CN101065059A - 可植入心脏装置中的信号模板 - Google Patents

可植入心脏装置中的信号模板 Download PDF

Info

Publication number
CN101065059A
CN101065059A CNA2005800407820A CN200580040782A CN101065059A CN 101065059 A CN101065059 A CN 101065059A CN A2005800407820 A CNA2005800407820 A CN A2005800407820A CN 200580040782 A CN200580040782 A CN 200580040782A CN 101065059 A CN101065059 A CN 101065059A
Authority
CN
China
Prior art keywords
datum mark
rule
template
signal
function circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800407820A
Other languages
English (en)
Other versions
CN101065059B (zh
Inventor
S·帕尔雷迪
J·A·沃伦
A·H·奥斯特洛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cameron Health Inc
Original Assignee
Cameron Health Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cameron Health Inc filed Critical Cameron Health Inc
Publication of CN101065059A publication Critical patent/CN101065059A/zh
Application granted granted Critical
Publication of CN101065059B publication Critical patent/CN101065059B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/35Detecting specific parameters of the electrocardiograph cycle by template matching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/366Detecting abnormal QRS complex, e.g. widening

Abstract

本发明涉及在心律管理装置中使用的模板形成方法。本发明的模板形成方法提供用于建立与感测的心脏复合波比较的强健模板。

Description

可植入心脏装置中的信号模板
                   相关申请
本发明涉及2004年11月29日提交的题为“METHOD ANDAPPARATUS FOR BEAT ALIGNMENT AND COMPARISON”的美国专利申请No.10/999,274,该专利的公开通过引用结合于本文中。
技术领域
本发明一般涉及检测、感测和分类心脏信号的可植入心脏系统。更具体地说,本发明涉及可植入医疗装置,它产生模板,根据该模板医疗装置能够与患者的正常心脏复合波进行比较。
背景技术
可植入心律管理装置在管理特定患者的不规则心律时是一种有效的治疗。可植入心律管理装置能够用各种疗法识别和治疗心律异常。但是,为了有效地提供这些疗法,心律管理装置必须首先准确地对急性发作进行感测和分类。
为了响应于急性发作而应用合适的疗法,一些心律管理装置对感测的心脏信号与先前存储的代表正常窦性心律(NSR)的″模板″或常常用于表示患者NSR的其它″模板″进行比较。这个存储的NSR模板必须准确地表征患者的真实NSR,以便用于适当地标识偏离正常心搏动的潜在致命偏差的过程。
当心律管理装置不正确地对感测的心脏复合波与存储的NSR模板进行比较,并且因此对感测的心脏复合波错误分类时,问题出现了。如果心律管理装置由于错误分类而不适当地提供疗法,则此问题的严重程度逐步升高。作为例证说明,当由于对模板不适当的对准的原因,感测的复合波的特定组错误地与存储的模板进行了比较,则心律管理装置可能错误地将这些感测的复合波分类为不匹配,并且甚至可能分类为快速性心律失常。
因为上述原因以及下述的其它原因,在阅读和理解本说明书后对本领域技术人员显而易见的是,在本领域中存在一种需要,用于提供一种可靠系统,以产生与感测的心脏事件比较的模板,来准确地分类,并且在指示的情况下治疗患者经受的心律。
发明内容
本发明针对在心律管理装置中使用的模板形成方法。本发明的模板形成方法提供用于建立与感测的心脏复合波比较的强健模板。在说明性的实施例中,本发明用来形成具有模板数据集和模板对准参数的模板,用于在将模板数据集与获取信号进行比较之前,将获取信号与模板数据集对准。
一种说明性的实施例包括心脏信号分析的方法,包括:感测第一心脏事件;配置模板参数,用于分析第一心脏事件;利用模板参数定义第一心脏事件的第一感测信号;感测第二心脏事件;利用模板参数定义第二心脏事件的第二感测信号;以及对第二感测信号和第一感测信号进行比较,以确定第一感测信号和模板参数是否适合于定义心脏事件模板。在另一个实施例中,执行说明性的方法,使得配置模板参数的步骤包括选择用于标识基准点的规则,其中所述规则按照第一心脏事件的特征从一组规则中选择,并且用于标识基准点的规则成为模板参数之一。在再一个实施例中,配置模板参数的步骤还包括:围绕所述基准点选择第一感测信号的多个样本,其中围绕所述基准点的样本的配置成为所述模板参数之一。选择多个样本的步骤可以包括标识心脏事件的开始和结束。对于一些实施例,所述一组规则包括与感测信号中峰值的相对振幅有关的振幅规则,以及与感测信号中峰值的位置有关的位置规则。
另一个说明性的实施例包括心脏信号分析的方法,包括:形成用于心脏事件比较的模板,所述形成模板的步骤包括感测第一心脏事件,利用一组规则标识第一心脏事件中的第一基准点,感测第二心脏事件,利用一组规则标识第二心脏事件中的第二基准点,确定第一基准点和第二基准点是否利用同一规则标识,并且如果不是,则废弃第一心脏事件。
在又一个实施例中,心脏信号分析的方法包括:利用植入在患者躯干中用于获取心脏信号的电极对信号采样,围绕第一基准点定义第一感测窗以获取QRS段,观察第一感测窗的定义以建立模板参数,利用模板参数围绕第二基准点定义第二感测窗,以及对第一感测窗中的数据与第二感测窗中的数据进行比较以检验利用模板参数是否定义了有效模板。
另一个实施例包括心脏信号模板形成的方法,包括:从植入的电极接收第一心脏信号,在第一心脏信号中选择基准点,围绕所述基准点形成模板,以及通过接收第二心脏信号并且利用所述模板对第二心脏信号与第一心脏信号进行比较来检验所述模板。
附图说明
图1A-1B分别说明代表性的皮下和静脉内可植入心脏治疗系统;
图2给出了根据本发明的说明性实施例的模板形成系统;
图3显示根据基准点选择过程振幅规则选择心脏复合波正峰值;
图4显示根据基准点选择过程振幅规则选择心脏复合波负峰值;
图5显示根据基准点选择过程位置规则选择心脏复合波正峰值;
图6显示根据基准点选择过程位置规则选择心脏复合波负峰值;
图7给出了在QRS段中具有凹口的心脏信号;
图8显示预模板模板窗;
图9显示在心脏复合波中标识了单调段之后在图8中给出的预模板模板窗;
图10给出了在心脏信号的QRS段内具有凹口的心脏信号;
图11给出了用于具有宽QRS的患者的模板窗;
图12显示具有能够通过掩蔽使它的预模板模板窗变窄的QRS段的心脏复合波;
图13给出了在调整模板窗的边界之后观察的模板窗;
图14显示具有小于可接受的最小模板窗的QRS段宽度的心脏复合波;
图15图解通过预模板模板窗形成过程不适当地获取的QRS段;
图16显示对图15中获取的QRS段的偏移调整过程的结果;
图17图解模板检验过程;
图18A-18C进一步图解模板检验步骤;以及
图19是说明性模板形成过程的框图。
具体实施方式
以下详细说明应该参考附图阅读,其中不同的附图中相同的单元相同编号。不一定按比例绘制的附图给出了选择的实施例,并且不旨在限制本发明的范围。本领域技术人员将认识到,提供的许多实例具有可以利用的适当替代方案。
本发明一般涉及可植入心脏治疗系统,该系统为经历特定的心律异常的患者提供疗法。本发明涉及在心律装置中使用的检测结构。具体地说,本发明适合于可植入心脏治疗系统,它能够检测和治疗有害的心律异常。尽管检测结构主要旨在用于提供除颤疗法的可植入医疗装置中,但本发明也适于针对抗快速性心律失常起博(ATP)疗法、起搏或者其它心脏刺激技术的心律装置(包括外部装置),以及能够执行治疗心律失调的疗法组合的其它心律装置。
迄今为止,可植入心脏治疗系统已经是心外膜系统或经静脉系统。例如,经静脉系统能够一般如图1B所示植入。但是,如本文进一步解释的,本发明也适合于具有皮下可植入心脏治疗系统的功能,如图1A所示。
图1A说明皮下放置的可植入心脏治疗系统,具体地说,说明一种可植入心律转变器/除颤器(ICD)系统。在此说明性实施例中,利用连接到引线系统14的罐12监控心脏10。罐12其上可包括电极16,而引线系统14连接到感测电极18、20和线圈电极22,它可充当电震或刺激传递电极以及感测电极。各种电极定义多个感测矢量V1、V2、V3、V4。可见,每个矢量提供心脏10电活动的不同矢量“视图”。系统可以经皮下植入,如例如在美国专利No.6,647,292和6,721,597中说明的,以上两个专利都通过引用结合于本文中。通过皮下放置,这意味着电极放置不需要将电极插入到心室中、插入到心肌中或心肌上、或者插入到患者的脉管系统。
图1B说明经静脉的ICD系统。监控心脏30,并且用包括连接到引线系统34的罐32的系统治疗心脏30,引线系统34包括心房电极36和心室电极38。可以使用多种电极配置,包括放置在心脏内、粘附到心脏、或者设置在患者的脉管系统内。
图2给出了根据本发明的说明性实施例的模板形成系统40。模板形成系统40可用于建立和存储多个静态和/或动态模板。静态模板是在时间上先前获取的并且存储用于由装置参考的心脏复合波。备选地,动态模板是连续或者周期性获取和/或更新的心脏复合波。
本发明的模板形成系统40一般包括多级数据分析-信号收集42、基准点选择44、预模板形成46、模板优化48以及模板检验50。但是,多级数据分析的各部分可以自主操作,如以下详细讨论的。这样,模板形成系统40中特定的过程可以绕过,或者可以在装置的总检测结构中独立地运行。
说明性实施例中的系统不仅标识用于与感测事件比较的NSR信号,它还定义以及重新定义感测参数(例如基准点选择、窗大小和/或窗/基准点对准)。这些信号和参数然后能用于与感测的心脏信号进行比较,以确定信号是否是NSR。
模板形成系统40内的过程还可以建立或者修改模板,以适应患者心脏复合波中的形态学变化。例如,最终形成的模板可以不断地更新,以适应于感测的心脏复合波中的形态学变化。因而,本发明的模板形成系统40是自适应的,并且此自适应特征可以是自动化的。
模板形成系统40从收集心脏信号42开始。心脏信号可以利用任何适当的获取方法收集。然后对此感测的心脏复合波进行处理,以便适当对准。用于重复并且可靠对准收集信号的方法在将感测信号与存储模板进行比较时增强了准确性。在一些实施例中,收集心脏信号42的步骤可以包括信号认证过程,比如在2004年6月1日提交的题为“METHOD AND DEVICES FOR PERFORMING CARDIACWAVEFORM APPRAISAL”的同时待审的美国专利申请No.10/858,598中阐述的,该公开通过引用结合于本文中。
在本发明的几个实施例中,一般利用感测的心脏复合波的优选峰值建立用于对准的基准点。可以为各个患者手动选择基准点,或者备选地,可以利用基于规则的方法选择基准点。在优选实施例中,通过分析‘n’个连续复合波上峰值的重复特性来选择基准点。在本发明的一个实施例中,基准点选择过程44基于最近感测的心脏复合波以及最近感测的复合波之前的三个(3)心脏复合波的结果。备选实施例可以使基准点选择过程44基于多至20个连续复合波到少至正在进行的逐个心跳的确定的重复特性。
优选基准点选择过程44实现了选择最适当的峰值用于心脏复合波中的对准的一组规则。在优选实施例中,基准点选择过程44基于振幅规则和位置规则。另外,由于基准点选择过程44规则的特性,尽管会常常选择R波,因为它时常作为在心脏复合波中观察的最显著的相位偏离关联,但不一定将R波选择作为用于在任何给定心脏复合波中对准的基准点。
由说明性的基准点选择过程44使用的第一规则是振幅规则。此规则将基准点设置在具有最大相对振幅的QRS心脏复合波的峰值(正或者负)上。振幅规则阐述为:
·如果正峰值振幅>负峰值振幅的2倍,则基准点选择是在正相位偏离的峰值上-″正振幅″;
·如果负峰值振幅>正峰值振幅的2倍,则基准点选择是在负相位偏离的峰值上-″负振幅″;
·如果正峰值和负峰值都不满足振幅规则,则用以下阐述的位置规则控制。
正负峰值的相对振幅用图3给出的患者的等电线52测量。等电线代表没有有效的检测相位偏离的信号,即,检测的信号电平不指示心搏动并且提供用于信号分析的基线的信号。然后,基准点选择过程44确定从等电线52最大的正负相位偏离。在本实例中,最大的正相位偏离的振幅显示为54。类似地,最大的负相位偏离的振幅显示为56。然后评估正相位偏离54和负相位偏离56的相对振幅。如果正相位偏离的相对幅度大于负相位偏离的相对幅度的两倍,则建议基准点选择是在正振幅峰值上。
在本实例中,基准点选择过程通过四个连续心脏复合波的重复特性建立。心脏复合波58、60、62和64各表明正峰值振幅大于它的相应负峰值振幅的两倍(2X)。在第四个连续的心脏复合波64之后,基准点选择过程建立正峰值作为用于根据振幅规则对准的基准点。图3所示的三角形代表其中四个连续的复合波中已经满足振幅规则的点。另外,每个三角形表示所建立的用于模板对准的基准点。
图4显示根据振幅规则的负峰值的基准点选择。在本实例中,基准点选择过程通过感测的心脏复合波和先前三个感测的心脏复合波(四个连续的心脏复合波)的重复特性建立。心脏复合波68、70、72和74各表明负峰值振幅大于它的相应正峰值振幅的两倍(2X)。具体地说,最大的负相位偏离56的振幅评估为是正相位偏离54的相对振幅的两倍。在第四个连续心脏复合波74之后,基准点选择过程建立负峰值作为用于根据振幅规则对准的基准点。图4所示的三角形代表其中四个连续复合波已经满足振幅规则的点。另外,每个三角形表示所建立的用于模板对准的基准点。
由说明性的峰值对准过程使用的第二规则是位置规则。此规则假定将基准点设置在心室心脏复合波内的在时间上出现的第一有效相位偏离(正或者负)的峰值上。在某些实施例中,在振幅规则无法建立时,考虑位置规则。备选实施例利用位置规则而不管振幅规则。位置规则阐述为:
·如果心脏复合波中有效的正相位偏离先于有效的负相位偏离,则基准点选择是在正相位偏离的峰值上-″正位置″;
·如果心脏复合波中有效的负相位偏离先于有效的正相位偏离,则基准点选择是在负相位偏离的峰值上-″负位置″。
图5显示根据位置规则的正峰值的说明性基准点选择。在本实例中,基准点选择过程通过四个连续的心脏复合波的重复特性建立。心脏复合波78、80、82和84各显示心脏复合波中有效的正相位偏离在有效的负相位偏离之前。在第四个连续的心脏复合波84之后,基准点选择过程建立正相位偏离的峰值作为用于根据位置规则对准的基准点。图5所示的三角形代表其中四个连续复合波中已满足位置规则的点。另外,每个三角形表示建立的用于模板对准的基准点。
图6显示根据位置规则的负峰值的说明性基准点选择。图6中的基准点选择过程通过四个连续的心脏复合波的重复特性建立。心脏复合波88、90、92和94各显示心脏复合波中有效的负相位偏离在有效的正相位偏离之前。在第四个连续的心脏复合波94之后,基准点选择过程建立负相位偏离的峰值作为用于根据位置规则对准的基准点。图6所示的三角形代表其中四个连续复合波已经满足位置规则的点。另外,每个三角形表示建立的用于模板对准的基准点。
在某些实施例中,其中基准点选择过程要求多于一个心脏复合波来建立基准点,该过程可要求在建立用于对准的基准点之前,评估各个心脏复合波遵循同一规则(振幅或者位置)。更具体地说,分析和用于建立基准点的每个心脏复合波必须遵循四个可能的规则库中的同一规则:正振幅、负振幅、正位置或者负位置。
在备选实施例中,基准点选择过程可要求评估的所有心脏复合波来建立相同的基准点(即相同的正峰值),而不管使用了哪个规则。在说明性的实施例中,通过三个连续的心脏复合波的重复特性建立基准点选择过程。三个心脏复合波中的两个可利用正振幅规则库将基准点建立在正峰值上。剩下的心脏复合波可在复合波的正峰值上建立相同的基准点,但是利用正位置规则而非振幅规则。尽管不使用相同的规则,但所有三个心脏复合波指示相同的基准点,因而指示服从于图2所示的模板检验。
在某些情况中,在心脏信号的QRS段中观察到凹口。图7给出了在QRS段中具有凹口96的心脏信号。心脏信号中的凹口通常不会影响基准点选择过程。观察到这个是因为主要的峰值通常存在于形成凹口的峰值中间。因此,基准点选择过程一般将选择主要的峰值。在其中一个峰值不比另一个峰值突出的情况(如图7中给出的),或者当主要的峰值常常随着心脏复合波而改变时,可能出现基准点选择过程中的混乱的电位。在具有这种有问题的凹口段的实施例中,凹口分析过程可以用来保证合适的用于对准的基准点选择。
在说明性的凹口分析过程中,如果两个峰值98之间的距离(在时间上)大于大约20ms和/或如果峰值振幅100的差小于大约115μV,则认为存在凹口。这些值可在几个实施例中不同,取决于感测电极的放置和设计,以及对于给定患者的有凹口QRS峰值的期望特征。如果不满足这些条件,则认为存在主要峰值,基准点选择过程将标识主要峰值,并因此跳过了说明性的凹口分析过程。但是,如果满足这些条件,则心脏信号被认为具有要求进一步分析以得到合适的基准点选择的凹口。
说明性的凹口分析过程标识信号中的峰值,并确定哪个峰值已经在初始就标识为基准点。如果在时间上出现的第一峰值标识为基准点,则凹口分析完成。如果在时间上出现的第二峰值标识为基准点,则凹口分析过程将基准点强制在时间上出现的凹口的第一峰值上。
一旦选择了基准点,则形成预模板。图8是预模板102的说明性实施例。预模板102填充有以形成预模板数据集的采样频率获取的多个样本。在说明性的实施例中,预模板内的预模板数据集的设置通过模板对准参数确定,模板对准参数包括以上解释的基准点选择和以下进一步讨论的放置和掩蔽步骤。
在说明性的实施例中,基准点104放置在预模板102的中心。在优选实施例中,在基准点104的左侧建立多个(′n′)样本,并且还在基准点104的右侧建立′n′个样本。例如,本发明的一些实施例利用以256Hz采样的四十一(41)个样本,对应于大约160ms。在说明性的实施例中,在基准点104的左侧建立二十(20)个样本,并且在基准点104的右侧建立另外二十(20)个样本。四十一(41)个样本形成预模板窗106,其中将分析心脏信号的相关部分。在备选实施例中,在预模板102的中心两侧上各填充的样本数′n′可以不同。
根据这个初始形成的预模板窗106,查找心脏复合波的QRS段的边界。图8显示预模板窗106,它包括QRS段以及感测的心脏信号的外来部分。在这种情况下,希望通过使预模板窗106变窄以主要包括QRS段并减少心脏信号的外来部分而优化形成的预模板102。此过程中的第一步骤是标识QRS段的开始和结束。
在本发明的一个实施例中,对单调段的观察用来估算QRS段的开始和结束。单调段是其中感测的振幅以相同方向改变或者保持不变的连续样本的信号段。例如,其中每个连续样本都大于或等于(在振幅上)先前样本的一系列连续样本会是单调递增段。类似地,其中每个连续样本小于或等于(在振幅上)先前样本的一系列连续样本会是单调递减段。观察单调段的一个方法是确定心脏复合波信号的一阶导数的过零点。
在此实施例中,对初始预模板102执行算术运算,以标识心脏复合波的单调段-如心脏复合波信号的一阶导数的过零点所示。图9显示在心脏复合波中标识了所有单调段之后图8中给出的预模板窗106。每个菱形指示单调段的开始/结束。然后,算术运算标识初始预模板102中基准点104之前的最大单调段(按照振幅的改变)。此样本称为″QRS开始″108。算术运算进一步标识初始预模板102中基准点104之后的最大单调段(按照振幅的改变)。此样本称为“QRS结束”110。在此实施例中,QRS开始和QRS结束估算心脏复合波的QRS段的边界。
单调段的利用还对消除在计算其QRS段中具有凹口的心脏复合波的QRS段长时的误差有用。图10图解具有凹口的心脏复合波。因为说明性实施例的算术运算标识在初始预模板102中基准点104之前和基准点104之后的最大单调段(在振幅上),因此大部分凹口不会影响算法发现期望的QRS开始和QRS结束的能力。如图10所示,凹口内的相对单调段振幅小于QRS段两端的单调段的振幅。因此,凹口一般不影响QRS段的估算测量。
还可以使用本领域已知的备选方法来估算心脏复合波的QRS段的开始和结束。利用单调段估算QRS段仅仅是说明性的,并且本发明的各种实施例不局限于说明性实施例的特定方面。
在标识了QRS段之后,优化预模板102,以进行图2中的过程46。优化包括但不限于掩蔽预模板窗106,以包括心脏复合波中的最相关样本,以及偏移调整。
模板优化的一个方法是使预模板窗106变窄或者掩蔽预模板窗106,以仅包括表示QRS段的那些样本。在具有宽QRS段的患者中,不指示用排除一些样本的优化。例如,在上述说明性的实施例中,如果患者具有比160ms(或者41个样本)长的QRS段,则患者的QRS段超过初始形成的预模板窗106。因此,患者的所标识QRS开始108是预模板窗106内的第一个样本,并且所标识的QRS结束110是预模板窗106内的最后一个样本,虽然患者的实际QRS段可能延伸出所形成的预模板窗106的界限。超过预模板窗106大小的宽QRS段的一个实例如图11所示。在这些情况下不指示掩蔽预模板窗106。
相反,在QRS段小于预模板的窗106时,可以掩蔽预模板窗106。例如,并且如图12所示,假定患者的QRS开始108在预模板窗106内的第四个样本。类似地,假定患者的QRS结束110发生在预模板窗106内的第三十五个样本上。因此,患者的QRS段是三十二(32)个样本长。包括在原始预模板窗106中的其它九(9)个样本一般对于分析没有用,并且如果包括在最终模板中则可能引入不期望的影响。因此,可以掩蔽预模板102的边界,以形成掩蔽的预模板窗114,它仅包括实际的QRS段-在QRS开始108和QRS结束110之间。在此实例中,预模板窗106将被掩蔽为代表所估算QRS段的32个样本。具体地说,掩蔽预模板边界,以便掩蔽的预模板窗114在样本4开始并在样本35结束,由此从掩蔽的预模板窗114消除外来样本112。图13给出了掩蔽过程之后观察的掩蔽预模板窗114。这种变窄或者掩蔽,虽然对一些实施例有用,但并不是本发明要求的。
如果期望,可以定义掩蔽预模板窗114的最短持续时间。在本发明的一个实施例中,最小的掩蔽预模板窗114大约为100ms(256Hz下的25个样本)。在具有窄QRS段(小于大约100ms)的患者中,容许的掩蔽预模板窗114对于这些患者仍可以在QRS段包括一些外来的样本。例如,如图14所示,如果QRS开始108在样本十二(12)并且QRS结束110发生在样本二十九(29),则QRS段的宽度是十八(18)个样本。此QRS段宽度小于二十五(25)个样本的掩蔽预模板窗114的说明性最小值。为了掩蔽QRS段到容许的最小边界,首先计算掩蔽预模板窗的最小值(25个样本)和估算的QRS段宽度(此实例中为十八(18)个样本)之间的差。这个差是七(7)个样本。然后,将该差对半分割,并且平均地(或尽可能平均地)添加到所估算QRS段长的两侧。因此,这个实例中的优化掩蔽预模板窗114将包括实际的QRS段116,以及QRS开始108之前的三(3)个附加样本和QRS结束110之后的四(4)个附加样本。
存在其它情况,其中预模板窗106不包括完整的QRS段。这种情况的一个实例是当指示QRS开始108或者QRS结束110的样本出现在初始形成的预模板窗106中的第一个或者最后一个样本上时。在一些实施例中,它导致了一个假设:没有准确地获取实际的QRS开始108或者QRS结束110,并且实际的QRS开始108或者QRS结束110出现在初始形成的预模板窗106的边界之外的某个时候。其中预模板窗内的最后一个样本也是QRS结束110的预模板窗106的实例在图15中给出。
在图15中,预模板窗106填充有样本1到41。第一个样本出现在模板窗的纵轴中点附近。相反,最后一个样本(样本41)出现在模板窗的纵轴底部附近。随着样本沿横轴从样本1移动,样本逐渐地增加高度,直到达到心脏复合波段的QRS开始108。预模板窗106的剩余部分包含大部分但不是全部的QRS段。不是在预模板窗106的边界内获取的QRS段的剩余部分显示为116。在这种情况下,没有通过预模板窗106形成过程适当地获取整个QRS段。本发明的一些实施例通过偏移调整解决这个问题。
偏移调整过程首先标识QRS段的哪一侧没有适当地获取。如上所述和在图15中给出的,QRS开始108是样本八(8),并且观察的QRS结束111是样本四十一(41)。这一般指示真实的QRS结束110实际上出现在更后的时间点,并且没有利用形成预模板窗106的初始设置获取。在指示没有适当地获取真实的QRS结束110时,多个样本将在QRS开始108之前。这些超前样本被称作″残余″118。在图15中,残余由QRS开始108之前的前七(7)个样本组成。由于构成残余118的样本几乎不传达与QRS段本身有关的信息,因此可以废弃这些样本,并用确实代表QRS段但通过初始预模板窗形成过程忽略的样本替代。用于在一个方向移位预模板窗106的过程被称作偏移。在本实例中,偏移过程的影响是允许预模板窗106稍后开始′n′个残余样本,以保证获取真实的QRS结束110。
在优选实施例中,保留代表QRS开始108的样本加上紧接在前的样本(QRS开始-1),或者QRS结束110加上紧接在后的样本(QRS结束+1),以及它们之间的样本。剩下的样本包括残余118。在备选实施例中,QRS开始108或者QRS结束110加上在前或者在后的一些′n′个样本被保留,并且剩下的样本包括残余118。在其它备选实施例中,仅保留QRS开始108或者QRS结束110,并且剩下的样本考虑为残余。
图16图解图15中给出的心脏复合波上的偏移过程。具体地说,图16给出了偏移预模板窗120的形成,以重获心脏复合波的真实QRS结束110。如上所述,图15显示,存在八(8)个残余样本118在QRS开始108之前。这些残余样本118被消除,并强制QRS开始108为新形成的偏移预模板窗120中的第一个样本。这种调整用图表示在图16中。因此,偏移预模板窗120起始于QRS开始108,并且现在结束在比它最初在初始形成预模板窗106时的更后面八(8)个样本的位置。这种移位的结果容许新形成的偏移预模板窗120重获心脏复合波的真实QRS结束110。因此,偏移预模板窗120包括整个QRS段,整个QRS段包括真实QRS开始108和真实QRS结束110。
在优选实施例中,在偏移调整过程之后,校正的模板窗被进一步通过掩蔽偏移模板的边界而优化,如上所述。
在一个说明性的实例中,用于定义优化预模板窗的参数被描述为模板参数。模板参数描述如何定义模板数据集以及在模板内对准。这些参数,包括基准点选择、偏移(如果有的话)以及掩蔽(如果有的话)的方式,提供指示模板可如何被用于进行将来比较的模板参数。可以使用模板参数,如在2004年11月29日提交题为“METHOD ANDAPPARATUS FOR BEAT ALIGNMENT AND COMPARISON”的未决美国专利申请No.10/999,274中所述的,该专利的提交日与本申请同日,转让给本发明的受让人;该申请的公开也通过引用结合于本文中。但是,在说明性实施例中,在使用模板(包括它的关联模板参数和模板数据集)以在将来与感测信号进行比较之前,对模板数据集进行有效性检验。
一旦通过定义它的采样窗特征优化了预模板,包括但不限于掩蔽和偏移调整,则对优化预模板中的数据进行其有效性检验-图2中的过程50。优化预模板有效性的检验提供了对模板参数和模板数据集的检查。在优选实施例中,必须在优化预模板存储为最终模板或存储为用于与随后感测的心脏信号进行比较的几个模板中的一个模板之前,建立有效性。图17图解优化预模板的模板检验过程50。
优化预模板130初始保存在缓冲器中。装置然后利用优化预模板130的优化参数集感测随后的心脏复合波132。然后心脏复合波132与存储的优化预模板130进行比较。在优选实施例中,执行类似于相关性的算术运算,以确定130和132之间的相似性。说明性算术运算包括相关性波形分析,它返回一个在-1和1之间的结果,并且它能够使用多个线性、非线性和混合定标法进行定标,如2004年5月27日提交的题为“METHOD FOR DISCRIMINATING BETWEENVENTRICULAR AND SUPRAVENTRICULAR ARRHYTHMIAS”的同时待审的美国申请No.10/856,084所述的,该公开通过引用结合于本文中。
在说明性实施例中,执行相关性波形分析,然后定标到0-100%之间的百分比值,其中负相关给予0%,并且正得分线性定标在0-100%之间。如果在随后的心脏复合波132和优化预模板130之间的相似性得分大于规定阈值,则随后的心脏复合波132与优化预模板130平均。在本发明的某些实施例中,比较阈值规定为80%。可以设置备选阈值水平,并不背离本发明的精神和范围。另外,在某些实施例中,与优化预模板130比较的心脏复合波在比较之后不进行平均。如果相似性得分没有超过规定阈值,则废弃优化预模板130,并且整个模板形成过程重新开始。
在某些实施例中,如果超过比较阈值,则对另一个输入的心脏复合波例如心脏复合波134、136和138重复检验过程。装置使用平均优化预模板(130+132)的参数集获取心脏复合波134,并且在心脏复合波134和平均优化预模板(130+132)之间执行进一步的比较。此外,备选实施例可以将新感测的心脏复合波134和最初存储的优化预模板130进行比较。在本说明性实例中,心脏复合波134和平均优化预模板(130+132)之间的比较得分是85%。因为此得分大于比较阈值80%,因此检验过程继续。
在本发明的一些实施例中,重复该检验过程至少这一个附加次数。在优选实施例中,此过程被迭代,直到四(4)个连续的心脏复合波超过阈值水平为止,以便与最初存储的优化预模板130比较,或与平均优化预模板(130+132+134+136)比较。如果在过程期间的任何时间相似性得分都没有超过规定阈值,则废弃优化预模板,并且全面地重新开始模板形成过程,直到建立了检验模板为止。
在完成规定的检验过程的迭代数之后,对模板进行检验。在本说明性实施例中,对心脏复合波132、134、136和138的平均优化预模板的比较得分分别是85%、89%、84%和84%。对于本实例,设置这些比较得分中超过比较阈值的每一个。因此,检验优化预模板,并且将该预模板视为最终模板,从而完成模板形成过程。形成的模板然后能用来观察和表征输入的感测心脏信号。
图18A-18C进一步图解模板检验步骤。如图18A所示,采样的信号放置到具有使用振幅规则定义的基准点的预模板模板中。基准点放置为样本s21,其中两侧上各20个样本构成预模板模板窗。QRS开始和结束点分别标识在s10和s33。信号和它的参数被认为是优化的预模板。接下来,使用QRS+/-1规则掩蔽信号,使得优化的预模板如框所示,从样本s9延伸到s34。然后,存储优化的预模板,直到被检验。
转向图18B,获取另一个采样信号,并且来自图18A的优化预模板参数用来定义信号窗。具体地说,振幅规则用来选择基准点,并将它放置在样本s21,并且样本被掩蔽为仅包括样本s9到s34。可以看到,图19B中获取的QRS段没有准确地掩蔽,因为QRS信号在s35结束,在信号窗的外面,并且QRS开始出现在比期望的更后的一个样本。但是,总体形状一般类似图18A的形状,并且能够计算两个信号的相关性,以得到所定义阈值诸如0.8或80%相关性以上的得分。因此,图18B中的信号能够保留用于与图18A的信号平均,以进一步表征优化的预模板。备选地,数据可以不必平均,并且图18A的优化预模板中的信号用于进一步分析。在另一个备选中,由图18B中的信号提供的检验能够定义为足以将图18A的信号存储作为模板进行比较。
转向图18C,获取第三采样信号,用于与18A中的信号进行比较。这里第一步是标识基准点。但是可以看见,存在彼此靠近的两个正峰值X和Y。两个峰值在振幅规则下都没有资格,因为各个峰值具有几乎相同的振幅。因此,位置规则必须用于选择基准点。在说明性实施例中,这个事实独自就足以废弃信号和/或废弃利用图18A的信号形成的模板,因为相同的规则集无法用于定义基准点。
在其它实施例中,图18C的采样信号仍可用于模板检验,即使使用不同的基准点规则也是如此。在这种实施例下,来自图18C的信号仍可以致使拒绝利用图18A所示的信号形成的模板。更具体地说,图18A和图18C中的信号是不充分相关的,因为可以看到,基准点s21左侧的信号较低,而在图18C中基准点s21右侧的信号比在图18A中高。如果相关性低于定义的水平,则废弃模板。在另一个实施例中,心跳检验过程可用来保证感测的有噪声的心脏事件,或者只是噪声信号,不到达模板形成步骤,以防止由于这种非检验信号的可能低相关性引起的模板检验。心跳检验过程的一些实例显示在2004年6月1日提交的题为“METHOD AND DEVICES FORPERFORMING CARDIAC WAVEFORM APPRAISAL”的同时待审的美国专利申请No.10/858,598,该专利公开通过引用结合于本文中。
图19是说明性的模板形成过程的框图。过程200从定义多个感测参数开始,如202所示。感测参数可包括采样、窗和基准点特征。接下来,利用感测参数向模板填充数据,如204所示。下面是检验步骤,如206所示。检验步骤206可包括例如对连续样本进行比较。如果检验了,则保留模板和它的关联感测参数,如208所示。如果模板和它的关联感测参数无法检验,则废弃它们,如210所示。
本发明在一些实施例中也实施在利用操作电路的装置中,操作电路包括在罐12(图1A)或者罐32(图1B)内提供的选择电元件。在这种实施例中,操作电路可以配置为允许执行以上方法。在一些类似的实施例中,本发明可以实施为可读指令集,比如在机器或控制器可读介质中编码的程序,其中提供可读指令集以允许操作电路执行上述实施例中论述的分析。其它实施例可包括控制器或者微控制器,适于读出并且执行以上方法。这些各种实施例可结合例如以上所示的说明性方法。
以下说明性的实施例根据操作电路解释。操作电路可以配置为按照选择、需要或者期望包括这种控制器、微控制器、逻辑器件、存储器等,用于执行为其修改和配置的方法步骤。
本发明在说明性设备实施例中包括可植入心律转变器/除颤器,它包括含多个电极的引线电极组件,以及安放操作电路的罐。可以配置说明性设备实施例,其中引线电极组件连接到罐,并且操作电路配置为执行区别适于疗法的患者心脏的心律的步骤,所述步骤包括:感测第一心脏事件;配置模板参数,用于分析第一心脏事件;利用模板参数定义第一心脏事件的第一感测信号;感测第二心脏事件;利用模板参数定义第二心脏事件的第二感测信号;以及对第二感测信号和第一感测信号进行比较,以确定第一感测信号和模板参数是否适合于定义心脏事件模板。
在另一个实施例中,操作电路可以配置为,使得配置模板参数的步骤包括:选择用于标识基准点的规则,并且所述规则从一组规则中选择,所述规则按照第一心脏事件的特征选择,并且用于标识基准点的规则成为模板参数之一。在再一个实施例中,配置模板参数的步骤还包括:围绕基准点选择第一感测信号的多个样本,并且围绕所述基准点的样本的配置成为模板参数之一。在另一个实施例中,操作电路配置为使得选择多个样本的步骤包括标识心脏事件的开始和结束。在一个实施例中,操作电路配置为使得心脏事件是QRS复合波。在一些实施例中,操作电路配置为使得一组规则包括与感测信号中峰值的相对振幅有关的振幅规则。一组规则可包括与感测信号中峰值的位置有关的位置规则。在又一个实施例中,操作电路配置为使得一组规则包括与感测信号中峰值的位置有关的位置规则。
在又一个实施例中,操作电路配置为使得一组规则包括与标识有凹口的心脏信号有关的凹口规则,其中凹口规则包括分析在心脏信号中的彼此的预定范围内是否存在多个峰值。操作电路可配置为使得凹口规则在预定范围内存在多个峰值时,选择时间上的第一峰值。在另一个实施例中,操作电路可配置为使得配置模板参数的步骤还包括:围绕第一感测信号中的基准点选择第一感测信号的多个样本;其中围绕基准点的样本的配置成为模板参数之一。在说明性实施例中操作电路配置为使得利用以下步骤选择样本:首先,在基准点两侧上各观察多个样本;接下来,确定期望QRS段是否开始和结束在所述多个样本内;以及调整基准点两侧的样本数,以获取QRS段并排除不对应于期望QRS段的至少一些样本。另一个说明性实施例包括操作电路配置为使得配置模板参数的步骤包括:观察有凹口的QRS复合波是否可能,并且如果可能,则调整模板参数以保证选择可重复检测的基准点。
另一个实施例包括可植入心律转变器/除颤器,其包括含多个电极的引线电极组件以及安放操作电路的罐;其中:引线电极组件连接到罐;以及操作电路配置为执行区别适于疗法的患者心脏的心律的步骤。该步骤可以包括:在将引线电极组件植入在患者躯干的选择用于获取心脏信号的位置中时,利用引线电极组件对信号采样;围绕第一基准点定义第一感测窗以获取QRS段;观察第一感测窗的定义,以建立模板参数;利用模板参数围绕第二基准点定义第二感测窗;以及对第一感测窗中的数据与第二感测窗中的数据进行比较,以检验是否利用模板参数定义了有效模板。操作电路可以配置为使得定义第一感测窗的步骤包括:通过按照第一感测窗中QRS段的特征从一组规则中选择一个规则来标识基准点,其中选择用于标识基准点的规则成为模板参数之一。此外,操作电路可以配置为使得围绕第一基准点定义第一感测窗的步骤包括标识心脏事件的开始和结束。如果期望,心脏事件可以是QRS复合波。
在另一个实施例中,操作电路配置为使得一组规则包括与采样信号中峰值的相对振幅有关的振幅规则,以及与采样信号中峰值的位置有关的位置规则。在又一个实施例中,操作电路可以配置为使得定义第一感测窗的步骤包括:围绕基准点选择多个样本,其中围绕基准点的样本的配置成为模板参数之一。操作电路可配置为使得利用以下步骤选择样本:选择基准点;然后在基准点两侧上各观察多个样本;然后确定期望QRS段是否在该多个样本内开始和结束;以及调整基准点两侧的样本数,以获取QRS段并排除不对应于期望QRS段的至少一些样本。
在又一个实施例中,操作电路可以配置为使得定义第一感测窗的步骤包括:观察有凹口的QRS复合波是否可能,并且如果可能,则调整模板参数以保证选择可重复检测的基准点。
说明性实施例可包括可植入心律转变器/除颤器,其包括含多个电极的引线电极组件以及安放操作电路的罐,其中:引线电极组件连接到罐;以及操作电路配置为执行区别适于疗法的患者心脏的心律的步骤。区别步骤可包括利用至少如下步骤形成模板:感测第一心脏事件;利用一组规则标识第一心脏事件中的第一基准点;感测第二心脏事件;利用一组规则标识第二心脏事件中的第二基准点;确定第一基准点和第二基准点是否利用同一规则标识;并且如果不是,则废弃第一心脏事件。
另一个说明性实施例可包括可植入心律转变器/除颤器,其包括含多个电极的引线电极组件以及安放操作电路的罐,其中:引线电极组件连接到罐;以及操作电路配置为执行区别适于疗法的患者心脏的心律的步骤。区别步骤可包括利用至少如下步骤形成模板:从引线电极组件接收第一心脏信号,在第一心脏信号中选择基准点,围绕基准点形成模板,以及通过接收附加的心脏信号并且利用所述模板对附加心脏信号与第一心脏信号进行比较来检验所述模板。在另一个实施例中,操作电路配置为使得选择基准点的步骤包括:通过按照第一心脏信号的特征从一组规则中选择一个规则来标识基准点,其中选择用于标识基准点的规则成为模板参数之一。操作电路可配置为使得围绕基准点形成模板的步骤包括标识心脏事件的开始和结束。在另一个实施例中,操作电路可配置为使得该一组规则包括与心脏信号中峰值的相对振幅有关的振幅规则。该一组规则还可包括与心脏信号中峰值的位置有关的位置规则。在另一实施例中,操作电路配置为使得该一组规则包括与心脏信号中峰值的位置有关的位置规则。
在另一个实施例中,操作电路配置为使得形成模板的步骤包括:围绕基准点选择多个样本,其中围绕基准点的样本的配置成为模板参数之一。操作电路可以配置为使得利用以下步骤选择样本:在基准点两侧上各观察多个样本;然后确定期望的QRS段是否在该多个样本内开始和结束;以及调整基准点两侧的样本数,以获取QRS段并排除不对应于期望QRS段的至少一些样本。在又一个实施例中,操作电路配置为使得选择基准点的步骤包括:观察有凹口的QRS复合波是否可能,并且如果可能,则调整模板参数以保证选择可重复检测的基准点。
此文件覆盖的本发明的许多特征和优点已经在上述描述中阐述了。但应该理解,此公开在许多方面仅是说明性的。可在细节上进行改变,具体地说与元件的形状、大小和配置有关,并不超出本发明的范围。本发明的范围当然由其中表达权利要求的语言中定义。

Claims (67)

1.一种心脏信号分析的方法,包括:
感测第一心脏事件;
配置模板参数,用于分析第一心脏事件;
利用所述模板参数定义第一心脏事件的第一感测信号;
感测第二心脏事件;
利用所述模板参数定义第二心脏事件的第二感测信号;以及
对第二感测信号与第一感测信号进行比较,以确定第一感测信号和模板参数是否适合于定义心脏事件模板。
2.如权利要求1所述的方法,其中所述配置模板参数的步骤包括选择用于标识基准点的规则,其中:
所述规则从一组规则中选择;
所述规则按照第一心脏事件的特征选择;以及
用于标识基准点的规则成为所述模板参数之一。
3.如权利要求2所述的方法,其中所述配置模板参数的步骤还包括围绕所述基准点选择第一感测信号的多个样本;其中围绕所述基准点的样本的配置成为所述模板参数之一。
4.如权利要求3所述的方法,其中所述选择多个样本的步骤包括标识心脏事件的开始和结束。
5.如权利要求4所述的方法,其中所述心脏事件是QRS复合波。
6.如权利要求2所述的方法,其中所述一组规则包括与所述感测信号中峰值的相对振幅有关的振幅规则。
7.如权利要求6所述的方法,其中所述一组规则包括与所述感测信号中峰值的位置有关的位置规则。
8.如权利要求2所述的方法,其中所述一组规则包括与所述感测信号中峰值的位置有关的位置规则。
9.如权利要求2所述的方法,其中所述一组规则包括与标识有凹口的心脏信号有关的凹口规则,其中所述凹口规则包括分析在所述心脏信号中彼此的预定范围内是否存在多个峰值。
10.如权利要求9所述的方法,其中如果在所述预定范围内存在多个峰值,则所述凹口规则选择时间上的第一峰值。
11.如权利要求1所述的方法,其中所述配置模板参数的步骤还包括围绕第一感测信号中的基准点选择第一感测信号的多个样本;其中围绕所述基准点的样本的配置成为所述模板参数之一。
12.如权利要求11所述的方法,其中利用以下步骤选择样本:
首先,在所述基准点两侧上各观察多个样本;
接下来,确定期望QRS段是否在所述多个样本内开始和结束;以及
调整所述基准点两侧的样本数,以获取所述QRS段并排除不对应于所述期望QRS段的至少一些样本。
13.如权利要求1所述的方法,其中所述配置模板参数的步骤包括观察有凹口的QRS复合波是否可能,并且如果可能,则调整所述模板参数以保证选择可重复检测的基准点。
14.一种心脏信号分析的方法,包括:
利用植入在患者躯干中以便获取心脏信号的电极对信号采样;
围绕第一基准点定义第一感测窗,以获取QRS段;
观察第一感测窗的定义,以建立模板参数;
利用所述模板参数围绕第二基准点定义第二感测窗;以及
对第一感测窗中的数据与第二感测窗中的数据进行比较,以检验利用所述模板参数是否定义了有效模板。
15.如权利要求14所述的方法,其中所述电极经皮下植入所述患者中。
16.如权利要求14所述的方法,其中所述定义第一感测窗的步骤包括:通过按照第一感测窗中所述QRS段的特征从一组规则中选择一个规则来标识基准点,其中所述选择用于标识基准点的规则成为所述模板参数之一。
17.如权利要求16所述的方法,其中所述围绕第一基准点定义第一感测窗的步骤包括标识心脏事件的开始和结束。
18.如权利要求17所述的方法,其中所述心脏事件是QRS复合波。
19.如权利要求16所述的方法,其中所述一组规则包括:
与所述采样信号中峰值的相对振幅有关的振幅规则;以及
与所述采样信号中峰值的位置有关的位置规则。
20.如权利要求14所述的方法,其中所述定义第一感测窗的步骤包括围绕基准点选择多个样本,其中围绕所述基准点的样本的配置成为所述模板参数之一。
21.如权利要求20所述的方法,其中利用以下步骤选择样本:
选择基准点;然后
在所述基准点两侧上各观察多个样本;然后
确定期望QRS段是否在所述多个样本内开始和结束;以及
调整所述基准点两侧的样本数,以获取所述QRS段并排除不对应于所述期望QRS段的至少一些样本。
22.如权利要求14所述的方法,其中所述定义第一感测窗的步骤包括观察有凹口的QRS复合波是否可能,并且如果可能,则调整所述模板参数以保证选择可重复检测的基准点。
23.一种心脏信号分析的方法,包括形成用于心脏事件比较的模板,所述形成模板的步骤包括:
感测第一心脏事件;
利用一组规则标识第一心脏事件中的第一基准点;
感测第二心脏事件;
利用所述一组规则标识第二心脏事件中的第二基准点;
确定第一基准点和第二基准点是否利用同一规则标识;以及如果不是,则废弃第一心脏事件。
24.一种心脏信号模板形成的方法,包括:
从植入的电极接收第一心脏信号;
选择第一心脏信号中的基准点;
围绕所述基准点形成模板;以及
通过接收附加心脏信号并且利用所述模板对所述附加心脏信号与第一心脏信号进行比较来检验所述模板。
25.如权利要求24所述的方法,其中所述选择基准点的步骤包括:通过按照第一心脏信号的特征从一组规则中选择一个规则来标识基准点,其中所述选择用于标识基准点的规则成为所述模板参数之一。
26.如权利要求25所述的方法,其中所述围绕所述基准点形成模板的步骤包括标识心脏事件的开始和结束。
27.如权利要求26所述的方法,其中所述心脏事件是QRS复合波。
28.如权利要求25所述的方法,其中所述一组规则包括与所述心脏信号中峰值的相对振幅有关的振幅规则。
29.如权利要求28所述的方法,其中所述一组规则还包括与所述心脏信号中峰值的位置有关的位置规则。
30.如权利要求25所述的方法,其中所述一组规则包括与所述心脏信号中峰值的位置有关的位置规则。
31.如权利要求24所述的方法,其中所述形成模板的步骤包括围绕所述基准点选择多个样本,其中围绕所述基准点的样本的配置成为所述模板参数之一。
32.如权利要求31所述的方法,其中利用以下步骤选择样本:
在所述基准点两侧上各观察多个样本;
确定期望QRS段是否在所述多个样本内开始和结束;以及
调整所述基准点两侧的样本数,以获取所述QRS段并排除不对应于所述期望QRS段的至少一些样本。
33.如权利要求24所述的方法,其中所述选择基准点的步骤包括观察有凹口的QRS复合波是否可能,并且如果可能,则调整所述模板参数以保证选择可重复检测的基准点。
34.一种可植入心律转变器/除颤器,包括:
引线电极组件,包括多个电极;以及
罐,安放操作电路;其中:
所述引线电极组件连接到所述罐;以及
所述操作电路配置为执行区别适于疗法的患者心脏的心律的步骤,所述步骤包括:
感测第一心脏事件;
配置模板参数,用于分析第一心脏事件;
利用所述模板参数定义第一心脏事件的第一感测信号;
感测第二心脏事件;
利用所述模板参数定义第二心脏事件的第二感测信号;以及
对第二感测信号与第一感测信号进行比较,以确定第一感测信号和模板参数是否适合于定义心脏事件模板。
35.如权利要求34所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述配置模板参数的步骤包括选择用于标识基准点的规则,并且:
所述规则从一组规则中选择;
所述规则按照第一心脏事件的特征选择;以及
用于标识基准点的规则成为所述模板参数之一。
36.如权利要求35所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述配置模板参数的步骤还包括:围绕所述基准点选择第一感测信号的多个样本,并且围绕所述基准点的样本的配置成为所述模板参数之一。
37.如权利要求36所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述选择多个样本的步骤包括标识心脏事件的开始和结束。
38.如权利要求37所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述心脏事件是QRS复合波。
39.如权利要求35所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述一组规则包括与所述感测信号中峰值的相对振幅有关的振幅规则。
40.如权利要求39所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述一组规则包括与所述感测信号中峰值的位置有关的位置规则。
41.如权利要求35所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述一组规则包括与所述感测信号中峰值的位置有关的位置规则。
42.如权利要求35所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述一组规则包括与标识有凹口的心脏信号有关的凹口规则,其中所述凹口规则包括分析在所述心脏信号中彼此的预定范围内是否存在多个峰值。
43.如权利要求42所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得如果所述预定范围内存在多个峰值,则所述凹口规则选择时间上的第一峰值。
44.如权利要求34所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述配置模板参数的步骤还包括:围绕第一感测信号中的基准点选择第一感测信号的多个样本;其中围绕所述基准点的样本的配置成为所述模板参数之一。
45.如权利要求44所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得利用以下步骤选择样本:
首先,在所述基准点两侧上各观察多个样本;
接下来,确定期望QRS段是否在所述多个样本内开始和结束;以及
调整所述基准点两侧的样本数,以获取所述QRS段并排除不对应于所述期望QRS段的至少一些样本。
46.如权利要求34所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述配置模板参数的步骤包括:观察有凹口的QRS复合波是否可能,并且如果可能,则调整所述模板参数以保证选择可重复检测的基准点。
47.如权利要求34所述的可植入心律转变器/除颤器,其中所述操作电路包括可读介质,所述可读介质包括用于执行所述区别步骤的指令集。
48.一种可植入心律转变器/除颤器,包括:
引线电极组件,包括多个电极;以及
罐,安放操作电路;
其中:
所述引线电极组件连接到所述罐;以及
所述操作电路配置为执行区别适于疗法的患者心脏的心律的步骤,所述步骤包括:
在所述引线电极组件植入在患者躯干中选择用于获取心脏信号的位置时,利用所述引线电极组件对信号采样;
围绕第一基准点定义第一感测窗以获取QRS段;
观察第一感测窗的定义,以建立模板参数;
利用所述模板参数围绕第二基准点定义第二感测窗;以及
对第一感测窗中的数据与第二感测窗中的数据进行比较,以检验利用所述模板参数是否定义了有效模板。
49.如权利要求48所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述定义第一感测窗的步骤包括:通过按照第一感测窗中所述QRS段的特征从一组规则中选择一个规则来标识基准点,其中所述选择用于标识基准点的规则成为所述模板参数之一。
50.如权利要求49所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述围绕第一基准点定义第一感测窗的步骤包括标识心脏事件的开始和结束。
51.如权利要求50所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述心脏事件是QRS复合波。
52.如权利要求49所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述一组规则包括:
与采样信号中峰值的相对振幅有关的振幅规则;以及
与采样信号中峰值的位置有关的位置规则。
53.如权利要求48所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述定义第一感测窗的步骤包括:围绕基准点选择多个样本,其中围绕所述基准点的样本的配置成为所述模板参数之一。
54.如权利要求53所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得利用以下步骤选择样本:
选择基准点;然后
在所述基准点两侧上各观察多个样本;然后
确定期望QRS段是否在所述多个样本内开始和结束;以及
调整所述基准点两侧的样本数,以获取所述QRS段并排除不对应于所述期望QRS段的至少一些样本。
55.如权利要求48所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述定义第一感测窗的步骤包括:观察有凹口的QRS复合波是否可能,并且如果可能,则调整所述模板参数以保证选择可重复检测的基准点。
56.如权利要求48所述的可植入心律转变器/除颤器,其中所述操作电路包括可读介质,所述可读介质包括用于执行所述区别步骤的指令集。
57.一种可植入心律转变器/除颤器,包括:
引线电极组件,包括多个电极;以及
罐,安放操作电路;
其中:
所述引线电极组件连接到所述罐;以及
所述操作电路配置为执行区别适于疗法的患者心脏的心律的步骤,所述步骤包括利用至少如下步骤形成模板:
感测第一心脏事件;
利用一组规则标识第一心脏事件中的第一基准点;
感测第二心脏事件;
利用所述一组规则标识第二心脏事件中的第二基准点;
确定第一基准点和第二基准点是否用同一规则标识;以及
如果不是,则废弃第一心脏事件。
58.一种可植入心律转变器/除颤器,包括:
引线电极组件,包括多个电极;以及
罐,安放操作电路;其中:
所述引线电极组件连接到所述罐;以及
所述操作电路配置为执行区别适于疗法的患者心脏的心律的步骤,所述步骤包括利用至少如下步骤形成模板:
从所述引线电极组件接收第一心脏信号;
选择第一心脏信号中的基准点;
围绕所述基准点形成模板;以及
通过接收附加心脏信号并且利用所述模板对所述附加心脏信号与第一心脏信号进行比较来检验所述模板。
59.如权利要求58所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述选择基准点的步骤包括:通过按照第一心脏信号的特征从一组规则中选择一个规则来标识基准点,其中所述选择用于标识基准点的规则成为所述模板参数之一。
60.如权利要求59所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得围绕所述基准点形成模板的步骤包括标识心脏事件的开始和结束。
61.如权利要求58所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述一组规则包括与所述心脏信号中峰值的相对振幅有关的振幅规则。
62.如权利要求60所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述一组规则包括与所述心脏信号中峰值的位置有关的位置规则。
63.如权利要求59所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述一组规则包括与所述心脏信号中峰值的位置有关的位置规则。
64.如权利要求58所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述形成模板的步骤包括:围绕所述基准点选择多个样本,其中围绕所述基准点的样本的配置成为所述模板参数之一。
65.如权利要求64所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得利用以下步骤选择样本:
在所述基准点两侧上各观察多个样本;
确定期望QRS段是否在所述多个样本内开始和结束;以及
调整所述基准点两侧的样本数,以获取所述QRS段并排除不对应于所述期望QRS段的至少一些样本。
66.如权利要求58所述的可植入心律转变器/除颤器,其中所述操作电路配置为使得所述选择基准点的步骤包括:观察有凹口的QRS复合波是否可能,并且如果可能,则调整所述模板参数以保证选择可重复检测的基准点。
67.如权利要求58所述的可植入心律转变器/除颤器,其中所述操作电路包括可读介质,所述可读介质包括用于执行所述区别步骤的指令集。
CN2005800407820A 2004-11-29 2005-10-19 可植入心脏装置中的信号模板 Active CN101065059B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/999,853 US7376458B2 (en) 2004-11-29 2004-11-29 Method for defining signal templates in implantable cardiac devices
US10/999,853 2004-11-29
PCT/US2005/037761 WO2006057736A1 (en) 2004-11-29 2005-10-19 Signal templates in implantable cardiac devices

Publications (2)

Publication Number Publication Date
CN101065059A true CN101065059A (zh) 2007-10-31
CN101065059B CN101065059B (zh) 2010-10-13

Family

ID=35789055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800407820A Active CN101065059B (zh) 2004-11-29 2005-10-19 可植入心脏装置中的信号模板

Country Status (7)

Country Link
US (2) US7376458B2 (zh)
EP (1) EP1827220B1 (zh)
JP (1) JP4745346B2 (zh)
CN (1) CN101065059B (zh)
AU (1) AU2005310008B2 (zh)
CA (1) CA2587856C (zh)
WO (1) WO2006057736A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285513A (zh) * 2008-05-07 2013-09-11 卡梅伦保健公司 用于对心搏进行准确分类的方法和设备
US8588896B2 (en) 2008-03-07 2013-11-19 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
CN101505828B (zh) * 2006-08-23 2013-11-20 心脏起搏器股份公司 用于治疗作用的间歇性高能心脏刺激
US9554714B2 (en) 2014-08-14 2017-01-31 Cameron Health Inc. Use of detection profiles in an implantable medical device
US9802056B2 (en) 2008-03-07 2017-10-31 Cameron Health, Inc. Accurate cardiac event detection in an implantable cardiac stimulus device

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050288599A1 (en) * 2004-05-17 2005-12-29 C.R. Bard, Inc. High density atrial fibrillation cycle length (AFCL) detection and mapping system
US8942795B2 (en) * 2005-03-31 2015-01-27 Medtronic, Inc. Implantable medical device with real time T-wave oversensing detection
US8200341B2 (en) 2007-02-07 2012-06-12 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
JP5826984B2 (ja) * 2007-01-12 2015-12-02 株式会社東芝 超音波診断装置、心拍同期信号生成装置及び心拍同期信号生成方法
ES2377250T3 (es) * 2007-08-23 2012-03-23 Cameron Health, Inc. Herramienta de exploración de paciente para sistemas de estímulos cardiacos implantables
US8494630B2 (en) 2008-01-18 2013-07-23 Cameron Health, Inc. Data manipulation following delivery of a cardiac stimulus in an implantable cardiac stimulus device
AU2013267073B2 (en) * 2008-05-07 2016-07-07 Cameron Health, Inc. Methods and Devices for Accurately Classifying Cardiac Activity
US8712523B2 (en) 2008-12-12 2014-04-29 Cameron Health Inc. Implantable defibrillator systems and methods with mitigations for saturation avoidance and accommodation
TW201023828A (en) * 2008-12-26 2010-07-01 Ind Tech Res Inst Detecting heartbeat method
CA2766866A1 (en) 2009-06-29 2011-01-20 Cameron Health, Inc. Adaptive confirmation of treatable arrhythmia in implantable cardiac stimulus devices
US8744555B2 (en) 2009-10-27 2014-06-03 Cameron Health, Inc. Adaptive waveform appraisal in an implantable cardiac system
US8265737B2 (en) 2009-10-27 2012-09-11 Cameron Health, Inc. Methods and devices for identifying overdetection of cardiac signals
US8548573B2 (en) * 2010-01-18 2013-10-01 Cameron Health, Inc. Dynamically filtered beat detection in an implantable cardiac device
US9974944B2 (en) 2010-07-29 2018-05-22 Cameron Health, Inc. Subcutaneous leads and methods of implant and explant
US8588895B2 (en) 2011-04-22 2013-11-19 Cameron Health, Inc. Robust rate calculation in an implantable cardiac stimulus or monitoring device
US9849291B2 (en) 2011-06-09 2017-12-26 Cameron Health, Inc. Antitachycardia pacing pulse from a subcutaneous defibrillator
US8694093B2 (en) * 2012-03-26 2014-04-08 Cardiac Pacemakers, Inc. Method and apparatus for recognizing sensed cardiac events using different electrode configurations
US10016145B2 (en) 2012-06-20 2018-07-10 Boston Scientific Scimed, Inc. Far-field vs local activation discrimination on multi-electrode EGMS using vector analysis in multi-dimensional signal space
US10905884B2 (en) 2012-07-20 2021-02-02 Cardialen, Inc. Multi-stage atrial cardioversion therapy leads
US9220434B2 (en) 2012-08-16 2015-12-29 Pacesetter, Inc. Systems and methods for selectively updating cardiac morphology discrimination templates for use with implantable medical devices
US9681817B2 (en) 2012-12-20 2017-06-20 Boston Scientific Scimed, Inc. Suppression of global activation signals during anatomical mapping
US9149645B2 (en) 2013-03-11 2015-10-06 Cameron Health, Inc. Methods and devices implementing dual criteria for arrhythmia detection
US9579065B2 (en) 2013-03-12 2017-02-28 Cameron Health Inc. Cardiac signal vector selection with monophasic and biphasic shape consideration
US9002443B2 (en) 2013-03-15 2015-04-07 Medtronic, Inc. System and method for avoiding undersensing of ventricular fibrillation
US9775559B2 (en) 2013-04-26 2017-10-03 Medtronic, Inc. Staged rhythm detection system and method
US9788742B2 (en) 2014-02-04 2017-10-17 Cameron Health, Inc. Impedance waveform monitoring for heart beat confirmation
US9526908B2 (en) 2014-04-01 2016-12-27 Medtronic, Inc. Method and apparatus for discriminating tachycardia events in a medical device
US10376705B2 (en) 2014-04-01 2019-08-13 Medtronic, Inc. Method and apparatus for discriminating tachycardia events in a medical device
US9808640B2 (en) 2014-04-10 2017-11-07 Medtronic, Inc. Method and apparatus for discriminating tachycardia events in a medical device using two sensing vectors
US9352165B2 (en) 2014-04-17 2016-05-31 Medtronic, Inc. Method and apparatus for verifying discriminating of tachycardia events in a medical device having dual sensing vectors
US9795312B2 (en) 2014-04-24 2017-10-24 Medtronic, Inc. Method and apparatus for adjusting a blanking period for selecting a sensing vector configuration in a medical device
US10244957B2 (en) 2014-04-24 2019-04-02 Medtronic, Inc. Method and apparatus for selecting a sensing vector configuration in a medical device
US10278601B2 (en) 2014-04-24 2019-05-07 Medtronic, Inc. Method and apparatus for selecting a sensing vector configuration in a medical device
US10252067B2 (en) 2014-04-24 2019-04-09 Medtronic, Inc. Method and apparatus for adjusting a blanking period during transitioning between operating states in a medical device
US10154794B2 (en) 2014-04-25 2018-12-18 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) tachyarrhythmia detection modifications responsive to detected pacing
US10226197B2 (en) 2014-04-25 2019-03-12 Medtronic, Inc. Pace pulse detector for an implantable medical device
US10448855B2 (en) 2014-04-25 2019-10-22 Medtronic, Inc. Implantable medical device (IMD) sensing modifications responsive to detected pacing pulses
WO2015171742A1 (en) 2014-05-09 2015-11-12 Boston Scientific Scimed, Inc. Medical devices for mapping cardiac tissue
JP6375446B2 (ja) 2014-06-03 2018-08-15 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 心臓組織のマッピングのための医療装置
US9610025B2 (en) 2014-07-01 2017-04-04 Medtronic, Inc. Method and apparatus for verifying discriminating of tachycardia events in a medical device having dual sensing vectors
EP3200689B1 (en) 2014-10-03 2021-01-13 Boston Scientific Scimed Inc. Medical system for mapping cardiac tissue
CN107072566A (zh) * 2014-10-03 2017-08-18 波士顿科学医学有限公司 用于映射心脏组织的医疗装置
US10188305B2 (en) 2015-07-09 2019-01-29 Drägerwerk AG & Co. KGaA Locating J-points in electrocardiogram signals
US10004906B2 (en) * 2015-07-16 2018-06-26 Medtronic, Inc. Confirming sensed atrial events for pacing during resynchronization therapy in a cardiac medical device and medical device system
US10617402B2 (en) 2015-07-22 2020-04-14 Cameron Health, Inc. Minimally invasive method to implant a subcutaneous electrode
US10362948B2 (en) 2015-10-23 2019-07-30 Cardiac Pacemakers, Inc. Multi-vector sensing in cardiac devices with detection combinations
CN108367156B (zh) 2015-12-02 2021-08-17 心脏起搏器股份公司 心律管理设备中的滤波的自动确定和选择
CN109414582B (zh) 2016-06-27 2022-10-28 心脏起搏器股份公司 使用皮下感测p波进行再同步起搏管理的心脏治疗系统
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
US10780278B2 (en) 2016-08-24 2020-09-22 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using P-wave to pace timing
US10870008B2 (en) 2016-08-24 2020-12-22 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
WO2018081275A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
JP7038115B2 (ja) 2016-10-27 2022-03-17 カーディアック ペースメイカーズ, インコーポレイテッド 圧力センサを備えた植込み型医療装置
WO2018093605A1 (en) 2016-11-21 2018-05-24 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker providing cardiac resynchronization therapy
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
WO2018166136A1 (zh) * 2017-03-14 2018-09-20 华为技术有限公司 波形信号处理的方法及装置
WO2019036600A1 (en) 2017-08-18 2019-02-21 Cardiac Pacemakers, Inc. IMPLANTABLE MEDICAL DEVICE WITH PRESSURE SENSOR
US10694967B2 (en) 2017-10-18 2020-06-30 Medtronic, Inc. State-based atrial event detection
US10751526B2 (en) 2017-10-25 2020-08-25 Cardiac Pacemakers, Inc. Subcutaneous lead implantation
JP7175453B2 (ja) * 2019-04-26 2022-11-21 ウェスト・アファム・ホールディングス・ディーエーシー 心臓の異常について歩行可能患者のecg信号を監視する着用型医療(wm)システム
US20200390355A1 (en) * 2019-06-11 2020-12-17 Vios Medical, Inc. System for detecting qrs complexes in an electrocardiography (ecg) signal

Family Cites Families (199)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710374A (en) 1970-03-16 1973-01-09 Wester Instr Inc Dual-slope and analog-to-digital converter wherein two analog input signals are selectively integrated with respect to time
US3653387A (en) 1970-05-08 1972-04-04 Cardiac Electronics Inc Protector circuit for cardiac apparatus
USRE30387E (en) 1972-03-17 1980-08-26 Medtronic, Inc. Automatic cardioverting circuit
US3911925A (en) 1974-05-23 1975-10-14 Jr Joe B Tillery Ear trimming forceps
US4030509A (en) 1975-09-30 1977-06-21 Mieczyslaw Mirowski Implantable electrodes for accomplishing ventricular defibrillation and pacing and method of electrode implantation and utilization
US4184493A (en) 1975-09-30 1980-01-22 Mieczyslaw Mirowski Circuit for monitoring a heart and for effecting cardioversion of a needy heart
US4164946A (en) 1977-05-27 1979-08-21 Mieczyslaw Mirowski Fault detection circuit for permanently implanted cardioverter
US4157720A (en) 1977-09-16 1979-06-12 Greatbatch W Cardiac pacemaker
US4170992A (en) 1978-01-05 1979-10-16 Hewlett-Packard Company Fiducial point location
US4248237A (en) 1978-03-07 1981-02-03 Needle Industries Limited Cardiac pacemakers
US4210149A (en) 1978-04-17 1980-07-01 Mieczyslaw Mirowski Implantable cardioverter with patient communication
US4223678A (en) 1978-05-03 1980-09-23 Mieczyslaw Mirowski Arrhythmia recorder for use with an implantable defibrillator
JPS54156496A (en) * 1978-05-31 1979-12-10 Tdk Corp Detector for doppler unit
US4191942A (en) 1978-06-08 1980-03-04 National Semiconductor Corporation Single slope A/D converter with sample and hold
US4291707A (en) 1979-04-30 1981-09-29 Mieczyslaw Mirowski Implantable cardiac defibrillating electrode
US4314095A (en) 1979-04-30 1982-02-02 Mieczyslaw Mirowski Device and method for making electrical contact
US4254775A (en) 1979-07-02 1981-03-10 Mieczyslaw Mirowski Implantable defibrillator and package therefor
US4375817A (en) 1979-07-19 1983-03-08 Medtronic, Inc. Implantable cardioverter
US4300567A (en) 1980-02-11 1981-11-17 Mieczyslaw Mirowski Method and apparatus for effecting automatic ventricular defibrillation and/or demand cardioversion through the means of an implanted automatic defibrillator
US4407288B1 (en) 1981-02-18 2000-09-19 Mieczyslaw Mirowski Implantable heart stimulator and stimulation method
US4693253A (en) 1981-03-23 1987-09-15 Medtronic, Inc. Automatic implantable defibrillator and pacer
US4402322A (en) 1981-03-25 1983-09-06 Medtronic, Inc. Pacer output circuit
US4750494A (en) 1981-05-12 1988-06-14 Medtronic, Inc. Automatic implantable fibrillation preventer
US4765341A (en) 1981-06-22 1988-08-23 Mieczyslaw Mirowski Cardiac electrode with attachment fin
US4424818A (en) 1982-02-18 1984-01-10 Medtronic, Inc. Electrical lead and insertion tool
EP0095727A1 (en) 1982-06-01 1983-12-07 Purdue Research Foundation Method and apparatus for inserting a defibrillator electrode and defibrillator electrode
US4450527A (en) 1982-06-29 1984-05-22 Bomed Medical Mfg. Ltd. Noninvasive continuous cardiac output monitor
DE3300672A1 (de) 1983-01-11 1984-07-12 Siemens AG, 1000 Berlin und 8000 München Herzschrittmachersystem
US4548209A (en) 1984-02-06 1985-10-22 Medtronic, Inc. Energy converter for implantable cardioverter
US4595009A (en) 1984-02-06 1986-06-17 Medtronic, Inc. Protection circuit for implantable cardioverter
US4603705A (en) 1984-05-04 1986-08-05 Mieczyslaw Mirowski Intravascular multiple electrode unitary catheter
US4567900A (en) 1984-06-04 1986-02-04 Moore J Paul Internal deployable defibrillator electrode
US4727877A (en) 1984-12-18 1988-03-01 Medtronic, Inc. Method and apparatus for low energy endocardial defibrillation
US4800883A (en) 1986-04-02 1989-01-31 Intermedics, Inc. Apparatus for generating multiphasic defibrillation pulse waveform
US4768512A (en) 1986-05-13 1988-09-06 Mieczyslaw Mirowski Cardioverting system and method with high-frequency pulse delivery
US4944300A (en) 1987-04-28 1990-07-31 Sanjeev Saksena Method for high energy defibrillation of ventricular fibrillation in humans without a thoracotomy
US5044374A (en) 1987-06-18 1991-09-03 Medtronic, Inc. Medical electrical lead
US4830005A (en) 1987-07-23 1989-05-16 Siemens-Pacesetter, Inc. Disposable in-package load test element for pacemakers
ATE120587T1 (de) 1987-11-19 1995-04-15 Siemens Ag Analog-digital-umsetzer.
FR2632865A1 (fr) 1988-06-15 1989-12-22 Atesys Sa Defibrillateur de hautes performances a plusieurs electrodes exterieures au coeur
US5509923A (en) 1989-08-16 1996-04-23 Raychem Corporation Device for dissecting, grasping, or cutting an object
US5215081A (en) 1989-12-28 1993-06-01 Telectronics Pacing Systems, Inc. Method and device for measuring subthreshold defibrillation electrode resistance and providing a constant energy shock delivery
US5713926A (en) 1990-04-25 1998-02-03 Cardiac Pacemakers, Inc. Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US5133353A (en) 1990-04-25 1992-07-28 Cardiac Pacemakers, Inc. Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US5230337A (en) 1990-06-06 1993-07-27 Cardiac Pacemakers, Inc. Process for implanting subcutaneous defibrillation electrodes
US5203348A (en) 1990-06-06 1993-04-20 Cardiac Pacemakers, Inc. Subcutaneous defibrillation electrodes
US5105810A (en) 1990-07-24 1992-04-21 Telectronics Pacing Systems, Inc. Implantable automatic and haemodynamically responsive cardioverting/defibrillating pacemaker with means for minimizing bradycardia support pacing voltages
US5271411A (en) 1990-09-21 1993-12-21 Colin Electronics Co., Ltd. Method and apparatus for ECG signal analysis and cardiac arrhythmia detection
US5109842A (en) 1990-09-24 1992-05-05 Siemens Pacesetter, Inc. Implantable tachyarrhythmia control system having a patch electrode with an integrated cardiac activity system
US5105826A (en) 1990-10-26 1992-04-21 Medtronic, Inc. Implantable defibrillation electrode and method of manufacture
US5531765A (en) 1990-12-18 1996-07-02 Ventritex, Inc. Method and apparatus for producing configurable biphasic defibrillation waveforms
US5129392A (en) 1990-12-20 1992-07-14 Medtronic, Inc. Apparatus for automatically inducing fibrillation
US5405363A (en) 1991-03-15 1995-04-11 Angelon Corporation Implantable cardioverter defibrillator having a smaller displacement volume
JP2655204B2 (ja) 1991-04-05 1997-09-17 メドトロニック インコーポレーテッド 植え込み型の医療用装置
US6144879A (en) 1991-05-17 2000-11-07 Gray; Noel Desmond Heart pacemaker
US5300106A (en) 1991-06-07 1994-04-05 Cardiac Pacemakers, Inc. Insertion and tunneling tool for a subcutaneous wire patch electrode
US5292339A (en) 1991-06-14 1994-03-08 Telectronics Pacing Systems, Inc. Implantable pacemaker/cardioverter/defibrillator device and method incorporating multiple bradycardia support pacing rates
US5243977A (en) 1991-06-26 1993-09-14 Trabucco Hector O Pacemaker
US5217021A (en) 1991-07-30 1993-06-08 Telectronics Pacing Systems, Inc. Detection of cardiac arrhythmias using correlation of a cardiac electrical signals and temporal data compression
US5144946A (en) 1991-08-05 1992-09-08 Siemens Pacesetter, Inc. Combined pacemaker substrate and electrical interconnect and method of assembly
US5191901A (en) 1991-08-29 1993-03-09 Mieczyslaw Mirowski Controlled discharge defibrillation electrode
US5423326A (en) 1991-09-12 1995-06-13 Drexel University Apparatus and method for measuring cardiac output
US5215083A (en) 1991-10-07 1993-06-01 Telectronics Pacing Systems, Inc. Apparatus and method for arrhythmia induction in arrhythmia control system
US5184616A (en) 1991-10-21 1993-02-09 Telectronics Pacing Systems, Inc. Apparatus and method for generation of varying waveforms in arrhythmia control system
US5313953A (en) 1992-01-14 1994-05-24 Incontrol, Inc. Implantable cardiac patient monitor
JPH0621492Y2 (ja) 1992-02-07 1994-06-08 日本光電工業株式会社 心電図モニタ付除細動器
US5261400A (en) 1992-02-12 1993-11-16 Medtronic, Inc. Defibrillator employing transvenous and subcutaneous electrodes and method of use
US5306291A (en) 1992-02-26 1994-04-26 Angeion Corporation Optimal energy steering for an implantable defibrillator
US5601607A (en) 1992-03-19 1997-02-11 Angeion Corporation Implantable cardioverter defibrillator housing plated electrode
US5376103A (en) 1992-03-19 1994-12-27 Angeion Corporation Electrode system for implantable defibrillator
DE69323310T2 (de) 1992-04-06 1999-09-09 Angeion Corp Gerät zur behandlung von herzkammer-tachykardien mittels reihe von entferntenfeld-impulsen
US5273049A (en) 1992-04-09 1993-12-28 Telectronics Pacing Systems, Inc. Detection of cardiac arrhythmias using template matching by signature analysis
US5255692A (en) 1992-09-04 1993-10-26 Siemens Aktiengesellschaft Subcostal patch electrode
ATE176404T1 (de) 1992-09-30 1999-02-15 Cardiac Pacemakers Inc Klappbare kissenelektrode zur herzentflimmerung mit einem gebiet ohne leitern, welches als ein scharnier dient
US5697953A (en) 1993-03-13 1997-12-16 Angeion Corporation Implantable cardioverter defibrillator having a smaller displacement volume
US5366496A (en) 1993-04-01 1994-11-22 Cardiac Pacemakers, Inc. Subcutaneous shunted coil electrode
US5411547A (en) 1993-08-09 1995-05-02 Pacesetter, Inc. Implantable cardioversion-defibrillation patch electrodes having means for passive multiplexing of discharge pulses
US5447518A (en) 1993-08-31 1995-09-05 Ventritex, Inc. Method and apparatus for phase related cardiac defibrillation
US5411539A (en) 1993-08-31 1995-05-02 Medtronic, Inc. Active can emulator and method of use
US5439485A (en) 1993-09-24 1995-08-08 Ventritex, Inc. Flexible defibrillation electrode of improved construction
US5431693A (en) 1993-12-10 1995-07-11 Intermedics, Inc. Method of verifying capture of the heart by a pacemaker
US5527346A (en) 1993-12-13 1996-06-18 Angeion Corporation Implantable cardioverter defibrillator employing polymer thin film capacitors
US5464447A (en) 1994-01-28 1995-11-07 Sony Corporation Implantable defibrillator electrodes
US5476503A (en) 1994-03-28 1995-12-19 Pacesetter, Inc. Sense array intelligent patch lead for an implantable defibrillator and method
US5620477A (en) 1994-03-31 1997-04-15 Ventritex, Inc. Pulse generator with case that can be active or inactive
SE9401267D0 (sv) 1994-04-14 1994-04-14 Siemens Elema Ab Elektrodanordning
US5522852A (en) 1994-04-26 1996-06-04 Incontrol, Inc. Selective cardiac activity analysis atrial fibrillation detection system and method and atrial defibrillator utilizing same
US5957956A (en) 1994-06-21 1999-09-28 Angeion Corp Implantable cardioverter defibrillator having a smaller mass
US5645586A (en) 1994-07-08 1997-07-08 Ventritex, Inc. Conforming implantable defibrillator
US5486199A (en) 1994-07-20 1996-01-23 Kim; Jaeho System and method for reducing false positives in atrial fibrillation detection
JP3139305B2 (ja) 1994-08-24 2001-02-26 株式会社村田製作所 容量型加速度センサ
US5534022A (en) 1994-11-22 1996-07-09 Ventritex, Inc. Lead having an integrated defibrillation/sensing electrode
US5534019A (en) 1994-12-09 1996-07-09 Ventritex, Inc. Cardiac defibrillator with case that can be electrically active or inactive
US5531766A (en) 1995-01-23 1996-07-02 Angeion Corporation Implantable cardioverter defibrillator pulse generator kite-tail electrode system
US5509928A (en) 1995-03-02 1996-04-23 Pacesetter, Inc. Internally supported self-sealing septum
US5545186A (en) 1995-03-30 1996-08-13 Medtronic, Inc. Prioritized rule based method and apparatus for diagnosis and treatment of arrhythmias
US5607455A (en) 1995-05-25 1997-03-04 Intermedics, Inc. Method and apparatus for automatic shock electrode enabling
US5814090A (en) 1995-06-07 1998-09-29 Angeion Corporation Implantable medical device having heat-shrink conforming shield
US5658321A (en) 1995-06-09 1997-08-19 Ventritex, Inc. Conductive housing for implantable cardiac device
US5690683A (en) 1995-06-19 1997-11-25 Cardiac Pacemakers, Inc. After potential removal in cardiac rhythm management device
US5658317A (en) 1995-08-14 1997-08-19 Cardiac Pacemakers, Inc. Threshold templating for digital AGC
US5690685A (en) * 1995-10-27 1997-11-25 Angeion Corporation Automatic battery-maintaining implantable cardioverter defibrillator and method for use
US6014586A (en) * 1995-11-20 2000-01-11 Pacesetter, Inc. Vertically integrated semiconductor package for an implantable medical device
US6051017A (en) 1996-02-20 2000-04-18 Advanced Bionics Corporation Implantable microstimulator and systems employing the same
US5674260A (en) 1996-02-23 1997-10-07 Pacesetter, Inc. Apparatus and method for mounting an activity sensor or other component within a pacemaker using a contoured hybrid lid
US5782774A (en) 1996-04-17 1998-07-21 Imagyn Medical Technologies California, Inc. Apparatus and method of bioelectrical impedance analysis of blood flow
US5895414A (en) * 1996-04-19 1999-04-20 Sanchez-Zambrano; Sergio Pacemaker housing
US5919211A (en) * 1996-06-27 1999-07-06 Adams; Theodore P. ICD power source using multiple single use batteries
US5643328A (en) 1996-07-19 1997-07-01 Sulzer Intermedics Inc. Implantable cardiac stimulation device with warning system having elongated stimulation electrode
US6058328A (en) * 1996-08-06 2000-05-02 Pacesetter, Inc. Implantable stimulation device having means for operating in a preemptive pacing mode to prevent tachyarrhythmias and method thereof
US6295470B1 (en) 1996-08-19 2001-09-25 The Mower Family Chf Treatment Irrevocable Trust Antitachycardial pacing
US5843132A (en) 1996-10-07 1998-12-01 Ilvento; Joseph P. Self-contained, self-powered temporary intravenous pacing catheter assembly
WO1998025349A1 (en) 1996-12-03 1998-06-11 Microchip Technology Incorporated Slope analog-to-digital converter with ramp initiated prior to counter
US5766226A (en) 1996-12-09 1998-06-16 Angeion Corporation Switched discharge pathways for ICD having multiple output capacitors
US5779645A (en) 1996-12-17 1998-07-14 Pacesetter, Inc. System and method for waveform morphology comparison
US5749911A (en) * 1997-01-24 1998-05-12 Cardiac Pacemakers, Inc. Implantable tissue stimulator incorporating deposited multilayer capacitor
CN1189320A (zh) * 1997-01-31 1998-08-05 惠普公司 快速确定心电图波形形态的方法和系统
DK9700059U1 (da) 1997-02-04 1998-05-04 Ralph Mathar Apparat til brug ved by-pass operationer og anvendelse af sådant apparat
US5891047A (en) * 1997-03-14 1999-04-06 Cambridge Heart, Inc. Detecting abnormal activation of heart
USH1905H (en) 1997-03-21 2000-10-03 Medtronic, Inc. Mechanism for adjusting the exposed surface area and position of an electrode along a lead body
US5776169A (en) 1997-04-28 1998-07-07 Sulzer Intermedics Inc. Implantable cardiac stimulator for minimally invasive implantation
US5836976A (en) 1997-04-30 1998-11-17 Medtronic, Inc. Cardioversion energy reduction system
AU8572398A (en) 1997-07-17 1999-02-10 Cpr Medical, Inc. Defibrillator/pacemaker
US6067471A (en) * 1998-08-07 2000-05-23 Cardiac Pacemakers, Inc. Atrial and ventricular implantable cardioverter-defibrillator and lead system
US6144866A (en) 1998-10-30 2000-11-07 Medtronic, Inc. Multiple sensor assembly for medical electric lead
US5941904A (en) * 1997-09-12 1999-08-24 Sulzer Intermedics Inc. Electromagnetic acceleration transducer for implantable medical device
US5925069A (en) * 1997-11-07 1999-07-20 Sulzer Intermedics Inc. Method for preparing a high definition window in a conformally coated medical device
US5827197A (en) 1997-11-14 1998-10-27 Incontrol, Inc. System for detecting atrial fibrillation notwithstanding high and variable ventricular rates
SE9704311D0 (sv) 1997-11-24 1997-11-24 Pacesetter Ab A cardiac event detecting system for a heart stimulator
FR2772516B1 (fr) 1997-12-12 2003-07-04 Ela Medical Sa Circuit electronique, notamment pour un dispositif medical implantable actif tel qu'un stimulateur ou defibrillateur cardiaque, et son procede de realisation
US5919222A (en) * 1998-01-06 1999-07-06 Medtronic Inc. Adjustable medical electrode lead
US6345198B1 (en) * 1998-01-23 2002-02-05 Pacesetter, Inc. Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity
US6185450B1 (en) * 1998-01-26 2001-02-06 Physio-Control Manufacturing Corporation Digital sliding pole fast-restore for an electrocardiograph display
WO1999037362A1 (en) 1998-01-27 1999-07-29 Vitatron Medical, B.V. System for inducing tachycardia utilizing near field t-wave sensing
US6148230A (en) 1998-01-30 2000-11-14 Uab Research Foundation Method for the monitoring and treatment of spontaneous cardiac arrhythmias
US6128531A (en) 1998-04-01 2000-10-03 Pacesetter, Inc. Delivery of ICD shock capacitor energy via a controlled current source
MY128127A (en) 1998-04-23 2007-01-31 Alza Corp Trocar for inserting implants
US6026325A (en) * 1998-06-18 2000-02-15 Pacesetter, Inc. Implantable medical device having an improved packaging system and method for making electrical connections
US6052617A (en) 1998-07-01 2000-04-18 Cardiac Pacemakers, Inc. System and method for reliably detecting atrial events of a heart using only atrial sensing
US6041251A (en) 1998-07-01 2000-03-21 Cardiac Pacemakers, Inc. System and method for detecting atrial events of a heart
US5991657A (en) 1998-08-06 1999-11-23 Cardiac Pacemakers, Inc. Atrial cardioverter with window based atrial tachyarrhythmia detection system and method
US6047210A (en) 1998-09-03 2000-04-04 Cardiac Pacemakers, Inc. Cardioverter and method for cardioverting an atrial tachyarrhythmia while maintaining atrial pacing
US6093173A (en) * 1998-09-09 2000-07-25 Embol-X, Inc. Introducer/dilator with balloon protection and methods of use
US6208895B1 (en) 1998-10-13 2001-03-27 Physio-Control Manufacturing Corporation Circuit for performing external pacing and biphasic defibrillation
EP1000634A1 (de) 1998-11-10 2000-05-17 Sulzer Osypka GmbH Stimulationselektrode sowohl zur Defibrillation als auch zum Pacen
US6266554B1 (en) 1999-02-12 2001-07-24 Cardiac Pacemakers, Inc. System and method for classifying cardiac complexes
US6308095B1 (en) 1999-02-12 2001-10-23 Cardiac Pacemakers, Inc. System and method for arrhythmia discrimination
SE9900682D0 (sv) 1999-02-25 1999-02-25 Pacesetter Ab Implantable tissue stimulating device
US6223078B1 (en) 1999-03-12 2001-04-24 Cardiac Pacemakers, Inc. Discrimination of supraventricular tachycardia and ventricular tachycardia events
US6312388B1 (en) * 1999-03-12 2001-11-06 Cardiac Pacemakers, Inc. Method and system for verifying the integrity of normal sinus rhythm templates
US6377844B1 (en) * 1999-03-13 2002-04-23 Dave Graen R-wave detector circuit for sensing cardiac signals
US6324421B1 (en) * 1999-03-29 2001-11-27 Medtronic, Inc. Axis shift analysis of electrocardiogram signal parameters especially applicable for multivector analysis by implantable medical devices, and use of same
US6266567B1 (en) * 1999-06-01 2001-07-24 Ball Semiconductor, Inc. Implantable epicardial electrode
US6334071B1 (en) 1999-06-07 2001-12-25 Pacesetter, Inc. Minute volume pacemakers that require only a single distal electrode
US6278894B1 (en) 1999-06-21 2001-08-21 Cardiac Pacemakers, Inc. Multi-site impedance sensor using coronary sinus/vein electrodes
US6493579B1 (en) 1999-08-20 2002-12-10 Cardiac Pacemakers, Inc. System and method for detection enhancement programming
US6411844B1 (en) * 1999-10-19 2002-06-25 Pacesetter, Inc. Fast recovery sensor amplifier circuit for implantable medical device
WO2001043649A1 (en) 1999-12-17 2001-06-21 Fogarty Thomas J Method and device for use in minimally invasive approximation of muscle and other tissue
US6516225B1 (en) * 1999-12-28 2003-02-04 Pacesetter, Inc. System and method for distinguishing electrical events originating in the atria from far-field electrical events originating in the ventricles as detected by an implantable medical device
WO2001056166A2 (de) 2000-01-28 2001-08-02 Infineon Technologies Ag Verfahren und analog-digital-wandler zur umsetzung einer analogen spannung in einen arithmetischen wert
US6567691B1 (en) * 2000-03-22 2003-05-20 Medtronic, Inc. Method and apparatus diagnosis and treatment of arrhythias
US6493584B1 (en) 2000-09-08 2002-12-10 Pacesetter, Inc. Implantable cardiac stimulation device and method which discriminates between noise and cardiac activity
US6865417B2 (en) 2001-11-05 2005-03-08 Cameron Health, Inc. H-bridge with sensing circuit
US6834204B2 (en) 2001-11-05 2004-12-21 Cameron Health, Inc. Method and apparatus for inducing defibrillation in a patient using a T-shock waveform
US6721597B1 (en) 2000-09-18 2004-04-13 Cameron Health, Inc. Subcutaneous only implantable cardioverter defibrillator and optional pacer
US6866044B2 (en) 2000-09-18 2005-03-15 Cameron Health, Inc. Method of insertion and implantation of implantable cardioverter-defibrillator canisters
US6788974B2 (en) 2000-09-18 2004-09-07 Cameron Health, Inc. Radian curve shaped implantable cardioverter-defibrillator canister
US6647292B1 (en) 2000-09-18 2003-11-11 Cameron Health Unitary subcutaneous only implantable cardioverter-defibrillator and optional pacer
US6754528B2 (en) 2001-11-21 2004-06-22 Cameraon Health, Inc. Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator
US6778860B2 (en) 2001-11-05 2004-08-17 Cameron Health, Inc. Switched capacitor defibrillation circuit
US6684100B1 (en) * 2000-10-31 2004-01-27 Cardiac Pacemakers, Inc. Curvature based method for selecting features from an electrophysiologic signals for purpose of complex identification and classification
US6804552B2 (en) 2000-11-03 2004-10-12 Medtronic, Inc. MEMs switching circuit and method for an implantable medical device
US7062315B2 (en) * 2000-11-28 2006-06-13 Medtronic, Inc. Automated template generation algorithm for implantable device
US6745068B2 (en) * 2000-11-28 2004-06-01 Medtronic, Inc. Automated template generation algorithm for implantable device
US6708058B2 (en) 2001-04-30 2004-03-16 Cardiac Pacemakers, Inc. Normal cardiac rhythm template generation system and method
US7113820B2 (en) * 2001-07-12 2006-09-26 The United States Of America As Represented By The Administration Of The National Aeronautics And Space Administration Real-time, high frequency QRS electrocardiograph
US6721602B2 (en) 2001-08-21 2004-04-13 Medtronic, Inc. Implantable medical device assembly and manufacturing method
US6708062B2 (en) 2001-10-30 2004-03-16 Medtronic, Inc. Pacemaker having adaptive arrhythmia detection windows
US6625490B1 (en) 2001-11-14 2003-09-23 Pacesetter, Inc. System and method of automatically adjusting sensing parameters based on temporal measurement of cardiac events
US7392085B2 (en) 2001-11-21 2008-06-24 Cameron Health, Inc. Multiple electrode vectors for implantable cardiac treatment devices
US7330757B2 (en) 2001-11-21 2008-02-12 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
US7248921B2 (en) 2003-06-02 2007-07-24 Cameron Health, Inc. Method and devices for performing cardiac waveform appraisal
WO2003047690A2 (en) * 2001-12-03 2003-06-12 Medtronic,Inc. Dual chamber method and apparatus for diagnosis and treatment of arrhythmias
US7184818B2 (en) 2002-03-25 2007-02-27 Cardiac Pacemakers, Inc. Method and system for characterizing a representative cardiac beat using multiple templates
US6889079B2 (en) 2002-04-12 2005-05-03 Cardiac Pacemakers, Inc. Method and system for characterizing supraventricular rhythm during cardiac pacing
US7027858B2 (en) * 2002-09-11 2006-04-11 Medtronic, Inc. Methods and apparatus for cardiac R-wave sensing in a subcutaneous ECG waveform
US7027856B2 (en) * 2002-09-30 2006-04-11 Medtronic, Inc. Method for determining a metric of non-sustained arrhythmia occurrence for use in arrhythmia prediction and automatic adjustment of arrhythmia detection parameters
US7085599B2 (en) 2002-10-23 2006-08-01 Cardiac Pacemakers, Inc. Characterization of supraventricular rhythm using collected cardiac beats
US7031764B2 (en) * 2002-11-08 2006-04-18 Cardiac Pacemakers, Inc. Cardiac rhythm management systems and methods using multiple morphology templates for discriminating between rhythms
US7191004B2 (en) 2002-12-31 2007-03-13 Cardiac Pacemakers, Inc. Capture verification using an evoked response reference
US7162301B2 (en) 2002-12-31 2007-01-09 Cardiac Pacemakers, Inc. Method and system for detecting capture with cancellation of pacing artifact
US7319900B2 (en) 2003-12-11 2008-01-15 Cardiac Pacemakers, Inc. Cardiac response classification using multiple classification windows
US8521284B2 (en) 2003-12-12 2013-08-27 Cardiac Pacemakers, Inc. Cardiac response classification using multisite sensing and pacing
US7353062B2 (en) 2003-12-24 2008-04-01 Cardiac Pacemakers, Inc. Post-shock recovery monitoring for tachyarrhythmia discrimination
US7184815B2 (en) 2004-02-26 2007-02-27 Cardiac Pacemakers, Inc. System and method for selection of morphology templates
US7706869B2 (en) 2004-04-16 2010-04-27 Medtronic, Inc. Automated template generation algorithm for implantable device
US7561911B2 (en) 2004-04-16 2009-07-14 Medtronic, Inc. Automated template generation algorithm for implantable device
US7894893B2 (en) 2004-09-30 2011-02-22 Cardiac Pacemakers, Inc. Arrhythmia classification and therapy selection
US7412282B2 (en) * 2005-01-26 2008-08-12 Medtronic, Inc. Algorithms for detecting cardiac arrhythmia and methods and apparatuses utilizing the algorithms

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505828B (zh) * 2006-08-23 2013-11-20 心脏起搏器股份公司 用于治疗作用的间歇性高能心脏刺激
US9162074B2 (en) 2008-03-07 2015-10-20 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US8626280B2 (en) 2008-03-07 2014-01-07 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US11413468B2 (en) 2008-03-07 2022-08-16 Cameron Health, Inc. Accurate cardiac event detection in an implantable cardiac stimulus device
US10974058B2 (en) 2008-03-07 2021-04-13 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US9339662B2 (en) 2008-03-07 2016-05-17 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US10220219B2 (en) 2008-03-07 2019-03-05 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US8929977B2 (en) 2008-03-07 2015-01-06 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US9878172B2 (en) 2008-03-07 2018-01-30 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US9802056B2 (en) 2008-03-07 2017-10-31 Cameron Health, Inc. Accurate cardiac event detection in an implantable cardiac stimulus device
US8588896B2 (en) 2008-03-07 2013-11-19 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
CN102083496B (zh) * 2008-05-07 2013-10-16 卡梅伦保健公司 用于对心搏进行准确分类的方法和设备
CN103285513A (zh) * 2008-05-07 2013-09-11 卡梅伦保健公司 用于对心搏进行准确分类的方法和设备
US8600489B2 (en) 2008-05-07 2013-12-03 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US9763619B2 (en) 2008-05-07 2017-09-19 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
CN103691061B (zh) * 2008-05-07 2015-08-12 卡梅伦保健公司 用于对心搏进行准确分类的方法和设备
CN103285513B (zh) * 2008-05-07 2015-05-06 卡梅伦保健公司 用于对心搏进行准确分类的方法和设备
US8880161B2 (en) 2008-05-07 2014-11-04 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US10709379B2 (en) 2008-05-07 2020-07-14 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US9265432B2 (en) 2008-05-07 2016-02-23 Cameron Health, Inc. Methods and devices for accurately classifying cardiac activity
US10758138B2 (en) 2014-08-14 2020-09-01 Cameron Health, Inc. Use of detection profiles in an implantable medical device
US9554714B2 (en) 2014-08-14 2017-01-31 Cameron Health Inc. Use of detection profiles in an implantable medical device

Also Published As

Publication number Publication date
US7991459B2 (en) 2011-08-02
JP2008521487A (ja) 2008-06-26
AU2005310008A1 (en) 2006-06-01
AU2005310008B2 (en) 2011-07-21
EP1827220B1 (en) 2018-11-28
WO2006057736A1 (en) 2006-06-01
US7376458B2 (en) 2008-05-20
US20080119748A1 (en) 2008-05-22
JP4745346B2 (ja) 2011-08-10
CN101065059B (zh) 2010-10-13
EP1827220A1 (en) 2007-09-05
US20060116595A1 (en) 2006-06-01
CA2587856C (en) 2016-11-15
CA2587856A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
CN101065059A (zh) 可植入心脏装置中的信号模板
CN1829553A (zh) 用于进行心脏波形评估的方法和装置
CN101102812B (zh) 用于心跳校准和比较的方法和设备
US8428697B2 (en) “Blurred template” approach for arrhythmia detection
Meyer et al. Combining algorithms in automatic detection of QRS complexes in ECG signals
JP2008521487A5 (zh)
JP5656293B2 (ja) 埋め込み型心臓刺激(ics)システム
US8521276B2 (en) Use of significant point methodology to prevent inappropriate therapy
US20040193065A1 (en) Biomedical signal denoising techniques
JP2008521486A5 (zh)
EP2713866B1 (en) Classification of atrial fibrillation by determining an af complexity value
CN106725420A (zh) 室性早搏识别方法及室性早搏识别系统
WO2017150156A1 (ja) 心拍検出方法および心拍検出装置
JP6360017B2 (ja) 心拍検出方法および心拍検出装置
Nonaka et al. Electrocardiogram classification by modified EfficientNet with data augmentation
CN1180746C (zh) 心电频谱图检测仪
CN108836312B (zh) 一种基于人工智能的进行杂波剔除的方法及系统
Ismail et al. Validating the reliability of five ventricular fibrillation detecting algorithms
CN111685754B (zh) 针对可穿戴ecg采集设备的心率计算方法及系统
CN109800722B (zh) 医用设备无线通信平台
KR101841716B1 (ko) Svm을 이용하여 쇼크 가능한 리듬과 쇼크불가능한 리듬을 분류하는 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: American Minnesota

Patentee after: Cameron Health Inc.

Address before: American California

Patentee before: Cameron Health Inc.