CN101065811B - 制造隧穿纳米管场效应晶体管的方法 - Google Patents

制造隧穿纳米管场效应晶体管的方法 Download PDF

Info

Publication number
CN101065811B
CN101065811B CN2005800165130A CN200580016513A CN101065811B CN 101065811 B CN101065811 B CN 101065811B CN 2005800165130 A CN2005800165130 A CN 2005800165130A CN 200580016513 A CN200580016513 A CN 200580016513A CN 101065811 B CN101065811 B CN 101065811B
Authority
CN
China
Prior art keywords
transistor
drain
nanotube
source region
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2005800165130A
Other languages
English (en)
Other versions
CN101065811A (zh
Inventor
J·阿彭策勒
J·克诺赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
International Business Machines Corp
Original Assignee
Forschungszentrum Juelich GmbH
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, International Business Machines Corp filed Critical Forschungszentrum Juelich GmbH
Publication of CN101065811A publication Critical patent/CN101065811A/zh
Application granted granted Critical
Publication of CN101065811B publication Critical patent/CN101065811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/486Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising two or more active layers, e.g. forming pn heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • Y10S977/749Modified with dissimilar atoms or molecules substituted for carbon atoms of the cnt, e.g. impurity doping or compositional substitution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/755Nanosheet or quantum barrier/well, i.e. layer structure having one dimension or thickness of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/815Group III-V based compounds, e.g. AlaGabIncNxPyAsz
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/855Manufacture, treatment, or detection of nanostructure with scanning probe for manufacture of nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region

Abstract

一种制造隧穿纳米管场效应晶体管的方法,包括在纳米管中形成被所述晶体管的未掺杂沟道区分隔的n掺杂区和p掺杂区。为所述掺杂区和栅电极提供电接触,所述栅电极形成在沉积于所述晶体管的至少部分所述沟道区上的栅极介质层上。

Description

制造隧穿纳米管场效应晶体管的方法
技术领域
本发明一般涉及在半导体衬底上制造器件的方法。更具体地说,本发明涉及在半导体衬底上制造隧穿纳米管场效应晶体管的方法。
背景技术
通常,在半导体衬底上制造微电子器件作为集成电路。互补金属氧化物半导体(CMOS)场效应晶体管是集成电路中的核心元件之一。为了获得集成电路的更高性能和封装密度,COMS晶体管的大小和工作电压连续减小或按比例减小。尤其是,在这类晶体管中阈值电压Vth(即为使晶体管开通所需的电压)减小。
可以通过本领域中被称为反亚阈值斜率(inverse sub-threshold slope)的参数,说明CMOS晶体管的开关特性,该反亚阈值斜率测量将经过器件的电流改变一个数量级所需的栅极电压。在常规CMOS晶体管中,反亚阈值斜率约为60mV/十(decade),且为了降低阈值电压Vth,需要减小晶体管的开通和关断状态下输出电流之间的差异。过小的开通/关断电流比会阻止包括这些晶体管的数字电路的正常工作,因此被视为是最终缩放器件中的主要挑战之一。
由此,本领域中需要一种制造场效应晶体管的改进方法。
发明内容
在一个实施例中,本发明公开了一种制造隧穿纳米管场效应晶体管的方法。所述方法包括在纳米管(或纳米线,即没有轴向开口的纳米管)中形成被所述晶体管中的未掺杂沟道区分隔的n掺杂区和p掺杂区。为所述掺杂区和栅电极提供电接触,所述栅电极形成在沉积于所述晶体管的沟道区上的栅极介质层上。
本发明的另一方面是一种使用本发明的方法制造的隧穿纳米管场效应晶体管。该晶体管可以用作n型晶体管器件或p型晶体管器件。
附图说明
通过结合附图考虑下面的详细说明,可以容易地理解本发明的内容,其中:
图1示出了根据本发明一个实施例制造隧穿纳米管场效应晶体管的方法的流程图;
图2示出了使用图1的方法所制造的示例性隧穿纳米管场效应晶体管的示意图;
图3示出了将图2的晶体管用作p型晶体管器件的示例性电路结构;
图4示出了将图2的晶体管用作n型晶体管器件的示例性电路结构;
图5示出了示例性曲线图,示例了图2的晶体管的纳米管材料中导带和价带分布;以及
图6-8示出了示例性曲线图,示例了图2的晶体管的特性。
为了便于理解,只要有可能,使用相同的参考标号表示各图共用的相同的元件。
然而,应注意,附图仅仅示例了本发明的示例性实施例,因此不被认为限制本发明的范围,因为本发明允许其它等效的实施例。
具体实施方式
本发明是一种使用纳米管的选择性掺杂部分来制造隧穿纳米管场效应晶体管的方法。这里,术语“纳米管”可互换地用于纳米管和纳米线(即没有轴向开口的纳米管)。该方法可以用于制造超大规模集成(ULSI)电路和器件。
图1示出了作为方法100的制造隧穿纳米管场效应晶体管的本发明方法的一个实施例的流程图。该方法100包括在衬底上进行的处理步骤,在其中制造至少一个隧穿纳米管场效应晶体管。在一个示例性实施例中,按照所示出的次序顺序进行这些处理步骤。在可选实施例中,可以同时或按照不同的次序,进行至少两个处理步骤。常规子工艺例如光刻掩模或牺牲和保护层的施加和去除、清洁工艺等是本领域公知的,在图1中没有示出。
图2示出了使用图1的方法所制造的示例性隧穿纳米管场效应晶体管200的示意图。为了示例的目的,图2中的图形并没有按照比例绘制,且进行了简化。为了最好地理解发明,读者应同时参考图1和图2。
方法100始于步骤101,进而进行步骤102。在步骤102,在例如硅(Si)或玻璃晶片等的衬底(未示出)上,形成具有半导体特性的纳米管202。使用这样的纳米管可以获得最好的效果,在所述纳米管中,电荷载流子(即电子和空穴)具有最小和相似的有效质量(例如,小于约0.1m0,其中m0是自由电子质量)以及最小的截面尺寸,并便于电荷转移的弹道机制。在例如共同指定的于2002年3月20日提交的美国专利申请序列号10/102,365中公开了适于形成这种纳米管的方法,这里引入其内容作为参考。在一个示例性实施例中,纳米管202是其外径214不大于约5nm(优选地,从约1至3nm或更小)且其长度216为约25至1000nm的碳(C)纳米管。在可选实施例中,可以使用由其它材料(例如,硅或化合物半导体,例如砷化镓(GaAs)、磷化铟(InP)、砷化铟镓(InGaAs)等)构成的半导体纳米管制造晶体管200。
在步骤104,在纳米管202的中心区222内形成栅极介质层204。该区222可具有从5至200nm范围内的长度218,且代表所制造的晶体管200的本征沟道区。在一个示例性实施例中,栅极介质层204包括二氧化硅(SiO2),且形成为约1至5nm的厚度。可选地,栅极介质层204可以由高介电常数(高k)材料,例如氧化铝(Al2O3)、二氧化铪(HfO2)等形成。在所示出的实施例中,栅极介质层204在整个中心区222内形成,且包裹(wrap)纳米管202。
在步骤106,在栅极介质层204上形成栅电极206。通常,栅电极206具有5至50nm的厚度,且可包括金属、金属合金或导电化合物中的至少一种。栅电极206的合适材料具有高电导率,并与栅极介质层204的材料和用于电布线(例如,铜(Cu)布线)的材料兼容,其中所述电布线将所制造的晶体管200与外部集成电路和器件互连(下面参考图3-4讨论)。在一个示例性实施例中,栅电极206由钛(Ti)形成。
栅极介质层204和栅电极206可以使用常规真空沉积技术,例如原子层沉积(ALD)、物理气相沉积(PVD)、化学气相沉积(CVD)、等离子体增强CVD(PECVD)、蒸发等形成。
在步骤108,通过使用至少一种n型掺杂剂选择性地掺杂区域220,在邻近沟道区222的纳米管202中形成第一漏极/源极区220。在一个示例性实施例中,第一漏极/源极区220的长度230为约10至400nm。在所示出的实施例中,第一漏极/源极区220从沟道区222延伸至纳米管202的第一端234。在可选实施例中,纳米管202的末梢部分236可以不被掺杂。合适的n型掺杂剂包括电子施主,例如钾(K)、钠(Na)、聚氮丙啶分子等,其中聚氮丙啶分子是聚合物,且在该意义上是分子长链。在纳米管的部分220被n掺杂时,可以通过例如使用抗蚀剂层、掩蔽层等保护纳米管的其它部分,以防止对纳米管的其它区域的掺杂。
在步骤110,通过使用至少一种p型掺杂剂选择性地掺杂区域224,在邻近沟道区222的纳米管202中形成第二漏极/源极区224。在一个示例性实施例中,第二漏极/源极区224的长度232为约10至400nm。在所示出的实施例中,第二漏极/源极区224从沟道区222延伸至纳米管202的第二端238。在可选实施例中,纳米管202的末梢部分240可以不被掺杂。合适的p型掺杂剂包括空穴施主,例如氯(Cl2)、溴(Br2)等。并且,在纳米管的部分224被p掺杂时,可以通过例如使用抗蚀剂层、掩蔽层等保护纳米管的其它部分,以防止对纳米管的其它区域的掺杂。
可以使用金属/分子沉积工艺,进行对第一漏极/源极区220和第二漏极/源极区224的选择性掺杂。掺杂剂通常是具有不同的电子或空穴亲和力的材料。在p和n型沉积工艺中,可以利用从各自的掺杂剂向纳米管的电荷转移,在区域220和224中掺杂纳米管202。
在步骤112,分别在第一漏极/源极区220、栅电极206和第二漏极/源极区224上,形成电接触208、210和212。接触208、210和212作为端子,以将晶体管200连接到外部集成电路和器件。在可选实施例中,栅电极206可以用作接触,因此,接触210是可选的。接触208、210和212可以由与各自下伏的和上覆的材料层兼容的至少一种导电材料(例如,金属、金属合金或导电化合物)形成。n接触(接触208)材料的功函数应小于p接触(接触212)材料的功函数。在一个示例性实施例中,使用常规真空沉积技术,由铝(Al)和钯(Pb)分别形成接触208和212,并由钛(Ti)形成接触210。
一旦步骤112完成,隧穿纳米管场效应晶体管200的制造完成。在步骤114,方法100结束。
在集成电路中,隧穿纳米场效应晶体管200可以用作n型晶体管器件或p型晶体管器件。
图3示出了将晶体管200用作p型晶体管器件的示例性电路结构300。在一个实施例中,电路结构300包括晶体管200、耦合到接触208的地电势或公共电势(即接地端子)的源302、耦合到接触212的漏极电压Vds源304和耦合到接触210的栅极电压Vgs源306。工作中,源304和306分别对接触212和210施加控制正电势(即负电压),而电压Vds和Vgs等于或小于(即负电压)地电势。
图4示出了将晶体管200用作n型晶体管器件的示例性电路结构400。在一个实施例中,电路结构400包括晶体管200、耦合到接触212的地电势源302、耦合到接触208的漏极电压Vds源404和耦合到接触210的栅极电压Vgs源406。工作中,源404和406分别对接触208和210施加控制负电势(即正电压),而电压Vds和Vgs等于或大于(即正电压)地电势。
图5示出了一系列的示例性曲线图,示例了晶体管200的纳米管材料中导带和价带分布(y轴502)对沿碳纳米管202的距离(x轴504)的依赖性。在所示出的实施例中,晶体管200包括其各自长度230和232约为10nm的第一和第二漏极/源极区220和224以及其长度218约为30nm的沟道区222。所示出的导带和价带曲线图涉及电路结构300,其中在对接触212施加的漏极电压Vds=-0.1V下,且在从-0.2至-0.5V范围的栅极电压Vgs下,晶体管200用作p型器件。当第一漏极/源极区220中导带的下边界508位于晶体管的沟道区222中价带的上边界510之下时,晶体管200中电荷载流子的有效量子力学隧穿(即穿过晶体管的电荷载流子流)是可能的,由此在导带和价带之间形成了电势或垂直间隙512。如箭头506所示,在碳纳米管202中,在栅极电压Vgs≤-0.3V(例如在Vgs=-0.5V),价带和导带之间存在这样的有效隧穿。相应地,在Vgs>-0.3V(例如在Vgs=-0.2V),价带和导带之间没有这样的间隙和有效隧穿。工作中,在Vgs≤-0.3V,p型晶体管200断定为开通(导通)态,相应地,在Vgs>-0.3V,晶体管断定为关断(非导通)态。
图6示出了一系列的示例性曲线图,示例了输出电流Id(y轴602)对其SiO2栅极介质层204的厚度tox在3至30nm范围内的示例性p型晶体管200的栅极电压Vgs(x轴604)的依赖性。这些曲线图可以用于计算晶体管200的反亚阈值斜率S~dVgs/dlog(Id)。反亚阈值斜率S量度晶体管的开关特性,并确定使晶体管的输出电流Id变化一个数量级(例如,10)的栅极电压Vgs的差异。在其SiO2栅极介质层204的厚度tox=3nm的晶体管200中,对于在0.1pA至0.1nA范围内的输出电流Id,反亚阈值斜率S约为16mV/十,而对于在1pA至1nA范围内的输出电流Id,反亚阈值斜率S约为27mV/十。因此,晶体管200显著胜过其反亚阈值斜率S~60mV/十的常规互补金属氧化物半导体(CMOS)场效应晶体管,同时其在与COMS晶体管相同的栅极电压Vgs下工作。
图7示出了一系列的示例性曲线图,示例了输出电流Id(y轴702)对在-0.1至-0.4V范围内的漏极电压Vds下其厚度tox=3nm的图6的示例性p型晶体管200的栅极电压Vgs(x轴704)的依赖性。与其它p型晶体管器件相同,晶体管200的特性保持不变,且在负栅极电压Vgs下没有出现漏极感应势垒下降类(DIBL类)效应。
图8示出了一系列的示例性曲线图,示例了图2的p型晶体管200的输出特性。更具体地说,图8中的曲线示出了在-0.4至-0.7V范围内的栅极电压Vgs下,输出电流Id(y轴802)对漏极电压Vds(x轴804)的依赖性。晶体管200的输出特性具有在小的漏极电压Vds下的线性区806和在大的漏极电压下的饱和区808。
本发明的隧穿纳米管场效应晶体管具有有利的用于集成电路的特性结合:与低的反亚阈值斜率S结合的小占用面积(footprint)和最小的功率消耗,在漏极电压的宽范围内,该反亚阈值斜率S与漏极电压无关,且在低阈值电压和低栅极和漏极电压下可以实现。并且,隧穿纳米管场效应晶体管具有可与CMOS晶体管的兼容的输出特性,因此,可以与COMS晶体管一起或作为COMS晶体管的替代来用于集成电路中。
虽然上述内容旨在本发明的示例性实施例,但只要不偏离本发明的基本范围,可以对本发明的其它和更进一步的实施例进行修改,并且本发明的范围由下面的权利要求书确定。

Claims (30)

1.一种制造隧穿纳米管场效应晶体管的方法,包括:
提供具有半导体特性的纳米管;
在所述纳米管中限定所述晶体管的沟道区、第一漏极/源极区和第二漏极/源极区,所述第一漏极/源极区邻近所述沟道区的第一端,且所述第二漏极/源极区邻近所述沟道区的第二端;
在所述沟道区上形成栅极介质层;
在所述栅极介质层上形成栅电极;
使用n型掺杂剂选择性地掺杂所述第一漏极/源极区;
使用p型掺杂剂选择性地掺杂所述第二漏极/源极区;以及
在所述栅电极和所述漏极/源极区的每一者上形成至少一个电接触。
2.根据权利要求1的方法,其中所述纳米管没有轴向开口。
3.根据权利要求1的方法,其中所述纳米管是碳纳米管、硅纳米管和包括化合物半导体的纳米管中的一种。
4.根据权利要求3的方法,其中所述化合物半导体是砷化镓、磷化铟和砷化铟镓中的一种。
5.根据权利要求1的方法,其中所述纳米管的外径小于5nm。
6.根据权利要求1的方法,其中掺杂便于在所述沟道区中电荷载流子的有效量子力学隧穿。
7.根据权利要求1的方法,其中所述n型掺杂剂包括钾、钠和聚氮丙啶分子中的至少一种。
8.根据权利要求1的方法,其中所述p型掺杂剂包括氯和溴中的至少一种。
9.根据权利要求1的方法,其中使用金属/分子沉积工艺进行掺杂。
10.根据权利要求1的方法,其中所述栅极介质层由厚度为1至10nm的SiO2、HfO2和Al2O3中的至少一种形成。
11.根据权利要求1的方法,其中所述栅电极由金属、金属合金或导电化合物中的至少一种形成。
12.根据权利要求1的方法,其中至少一个电接触由金属、金属合金或导电化合物中的至少一种形成。
13.根据权利要求1的方法,其中使用真空沉积工艺形成所述栅极介质层、栅电极和至少一个电接触。
14.一种隧穿纳米管场效应晶体管,包括:
沟道区,限定在纳米管中,所述沟道区具有半导体特性;
栅极介质层,形成在所述沟道区上;
栅电极,形成在所述栅极介质层上;
第一漏极/源极区,形成在邻近所述沟道区的第一端的所述纳米管中,所述第一漏极/源极区被使用n型掺杂剂选择性地掺杂;
第二漏极/源极区,形成在邻近所述沟道区的第二端的所述纳米管中,所述第二漏极/源极区被使用p型掺杂剂选择性地掺杂;以及
在所述栅电极和所述漏极/源极区的每一者上的至少一个电接触。
15.根据权利要求14的晶体管,其中所述第一漏极/源极区耦合到地电势源,所述第二漏极/源极区耦合到漏极电压源,且所述栅电极耦合到栅极电压源,由此形成p型晶体管器件。
16.根据权利要求15的晶体管,其中在所述第二漏极/源极区和栅电极处的电压都等于或小于所述地电势。
17.根据权利要求14的晶体管,其中所述第二漏极/源极区耦合到地电势源,所述第一漏极/源极区耦合到漏极电压源,且所述栅电极耦合到栅极电压源,由此形成n型晶体管器件。
18.根据权利要求17的晶体管,其中在所述第一漏极/源极区和栅电极处的电压都等于或大于所述地电势。
19.根据权利要求14的晶体管,其中所述纳米管没有轴向开口。
20.根据权利要求14的晶体管,其中所述纳米管是碳纳米管、硅纳米管和包括化合物半导体的纳米管中的一种。
21.根据权利要求20的晶体管,其中所述化合物半导体是砷化镓、磷化铟和砷化铟镓中的一种。
22.根据权利要求14的晶体管,其中所述纳米管的外径小于5nm。
23.根据权利要求14的晶体管,其中掺杂便于在所述沟道区中电荷载流子的有效量子力学隧穿。
24.根据权利要求14的晶体管,其中所述n型掺杂剂包括钾、钠和聚氮丙啶分子中的至少一种。
25.根据权利要求14的晶体管,其中所述p型掺杂剂包括氯和溴中的至少一种。
26.根据权利要求14的晶体管,其中使用金属/分子沉积工艺进行掺杂。
27.根据权利要求14的晶体管,其中所述栅极介质层由厚度为1至10nm的SiO2、HfO2和Al2O3中的至少一种形成。
28.根据权利要求14的晶体管,其中所述栅电极由金属、金属合金或导电化合物中的至少一种形成。
29.根据权利要求14的晶体管,其中所述至少一个电接触由金属、金属合金或导电化合物中的至少一种形成。
30.根据权利要求14的晶体管,其中使用真空沉积工艺形成所述栅极介质层、栅电极和所述至少一个电接触。
CN2005800165130A 2004-05-25 2005-05-24 制造隧穿纳米管场效应晶体管的方法 Active CN101065811B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/852,891 2004-05-25
US10/852,891 US7180107B2 (en) 2004-05-25 2004-05-25 Method of fabricating a tunneling nanotube field effect transistor
PCT/US2005/018201 WO2006073477A2 (en) 2004-05-25 2005-05-24 Method of fabricating a tunneling nanotube field effect transistor

Publications (2)

Publication Number Publication Date
CN101065811A CN101065811A (zh) 2007-10-31
CN101065811B true CN101065811B (zh) 2011-03-30

Family

ID=35459605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800165130A Active CN101065811B (zh) 2004-05-25 2005-05-24 制造隧穿纳米管场效应晶体管的方法

Country Status (6)

Country Link
US (1) US7180107B2 (zh)
EP (1) EP1754262B1 (zh)
JP (1) JP5263755B2 (zh)
CN (1) CN101065811B (zh)
TW (1) TWI339852B (zh)
WO (1) WO2006073477A2 (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0415891D0 (en) * 2004-07-16 2004-08-18 Koninkl Philips Electronics Nv Nanoscale fet
KR101025846B1 (ko) * 2004-09-13 2011-03-30 삼성전자주식회사 탄소나노튜브 채널을 포함하는 반도체 장치의 트랜지스터
WO2006077585A2 (en) * 2005-01-18 2006-07-27 Shye Shapira Apparatus and method for control of tunneling in a small-scale electronic structure
KR100682925B1 (ko) * 2005-01-26 2007-02-15 삼성전자주식회사 멀티비트 비휘발성 메모리 소자 및 그 동작 방법
DE102005046427B4 (de) * 2005-09-28 2010-09-23 Infineon Technologies Ag Leistungstransistor mit parallelgeschalteten Nanodrähten
US7492015B2 (en) * 2005-11-10 2009-02-17 International Business Machines Corporation Complementary carbon nanotube triple gate technology
EP1979946B1 (en) * 2006-01-25 2011-10-19 Nxp B.V. Nanowire tunneling transistor
WO2007099642A1 (ja) * 2006-03-03 2007-09-07 Fujitsu Limited カーボンナノチューブを用いた電界効果トランジスタとその製造方法及びセンサ
CN100435351C (zh) * 2006-04-28 2008-11-19 北京芯技佳易微电子科技有限公司 利用偶极效应调制纳米级场效应晶体管的输运特性的方法
EP1901355B1 (en) * 2006-09-15 2015-11-11 Imec Tunnel effect transistors based on monocrystalline nanowires having a heterostructure
US7893476B2 (en) * 2006-09-15 2011-02-22 Imec Tunnel effect transistors based on silicon nanowires
JP5171161B2 (ja) * 2006-09-15 2013-03-27 アイメック ナノワイヤトンネル電界効果トランジスタ半導体装置およびその製造方法
EP1901354B1 (en) 2006-09-15 2016-08-24 Imec A tunnel field-effect transistor with gated tunnel barrier
EP1900681B1 (en) 2006-09-15 2017-03-15 Imec Tunnel Field-Effect Transistors based on silicon nanowires
JP2008252086A (ja) 2007-03-12 2008-10-16 Interuniv Micro Electronica Centrum Vzw ゲートトンネル障壁を持つトンネル電界効果トランジスタ
WO2008157509A2 (en) * 2007-06-14 2008-12-24 University Of Florida Research Foundation, Inc. Room temperature carbon nanotubes integrated on cmos
WO2009042218A1 (en) * 2007-09-27 2009-04-02 University Of Maryland Lateral two-terminal nanotube devices and method for their formation
US8043978B2 (en) * 2007-10-11 2011-10-25 Riken Electronic device and method for producing electronic device
EP2161755A1 (en) * 2008-09-05 2010-03-10 University College Cork-National University of Ireland, Cork Junctionless Metal-Oxide-Semiconductor Transistor
US8912522B2 (en) * 2009-08-26 2014-12-16 University Of Maryland Nanodevice arrays for electrical energy storage, capture and management and method for their formation
US10032569B2 (en) * 2009-08-26 2018-07-24 University Of Maryland, College Park Nanodevice arrays for electrical energy storage, capture and management and method for their formation
US8288803B2 (en) * 2009-08-31 2012-10-16 International Business Machines Corporation Tunnel field effect devices
JP5652827B2 (ja) 2009-09-30 2015-01-14 国立大学法人北海道大学 トンネル電界効果トランジスタおよびその製造方法
US8384065B2 (en) * 2009-12-04 2013-02-26 International Business Machines Corporation Gate-all-around nanowire field effect transistors
US8173993B2 (en) * 2009-12-04 2012-05-08 International Business Machines Corporation Gate-all-around nanowire tunnel field effect transistors
US8129247B2 (en) * 2009-12-04 2012-03-06 International Business Machines Corporation Omega shaped nanowire field effect transistors
US8143113B2 (en) 2009-12-04 2012-03-27 International Business Machines Corporation Omega shaped nanowire tunnel field effect transistors fabrication
US8097515B2 (en) * 2009-12-04 2012-01-17 International Business Machines Corporation Self-aligned contacts for nanowire field effect transistors
US8455334B2 (en) * 2009-12-04 2013-06-04 International Business Machines Corporation Planar and nanowire field effect transistors
US20120248417A1 (en) * 2009-12-21 2012-10-04 Imec Double gate nanostructure fet
US8722492B2 (en) * 2010-01-08 2014-05-13 International Business Machines Corporation Nanowire pin tunnel field effect devices
CN101777499B (zh) 2010-01-22 2011-08-24 北京大学 一种基于平面工艺自对准制备隧穿场效应晶体管的方法
US8324940B2 (en) 2010-04-13 2012-12-04 International Business Machines Corporation Nanowire circuits in matched devices
US8361907B2 (en) 2010-05-10 2013-01-29 International Business Machines Corporation Directionally etched nanowire field effect transistors
US8324030B2 (en) 2010-05-12 2012-12-04 International Business Machines Corporation Nanowire tunnel field effect transistors
US8445320B2 (en) * 2010-05-20 2013-05-21 International Business Machines Corporation Graphene channel-based devices and methods for fabrication thereof
US8835231B2 (en) 2010-08-16 2014-09-16 International Business Machines Corporation Methods of forming contacts for nanowire field effect transistors
US8536563B2 (en) 2010-09-17 2013-09-17 International Business Machines Corporation Nanowire field effect transistors
KR101733050B1 (ko) * 2010-11-22 2017-05-08 삼성전자주식회사 3개의 단자를 갖는 공진기 및 그 제조 방법
CN102683209B (zh) * 2011-03-18 2015-01-21 中国科学院微电子研究所 一种半导体器件及其制造方法
CN103094347B (zh) * 2013-01-11 2015-09-02 南京邮电大学 一种双材料欠叠异质栅结构的碳纳米管场效应管
CN103247688B (zh) * 2013-04-22 2016-08-17 南京邮电大学 一种双材料栅线性掺杂的石墨烯场效应管
US8975123B2 (en) 2013-07-09 2015-03-10 International Business Machines Corporation Tunnel field-effect transistors with a gate-swing broken-gap heterostructure
US9203041B2 (en) * 2014-01-31 2015-12-01 International Business Machines Corporation Carbon nanotube transistor having extended contacts
CN105097904B (zh) * 2014-05-05 2019-01-25 中芯国际集成电路制造(上海)有限公司 隧穿碳纳米管场效应晶体管及其制造方法
CN105097913B (zh) * 2014-05-05 2018-12-04 中芯国际集成电路制造(上海)有限公司 场效应晶体管及其制造方法
KR102154185B1 (ko) 2014-09-19 2020-09-09 삼성전자 주식회사 반도체 소자
CN105990147B (zh) * 2015-02-27 2019-01-22 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制作方法和电子装置
CN106601738B (zh) * 2015-10-15 2018-08-24 上海新昇半导体科技有限公司 互补场效应晶体管及其制备方法
JP6730598B2 (ja) * 2016-07-19 2020-07-29 富士通株式会社 半導体装置
US10170702B2 (en) 2017-01-12 2019-01-01 International Business Machines Corporation Intermetallic contact for carbon nanotube FETs
JP6773615B2 (ja) * 2017-08-21 2020-10-21 日本電信電話株式会社 ナノワイヤトランジスタの製造方法
US10818785B2 (en) * 2017-12-04 2020-10-27 Ecole Polytechnique Federale De Lausanne (Epfl) Sensing device for sensing minor charge variations
CN108598170B (zh) * 2018-05-24 2022-07-08 厦门半导体工业技术研发有限公司 纳米线晶体管及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331262B1 (en) * 1998-10-02 2001-12-18 University Of Kentucky Research Foundation Method of solubilizing shortened single-walled carbon nanotubes in organic solutions
CN1383213A (zh) * 2002-06-13 2002-12-04 上海交通大学 纳米金属氧化线单电子晶体管

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US130333A (en) * 1872-08-06 Improvement in machines for glazing and polishing saw-blades
JPS5754370A (en) * 1980-09-19 1982-03-31 Nippon Telegr & Teleph Corp <Ntt> Insulating gate type transistor
JP2773474B2 (ja) * 1991-08-06 1998-07-09 日本電気株式会社 半導体装置
JP3393237B2 (ja) 1994-10-04 2003-04-07 ソニー株式会社 半導体装置の製造方法
WO2002003482A1 (de) * 2000-07-04 2002-01-10 Infineon Technologies Ag Feldeffekttransistor
JP2002026154A (ja) * 2000-07-11 2002-01-25 Sanyo Electric Co Ltd 半導体メモリおよび半導体装置
US6515339B2 (en) * 2000-07-18 2003-02-04 Lg Electronics Inc. Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method
US6524920B1 (en) * 2001-02-09 2003-02-25 Advanced Micro Devices, Inc. Low temperature process for a transistor with elevated source and drain
JP3731486B2 (ja) 2001-03-16 2006-01-05 富士ゼロックス株式会社 トランジスタ
JP2003017508A (ja) * 2001-07-05 2003-01-17 Nec Corp 電界効果トランジスタ
JP4920872B2 (ja) 2002-03-28 2012-04-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ナノワイヤの製造方法
JP4974263B2 (ja) * 2002-05-20 2012-07-11 富士通株式会社 半導体装置の製造方法
JP2004055649A (ja) * 2002-07-17 2004-02-19 Konica Minolta Holdings Inc 有機薄膜トランジスタ及びその製造方法
US7115916B2 (en) * 2002-09-26 2006-10-03 International Business Machines Corporation System and method for molecular optical emission
CA2499950A1 (en) * 2002-09-30 2004-04-15 Nanosys, Inc. Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
US6933222B2 (en) * 2003-01-02 2005-08-23 Intel Corporation Microcircuit fabrication and interconnection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331262B1 (en) * 1998-10-02 2001-12-18 University Of Kentucky Research Foundation Method of solubilizing shortened single-walled carbon nanotubes in organic solutions
CN1383213A (zh) * 2002-06-13 2002-12-04 上海交通大学 纳米金属氧化线单电子晶体管

Also Published As

Publication number Publication date
WO2006073477A3 (en) 2007-01-25
JP5263755B2 (ja) 2013-08-14
EP1754262A4 (en) 2012-03-14
TWI339852B (en) 2011-04-01
WO2006073477A2 (en) 2006-07-13
EP1754262A2 (en) 2007-02-21
US7180107B2 (en) 2007-02-20
CN101065811A (zh) 2007-10-31
TW200603228A (en) 2006-01-16
JP2008500735A (ja) 2008-01-10
EP1754262B1 (en) 2015-04-08
US20050274992A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
CN101065811B (zh) 制造隧穿纳米管场效应晶体管的方法
US8404545B2 (en) Tunnel field-effect transistor with gated tunnel barrier
US8629428B2 (en) Line-tunneling tunnel field-effect transistor (TFET) and manufacturing method
US8148220B2 (en) Tunnel effect transistors based on elongate monocrystalline nanostructures having a heterostructure
US8900935B2 (en) Deposition on a nanowire using atomic layer deposition
EP1901354B1 (en) A tunnel field-effect transistor with gated tunnel barrier
US9564514B2 (en) Reducing direct source-to-drain tunneling in field effect transistors with low effective mass channels
JP5171161B2 (ja) ナノワイヤトンネル電界効果トランジスタ半導体装置およびその製造方法
US8288803B2 (en) Tunnel field effect devices
US10381586B2 (en) Carbon nanotube field-effect transistor with sidewall-protected metal contacts
US20080169472A1 (en) Field effect transistor
Liu et al. Vertical heterojunction Ge0. 92Sn0. 08/Ge gate-all-around nanowire pMOSFETs with NiGeSn contact
EP1901355B1 (en) Tunnel effect transistors based on monocrystalline nanowires having a heterostructure
CN100521239C (zh) 具有隔离层的半导体器件
US20220173230A1 (en) Bipolar junction transistor (bjt) structure and related method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant