CN1007862B - 具有频率可寻址波束的通讯系统 - Google Patents

具有频率可寻址波束的通讯系统

Info

Publication number
CN1007862B
CN1007862B CN87105572A CN87105572A CN1007862B CN 1007862 B CN1007862 B CN 1007862B CN 87105572 A CN87105572 A CN 87105572A CN 87105572 A CN87105572 A CN 87105572A CN 1007862 B CN1007862 B CN 1007862B
Authority
CN
China
Prior art keywords
signal
uplink
group
frequency
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN87105572A
Other languages
English (en)
Other versions
CN87105572A (zh
Inventor
罗森·哈罗德·A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vauxhall Corp
DirecTV Group Inc
Original Assignee
Hughes Aircraft Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hughes Aircraft Co filed Critical Hughes Aircraft Co
Publication of CN87105572A publication Critical patent/CN87105572A/zh
Publication of CN1007862B publication Critical patent/CN1007862B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

采用分离子系统的卫星通信系统,用于在给定的频带内实现广播和点对点的双向通信。广播和点对点的子系统采用具有公共反射器12的集成化卫星天线系统。子系统通过对给定的频带在覆盖所需服务的地面区域的多个邻近地区32,34,36,38中重复使用,以得到增加通信的容量。这些区域中的小孔径天线地面站由多个高增益下行链路扇形波束提供服务,通过频率寻址的方法对这些波束在东西方面进行控制。

Description

本发明广泛地涉及卫星通讯系统,特别是那种采用位于几何同步轨道上的卫星来提供卫星与地面上众多小孔径终端之间进行双向通讯的系统。更确切地说,本发明所涉及的通讯卫星能够同时发出上万条窄带,增益高,且可频率寻址的下行天线波束而不减少卫星的总的信道容量。
过去,通讯卫星采用多个天线波束,可使高的天线增益直接导向那些区域并可重复使用在该区域的工作频率。邻近区域的覆盖范围是通过改变邻近区域之间的极化来实现的,从而可用每种极化使波束空间隔开足够宽的间隙。因此,得到较少的频率复用。较之一个系统仅用一种极化在每个区域复用频率以提供邻近的覆盖区。在这一系统中,可类似地应用第二种极化,两次的频率复用或诸如为广播服务等其他有用的目的。一个系统,它允许在邻近区域中频率复用,且只有一种极化,并可用窄带的高增益的频率可寻址的波束。这一系统便是本发明的中心主题。
本发明的卫星通讯系统包括一个地球轨道卫星和分布于地面一个区域上多个地面站之间的通讯联系,按照本发明的一个宗旨,该系统包括卫星与多个上行链路地面站之间形成射频上行波束的第一装置,第二个装置用来形成多个射频下行波束,其中每一下行波束仅覆盖区域的一部分。下行波束相对于卫星所服务的区域来讲是非常窄的,因此具有很高的增益,每一下行波束都可用上行波束所载的信号频率来频率寻址。因此由上行信号的频率确定上行信号指定的下行地面站。卫星服务的区域可安排在使用同一 指定频率范围的区域内,借此可多次复用指定频谱并相应地增加系统的信道的容量。
依据本发明的另一方面,为提出一种方法利用地球轨道通讯卫星在地面的一个区域内的众多地面站之间进行通讯联系。该方法包括的步骤有:在卫星和该区域内的多个上行地面站中的一个站之间形成一般上行射频波束;在卫星和该区域的分别对应的地点之间形成多个单独的下行波束,其中每一下行波束都载有代表该区域中来自上行地面站的通讯信息的频率可寻址信号;通过选择上行波束信号的频率来选择要接收特定上行终端站信息的特定下行地面站,该上行波束信号和这一特定下行地面站有关,此站为接收通信的站;用在上行波束中选出的频率将下行波束的频率可寻址的信号发射出去。
因此,本发明的主要目的是提出一种卫星通讯系统,该系统可同时发出上万个窄带,高增益,频率可寻址的下行波束,而不降低卫星的整个信道容量。
本发明再一目的是提出一种如上所述的系统,可用于地面上那些可重复使用设定频谱的多个区域。
本发明另一个目的是提出利用一种新颖的网络来形成窄带、高增益天线波束的如上所述的系统。
本发明进一步的目的和实质可从下面的实施方案的描述中看清楚。
在附图中:
图1是通信卫星的透视图,所示为天线子系统。
图2是图1中天线子系统的俯视图。
图3是图2中沿3-3线的剖视图。
图4是图2中沿4-4线的剖视图。
图5是装备此发明的卫星所覆盖的美国及邻近接收区域的视图。斜线表示所覆盖的基本地区,由小黑点表示的地区为采用地区。
图6是通信卫星通信电子系统方块图。
图7是偶合网络的原理示意图,此网络连接点到点的接收馈送喇叭和图6所示通信电子系统的输入。
图8是用于连接接收和发射区域点对点系统的互连信道参考图表。
图9是卫星覆盖的描述多个相邻发射区域的美国图解表示及横贯美国各地区的互联信道的地理分布图。
图9A是点对点系统每一区域发射天线波束增益变化曲线图。此曲线与东西方向上离开波束中心的距离有关。
图9B是与图9A类似的曲线,表示南北方向上的增益的变化。
图10是点对点系统滤波互联矩阵的详细原理图。
图11是点对点系统的波束成形网络的平面详图。
图12为图11所示波束成形网络的局部放大图示。
图13为点对点系统中发射阵列的正视图,为清晰起见,每一发射单元中的水平槽缝未画出。
图14为图13所示发射阵列的侧视图,并画出了单元的共馈网络。
图15为图13所示的发射阵列中发射单元的正面透视图。
图16为点对点系统中接收馈送喇叭的正视图。
图17为表示点到点系统中发射波和部分发射馈源阵列间关系的简图。
先参看图1-4,通信卫星10位于地球表面上方的同步轨道中。卫星天线系统(在下面将详细介绍)安装在面向地球的平台上。这样天线系统可以和地球保持固定的方向。
卫星10是一颗混合的通信卫星,它在一个特定的波段上(如固定卫星利用Ku波段)提供两种不同的通信服务。一种通信服务下面称之为点到点服务在很小孔径天线地面站间提供窄带声频和数据信号的双向通信。通过运用频分多址(FDMA)及指定工作频谱的再用, 可以单一的线性极化同时容纳成千上万个通信信道。卫星10的另一种通信服务是广播,它由另一个线性极化承担。广播用于卫星10的服务地理区域内,基本上采用单向视频和数据传输。这样,发射天线的波束覆盖了整个的地理区域。为说明起见,假定接收点到点及广播服务的地理地区是美国,因此可以用下面的CONUS(美国大陆)系统为例来介绍广播服务系统。
卫星10的天线系统包括一个传统的全向天线13和分别用于点到点系统及CONUS系统的两个天线系统。点到点天线子系统提供双向通信链路,连接双向通信的地址站。CONUS天线系统作为广播的转发器,以较宽的辐射方向图覆盖整个美国,其信号被一个或多个地面上的指定地区所接收。点到点的发射信号及CONUS的接收信号是垂直极化的。CONUS的发射及点到点的接收信号是水平极化的。天线系统包含一个大反射器装置12,它由两个反射器12a和12b构成。两个反射器12a和12b围绕公共轴相对转动,两反射器在它们的中点相交。反射器12a为水平极化由水平极化信号控制。而反射器12b为垂直极化由垂直极化信号控制。因此,反射器12a、12b各反射另一个反射器12a、12b的发射信号。
频率选择屏18由18a、18b两部分构成,它装在支架30上,两个半屏18a、18b相对安装在卫星10的中心线两边,如图2中所示的。频率选择屏18作为双工器,用来分开不同的频带,它由一个分立阵列组成,其中的电导元件由铜一类的材料制成,任何各种类型的已知频率选择屏都可以用在这个天线系统中,在我方编号为PD-85512的美国专利申请中所给出的频率选择器,具有极好的传输性能,并能区分十分相近的两个频带。Hughes飞机公司 的产品中就采用了这种选择器。在点对点及CONUS子系统中,这个频率选择器有效地分离发射和接收信号。可以这样认为,两个半屏18a、18b各自用来分离水平及垂直极化的信号。
在该例中,以单一的波束服务于全国的CONUS系统的8个常规的转发器,每个都用高功率行波管放大器作为它的发射机82(见图6)。CONUS接收天线利用垂直极化,与点对点传送系统共用一个垂直极化反射器12b。CONUS的接收信号通过频率选择半屏18b,聚焦于接收馈源喇叭14上,它安装在反射器12b的聚焦平面28上。这样形成的天线辐射(方向)图刚好覆盖整个美国大陆。CONUS发射天线利用水平极化,与点对点接收系统共用反射器12a。从发射馈源24辐射来的信号由水平极化频率选择屏18a反射到12a上。这样反射后的二次辐射图刚好覆盖整个美国大陆。
点到点子系统包含一个发送阵列20,一个子反射器22和接收馈送喇叭16。发送阵列20(以后将详细讨论)安装在支架30上,恰好位于反射屏18的下面。子反射器22安装在发送阵列20的前方,较反射屏18略低一点,发送阵列20发出的信号由子反射器22反射至反射屏18的一半18b上。子反射器22和主反射器12配合,有效地扩大了来自发送阵列20的信号辐射图。同样,从子反射器22来的信号,被反射屏18的一半18b反射到主反射器12b上,12b将点到点系统信号再反射到地球上。通过这种方法可得到大孔径相控阵列的性能。接收馈送喇叭16安装在反射器12a的聚焦极26上,它由四个主喇叭50、54、58、62和三个辅助喇叭52、56、60构成,如图16所示。
参考图13~15,发送阵列20由许多(例如40个)发射波 导元件106,依次排列构成,如图13所示。每个发射波导元件106由许多诸如26的垂直隔开的水平的狭缝108构成。这样即可产生垂直极化信号。如图14所示,发送阵列20的馈入信号由共馈网络(一般用数字110表示)提供。此网络在四个标号为114的地方激发阵列元件。共馈网络110的用处是提供一个宽频带与发送波导元件106相匹配。信号输入到波导管,打开112,激发阵列狭缝108,由此,狭缝激发用以在南北方向上产生一个平展的辐射图。
请看图5,它描述了一个普通的由水平极化点对点接收系统提供的矩形波束的覆盖情形。在这个具体例子中,用点到点接收系统服务的地区是美国大陆。点到点接收系统由4个波束R1、R2、R3和R4组成。它们分别将来自上行链路区域32、34、36、38的信号发送到卫星上。R1-R4中的每一波束都含有多个来自每个区域32、34、36、38中各个别地面站的各上行链路波束,并由该站载入一个单独的信号,来自不同地面站上行链路信号被置于每一区域多个信道之内。例如,区域32包含多个诸如16个27MHZ的信道,每一信道载有来自区域32中相应上行地面站的上百的单独波束信号。
四个波束辐射方向图的信号等场强线,分别用数字32、34、36和38表示,其信号强度大约比它们相应的波束峰值低3分贝。天线波束设计得能够充分隔离,能在39、41、43和45斜线地区重复使用频谱四次。在小黑点区域40、42和44,相邻区域产生的同频信号无法有效地隔离。在这些区域产生的每个信号包含两种下行链路信号,一个是期望的,另一个是附加的。在这些地区产生的 附加信号以后将会详细讨论。
从图5上可明显看出,被波束32、34、36和38覆盖的地区其宽度不等。被波束32覆盖的东海岸沿伸约1.2径度;被波束34覆盖的中部地区约1.2度;由波束36覆盖的中西部及波束38覆盖的西海岸约沿伸2度。四个接收地区32、34、36和38的宽度由地面站数目,也即不同地区的人口密度来确定。因此波束辐射方向图案32相对窄些,用以容纳美国东部地区较高的人口密度,而波束36相对宽些。这是因为山区各洲的人口密度比较低。由于每一地区使用整个频谱,因而波束区域宽度在人口密度大的地区较窄,以满足使用信道较多的要求。
如图9所示,点到点发射系统由T1、T2、T3和T4四个波束构成,相应地覆盖31、33、35、37四个发射区域。T1-T4的每个波束中具有多个各自的下行链路波束,指定给31、33、35和37区域中的各个下行链路地面站,向这些地面站传送各自的信号。下行链路波束信号由指定的下行链路地面站接收,并送入每个地区的许多信道中。例如,地区31可能含有16个27MHZ的信道,每一信道将上百个不同的波束信号传送给区域32中相应的下行地面站。
多个下行链路及不同宽度下行链路的使用有利于产生后面将要叙述的由固态功率放大器产生的互调产物,这些互调产物按地理分布在不同的区域,这种分布能防止多数互调产物被地面站接收。其基本的作用是因为系统能容纳较多的互调产物,可使放大器更有效地使用。尽管发射区域31、33、35和37的宽度几乎和接收区域R1、R2、R3和R4的相同,在两套系统中,仍有微小的差别,用以最大 限度地增加系统的容量。
各个发射波束29的半功率点波束宽度较发射区域31、33、35和37的宽度要窄。这导致得到所需的高增益,并避免了40、42、44接收区域分布上特有的区域争用。各个波束29必须在区域内予以调整,以便在各个目标地面站方向上获得最大的下行链路全向同性有效辐射功率。点到点可寻址窄波发射由阵列20产生,其视在尺寸被两个共焦点抛物面反射器扩大,反射器由主反射器12b和子反射器22组成。每个波束29的东西方向由沿着发射阵列20的106元件上的信号的相位级数来决定(见图13及图15)。相位进行由后面要讲的波束成形网络98确定,它是信号频率的函数。每一发射阵列单元20由后面要讲的固态功率放大器驱动。传送到阵列元件106上的功率并不是均匀的,而是锥形,边界上的元件接收到的功率要低10分贝。波束29的锥形是按照发射阵列单元20的位置通过调整发射增益而获得,如图9A所示。激发辐射图决定了发送二次辐射图形的特性。参考图9,发射区域31、33、35和37间最小的间距发生在31和33区域之间,大约有1.2度。这意味着用特定频率对区域33的寻址信号会干扰使用同样频率对地区31的寻址信号,因为其波束中心到旁辨相差1.2度宽。然而,调整各个发射增益,可以获得较低的旁辨,因而允许相邻区域频率再用。参考图9A,这时偏离波束中心角度的旁辨低于波束中心30分贝,因此,这样的干扰就可以忽略。运用相同频率的地区35及37在这个角度进一步被消除,因此这两个区域的旁辨干扰就更小。
图9B是南北向发射波束辐射图的说明。每一发射波导管元件106中的26个狭缝108,被激发产生一个近似平展的南北辐射 图,从南北轴线向外扩大到加减1.4度的范围。
点到点及CONUS系统都可利用同样的上行链路及下行链路频带,只是点到点系统对上行链路范化用水平极化,而CONUS系统用垂直极化,如前面所述。例如,两个系统同时在14~14.5GHZ间使用整个500MHZ上行链路频带,同样在11.7~12.2GHZ间使用整个500MHZ下行链路频带。在以点到点服务时,32、34、36、38的每一接收区域和31、33、35、37的每一发射区域都利用整个频谱(如500MHZ)。更进一步说,将这整个频谱划分为许多信道,如16个信道,每个信道有27MHZ的可用带宽和30MHZ的间隔。同样,16个信道中的每一个都可容纳800个子信道。因此,在任何给定时刻对每一地区,大约可容纳12500个(16个信道×800子信道)32千比特/秒的信道。下面将要讲到,点到点通信技术可使任一地面站同另一个地面站直接联接。这样,以单一极化在全国范围内可容纳共50000个子信道。
参考图1、2、6、7和16,点到点接收馈送阵列16用了七个接收喇叭50-62。喇叭50、54、58和62分别从32、34、36和38区域接收信号。喇叭52、56和60接收来自争用区域40、42和44的信号。用一系列的混合偶合器或功率分配器C1-C9,由喇叭50-62所接收的信号接入四个输出端64-70。例如来自干扰地区44并被喇叭60接收的信号由偶合器C2分离,分离的部分信号分别送入偶合器C1和C4,在C1和C4中,分离信号分别与喇叭58、62接收到的信号相混合。同样,来自地区42由喇叭56的接收信号,由偶合器C5分离,一部分分离 信号由偶合器C3将其与偶合器C4的输出信号混合,同时剩下的部分分离信号由偶合器C7同喇叭54接收的信号相混合。
请看图6所示的示意,它用方块图的形式描述了CONUS及点到点两系统接收和发射信号的电子设备,点到点接收信号64-70(见图7)来自点到点接收馈送网络(图7)。CONUS接收信号72来自CONUS接收馈送喇叭14(见图1和3)。点到点及CONUS两者的接收信号都被输入一开关网络76,它能有选择地将输入线64~72与五个相应的接收机相接,74通常指8个接收机。接收机74是按常规方法设计的,其中三个是备用的,除非发生故障,一般不予使用。出现故障时,开关网络重新使输入线64-72与一后备接收机连接。接收机74用来驱动滤波器互联矩阵90中的滤波器。与64-70连线相接的接收机74的输出由第二个开关网络78通过4条接收线路R1-R4与滤波互联矩阵90相联。在后面将讨论到,滤波互联矩阵(FIM)连接收区域32、34、36、38和发射区域31、33、35、37之间提供了互联。当运用上述的分成16个27MHZ信道的500MHZ频谱时,需要四组由16个滤波器来分离信道。每组16个滤波器利用整个500MHZ频谱每个滤波器的带宽为27MHZ。后面将会谈到,滤波器输出T1-T4排成四组,每组指定给区域31、33、35和37中的一个来使用。
发射信号T1-T4通过开关网络94分别与6个驱动放大器92中的四个相联,还有两个用于后备。当一个放大器92出现故障时,开关网络94将会把一个后备放大器92与相应的发射信号T1-T4接通。一个相似的开关网络96把放大器92的放大输出同波 束成形网络98联接起来。后面将要详细介绍的波束成形网络98由许多传输延迟线构成,沿四条延迟线在等间距处相接。这些延迟线的间隔和宽度是可以选择的,用以提供所需的中心波束偏移(squint)和服务于对应的发射区域31、33、35、37随频率而扫描的波束扫描速度。从四条延迟线偶合而来的发射信号在波束成形网络98中相加(如图11、12),为固态功率放大器100提供输入,固态功率放大器可嵌在点对点发射阵列20之中。在下面的实例介绍中,有40个固态功率放大器100(SSPA),每个SSPA100放大40个信号中相应的一个信号,此信号由波束成形网络98成形。SSPA100具有不同的功率容量以提供上面提到的锥形阵列激励。SSPA100的输出与发射阵列20的一个单元上的输入端112相联。(图14)。
CONUS在传输线72上的接收信号由开关网络76、78相连的一个合适的接收机74,并且与CONUS信号相连的接收机的输出信号送到多路复用器80的输入端,此多路复用器有8个信道。输入多路复用器的目的是将低电平的信号分成一些子信号,这样使子信号能够在各自的基础上得到放大。CONUS的接收信号被充分放大,因此CONUS发射信号可以分配给非常小的地面站。输入多路复用器80的输出通过开关网络84与12个高功率行波管放大器82(TWTA)中的8个相联,另4个TWTA82是备用的,8个TWTA82的输出由另一开关网络86与输出多路复用器88相连,此复用器将8个放大信号重新组合,以形成一个CONUS发射信号。多路复用器88的输出通过波导管送入CONUS发射机24(图2和图3)的发射天线上。
图10描述了FIM90(图6)的细节。上面讲过,FIM90能够将接收区域32、34、36和38(图5)中的任何地面站与发射区域31、33、35和37中的任何地面站有效地联接起来。FIM90含有四个波导输入端120、122、124和126,分别接收信号R1-R4。如上所述,接收信号R1-R4来自相应的接收区域32、34、36和38(图5)。每一信号包含整个给定频谱(如500MHZ),并且分成多个信道(如16个27MHZ信道)。信道再分为多个子信道,每一子信道传送一个来自相应的上行链路地面站的信号。FIM90拥有64个滤波器,其一用102表示。每个滤波器102都有一个对应每个信道的通带(如1403-1430MHZ)。滤波器102分为四群,分别用于接收区域32、34、36和38,每组分成两级或称子群,每个子群含有8个滤波器。滤波器102的一子群包含用于奇数信道的滤波器,另一子群则为偶数信道的8个滤波器。例如,接收信号R1的滤波器群由奇数信道的滤波器102子群104及偶数信道滤波器102的子群106组成。
下表表示了接收信号和地区与它们的滤波子群的关系:
接收区    接收信号    滤波器子群
奇信道    偶信道
32    R1    104    106
34    R2    108    110
36    R3    112    114
38    R4    116    118
将滤波器按特殊方法分组,使得当接收信号R1-R4过滤后, 合成输出的信号以形成发射信号,发射信号T1-T4亦使用整个给定的频谱(如500MHZ)。具体说来,每个发射信号T1-T4都拥有16个27MHZ带宽的信道,还包含来自四个接收区域32-38(图5所示)各个接收区的四个信道。
输入接收信号R1-R4由有关相联的混合偶合器128-134分为相应的子群,偶合器能有效地将50%的信号功率送入每个子群。例如输入于波导管120中R1信号的一半被送入传输线136,以供给滤波器102的106子群。同样,102滤波器的每个104-118子群由相应的分配线路提供,如同136和138线路一样。
现在来更详细地看一下子群104的结构。显然,其他的子群106-118与104子群的结构是一样的。沿传输线136有8个铁氧体环行器140,每个都与奇数信道滤波器102相联。环行器140用来将传输线136的信号无损耗地与每个奇数信道滤波器连接。这样,例如R1信号进入第一个环行器140a,并以反时针转,同时,相应于信道1的27MHZ带宽的信号通过它后再进入环行器142。所有其它频率的信号都被反射。这样反射信号经环行器传向下一个滤波器,这种过程重复地进行。通过这一过程,R1接收信号经过16个与R1信号相对应的滤波器104-108滤波后,进入16个信道。故具有信道范围内频率的R1信号经过第一个环行器140a,并由104群的滤波器1滤波。
滤波器子群104-118的输出有选择地以第二个铁氧体环行器142耦合,并和以交叉方式与相邻的102滤波群的输出相加。如104群的信道滤波器1、5、9、13的输出与112群的信道 滤波器3、7、11、15的输出相加。这个相加信号在输出端以T1144表示。参看图8,这些信号与接收区域R1、R3的连接有关。并与发射区域T1相关。
图8和9显示了发射及接收信号是如何通过FIM90连接的,由此允许任何地面站间的双向通信。图8的图表明接收和发射区域由互联信道连在一起的,而图9表示了这些互联信道在发射区域31、33、35、37的地理分布。图8中,接收信号R1-R4按行来读,发射信号T1-T4按列来读。从图8可以看出,T1-T4中每个发射信号由16个信道分成相应的四个群,每群与R1-R4中的一个信号合在一起。所呈的卫星通信系统可望用于地面站的相连,这涉及到一个卫星网络控制中心,它能够通过一组开关信号使地面站互相通信。网络控制中心给上述链路用户分配上行链路频率,这个频率基于所需的下行链路的位置,指定使用频率以使其下行链路纬度与目的地面站的最为接近。可寻址下行链路发射波束29的频率也因此由上行链路信号的频率来确定。这个方法可获得最大的下行链路信号增益。
如图9所示,将美国大陆分成四个基本地区,分别用31、33、35和37表示。31代表东海岸地区,33代表中部地区,35代表山部地区,37代表西海岸地区。如前所述,每个地区使用全部的给定频谱(例如500MHZ)。因此,当指定频带为500MHZ时,可有16个27MHZ的信道,加上31、33、35、37中每地区的保护频带。
图9中波束29上方的数字1-16重复了四次,这些数字表示与信道中心频率相一致的波束之径度。由于波束频率灵敏度的原因。 要使信道中窄带信号的最低与最高频率之间的纵向间隔接近于信道宽度。每个波束的半功率点间的宽度为0.6度,大约为东海岸和中部地区宽度的一半,是山部地区和西部宽度的 1/3 。天线波束29互相重叠,以保证高的信号密度。所给地区的信道容量越大波束重叠越多。因此,在东海岸31地区,波束重叠大于山部地区35,这是因为东部地区的信号容量大于山部地区35。
现在,以两个不同地区地面站间的典型通信来描述上述所说的互联系统。在这个例子中,假设在密执安洲底特律的呼叫者想给加利福尼亚洲洛杉位于西海岸地区37,为下行链路终端。如图9所示,位于美国大陆的每一地理位置和特定地区的特定信道相关连。因此,洛杉位于发射地区37的14和15信道之内。
现在同时参看一下图5图8和图9,尤其是以下接收和发送区R1和T1在东海岸地区31和32内,R2和T2在中部地区34和33内,R3和T3在山区36和35内,及R4和T4在西海岸地区38和37内。因为底特律位于中部地区,或者说R2位于地区34,由此可见,信号只能通过信道1、5、9、13传送到西部地区,或T4地区37的信道为1、5、9和13。这由图8表中R2行与T4列的交叉来决定。因此,上行链路用户将来自底特律的信号通过信道1、5、9和13上行,这取决于这些信道的哪一个最接近于下行链路目的地。因为洛杉位于信道14和15之间,而信道13最接近于信道14,所以网络控制中心将上行键路信号接于信道13上。洛杉的下行链路波束其宽度足以提供较高的增益。
反之,如果上行地面站位于洛杉,下行地面站位于底特律,则需要参考图8表中R4行T2列的交叉处。它给出信号能够通过的信 道1、5、9或13,并由此选择最接近下行链路目的地的信道。网络控制中心将来自洛杉的信号上行链路接到信道9上,这是因为信道9最接近于信道11,也最接近于底特律。
现在回到图10,我们用上面所讲的例子来描述如何将接收到的信号转换成发送信号,其中上行地面站位于底特律,下行地面站位于洛杉,从底特律所发送的上行链路信号被发送到信道13上,此上行信号载在接收信号R2上。从而,R2接收信号输入到传输线122,输入信号的一部分由混合偶合器130分配给滤波器组120的子群108的输入线路。子群108包括用于奇数信道的一行8个滤波器,奇数信道包括信道13。于是,输入信号经过滤波器13滤波和来自子群108和116别的信号一起输出到164线路上。在164线路上的信道13的信号由混合偶合器158与来自子组106和114的信号合成一起,在输出线150上形成T4信号,此发送信号T4于是被下行链路接到洛杉。
应当知道上述例子是简化了的,因为网络控制中心可指定较27MHZ带宽的信道更为具体的信道,这是因为27MHZ带宽的信道实际上可由许多较小的信道所构成,如800个32KHZ带宽的子信道。
现在再参看一下图5、8和9,当上行链路信号来自40、42、44(见图5所示)的任一争用地区时,这种信号不仅被发送到所希望的下行链路目的地,而且也将一个不同忽略的信号发送到另一个地理区域,例如,假定上行链路信号来自争用地区42的伊利诺斯洲芝加哥,此信号亦发送到加利福尼亚洲的洛杉,区域34和36的波束的成形叠加产生了争用区域42。因此,上行链路信号可作为接收 信号R2或R3而发送。网络控制中心决定上行链路通信是否由接收信号R2或R3传送。在上述例子中,由于芝加哥离地区36较近,因此,上行链路通信在接收信号R3中传送。
如前所述,下行链路的目的地洛杉位于区域37,在信道14和15之间。如图8所示,R3行和T4列的交叉点给出了可进行分路通信的可能信道。因此,芝加哥的上行链路信号将被发送到信道2、6、10或11上。因为洛杉离信道15最近,所以网络控制中心将选择信道14作为上行链路信道。因而需要注意的是,来自地区34的所不希望的信号也被传送到信道14上,为了确定不需要的信号下行到任何处,可以参考图8所示的表格,图8的表格表明,加载到R2地区34中信道14上的上行链路信号被下行到T1发送区31。所需的信号发送到洛杉矶不要的信号(即附加信号)发送到东部海岸(即地区31)。网络控制中心在进行频率分配时保持跟踪这些附加信号。由于这些附加信号的影响,使系统的容量略为减少。
现在再参看图6,波束成形网络98接收发送信号T1-T4,并将这些发射信号中的所有单个通信信号偶合在一起,以形成每个信号的发射天线波束。在上面所讨论的例子中指定的频谱为500MHZ,当系统完全载以窄波信号时,波束成形网络98将形成总数为50,000个叠加的天线波束,这样形成的每一个天线波束能够指出在一个使系统性能最佳的方向。相邻单元间的增量相移决定在天线波束的方向,因为相移由信号频率所决定的,所以系统可用来进行频率寻址。
现在我们将注意力集中到图11和12,它详细描述了波束成形网络98。在图11中,波束成形网络常用数字98表示,它被做成通常的弧形并可按装在卫星的通信架上(未标出)。假设通过那里的 信号路径是合适的,那么弧形形状的波束成形网络98很容易排列。
波束成形网络98包括两组延时线,第一组为环形伸展的发射延迟线168、170,第二组为发射延迟线172、174,它们和延迟线168、170在径向隔开,另外波束成形网络还包括许多径向伸展的波导装置176。具体地讲,提供了40个波导装置176,每个用作发射阵列20(如图13所示)的一个单元106,波导装置168-174的每一个延迟线交接并按角度等分。
每个波导装置176确定了径向线路总合器并与每个168-174延迟线相交。如图12所示,在径向线路总合器176和发射延迟线168-174的交点上,提供了一个十字形波导偶合器180,此偶合器180将延迟线168-174和径向线路总合器相连接。十字形波导偶合器的作用将在以后讨论。
四根延迟线168-174分别提供给四个发射区域的T1-T4(图9所示)。这里,发射信号T1加于延时线170的输入端,T2加于延时线168的输入端,T3加于延时线174的输入端,T4加于延时线172的输入端。正如图12所示,字母“L”指明径向线路总合器间的距离。字母“W”表示每个径向延时线的宽度。尽管径向线路总合器在延时线方向上按角度等分相隔,由于延时线168-174是径向分隔的,所以它们之间从延时线到延时线的距离也各不相同。因此,由径向线路总合器176形成的弧度离中心越长,径向线路总合器176间在它们与延时线168-174交点处的距离就越大。换句话说,在径向线路总合器176之间,延迟线168的间距“L”是小于邻近径向线路总合器176之间延迟线174的间距。“L”和“W”的典型数值如下所示:
延时线    信号    L英吋    W英吋
168    T2    1.66    0.64
170    T1    1.72    0.66
172    T4    2.45    0.74
174    T3    2.55    0.76
选择延迟线168-174的宽度“W”以及相邻两径向径大梁间的长度“L”以产生所需的中心波束的偏移(center beam squint)及波束扫描速率,因此校正了每个信道的波束指向。这样每一发射区域的T1-T4可得到所希望的开始及终止点。
见图12,发射信号T2由于以准确的距离传入延迟线168,并在此点进入第一径向线路总合器176。部分T2信号经过十字形波导偶合器180(例如为一个20分贝的偶合器),这样,发射信号T2的1%功率被送入径向线传输线176,这部分能量又经波导管176进入相应的固态功率放大器100(见图6及11)。传入延迟线170的信号T1也进行上述的同样过程。由十字形波导偶合器180传送的部分T1、T2信号(如0.01的T1信号和0.01的T2信号)在径向线大梁中相加,组合信号0.01(T1+T2)以径向向外传入下一组延迟线172、174。对于信号T3及T4分别在延迟线174及172上重复了上述的相同偶合过程。也就是通过十字形波导偶合器180的0.01的T3及T4信号偶合传入径向线大梁176,得到组合信号0.01(T1+T2+T3+T4)以径向向外传入一个相联的固态功率放大器100,并在其中放大以供发射。
经过第一个径向线路总合器176后,剩下的0.99的T1- T4信号进入第二个径向线路总合器,又将另外1%的信号传入线路总合器176。每经过一个径向线路总合器都将1%的信号送入其中。
经由径向线路总合器176送入SSPA100的信号,是所有四种点到点发射信号T1-T4的混合信号。然而,发射信号T1-T4都是由12,500个子信号组成的。因此,在上面的详细说明中(指定的频谱宽500MHZ),40个经由径向线路总合器176的信号是50,000个信号的混合信号。因此,每个SSPA100放大来自众多波导装置176的所有50,000个信号。
由于每个SSPA100放大所有50,000个来自所有地区的指定信号,因此可以看出,所有的窄带高增益下行波束都是由共同汇集发射机形成的,即所有的SSPA100形成的。因为使用所有的SSPA可使下行链路波束覆盖整个国土,所以此方法被认为能有效地提供全国范围的功率汇集区。这样,就可在减弱其他波束功率的前提下,将功率汇集区的部分功率转移,适应特殊的处于别地区不利条件下的下行链路用户。例如,由于下雨而减弱了下行链路地面站的波束信号的强度使下行用户处于不利条件下。这种因雨受损害的用户可通过增加相应上链路波束的信号强度来弥补。即是通过从全国性发射功率汇集(pool    of    power)中转移一部分功率给处于不利条件下的下行链路用户来完成(例如,从所有SSPA100中提供一小部分功率)。每一上行链路波束的功率都与相应的下行链路波束的功率成正比例。所以,为了增加下行链路波束的功率,只需增加上行链路波束的功率即可。
实际上,上述的网络控制中心保持跟踪所有的降雨区域,并确定哪些上行链路用户要与降雨区的下行链路用户通信。于是网络控制中 心利用开关信号阵指令每个上行链路用户,增加发向雨区的上行链路信号功率。上行链路信号功率的增强,使SSPA100对这些信号增加集合放大,以产生针对雨区的相应下行波束,增加的功率电平有效地补偿了束雨的影响。一般而言,给定降雨地区的信号数目与用SSPA100总功率操作的信号总数关系不大。因此,其它非降区地区下行链路用户的信号不会减弱,因为一点微小的减弱被分配于成千上万个用户的身上。
SSPA100图8和11所示,例如可装在卫星通信架的边缘(未示出)。由SSPA100放大的信号送到发射阵列20的相应元件106上。
如上所述,可得到40个径向线大梁176偶合的信号之间的增量相移。因此,波束成形网络98允许从发射阵列20(图1、2、13)发出的天线波束用频率的给定来控制。增量相移与在波导管176间的时间延迟有关。参看图17,这是40个发射阵列元件106中的四个的简图,说明波阵面从那里发出的,其中“d”为发射阵列元件106间的距离。所得天线波束有一倾角θ,此θ定义为波束扫描角。这就是说,θ是偏离标准波束发射中心的角度。由延迟线产生的增量相移为△φ。θ与△φ的关系如下:
△φ= (2πd)/(λ) sinθ
其中:λ=单个波长
θ=波束扫描角
d=阵列元件间距
这样,天线波束的东西方向由增量相移来确定,增量相移对于波束成形网络98的四个延迟线168-174是不同的,因而得到上面所述的四个发射地区T1-T4
通过对该项发明的介绍,可以认为,对于熟练于此技术的人来讲,在不背离该项发明的精神和不超出其涉及的技术范围的前提下,可以对该发明描述的细节作各种补充和修改。因而可以理解。我们所寻求的专利保持将涉及所述主体部分的权利要求以及本发明范围内的一切等价之处。

Claims (20)

1、一种用于分布在地面上一个区域内多个地面终端站之间通讯联系的卫星通讯系统,包括:
一个地球轨道卫星;
从该区域内多个上行链路地面站形成并向所说卫星发射多个射频上行波束的发射阵列装置(20);所说上行波束载有多个接收信号,每一接收信号含有指定为该区域中一个下行链路地面站接收的通信以及;
所说卫星载有形成多个覆盖该地区一特定部位的射频下行波束的波束成形装置(98),每一所说下行波束载有始发于上行链路地面站,可由该地区中相应地点的下行地面站所接收的含有通信的发送信号;其特征在于:
每个所说上行波束载有的信号都含有一个与准备接收这一相应的上行波束信号的下行链路地点有关的频率;每一下行波束均由上行波束信号的这一频率来定址,从而一个上行波束信号指定的下行链路终端站地址由所述上行波束信号的这一特定频率来确定。
2、如权利要求1的卫星通讯系统,其特征在于每一下行波束的宽度窄于该地区的宽度。
3、如权利要求1的卫星通讯系统,其特征在于下行波束的数目和准备接收相应下行波束中的通信的下行地面站数目实际上相等。
4、如权利要求1的卫星通讯系统,其特征在于所说上行波束的信号安置在确定一组上行信道的多个频带之中,而所说的下行波束信号安排在确定的分别与所说下行信道相配合的下行信道的多个频带之中。
5、如权利要求1的卫星通讯系统,其特征在于所说的系统包括由卫星运载的,以预选的方式联接所说上行链路信道和下行链路信道的装置,所说预选方式是将每一上行链路信道中的上行波束信号送往预先选定的下行链路信道的下行终端站。
6、如权利要求5的卫星通讯系统,其特征在于所说联接装置包括:
至少一个接收所说上行波束信号的输入装置;
多个输出装置;和
接在输入和输出之间的装置,用来分离所说上行链路信道,并将每一分开的所说上行链路信道引向一个上述预定的输出端。
7、如权利要求6的卫星通讯系统,其特征在于所说的分离和引导装置包括多个频率滤波器用以对相应的上行链路信道进行滤波。
8、如权利要求1的卫星通讯系统,其特征在于所说下行波束排列成多个群,分别覆盖该区域中相邻的各地区。
9、如权利要求8的卫星通讯系统,其特征在于所说每一组上行波束的上行波束信号分布在同一预选的频率范围内,从而由上述每一地区中的每一群上行波束重复使用上述预选的频率范围。
10、如权利要求1的卫星通讯系统,其特征在于所说的发射阵列装置在卫星与基本相邻的几个区域中的上行链路地面站之间形成多个上行波束,每一上述区域的上行波束信号分布在同一预选的频率范围内,从而由每一区域中的上行波束重复使用预选的频率范围。
11、如权利要求1的卫星通讯系统,其特征在于所说的波束形包括:
分别载有所说发射信号的第一组延迟线;
与所说第一组延迟线在交叉点相交而空间相隔的第二组延迟线,每条所说的第二组延迟线与每条所说的第一组延迟线在上述交叉点相耦合,因而由每条第一组延迟线所载的发送信号的部分能量传递给每条第二组延迟线,上述每条第二组延迟线都有一个输出,用以输出上述的全部发送信号。
12、如权利要求11的卫星通讯系统,其特征在于所说相邻的交叉点的距离和所说的延迟线中的每条线的宽度是预定的,以产生上述发送信号所需的相移。
13、如权利要求11的卫星通讯系统,其特征在于所说第二组延迟线基本上从一个基点成辐射状伸出,这样,第二组延迟线彼此隔开。
14、如权利要求11的卫星通讯系统,其特征在于所说第一组延迟线是围绕上述基点成环形延伸的,并相对于基点径向隔开,这样相邻交叉点之间的距离随着交点离参考点的径向距离而增加。
15、如权利要求11的卫星通讯系统,其特征在于所说第一组延迟线包括多条传递电磁能的传输线,而所说第二组延迟线包括多条电磁能波导管。
16、如权利要求15的卫星通讯系统,其特征在于所说每条传输线用一个电磁波十字形波导耦合器与上述每条波导管耦合。
17、如权利要求11的卫星通讯系统,其特征在于所说的第一组延迟线中至少有两条是基本上互相邻近的。
18、如权利要求11的卫星通讯系统,其特征在于所说第一组延迟线中至少有两条线是互相分开的。
19、一种用于地面上一个区域中多个地面站之间进行通讯联系的卫星通讯系统,包括:
一个地球轨道卫星;其特征在于还包括:
在覆盖上述区域的多个地区内的上行地面站中与卫星之间形成多个上行射频波束群的位于上述的上行地面站中的发射阵列装置,所述地区分称与上行波束群相对应,每群中的上行波束载有始于相应区域中上行地面站,并指定为上述同一地区和其他地区下行地面站接收的信号,每一上行波束信号具有一个设定频率对应要接收该信号的下行地面站,每群上行波束载有在第一预定的频率范围内的信号,这样,每群载有所说信号的上行波束都应用同一频率范围;以及
由上述卫星运载的在上述卫星和所说地区之间形成多个频率可寻址的下行射频波束群的波束成形装置,每群下行波束覆盖一个地区,每一下行波束可用上行波束信号中的所说设定频率进行寻址,上述每群下行波束载有在第二预定的频率范围内的下行波束信号,从而全部下行波束群中的所有下行波束使用同一频率范围来运载所有的下行波束信号。
20、一种通过地球轨道通讯卫星使在地面上一个区域内多个终端站之间进行通讯联系的方法,其特征在于包括步骤有:
(A)分别在卫星与该地区中每一上行地面站之间形成多个上行射频波束,每一上行波束载有一信号,该信号具有一个与要接收由该上行波束信号代表的通信的下行地面站有关的频率;
(B)在卫星与该区域的一些对应地区之间形成多个单独的下行波束,每一下行波束覆盖该区域的一个对应地区,并为在该地区中的下行地面站服务,每一下行波束载有一个代表该地区中上行地面站发来的频率可寻址信号;
(C)通过选择从所说特定上行终端发出的与所说特定下行地面站有关的上行波束信号的频率来选择接收通信;以及
(D)利用步骤(C)选定的频率来传递下行波束的频率可寻址信号。
CN87105572A 1986-08-14 1987-08-14 具有频率可寻址波束的通讯系统 Expired CN1007862B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US896,982 1986-08-14
US06/896,982 US4823341A (en) 1986-08-14 1986-08-14 Satellite communications system having frequency addressable high gain downlink beams

Publications (2)

Publication Number Publication Date
CN87105572A CN87105572A (zh) 1988-05-11
CN1007862B true CN1007862B (zh) 1990-05-02

Family

ID=25407165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN87105572A Expired CN1007862B (zh) 1986-08-14 1987-08-14 具有频率可寻址波束的通讯系统

Country Status (7)

Country Link
US (1) US4823341A (zh)
EP (1) EP0277173B1 (zh)
JP (1) JPH01500710A (zh)
CN (1) CN1007862B (zh)
CA (1) CA1326307C (zh)
DE (1) DE3781670T2 (zh)
WO (1) WO1988001457A1 (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813036A (en) * 1985-11-27 1989-03-14 National Exchange, Inc. Fully interconnected spot beam satellite communication system
IL91529A0 (en) * 1988-10-28 1990-04-29 Motorola Inc Satellite cellular telephone and data communication system
US5093668A (en) * 1989-06-29 1992-03-03 Ball Corporation Multiple-beam array antenna
US5668556A (en) * 1991-10-02 1997-09-16 Alcatel Espace Low-orbit satellite communications system for terminals
FR2682238B1 (fr) * 1991-10-02 1994-10-07 Alcatel Espace Systeme de communications par satellites en orbite basse a destination de terminaux.
US5278863A (en) * 1992-04-10 1994-01-11 Cd Radio Incorporated Radio frequency broadcasting systems and methods using two low-cost geosynchronous satellites
US5268694A (en) * 1992-07-06 1993-12-07 Motorola, Inc. Communication system employing spectrum reuse on a spherical surface
FR2713850B1 (fr) * 1993-12-14 1996-01-05 France Telecom Procédé d'allocation d'un canal de communication dans un réseau par satellite.
FR2732163B1 (fr) * 1995-03-20 1997-05-30 Europ Agence Spatiale Dispositif d'alimentation d'une antenne multisources et multifaisceaux
US5592471A (en) * 1995-04-21 1997-01-07 Cd Radio Inc. Mobile radio receivers using time diversity to avoid service outages in multichannel broadcast transmission systems
US6073011A (en) * 1995-12-19 2000-06-06 Trw Inc. Communication satellite load balancing system and method
US6223019B1 (en) 1996-03-14 2001-04-24 Sirius Satellite Radio Inc. Efficient high latitude service area satellite mobile broadcasting systems
US5860058A (en) * 1996-08-26 1999-01-12 Motorola, Inc. Method and apparatus for routing signals through a communication system having multiple destination nodes
US6023616A (en) * 1998-03-10 2000-02-08 Cd Radio Inc. Satellite broadcast receiver system
US6560461B1 (en) 1997-08-04 2003-05-06 Mundi Fomukong Authorized location reporting paging system
US6434384B1 (en) * 1997-10-17 2002-08-13 The Boeing Company Non-uniform multi-beam satellite communications system and method
US5966048A (en) * 1997-11-25 1999-10-12 Hughes Electronics Corporation Low IMD amplification method and apparatus
US6785553B2 (en) 1998-12-10 2004-08-31 The Directv Group, Inc. Position location of multiple transponding platforms and users using two-way ranging as a calibration reference for GPS
US6337980B1 (en) 1999-03-18 2002-01-08 Hughes Electronics Corporation Multiple satellite mobile communications method and apparatus for hand-held terminals
US6756937B1 (en) 2000-06-06 2004-06-29 The Directv Group, Inc. Stratospheric platforms based mobile communications architecture
US6388615B1 (en) * 2000-06-06 2002-05-14 Hughes Electronics Corporation Micro cell architecture for mobile user tracking communication system
US7200360B1 (en) 2000-06-15 2007-04-03 The Directv Group, Inc. Communication system as a secondary platform with frequency reuse
US7149526B2 (en) 2000-08-02 2006-12-12 Atc Technologies, Llc Coordinated satellite-terrestrial frequency reuse
US6859652B2 (en) 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US6895217B1 (en) 2000-08-21 2005-05-17 The Directv Group, Inc. Stratospheric-based communication system for mobile users having adaptive interference rejection
US6868269B1 (en) 2000-08-28 2005-03-15 The Directv Group, Inc. Integrating coverage areas of multiple transponder platforms
US6941138B1 (en) 2000-09-05 2005-09-06 The Directv Group, Inc. Concurrent communications between a user terminal and multiple stratospheric transponder platforms
US7369847B1 (en) 2000-09-14 2008-05-06 The Directv Group, Inc. Fixed cell communication system with reduced interference
US6763242B1 (en) 2000-09-14 2004-07-13 The Directv Group, Inc. Resource assignment system and method for determining the same
US6388634B1 (en) * 2000-10-31 2002-05-14 Hughes Electronics Corporation Multi-beam antenna communication system and method
US7792488B2 (en) * 2000-12-04 2010-09-07 Atc Technologies, Llc Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
US6891813B2 (en) * 2000-12-12 2005-05-10 The Directv Group, Inc. Dynamic cell CDMA code assignment system and method
US7400857B2 (en) * 2000-12-12 2008-07-15 The Directv Group, Inc. Communication system using multiple link terminals
US7103317B2 (en) 2000-12-12 2006-09-05 The Directv Group, Inc. Communication system using multiple link terminals for aircraft
US7181162B2 (en) * 2000-12-12 2007-02-20 The Directv Group, Inc. Communication system using multiple link terminals
US6952580B2 (en) 2000-12-12 2005-10-04 The Directv Group, Inc. Multiple link internet protocol mobile communications system and method therefor
US7187949B2 (en) * 2001-01-19 2007-03-06 The Directv Group, Inc. Multiple basestation communication system having adaptive antennas
US7809403B2 (en) * 2001-01-19 2010-10-05 The Directv Group, Inc. Stratospheric platforms communication system using adaptive antennas
US8396513B2 (en) 2001-01-19 2013-03-12 The Directv Group, Inc. Communication system for mobile users using adaptive antenna
US7529525B1 (en) * 2002-04-16 2009-05-05 Faulkner Interstices Llc Method and apparatus for collecting information for use in a smart antenna system
US7289826B1 (en) * 2002-04-16 2007-10-30 Faulkner Interstices, Llc Method and apparatus for beam selection in a smart antenna system
US7065383B1 (en) * 2002-04-16 2006-06-20 Omri Hovers Method and apparatus for synchronizing a smart antenna apparatus with a base station transceiver
US10707952B2 (en) 2015-07-31 2020-07-07 Viasat, Inc. Flexible capacity satellite constellation
US10447385B2 (en) 2016-03-04 2019-10-15 Hughes Network Systems, Llc Approaches for achieving improved capacity plans for a satellite communications system via interleaved beams from multiple satellites
EP3563495A4 (en) * 2016-12-31 2020-10-14 Hughes Network Systems, LLC APPROACHES FOR IMPROVED FREQUENCY REUSE EFFICIENCY AND INTERFERENCE AVOIDANCE FOR A MULTI-BEAM SATELLITE COMMUNICATION NETWORK

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452356A (en) * 1966-06-07 1969-06-24 North American Rockwell Directional radio relay system
DE2615198C3 (de) * 1976-04-08 1979-08-16 Standard Elektrik Lorenz Ag, 7000 Stuttgart Nachrichtenübertragungssystem zum zweiseitig gerichteten Nachrichtenverkehr zwischen einer Hauptstation und mehreren Unterstationen über einen Satelliten
US4060808A (en) * 1976-06-30 1977-11-29 Rca Corporation Antenna system with automatic depolarization correction
US4145658A (en) * 1977-06-03 1979-03-20 Bell Telephone Laboratories, Incorporated Method and apparatus for cancelling interference between area coverage and spot coverage antenna beams
US4188578A (en) * 1978-05-19 1980-02-12 Bell Telephone Laboratories, Incorporated Satellite communication system which concurrently transmits a scanning spot beam and a plurality of fixed spot beams
US4292685A (en) * 1978-05-31 1981-09-29 Lee Lin Shan Apparatus and method for controlling crosspolarization of signals in a frequency reuse system
US4201892A (en) * 1978-06-27 1980-05-06 Satellite Business Systems Multi-rate TDMA communication system
FR2436535A1 (fr) * 1978-09-15 1980-04-11 Ibm France Procede et systeme de synchronisation d'un reseau de communication a acces multiple par repartition dans le temps et utilisant un satellite ayant plusieurs antennes a faisceau directif sur des frequences differentes
US4315262A (en) * 1979-04-26 1982-02-09 Bell Telephone Laboratories, Incorporated Satellite communication system with a plurality of limited scan spot beams
US4381562A (en) * 1980-05-01 1983-04-26 Bell Telephone Laboratories, Incorporated Broadcast type satellite communication systems
US4375697A (en) * 1980-09-04 1983-03-01 Hughes Aircraft Company Satellite arrangement providing effective use of the geostationary orbit
US4425639A (en) * 1981-01-12 1984-01-10 Bell Telephone Laboratories, Incorporated Satellite communications system with frequency channelized beams
JPS6062739A (ja) * 1983-09-16 1985-04-10 Nippon Telegr & Teleph Corp <Ntt> 衛星塔載装置
US4689625A (en) * 1984-11-06 1987-08-25 Martin Marietta Corporation Satellite communications system and method therefor
US4972151A (en) * 1985-10-01 1990-11-20 Hughes Aircraft Company Steered-beam satellite communication system
US4813036A (en) * 1985-11-27 1989-03-14 National Exchange, Inc. Fully interconnected spot beam satellite communication system

Also Published As

Publication number Publication date
WO1988001457A1 (en) 1988-02-25
EP0277173A1 (en) 1988-08-10
DE3781670T2 (de) 1993-04-01
CA1326307C (en) 1994-01-18
CN87105572A (zh) 1988-05-11
US4823341A (en) 1989-04-18
JPH01500710A (ja) 1989-03-09
JPH0552098B2 (zh) 1993-08-04
EP0277173B1 (en) 1992-09-09
DE3781670D1 (de) 1992-10-15

Similar Documents

Publication Publication Date Title
CN1007862B (zh) 具有频率可寻址波束的通讯系统
CN1007396B (zh) 使用频率再用的卫星通信
CN1008678B (zh) 卫星通讯系统
CN1008675B (zh) 波束成型网络
CN87105573A (zh) 用于混合式通信卫星的天线系统
CN1011179B (zh) 滤波器互联矩阵
AU605908B2 (en) Satellite communications system employing frequency reuse
US6463282B2 (en) Non-uniform multi-beam satellite communications system and method
US6751458B1 (en) Architecture utilizing frequency reuse in accommodating user-link and feeder-link transmissions

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent of invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: PATENTEE; FROM: HUGHES AIRCRAFT CO. TO: HEHAOERDINGSI CO.,LTD.

Free format text: CORRECT: PATENTEE; FROM: HEHAOERDINGSI CO.,LTD. TO: HUGHES ELECTRONICS

CP01 Change in the name or title of a patent holder

Patentee after: HUGHES ELECTRONICS Corp.

Patentee before: Vauxhall Corp.

Patentee after: Vauxhall Corp.

Patentee before: Hughes Aircraft Co.

C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term