅高的Si-O-Si链密度,所以,即使在热处理温度高的情况下也可抑制Fe原子发生扩散及进入绝缘涂层20中。此外,硅倍半氧烷具有比有机硅低的有机成分含量,并且绝缘涂层的厚度在热处理中几乎没有减少且几乎不产生碳残渣。结果,可以在确保金属磁性颗粒10之间的绝缘性的同时除去畸变50。
表I总结了有机硅、硅倍半氧烷和无机硅的性质。在表I中,A表示“非常优异”;B表示“优异”;C表示“稍差”;D表示“差”。
[表I]
参照表I,由于硅倍半氧烷具有较高密度的Si-O-Si链,所以,固化后,硅倍半氧烷具有比有机硅更优异的绝缘稳定性和密度。就变形追从性而言,热固化前的硅倍半氧烷和有机硅具有相同程度的变形追从性。无机二氧化硅在绝缘稳定性和Si-O-Si链密度方面都比硅倍半氧烷更优异,但是不利的是其变形追从性非常低。因此,当将无机二氧化硅用作绝缘涂层时,绝缘涂层会因对软磁性材料压制成型而破坏,因此,无机二氧化硅不适合作为绝缘涂层的材料。另外,无机二氧化硅妨碍金属磁性材料的塑性变形,由此降低了所得压粉铁心的密度,从而降低了磁导率并增加了铁耗。
在根据本发明实施方案的软磁性材料、压粉铁心、制造该软磁性材料的方法和制造该压粉铁心的方法中,绝缘涂层20中含有的大于或等于80%的Si构成了硅倍半氧烷骨架,从而增强了绝缘涂层20的耐热性。结果,可以在抑制涡流损耗增加的同时减小磁滞损耗。
此外,提高了抑制Fe原子扩散进入绝缘涂层20的能力,因此,即使在绝缘涂层20的厚度减小时也能确保金属磁性颗粒10之间的绝缘涂层的耐热性。因此,可以增加压粉铁心的密度,从而减小磁滞损耗并增强磁导率。
另外,由于固化后的硅倍半氧烷具有比固化后的有机硅更高的硬度,因此,可以得到具有足够强度的压粉铁心,并且改善了后续步骤的可操作性。
(例1)
在本实施例中,针对由绝缘涂层中含有的大于或等于80%的Si构成的硅倍半氧烷骨架的效果进行检测。具体而言,通过雾化法对纯度为99.8质量%的纯铁制粉,以制备出多个金属磁性颗粒。接着,将该金属磁性颗粒浸渍在磷酸铁水溶液中,从而在各个金属磁性颗粒的表面上形成磷酸铁的底涂层。接着,在硅倍半氧烷与有机硅的质量比在0质量%到100质量%之间变化的条件下,给各个金属磁性颗粒涂敷上绝缘涂层。将作为硅倍半氧烷的氧杂环丁烷硅倍半氧烷(OX-SQ:由东亚合成株式会社制造)、阳离子热引发剂(San-Aid SI-100L:由三新化学工业株式会社制造)和作为有机硅的无溶剂硅树脂(TSE3051:由東芝GEシリコ一ン(Toshiba GE Silicone)公司制造)用于制备二甲苯溶液。涂敷总量为金属磁性颗粒总重量的0.1质量%到0.2质量%。阳离子热引发剂的比例为硅倍半氧烷的2质量%。使用得到的溶液通过湿法在底涂层的表面上形成绝缘涂层。接着,通过干燥使二甲苯蒸发,然后在压机表面压力为800MPa到1500MPa的条件下将得到的软磁性材料压制成型,从而制造出模制制品。然后,将该模制制品在70℃到300℃的温度下于空气中热处理1小时以使绝缘涂层热固化。然后,当温度在400℃到650℃的范围内变化时,将该模制制品在氮气气氛中热处理1小时,从而制得压粉铁心样品1到10。
然后,将金属线缠绕在各个得到的压粉铁心上,从而制备出用于测量磁性能的样品。用AC BH曲线示综器测量铁耗。在测量铁耗时,激励磁通密度为10千吉布斯(=1T(特斯拉)),测量频率为50赫兹到1000赫兹。此外,由铁耗随频率的变化计算出涡流损耗和磁滞损耗。即,通过最小二乘法,根据以下三个算式拟合铁耗的频率曲线,并计算磁滞损耗系数和涡流损耗系数,从而计算出涡流损耗和磁滞损耗。
(铁耗)=(磁滞损耗系数)×(频率)+(涡流损耗系数)×(频率)2
(磁滞损耗)=(磁滞损耗系数)×(频率)
(涡流损耗)=(涡流损耗系数)×(频率)2
表II示出了测量出的涡流损耗We(W/kg),磁滞损耗Wh(W/kg),和铁耗W(W/kg)。
Figure C20068000156900221
参照表II,在400℃到500℃的低温下进行热处理时,样品1到样品10的涡流损耗We和磁滞损耗Wh之间没有明显差别。但是,在大于或等于550℃的高温下进行热处理时,作为对比例的样品1到样品8的涡流损耗We增加,而本发明实施例中的样品9到样品11在抑制涡流损耗We增加的同时减小磁滞损耗。具体而言,在600℃的温度下进行热处理时,样品9、10和11的铁耗W分别明显减小为88W/kg、81W/kg和83W/kg。这些结果表明,根据本发明,可以在抑制涡流损耗增加的同时减小磁滞损耗。
应当想到上述实施方案和例子只是示例性的而非限定性的。本发明的范围如权利要求所示,而不是如实施方案和例子所示,并且本发明旨在涵盖与权利要求等价的含意和在权利要求范围内的任何修改和变化。
工业适用性
本发明的软磁性材料、压粉铁心、制造该软磁性材料的方法以及制造该压粉铁心的方法可以应用于(例如)电机磁芯、电磁阀、反应器和普通电磁部件。

Claims (6)

1.一种软磁性材料,其包含多个复合磁性颗粒(40),每个所述复合磁性颗粒都具有金属磁性颗粒(10)以及包围在该金属磁性颗粒表面的绝缘涂层(20),
其中所述绝缘涂层含有Si,并且该绝缘涂层中所含有的大于或等于80%的Si构成了硅倍半氧烷骨架,并且该绝缘涂层的平均厚度为10nm到1μm。
2.根据权利要求1所述的软磁性材料,其中所述的多个复合磁性颗粒(40)中的每个还都具有在所述金属磁性颗粒和所述绝缘涂层之间形成的底涂层(30),其中所述底涂层由绝缘的无定形化合物构成、其平均厚度为10nm到1μm,并且所述的无定形化合物为选自Al、Si、Mg、Y、Ca、Zr和Fe中的至少一种的磷酸盐的无定形化合物、它们的硼酸盐的无定形化合物或它们的氧化物的无定形化合物。
3.一种压粉铁心,其由根据权利要求1所述的软磁性材料制造。
4.一种制造软磁性材料的方法,该方法包括在金属磁性颗粒(10)上形成绝缘涂层(20)的步骤,
其中该绝缘涂层中所含有的大于或等于80%的Si构成了硅倍半氧烷骨架,并且该绝缘涂层的平均厚度为10nm到1μm。
5.一种制造压粉铁心的方法,该方法包括:
压制成型步骤,其中对采用根据权利要求4所述的制造软磁性材料的方法制造的所述软磁性材料进行压制成型;以及
在所述压制成型步骤之后的使所述的绝缘涂层(20)热固化的步骤。
6.一种制造压粉铁心的方法,该方法包括:压制成型步骤,其中在加热的模具中对采用根据权利要求4所述的制造软磁性材料的方法制造的所述软磁性材料进行压制成型,并且在该压制成型的同时使所述的绝缘涂层(20)热固化。
CNB2006800015693A 2005-09-21 2006-07-19 软磁性材料、压粉铁心、制造软磁性材料的方法以及制造压粉铁心的方法 Expired - Fee Related CN100573749C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP274124/2005 2005-09-21
JP2005274124A JP4706411B2 (ja) 2005-09-21 2005-09-21 軟磁性材料、圧粉磁心、軟磁性材料の製造方法、および圧粉磁心の製造方法

Publications (2)

Publication Number Publication Date
CN101091226A CN101091226A (zh) 2007-12-19
CN100573749C true CN100573749C (zh) 2009-12-23

Family

ID=37888671

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006800015693A Expired - Fee Related CN100573749C (zh) 2005-09-21 2006-07-19 软磁性材料、压粉铁心、制造软磁性材料的方法以及制造压粉铁心的方法

Country Status (5)

Country Link
US (2) US7622202B2 (zh)
EP (1) EP1928002B1 (zh)
JP (1) JP4706411B2 (zh)
CN (1) CN100573749C (zh)
WO (1) WO2007034615A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105359229A (zh) * 2013-07-12 2016-02-24 西门子公司 具有纳米晶体结构的、各向异性无稀土的、结合基质的高性能永磁体和其制造方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613622B2 (ja) * 2005-01-20 2011-01-19 住友電気工業株式会社 軟磁性材料および圧粉磁心
JP4707054B2 (ja) * 2005-08-03 2011-06-22 住友電気工業株式会社 軟磁性材料、軟磁性材料の製造方法、圧粉磁心および圧粉磁心の製造方法
JP4710485B2 (ja) * 2005-08-25 2011-06-29 住友電気工業株式会社 軟磁性材料の製造方法、および圧粉磁心の製造方法
DE112007003121T5 (de) * 2007-02-12 2009-10-15 Vacuumschmelze Gmbh & Co. Kg Gegenstand zum magnetischen Wärmeaustausch und ein Verfahren zu dessen Herstellung
JP2008305823A (ja) * 2007-06-05 2008-12-18 Tamura Seisakusho Co Ltd 圧粉磁心とその製造方法
US20100193726A1 (en) * 2007-08-30 2010-08-05 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP5543378B2 (ja) 2008-02-22 2014-07-09 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 誘導結合のための磁気的な位置決定
JP5310989B2 (ja) * 2008-02-29 2013-10-09 戸田工業株式会社 軟磁性材料及びその製造法、該軟磁性材料を含む圧粉磁心
PL2252419T3 (pl) 2008-03-20 2017-11-30 Höganäs Ab (Publ) Kompozycja ferromagnetycznego proszku i sposób jej wytwarzania
WO2010026984A1 (ja) * 2008-09-02 2010-03-11 トヨタ自動車株式会社 圧粉磁心用粉末、圧粉磁心、及びこれらの製造方法
MX353519B (es) 2009-09-18 2018-01-16 Hoeganaes Ab Composicion ferromagnetica en polvo y metodo para su produccion.
JP6026889B2 (ja) * 2010-02-18 2016-11-16 ホガナス アクチボラゲット 強磁性粉末組成物、及びその製造方法
JP5374537B2 (ja) * 2010-05-28 2013-12-25 住友電気工業株式会社 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法
JP2012107330A (ja) * 2010-10-26 2012-06-07 Sumitomo Electric Ind Ltd 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法
JP2014505165A (ja) * 2010-12-23 2014-02-27 ホガナス アクチボラグ (パブル) 軟磁性粉末
JP2012253317A (ja) * 2011-05-09 2012-12-20 Kobe Steel Ltd 圧粉磁心の製造方法、および該製造方法によって得られた圧粉磁心
JP5650702B2 (ja) * 2012-10-15 2015-01-07 株式会社タムラ製作所 圧粉磁心とその製造方法
EP2871646A1 (en) * 2013-11-06 2015-05-13 Basf Se Temperature-stable soft-magnetic powder
US10300496B2 (en) * 2014-01-22 2019-05-28 Basf Se Silicon comprising polymer coated particles
CN104028751B (zh) * 2014-06-05 2015-12-30 浙江大学 一种金属软磁复合材料的高绝缘性绝缘包覆处理方法
JP6580817B2 (ja) * 2014-09-18 2019-09-25 Ntn株式会社 磁性コアの製造方法
US10753655B2 (en) 2015-03-30 2020-08-25 William A Kelley Energy recycling heat pump
KR102105390B1 (ko) * 2015-07-31 2020-04-28 삼성전기주식회사 자성 분말 및 이를 포함하는 코일 전자부품
US9901880B2 (en) * 2015-10-29 2018-02-27 Korea Institute Of Science And Technology Carbon molecular sieve membranes based on fluorine-containing polymer/polysilsesquioxane blending precursors and method for fabricating the same
US10906097B2 (en) 2016-06-02 2021-02-02 M. Technique Co., Ltd. Ultraviolet and/or near-infrared blocking agent composition for transparent material
CN106653278B (zh) * 2016-12-29 2018-05-15 江西艾特磁材有限公司 铁硅磁芯及其制备方法
US20180190416A1 (en) * 2016-12-30 2018-07-05 Industrial Technology Research Institute Magnetic material and magnetic component employing the same
JP7069849B2 (ja) * 2017-03-09 2022-05-18 Tdk株式会社 圧粉磁心
JP6911402B2 (ja) * 2017-03-09 2021-07-28 Tdk株式会社 圧粉磁心
JP6891551B2 (ja) * 2017-03-09 2021-06-18 Tdk株式会社 圧粉磁心
JP6504287B1 (ja) * 2018-03-09 2019-04-24 Tdk株式会社 軟磁性金属粉末、圧粉磁心および磁性部品
EP3576110A1 (en) * 2018-05-30 2019-12-04 Höganäs AB (publ) Ferromagnetic powder composition
JP7299000B2 (ja) * 2018-08-09 2023-06-27 太陽誘電株式会社 金属磁性粒子を含む磁性基体及び当該磁性基体を含む電子部品
JP6780833B2 (ja) * 2018-08-22 2020-11-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル電子部品
CN109979701B (zh) * 2019-05-17 2020-12-22 广东省材料与加工研究所 一种双层无机绝缘包覆软磁粉末及其制备方法
JP7268520B2 (ja) * 2019-07-25 2023-05-08 セイコーエプソン株式会社 磁性粉末、磁性粉末の製造方法、圧粉磁心およびコイル部品
KR20220067019A (ko) * 2020-11-17 2022-05-24 삼성전기주식회사 자성 시트 및 이를 이용한 코일 부품
EP4066932A1 (en) 2021-03-31 2022-10-05 Basf Se Polymer coated particles
CN113536459B (zh) * 2021-07-15 2022-11-18 一汽奔腾轿车有限公司 一种汽车数字化设计过程中的动力总成参数化设定方法
CN116099740B (zh) * 2021-11-09 2023-07-28 北京科益虹源光电技术有限公司 一种带绕铁芯绝缘涂层制备方法
CN115121794B (zh) * 2022-07-27 2024-04-02 厦门慧金盟磁电有限公司 一种高绝缘合金材料的制备方法
CN117079967B (zh) * 2023-10-16 2023-12-22 通友微电(四川)有限公司 复合陶瓷软磁粉体及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202175A (en) * 1989-10-16 1993-04-13 Eastman Kodak Company Thin films of metal phosphates and the method of their formation
FR2656319B1 (fr) 1989-12-27 1992-03-20 Rhone Poulenc Chimie Microspheres composites magnetisables a base d'un polymere organosilicie reticule, leur procede de preparation et leur application en biologie.
JPH07254522A (ja) 1994-03-15 1995-10-03 Tdk Corp 圧粉コアおよびその製造方法
US5540981A (en) * 1994-05-31 1996-07-30 Rohm And Haas Company Inorganic-containing composites
US6413638B1 (en) * 1997-05-23 2002-07-02 Agfa Gevaert Ag Coated particles containing a monomeric, polyfunctional organosilane coating
CN1165919C (zh) * 1998-04-06 2004-09-08 日立金属株式会社 R-t-b合金粉末树脂混合物颗粒及生产方法和粘合稀土磁体
JP2000003824A (ja) * 1998-06-16 2000-01-07 Sumitomo Metal Mining Co Ltd 樹脂結合型磁石の製造方法
KR100345323B1 (ko) * 2000-04-24 2002-07-24 학교법인 포항공과대학교 나노 자성체 입자들을 포함하는 복합체
JP2003303711A (ja) 2001-03-27 2003-10-24 Jfe Steel Kk 鉄基粉末およびこれを用いた圧粉磁心ならびに鉄基粉末の製造方法
JP2004143554A (ja) 2002-10-25 2004-05-20 Jfe Steel Kk 被覆鉄基粉末
EP1511046B1 (en) * 2002-11-29 2015-05-20 Hitachi Metals, Ltd. Method for producing corrosion-resistant rare earth metal- based permanent magnet, corrosion-resistant rare earth metal- based permanent magnet, dip spin coating method for work piece, and method for forming coating film on work piece
CA2452234A1 (en) * 2002-12-26 2004-06-26 Jfe Steel Corporation Metal powder and powder magnetic core using the same
US20040247939A1 (en) * 2003-06-03 2004-12-09 Sumitomo Electric Industries, Ltd. Composite magnetic material and manufacturing method thereof
US7390579B2 (en) * 2003-11-25 2008-06-24 Magnequench, Inc. Coating formulation and application of organic passivation layer onto iron-based rare earth powders
EP1737002B1 (en) * 2004-02-26 2012-08-22 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core and process for producing the same
JP5062946B2 (ja) * 2004-06-17 2012-10-31 株式会社豊田中央研究所 磁心用粉末および圧粉磁心並びにそれらの製造方法
JP2006024869A (ja) * 2004-07-09 2006-01-26 Toyota Central Res & Dev Lab Inc 圧粉磁心およびその製造方法
US20060068196A1 (en) * 2004-09-24 2006-03-30 Kabushiki Kaisha Toshiba High-frequency magnetic material, producing method for the same and high-frequency magnetic device
JP4710485B2 (ja) * 2005-08-25 2011-06-29 住友電気工業株式会社 軟磁性材料の製造方法、および圧粉磁心の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105359229A (zh) * 2013-07-12 2016-02-24 西门子公司 具有纳米晶体结构的、各向异性无稀土的、结合基质的高性能永磁体和其制造方法

Also Published As

Publication number Publication date
CN101091226A (zh) 2007-12-19
EP1928002B1 (en) 2012-09-05
US20100028195A1 (en) 2010-02-04
EP1928002A1 (en) 2008-06-04
US7622202B2 (en) 2009-11-24
US20080044679A1 (en) 2008-02-21
WO2007034615A1 (ja) 2007-03-29
JP4706411B2 (ja) 2011-06-22
US8303884B2 (en) 2012-11-06
JP2007088156A (ja) 2007-04-05
EP1928002A4 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
CN100573749C (zh) 软磁性材料、压粉铁心、制造软磁性材料的方法以及制造压粉铁心的方法
Shokrollahi et al. Soft magnetic composite materials (SMCs)
KR101521968B1 (ko) 자성 재료 및 그것을 이용한 코일 부품
CN100514513C (zh) 软磁材料和压粉磁芯及其制备方法
US20080003126A1 (en) Method for Producing Soft Magnetic Metal Powder Coated With Mg-Containing Oxide Film and Method for Producing Composite Soft Magnetic Material Using Said Powder
US20230317335A1 (en) High frequency low loss magnetic core and method of manufacture
JP4782058B2 (ja) 高強度軟磁性複合圧密焼成材の製造方法および高強度軟磁性複合圧密焼成材
CN102007550A (zh) 复合磁性材料的制造方法及复合磁性材料
CN101142044B (zh) 含Mg氧化膜包覆的铁粉末
JP2007123703A (ja) Si酸化膜被覆軟磁性粉末
JP4903101B2 (ja) 高比抵抗低損失複合軟磁性材とその製造方法
KR101097896B1 (ko) 철계 연자성 분말
JP2002343657A (ja) 圧粉磁芯の製造方法および圧粉磁芯
US6193903B1 (en) Method of forming high-temperature magnetic articles and articles formed thereby
MXPA05008373A (es) Compuesto magnetico de alto rendimiento para aplicaciones de ca y un proceso para fabricar el mismo.
CN105873697B (zh) 软磁粉末混合料
JPWO2005013294A1 (ja) 軟磁性材料、圧粉磁心、トランスコア、モータコアおよび圧粉磁心の製造方法
JP2011216571A (ja) 高強度低損失複合軟磁性材とその製造方法及び電磁気回路部品
EP1662518A1 (en) Soft magnetic material and method for producing same
Lemieux et al. Optimizing soft magnetic composites for power frequency applications and power-trains
JP2006100292A (ja) 粉末磁性体コアの製造方法及びそれを用いてなる粉末磁性体コア
US20060283525A1 (en) Soft magnetic material and method for producing same
CN112420309A (zh) 压粉磁芯
CN112420308B (zh) 复合颗粒和压粉磁芯
US20070036669A1 (en) Soft magnetic material and method for producing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091223

Termination date: 20180719

CF01 Termination of patent right due to non-payment of annual fee