CN101116007A - 自校准枪械估算 - Google Patents

自校准枪械估算 Download PDF

Info

Publication number
CN101116007A
CN101116007A CNA2005800353981A CN200580035398A CN101116007A CN 101116007 A CN101116007 A CN 101116007A CN A2005800353981 A CNA2005800353981 A CN A2005800353981A CN 200580035398 A CN200580035398 A CN 200580035398A CN 101116007 A CN101116007 A CN 101116007A
Authority
CN
China
Prior art keywords
sensor
time
sensors
relative
shockwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800353981A
Other languages
English (en)
Other versions
CN101116007B (zh
Inventor
M·S·布林
J·E·巴杰
S·D·米利根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon BBN Technologies Corp
Original Assignee
BBN Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBN Technologies Corp filed Critical BBN Technologies Corp
Publication of CN101116007A publication Critical patent/CN101116007A/zh
Application granted granted Critical
Publication of CN101116007B publication Critical patent/CN101116007B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/22Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/06Acoustic hit-indicating systems, i.e. detecting of shock waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/906Airborne shock-wave detection

Abstract

估算枪械位置和射击弹道的冲击波仅有的解决方案对冲击到达时间(TOA)测量的质量和精度以及已知空间中相对传感器位置的准确度都极为敏感。在长期部署系统的使用寿命期间,传感器位置会偏移,并且一些传感器的性能会因各种原因而下降。这种变化会降低所部署的枪械估算系统的性能。所公开的系统和方法可用于基于从已知位置和已知方向发射的一系列射击所处理的冲击和枪口测量来校准传感器位置,以及一种方法用于动态适配冲击仅有的枪械估算算法来补偿传感器退化和/或损失。

Description

自校准枪械估算
技术领域
本发明涉及法律实施技术和安全,更具体地说,涉及基于冲击波仅有的信息估算发射超音速射弹的枪械位置的方法和系统。
背景技术
通过测量与射弹产生的冲击波相关联的参数来确定超音速射弹如子弹和炮弹的一般方向和弹道的系统和方法已为人所知。在美国专利No.5,930,202中说明的一个这种系统,使用分布式阵列的声传感器来检测射弹冲击波以及来自枪炮的枪口爆炸的到达时间、振幅和频率特性。冲击波的到达时间(TOA)信息可用来确定射弹的弹道:方位角、仰角以及和系统坐标系中任意平面的相交。用来自枪口爆炸的附加信息,就可确定射弹起点的精确位置以及到射弹起点的方位线。当枪口爆炸被掩蔽、遮盖、消音或有其它失真,至少子弹弹道可仅从冲击波估算出来。
常规系统通常采用具有多个声传感器的天线,这些传感器可相对间隔得很近(例如相隔1米)或分散很开(例如安装在汽车上或在战场上由战士携带),每个传感器在它们各自的位置上全方向地测量冲击波压力。一种示范天线例如可包括总共7个全方向扩音器,其中6个扩音器分布在一个球体(直径大约为1米)表面,而第7个扩音器位于球体的中心。少于7个扩音器的布置会在传感器阵列的空间灵敏度图案中产生不适宜的波瓣。
传感器位置会随所部署系统的使用寿命而偏移,和/或传感器性能会因各种原因随时间下降。偶尔,一些传感器可能一起停止工作。
因此,需要提供一种系统和方法,它能通过自动或有操作员辅助地校准自己来补偿传感器位置和传感器性能的变化。
发明内容
本发明针对一种基于从已知位置和已知方向发射的一系列射击所处理的冲击和枪口测量来校准传感器位置的方法,以及用于动态适配冲击仅有的枪械估算算法来补偿传感器退化和/或损失的方法。
按照本发明的一个方面,用于校准枪械检测系统中传感器的相对传感器位置的方法包括以下步骤:确定传感器的大致相对位置信息;发射至少两次射击,这两次射击具有不同的已知枪械位置和已知子弹弹道;对每个传感器和每次射击,确定枪口爆炸到达时间和冲击波到达时间之间的时间差,并对所述至少两次射击,确定产生时间差最小残差的相对传感器位置。
本发明的实施例可包括通过最小二乘方搜索来确定相对传感器位置。最小二乘方搜索可以从传感器的以前已知位置或备选地从传感器的大致测量位置开始。任何一个传感器都可被选作参考传感器,并可对每个传感器相对于参考传感器,计算相对枪口爆炸到达时间和冲击波到达时间。
按照本发明的另一方面,用于补偿多传感器枪械检测系统中的传感器退化的方法包括以下步骤:确定在传感器处由入射的射击所产生的冲击波到达时间;对传感器处的冲击波到达时间执行最小二乘方回归以确定时间残差;对多次射击观察每个传感器对时间残差的作用;以及为每个传感器分配一个加权,所述加权与所述传感器对时间残差的作用成反比。
本发明的实施例可包括将对所观察的最大到达时间差的作用归一化。此外,可以计算增强来自具有更高可靠性的传感器的作用的加权冲击波到达时间。用这个方法,枪械位置和子弹弹道就可以从用加权冲击波到达时间计算的时间残差来确定。当传感器已被修复时,由于传感器故障而改变了的任何加权都可进行调节。
本发明的其它特征和优点从以下对优选实施例的说明和权利要求中可显而易见。
附图说明
以下附图示出本发明的某些说明性实施例,图中相同的参考编号指相同的元件。这些图示实施例应理解为是说明本发明而不以任何方式限制。
图1是具有7个全方向声传感器的示范传感器阵列的示意图;
图2是冲击波到达时间(TOA)模型的示意图;以及
图3示出从射弹发出的冲击波压力。
具体实施方式
本发明针对能够对检测来自超音速射弹的冲击波信号以确定射弹弹道的声传感器在位置和性能上的变化进行补偿的系统和方法。具体地说,如果一个或多个传感器改变了它们的相对位置、故障或失效,本文所述的系统和方法可以自动地或有操作员辅助地校准自已。
一般来说,按照本发明用于枪械定位的声系统使用分布广泛的声传感器阵列,这些声传感器检测射弹的冲击波前沿以及来自用于发射射弹的装置例如步枪的枪口爆炸。在传感器处对每个波形类型测量冲击波和枪口爆炸的波到达时间。冲击波和爆炸波的到达时间(TOA)信息可用于确定射弹弹道、到射弹起点的方位线、以及从传感器到枪械的距离。
虽然理想上冲击波形含有关于冲击波已传播的距离的有用信息,但实际上冲击波形常会被地面反射、前向散射、以及其它多路径传播而污染,因此很难完全从冲击波形的形状或持续时间可靠地提取距离信息。对于弹道估算,该系统主要依靠基于前沿检测来测量波形的到达时间,因为前沿不会被多路径传播所破坏。
如果在传感器处枪口爆炸信号足以和冲击波相区别,并且如果枪口爆炸信号可假定为在枪口和传感器之间运行直的瞄准线,则检测冲击波的这些同样的传感器就可用来定位枪口爆炸。定位枪口爆炸的能力与冲击波信息结合使用就可非常准确地定位射弹的起点。但是,完全依靠枪口爆炸来定位射弹的起点可能不是一个可靠的措施,因为有可能使爆炸静音。而且,枪口爆炸会因人造结构(例如建筑物)或自然结构(例如山)的干扰而衰减。所以,在系统的实际部署中,枪口爆炸信息的使用次于冲击波信息。但是,来自受控枪口爆炸的信号可用来校准系统。
按照本发明的声计数器枪械系统总体示于图1。声传感器阵列10的图示示范实施例包括7个传感器12、13、14、15、16、17、18,例如全方向扩音器。有利的是,传感器13到18在例如直径为1米的球体上均匀间隔,而传感器12位于球体中心,虽然其它传感器配置也是可行的。相对于球体中心(Cx0,Cy0,Cz0)传感器的坐标示为(Cxj,Cyj,Czj)。来自具有7个传感器的示范配置的信号可以提供传感器阵列在空间上基本均匀的灵敏度,不管冲击波相对于阵列坐标轴的入射角如何,如果传感器的响应函数,即传递函数{输出电压}/{声压},对所有传感器是相同的或至少是已知和恒定的话。已发现,原则上5个传感器足以确定空间中的入射角,但5元件传感器阵列可能缺乏方向均匀性,某些方向具有高灵敏度,而其它方向只能检测到很弱的信号。
参阅图2,在美国专利6,178,141(其内容通过引用全部结合在本文)中作了详细说明的一种到达时间(TOA)模型用来估算射弹的弹道以及相对传感器位置的枪械方向。TOA模型基于精确的弹道学模型,它考虑了有关射弹的某些物理特征,包括:空气密度(它与温度有关)、枪械的笛卡尔坐标(Px,Py,Pz)、步枪枪口的方位角和仰角、射弹的枪口速度(马赫数)、以及声速(它随温度/空气密度而变)。用这个弹道学模型,就可以在空间的任何特定点处精确计算冲击波(以及枪口爆炸,如果使用的话)到达空间特定点的准确时间。
在5个或更多个上述传感器处测量冲击波的压力和到达时间足以唯一确定枪械位置、子弹弹道以及口径。如图2所示,相对于原点(0,0,0)枪械位于点P(PX,PY,PZ),各传感器位于点C(Cxj,Cyj,Czj),并且子弹弹道示为从枪械向方向发出,其中下标j指第j个传感器。在枪械和第j个传感器之间的矢量距离为
Figure A20058003539800082
子弹到第j个传感器的最近接近点(CPA)为
Figure A20058003539800083
并且从冲击波自弹道辐射出的点之后到第j个传感器的路径是
Figure A20058003539800084
子弹的马赫角为θ=sin-1(1/M),M=V/c0。M是射弹的马赫数,V是射弹的超音速度,而c0是(与压力和温度有关的)声速。弹道和第j个传感器之间的“脱靶角”是γi。弹道的特征在于在x-y平面从x轴逆时钟测量的其方位角α,以及从x-y平面向上测量的其仰角φ。定义在第j个传感器处的冲击波到达时间tj和单位矢量的公式根据这些几何量写出。
到达时间等于射弹运行距离
Figure A20058003539800085
到声音向第j个传感器辐射声音的那一点所用的时间
Figure A20058003539800086
加上冲击波从该辐射点到第j个传感器运行距离
Figure A20058003539800087
所用的时间
Figure A20058003539800088
Figure A20058003539800089
式中t0是时间基准(发射时间)。在射弹弹道和第j个传感器之间的最近接近点(CPA)为:
| R j ρ | = | D ρ j | sin ( γ j ) - - - ( 2 )
CPA(或
Figure A200580035398000811
)可通过以下公式根据图3所示的所测量冲击波斜率独立确定:
| R ρ j | = ρc 3 M j 2 - 1 2 β M j ( P s / T s ) j - - - ( 3 )
Mj是在声音沿射弹弹道
Figure A20058003539800092
辐射到第j个传感器那一点处射弹的马赫数,而ρ、c0、β是大气密度、声速,以及非线性参数 β ≅ 1.3 。声速c0随温度而改变,即 c 0 = 20.05 T Kelvin ( m / s ) . 冲击波的斜率由其峰值压力Ps除以半跨度Ts来定义(见图3)。
如果传感器间隔很近,射弹的速度V可假定为沿其弹道恒定,这样在射弹辐射到不同传感器的时间之间的速度损失不明显。但更为通用的情况是,可以使用一种数学弹道学模型,它将空间中任一点处的冲击波到达时间作为全组参数的函数进行预测。它是从物理原理推导出来的,并具有大约百万分之10(ppm)的精度。该数学模型在美国专利6,178,141中作了详细说明,其内容通过引用已全部结合在本文中。作为比较,常规经验上导出的弹道学模型在1km时具有标称1m的精度,或1000ppm。
该弹道学模型包括子弹牵引系数Cb,它取决于射弹口径。口径可以从在第j个传感器记录的峰值压力(Ps)j或半跨度(Ts)j进行估算,使用根据射弹某些参数的以下公式,诸如其截面面积S、其长度L以及取决于射弹形状的常数K:
( T s ) j = 2 0.75 β 0.5 M j S 0.5 K · | R j | 0.25 L 0.25 c 0 ( M j 2 ) 3 / 8 - - - ( 4 )
一旦求出了口径,其唯一的牵引系数Cb即已知。这个参数在射弹弹道的弹道学模型预测中很重要。在本讨论的上下文中,牵引系数假定与马赫数M的平方根成比例。更精确的模型在美国专利5,930,202中作了说明,其内容通过引用已全部结合在本文中。到达声音辐射到第j个传感器那一点的距离
Figure A20058003539800096
和时间tj Aj根据初始枪口速度V0、局部速度V=Mc0、以及牵引系数Cb来定义。
| A j ρ | = C b ( V 0 - c 0 / sin ( θ j ) )
t j A j = | A j | ρ V 0 - V 0 | A j ρ | / C b - - - ( 5 )
图1的传感器布置用于测量不同传感器12到18之间的到达时间差(TDOA)。因此,求解枪械位置和射击弹道极大程度依赖于准确知道在三维空间中传感器12到18的相对位置。而且,冲击TOA的测量应对所有传感器无偏,并应能够补偿传感器灵敏度随时间的变化。
由于机械变化,例如弯曲或其它变形,传感器在空间的相对位置会随时间而变,从而降低从TDOA差估算枪械位置的精确性。所以,重要的是,在预定的时间间隔内,或在有其它理由例如怀疑有错误测量时,能够在现场精确地校准传感器位置。
如美国专利5,930,202所述,如果除射弹的冲击波外,枪口爆炸波也能被可靠地检测,则沿子弹弹道的准确狙击手位置就可计算出来,假定传感器坐标精确已知。但应指出,需要的仅是传感器的相对位置,而不是它们在空间的绝对位置。在本发明的这个方法中,解决了相反的问题,即从已知的枪械位置和所检测的冲击波来确定传感器在空间中的相对坐标。
图1的示范传感器阵列10具有n=7个传感器;其中一个传感器,例如位于传感器阵列10中心的传感器12,可被任意选作参考传感器,其坐标为(Cx0,Cy0,Cz0),这样还有(n-1)=6个相对传感器,具有的相对传感器位置为(Cxj,Cyj,Czj),j=1、...、6。所以,在三维空间中传感器阵列10的相对坐标总数为(n-1)*3=18。对至少三次具有不同的已知枪械位置和子弹弹道的射击,记录下其它6个传感器中每个传感器相对参考传感器的枪口爆炸到达时间tmuzzle和冲击波到达时间tshock。要测量枪械方位角和仰角的传感器阵列中的那一点可以例如是指定为笛卡尔坐标系原点(Cx0,Cy0,Cz0)的上述参考传感器。三次射击产生总共42个相对发射时间t0的不同到达时间测量值(21个枪口和21个冲击)。因此,对于有n个传感器和m次射击的传感器配置,有(n-1)*3个未知数(相对(Cx0,Cy0,Cz0)的j个传感器坐标(Cxj,Cyj,Czj))以及2*m*(n-1)个测量参数,有足够的附加信息允许进行能从假定参数中消除射击(枪械位置和子弹弹道)偏差的最小二乘方方法。需要至少两次射击来求解方程系,但建议用三次以允许更多消除测量噪声。射击应在干净的声环境中进行,这样冲击和枪口爆炸都可精确地被检测到。
换句话说,通过将枪口爆炸公式 t muzzle = t 0 + | D ρ | / c 加到上述公式(1)或(5)中,对于三次射击的最佳适合冲击和枪口爆炸时间Δtmuzzle和Δtshock的(n-1)个相对传感器位置(Cxj,Cyj,Czj)(j=1、...6),例如通过最小二乘方梯度搜索法或通过遗传算法(GA)就可确定。梯度搜索从每个传感器的最后所测量的或其它推测的精确位置开始。
最小二乘方梯度搜索法或遗传算法(GA)试图最小化适合于相对于参考传感器的所有相对传感器位置(Cxj,Cyj,Czj)的RMS残差。
RMS残差定义为:
Δ τ min = Σ j { ( Δ τ muzzle , calc j - Δτ muzzle , meas j ) 2 + Σ j ( Δ τ shock , calc j - τ shock , meas j ) 2 } - - - ( 6 )
已发现,通过使用进化遗传算法(GA)可以快速且可靠地计算传感器相对参考传感器的位置。GA模仿自然进化原理并将这些原理应用于搜索和最佳化过程。最经典的逐点算法使用确定性过程来接近最佳解,从随机猜想的解开始,并基于预先规定的转移规则来规定搜索方向,例如使用目标函数和约束值的直接方法以及使用一阶和二阶导数的基于梯度的方法。但是,后述的这些方法都有缺点例如,最佳解取决于所选的初始解,并且大多数算法在次最佳解处就会“卡住”。
和经典的搜索和最佳化方法不同,GA用随机的一组解而不是只用一个解开始其搜索。一旦创建了随机解种群,每个解都在非线性编程问题方面进行评价,并将适应度(相对优值)分配给每个解。在一个实施例中,适应度可用所计算解和所测量解之间的欧几里德距离代表,如以上公式(6)所定义的。
直观的看,产生小值△τmin的算法更好。
当应用GA到达传感器位置的解时,GA使用初始的传感器坐标种群作为染色体,这些传感器坐标可以随机选择,或可具有代表以前测量的和/或其它确定或估算的传感器位置的值。通常,执行GA的最大迭代数。
例如,在每一代,“最佳”个体被允许没有任何变异地继续存在,而例如上面100个体,按其适应度判断,也继续存在,但用于使用交叉/变异/复制算子从这些各对残存体中创建下面的100个体,例如在Kalyanmoy Deb,Multi-Objective Optimization Using EvolutionaryAlgorithms,John Wiley&Sons,New York中所述。
虽然最小二乘方估算算法对冲击波TOA测量中的高斯噪声很强健,但在这些测量中的任何相容偏移,例如由于传感器灵敏度随时间的变化,都会影响定位估算的可靠性。另外,传感器的部分或全部损失会破坏这些算法中固有的任何对称性假设。
校正传感器退化/损失的一个方法是观察每个传感器随时间对残差表达式的作用|τShock,calc jShock,meas j|:
Δτ min = Σ j ( τ Shock , calc j - τ Shock , meas j ) 2 - - - ( 7 )
对于每个传感器和对于每个入射和处理的射击,记录到达时间τj Shock。如果所有传感器都正确响应,则可以预期值|τShock,calc jShock,meas j|具有随机分布。但是,如果某些传感器总是对残差和起着大于它们预期份额的作用,则它们的可操作性和可靠性可能有问题,且它们对所计算残差的作用应相应减小。相反,其作用总是大于其预期份额的传感器的作用应减小。这一点可以这样实现:在例如包括最后N次射击的运行窗口上,为每个传感器分配一个与传感器对残差的平均作用成反比的加权Wi
如果,如上所述,在检测特定射击时阵列的性能因对称性损失而受影响,则某些射击的Δτmax的最大可能值会小于其它射击的,视冲击波在传感器上如何传播而定。也就是,某些射击会使阵列呈现为较短,而其它射击会使阵列呈现为较长。在计算传感器对残差的运行平均作用时,可相对于该次射击的最大可能Δτmax归一化这些作用,以允许在不同地理位置的不同射击上进行未达到TOA的相容比较。
换句话说,不是将公式(7)的残差值最小化,而是将以下值最小化:
Δ τ min = Σ j { ( τ shock , cnlc j - τ shock , meas j ) * W i } 2 τ max - - - ( 8 )
用Wj加权残差函数的效果在于,让在最近射击中示出更大可靠性,即对残差Δτmin作用较少的那些传感器起更大的作用。这个方法具有的益处是,随着给定传感器的性能改进(它可能例如经受间断性的突然失灵),加权平均会随着时间的推移恢复其对全加权的作用。当传感器被修复或更换时,加权会明显地复位到全值。要求在最优化算法中没有其它改变。
虽已结合所示优选实施例公开了本发明并作了详细说明,但对所属领域的技术人员来说,各种改动和改进是显而易见的。因此,本发明的精神和范围仅由以下权利要求限定。

Claims (14)

1.一种用于校准枪械检测系统中传感器的相对传感器位置的方法,包含以下步骤:
确定所述传感器的大致相对位置信息;
发射至少两次射击,这两次射击具有不同的已知枪械位置和已知子弹弹道;
对每个所述传感器和每次射击,确定枪口爆炸到达时间和冲击波到达时间之间的时间差;以及
对所述至少两次射击,确定产生所述时间差的最小残差的所述相对传感器位置。
2.如权利要求1所述的方法,其中所述相对传感器位置通过执行最小二乘方搜索来确定。
3.如权利要求2所述的方法,其中所述最小二乘方搜索从所述传感器的以前已知位置开始。
4.如权利要求2所述的方法,其中所述最小二乘方搜索从所述传感器的大致测量位置开始。
5.如权利要求1所述的方法,还包含以下步骤:选择一个传感器作为参考传感器,并计算每个传感器相对于所述参考传感器的相对枪口爆炸到达时间和冲击波到达时间。
6.一种用于补偿多传感器枪械检测系统中传感器退化的方法,包含以下步骤:
确定在所述传感器处由入射射击产生的冲击波的到达时间;
对所述传感器处所述冲击波到达时间执行最小二乘方回归,以确定时间残差;
对多次射击,观察每个传感器对所述时间残差的作用;以及
为每个传感器分配一个加权,所述加权与所述传感器对所述时间残差的作用成反比。
7.如权利要求6所述的方法,还包含将对所观察的最大到达时间差的作用归一化的步骤。
8.如权利要求6所述的方法,还包含计算增强来自具有更大可靠性的传感器的作用的加权冲击波到达时间的步骤。
9.如权利要求8所述的方法,还包含根据用所述加权冲击波到达时间计算的时间残差确定枪械位置和子弹弹道。
10.如权利要求6所述的方法,还包含当传感器已被修复时调节所述传感器的加权的步骤。
11.如权利要求6所述的方法,其中所述传感器是声传感器。
12.如权利要求11所述的方法,其中所述声传感器是扩音器。
13.如权利要求1所述的方法,其中所述传感器是声传感器。
14.如权利要求13所述的方法,其中所述声传感器是扩音器。
CN2005800353981A 2004-08-24 2005-08-11 自校准枪械的位置估算方法 Expired - Fee Related CN101116007B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/925,876 2004-08-24
US10/925,876 US7190633B2 (en) 2004-08-24 2004-08-24 Self-calibrating shooter estimation
PCT/US2005/028604 WO2006098755A2 (en) 2004-08-24 2005-08-11 Self-calibrating shooter estimation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2010102906281A Division CN102004238B (zh) 2004-08-24 2005-08-11 自校准枪械估算

Publications (2)

Publication Number Publication Date
CN101116007A true CN101116007A (zh) 2008-01-30
CN101116007B CN101116007B (zh) 2011-05-04

Family

ID=35942873

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010102906281A Expired - Fee Related CN102004238B (zh) 2004-08-24 2005-08-11 自校准枪械估算
CN2005800353981A Expired - Fee Related CN101116007B (zh) 2004-08-24 2005-08-11 自校准枪械的位置估算方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2010102906281A Expired - Fee Related CN102004238B (zh) 2004-08-24 2005-08-11 自校准枪械估算

Country Status (11)

Country Link
US (3) US7190633B2 (zh)
EP (1) EP1784656B1 (zh)
JP (1) JP4812764B2 (zh)
KR (1) KR100855421B1 (zh)
CN (2) CN102004238B (zh)
AU (2) AU2005329071B2 (zh)
CA (2) CA2635763C (zh)
IL (2) IL181510A (zh)
RU (1) RU2347234C2 (zh)
SG (1) SG155242A1 (zh)
WO (1) WO2006098755A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249197A (zh) * 2016-05-03 2016-12-21 电子科技大学 一种多点定位系统中接收机位置误差的自校准方法
CN109791035A (zh) * 2016-09-27 2019-05-21 塔克提卡特里姆注册商人 目标物

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190633B2 (en) * 2004-08-24 2007-03-13 Bbn Technologies Corp. Self-calibrating shooter estimation
US7359285B2 (en) * 2005-08-23 2008-04-15 Bbn Technologies Corp. Systems and methods for determining shooter locations with weak muzzle detection
WO2006110713A2 (en) * 2005-04-08 2006-10-19 Vanderbilt University System and methods of radio interference based localization in sensor networks
WO2008042884A1 (en) * 2006-10-02 2008-04-10 Wayne State University Locating arbitrary noise sources
US8515126B1 (en) 2007-05-03 2013-08-20 Hrl Laboratories, Llc Multi-stage method for object detection using cognitive swarms and system for automated response to detected objects
GB0722169D0 (en) * 2007-11-12 2008-10-08 Selex Sensors & Airborne Sys Method and apparatus for detecting a launch postion of a projectile
US7787331B2 (en) 2008-05-13 2010-08-31 Bbn Technologies, Corp. Sensor for airborne shooter localization system
US8437223B2 (en) * 2008-07-28 2013-05-07 Raytheon Bbn Technologies Corp. System and methods for detecting shooter locations from an aircraft
US20100079280A1 (en) * 2008-10-01 2010-04-01 Robotic Research, Llc Advanced object detector
US8009515B2 (en) 2008-12-01 2011-08-30 Lockheed Martin Corporation Ground threat location for an aircraft
US8111582B2 (en) * 2008-12-05 2012-02-07 Bae Systems Information And Electronic Systems Integration Inc. Projectile-detection collars and methods
US8649565B1 (en) 2009-06-18 2014-02-11 Hrl Laboratories, Llc System for automatic object localization based on visual simultaneous localization and mapping (SLAM) and cognitive swarm recognition
US8965044B1 (en) 2009-06-18 2015-02-24 The Boeing Company Rotorcraft threat detection system
US8320217B1 (en) 2009-10-01 2012-11-27 Raytheon Bbn Technologies Corp. Systems and methods for disambiguating shooter locations with shockwave-only location
US8995227B1 (en) 2010-08-15 2015-03-31 Shotspotter, Inc. Systems and methods of processing information regarding weapon fire location using projectile shockwave and muzzle blast times of arrival data
US10368669B2 (en) 2011-09-30 2019-08-06 Verily Life Sciences Llc System and method for stabilizing unintentional muscle movements
US9925034B2 (en) * 2011-09-30 2018-03-27 Verily Life Sciences Llc Stabilizing unintentional muscle movements
US20130107668A1 (en) * 2011-10-28 2013-05-02 Raytheon Company Convoy-based systems and methods for locating an acoustic source
WO2013070123A1 (en) 2011-11-08 2013-05-16 Saab Ab Route planning system and method for minimizing exposure to threats
EP2776859B1 (en) 2011-11-08 2018-03-14 Saab Ab Method for determining the location of a firer, method and system for route planning for avoiding a threat
US10600596B2 (en) 2014-04-21 2020-03-24 Verily Life Sciences Llc Adapter to attach implements to an actively controlled human tremor cancellation platform
EP3177940A4 (en) * 2014-08-06 2018-04-18 Bae Systems Information And Electronic Systems Integration Inc. Determining miss distance and bullet speed of a burst of bullets
JP6392656B2 (ja) * 2014-12-12 2018-09-19 株式会社熊谷組 音源方向推定方法
US10271770B2 (en) 2015-02-20 2019-04-30 Verily Life Sciences Llc Measurement and collection of human tremors through a handheld tool
US9943430B2 (en) 2015-03-25 2018-04-17 Verily Life Sciences Llc Handheld tool for leveling uncoordinated motion
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
RU2676830C2 (ru) * 2017-03-20 2019-01-11 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Способ определения координат стреляющих артиллерийских систем и разрывов снарядов звукометрическим комплексом
US10420663B2 (en) 2017-05-01 2019-09-24 Verily Life Sciences Llc Handheld articulated user-assistive device with behavior control modes
EP3514478A1 (en) 2017-12-26 2019-07-24 Aselsan Elektronik Sanayi ve Ticaret Anonim Sirketi A method for acoustic detection of shooter location
US11468751B2 (en) 2018-02-15 2022-10-11 Johnson Controls Tyco IP Holdings LLP Gunshot detection system with fire alarm system integration
TR202006105A1 (tr) 2020-04-17 2021-10-21 Aselsan Elektronik Sanayi Ve Tic A S Ateşli̇ si̇lahlar i̇çi̇n iska mesafesi̇ ve si̇lah kali̇bre kesti̇ri̇mi̇ne dayali atiş yeri̇ menzi̇l kesti̇ri̇m yöntemi̇
CN111998735B (zh) * 2020-08-25 2022-06-10 中国科学院半导体研究所 传感器可任意布阵的超声波报靶方法及装置
CN112162239B (zh) * 2020-09-14 2023-12-22 西北工业大学 一种基于水平门型阵列的弹着点定位方法
IL295152A (en) 2022-07-27 2024-02-01 Synchrosense Ltd Mobile ultrasonic sling tracking

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435231A (en) 1945-08-03 1948-02-03 Albert E Mcpherson Acceleration pickup
US2962696A (en) * 1950-12-27 1960-11-29 Snyder James Muzzle blast sound wave detection apparatus
US2963696A (en) 1955-09-15 1960-12-06 Rca Corp Electromechanical resolver
GB2015127B (en) 1978-01-06 1982-06-09 Australasian Training Aids Pty Target apparatus
US4283989A (en) 1979-07-31 1981-08-18 Ares, Inc. Doppler-type projectile velocity measurement and communication apparatus, and method
JPS628073A (ja) * 1985-07-04 1987-01-16 Oki Electric Ind Co Ltd 受波器位置のキヤリブレ−シヨン方式
GB2181240B (en) 1985-10-05 1989-09-27 Plessey Co Plc Improvements in or relating to a method of detecting sound
GB2181239A (en) 1985-10-05 1987-04-15 Plessey Co Plc A method of detecting sound impulses
US4827411A (en) 1987-06-15 1989-05-02 International Business Machines Corporation Method of maintaining a topology database
US4813877A (en) 1987-07-24 1989-03-21 Del Mar Avionics Remote strafe scoring system
US4970698A (en) * 1988-06-27 1990-11-13 Dumestre Iii Alex C Self-calibrating sonar system
JPH0271114U (zh) 1988-11-18 1990-05-30
US5128926A (en) 1990-03-21 1992-07-07 Digital Equipment Corporation Updating link state information in networks
US5093824A (en) 1990-03-27 1992-03-03 Bell Communications Research, Inc. Distributed protocol for improving the survivability of telecommunications trunk networks
US5243592A (en) 1990-10-15 1993-09-07 Digital Equipment Corporation Method and apparatus for distance vector routing on datagram point-to-point links
JPH04372889A (ja) * 1991-06-24 1992-12-25 Sugawara Kenkyusho:Kk 超音速飛翔体座標測定装置
US5241518A (en) * 1992-02-18 1993-08-31 Aai Corporation Methods and apparatus for determining the trajectory of a supersonic projectile
US5280457A (en) * 1992-07-31 1994-01-18 The Administrators Of The Tulane Educational Fund Position detecting system and method
US5346210A (en) * 1992-08-28 1994-09-13 Teem Systems, Inc. Object locator system
US5392258A (en) 1993-10-12 1995-02-21 The United States Of America As Represented By The Secretary Of The Navy Underwater acoustic intensity probe
FI98770C (fi) 1994-03-01 1997-08-11 Nokia Telecommunications Oy Hierarkkinen synkronointimenetelmä
US5504717A (en) * 1994-05-27 1996-04-02 Alliant Techsystems Inc. System for effective control of urban environment security
US5544129A (en) 1994-08-30 1996-08-06 Aai Corporation Method and apparatus for determining the general direction of the origin of a projectile
DE4439850C1 (de) 1994-11-08 1996-03-14 Daimler Benz Aerospace Ag Vorrichtung zur Lokalisierung von Artillerie- und Heckenschützenstellungen
SE503741C2 (sv) 1994-12-29 1996-08-19 Air Target Sweden Ab Förfarande och anordning vid flygbogserad träffgivare
US5617371A (en) * 1995-02-08 1997-04-01 Diagnostic/Retrieval Systems, Inc. Method and apparatus for accurately determing the location of signal transducers in a passive sonar or other transducer array system
US5742820A (en) 1995-07-06 1998-04-21 Novell, Inc. Mechanism for efficiently synchronizing information over a network
NO307013B1 (no) * 1995-09-26 2000-01-24 Arve Gustavsen Fremgangsmåte til passiv automatisk posisjonsbestemmelse av snikskytteres våpen ved bruk av prosjektilets sjokkboelge
US5850592A (en) 1996-01-11 1998-12-15 Gte Internetworking Incorporated Method for self-organizing mobile wireless station network
SE506657C2 (sv) * 1996-03-29 1998-01-26 Haakan Appelgren Sätt och anordning vid projektilinmätning
US5881246A (en) 1996-06-12 1999-03-09 Bay Networks, Inc. System for generating explicit routing advertisements to specify a selected path through a connectionless network to a destination by a specific router
US5913921A (en) 1996-07-12 1999-06-22 Glenayre Electronics, Inc. System for communicating information about nodes configuration by generating advertisements having era values for identifying time reference for which the configuration is operative
IL118846A (en) * 1996-07-14 2000-07-16 Levanon Nadav Method and apparatus for acoustic monitoring of the trajectory of a supersonic projectile
US5777948A (en) * 1996-11-12 1998-07-07 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for preforming mutations in a genetic algorithm-based underwater target tracking system
US6178141B1 (en) * 1996-11-20 2001-01-23 Gte Internetworking Incorporated Acoustic counter-sniper system
US5930202A (en) * 1996-11-20 1999-07-27 Gte Internetworking Incorporated Acoustic counter-sniper system
US6745224B1 (en) 1996-12-06 2004-06-01 Microsoft Corporation Object framework and services for periodically recurring operations
EP0853399B1 (en) 1997-01-13 2005-08-03 Agilent Technologies, Inc. (a Delaware corporation) Report stream data rate regulation
US5970024A (en) 1997-04-30 1999-10-19 Smith; Thomas Acousto-optic weapon location system and method
US6621764B1 (en) 1997-04-30 2003-09-16 Thomas Smith Weapon location by acoustic-optic sensor fusion
JP3628479B2 (ja) 1997-05-30 2005-03-09 株式会社日立製作所 目標運動解析装置および目標運動解析方法
US6055523A (en) * 1997-07-15 2000-04-25 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for multi-sensor, multi-target tracking using a genetic algorithm
US5973998A (en) * 1997-08-01 1999-10-26 Trilon Technology, Llc. Automatic real-time gunshot locator and display system
JPH1196002A (ja) 1997-09-18 1999-04-09 Sanyo Electric Co Ltd データ処理装置
US5878000A (en) 1997-10-01 1999-03-02 The United States Of America As Represented By The Secretary Of The Navy Isolated sensing device having an isolation housing
US5781505A (en) * 1997-10-14 1998-07-14 The United States Of America As Represented By The Secretary Of The Navy System and method for locating a trajectory and a source of a projectile
WO1999051929A1 (en) 1998-04-02 1999-10-14 Roblyer Steven P Harmonic optimization technology
US6487516B1 (en) 1998-10-29 2002-11-26 Netmor Ltd. System for three dimensional positioning and tracking with dynamic range extension
US20020003470A1 (en) 1998-12-07 2002-01-10 Mitchell Auerbach Automatic location of gunshots detected by mobile devices
JP2000205794A (ja) 1999-01-18 2000-07-28 Mitsubishi Denki Tokki System Kk 弾丸位置標定装置
US6965312B2 (en) 1999-06-07 2005-11-15 Traptec Corporation Firearm shot helmet detection system and method of use
US6349091B1 (en) 1999-11-12 2002-02-19 Itt Manufacturing Enterprises, Inc. Method and apparatus for controlling communication links between network nodes to reduce communication protocol overhead traffic
US6385174B1 (en) 1999-11-12 2002-05-07 Itt Manufacturing Enterprises, Inc. Method and apparatus for transmission of node link status messages throughout a network with reduced communication protocol overhead traffic
US6977937B1 (en) 2000-04-10 2005-12-20 Bbnt Solutions Llc Radio network routing apparatus
US6470329B1 (en) 2000-07-11 2002-10-22 Sun Microsystems, Inc. One-way hash functions for distributed data synchronization
US20020061936A1 (en) * 2000-07-28 2002-05-23 Van Heumen Jeffrey D. Foamed isocyanate-based polymer having improved hardness properties and process for production thereof
US7363325B2 (en) 2000-08-10 2008-04-22 Nec Laboratories America, Inc. Synchronizable transactional database method and system
JP4722347B2 (ja) 2000-10-02 2011-07-13 中部電力株式会社 音源探査システム
US6563763B2 (en) * 2001-04-03 2003-05-13 Aai Corporation Method and system for correcting for curvature in determining the trajectory of a projectile
US6370084B1 (en) 2001-07-25 2002-04-09 The United States Of America As Represented By The Secretary Of The Navy Acoustic vector sensor
US6847587B2 (en) * 2002-08-07 2005-01-25 Frank K. Patterson System and method for identifying and locating an acoustic event
US6965541B2 (en) 2002-12-24 2005-11-15 The Johns Hopkins University Gun shot digital imaging system
US7266045B2 (en) 2004-01-22 2007-09-04 Shotspotter, Inc. Gunshot detection sensor with display
US7750814B2 (en) 2003-01-24 2010-07-06 Shotspotter, Inc. Highly portable system for acoustic event detection
US7710278B2 (en) 2003-01-24 2010-05-04 Shotspotter, Inc. Systems and methods of identifying/locating weapon fire using envelope detection
US7054228B1 (en) 2003-03-25 2006-05-30 Robert Hickling Sound source location and quantification using arrays of vector probes
US20040246902A1 (en) 2003-06-02 2004-12-09 Weinstein Joseph J. Systems and methods for synchronizing multple copies of a database using datablase digest
US7139222B1 (en) * 2004-01-20 2006-11-21 Kevin Baxter System and method for protecting the location of an acoustic event detector
US7532542B2 (en) 2004-01-20 2009-05-12 Shotspotter, Inc. System and method for improving the efficiency of an acoustic sensor
US20050194201A1 (en) 2004-03-03 2005-09-08 Tenghamn Stig R.L. Particle motion sensor for marine seismic sensor streamers
US7190633B2 (en) * 2004-08-24 2007-03-13 Bbn Technologies Corp. Self-calibrating shooter estimation
US7292501B2 (en) * 2004-08-24 2007-11-06 Bbn Technologies Corp. Compact shooter localization system and method
US7359285B2 (en) 2005-08-23 2008-04-15 Bbn Technologies Corp. Systems and methods for determining shooter locations with weak muzzle detection
US7126877B2 (en) * 2004-08-24 2006-10-24 Bbn Technologies Corp. System and method for disambiguating shooter locations
US7433266B2 (en) 2004-09-16 2008-10-07 Vanderbilt University Acoustic source localization system and applications of the same
US7411865B2 (en) 2004-12-23 2008-08-12 Shotspotter, Inc. System and method for archiving data from a sensor array
US7420878B2 (en) 2005-01-20 2008-09-02 Fred Holmes System and method for precision acoustic event detection
GB0503212D0 (en) 2005-02-15 2005-11-23 Ultra Electronics Ltd Improvements relating to target direction indication and acoustic pulse analysis
WO2006110630A2 (en) 2005-04-07 2006-10-19 Safety Dynamics, Inc. Real time acoustic event location and classification system with camera display
US7372773B2 (en) 2005-04-08 2008-05-13 Honeywell International, Inc. Method and system of providing clustered networks of bearing-measuring sensors
US7495998B1 (en) 2005-04-29 2009-02-24 Trustees Of Boston University Biomimetic acoustic detection and localization system
US7362654B2 (en) 2005-05-24 2008-04-22 Charly Bitton System and a method for detecting the direction of arrival of a sound signal
US7123548B1 (en) 2005-08-09 2006-10-17 Uzes Charles A System for detecting, tracking, and reconstructing signals in spectrally competitive environments
US20080008044A1 (en) 2006-07-07 2008-01-10 Patterson Research. Inc. Mobile acoustic event detection, recognition and location system
US7855935B1 (en) 2006-10-05 2010-12-21 Shotspotter, Inc. Weapon fire location systems and methods involving mobile device and/or other features
US8531521B2 (en) 2006-10-06 2013-09-10 Sightlogix, Inc. Methods and apparatus related to improved surveillance using a smart camera
US7474589B2 (en) 2006-10-10 2009-01-06 Shotspotter, Inc. Acoustic location of gunshots using combined angle of arrival and time of arrival measurements
WO2009053702A1 (en) 2007-10-22 2009-04-30 Bae Systems Plc Cctv incident location system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249197A (zh) * 2016-05-03 2016-12-21 电子科技大学 一种多点定位系统中接收机位置误差的自校准方法
CN106249197B (zh) * 2016-05-03 2019-11-29 电子科技大学 一种多点定位系统中接收机位置误差的自校准方法
CN109791035A (zh) * 2016-09-27 2019-05-21 塔克提卡特里姆注册商人 目标物
CN109791035B (zh) * 2016-09-27 2020-05-15 塔克提卡特里姆注册商人 目标物

Also Published As

Publication number Publication date
US20070171769A1 (en) 2007-07-26
CA2576471C (en) 2009-03-24
US7190633B2 (en) 2007-03-13
IL208797A (en) 2013-02-28
CN101116007B (zh) 2011-05-04
AU2005329071B2 (en) 2008-11-27
AU2009200778B2 (en) 2012-01-12
JP2008510995A (ja) 2008-04-10
CA2635763C (en) 2012-10-23
CN102004238A (zh) 2011-04-06
EP1784656A2 (en) 2007-05-16
CA2576471A1 (en) 2006-09-21
IL181510A0 (en) 2007-07-04
JP4812764B2 (ja) 2011-11-09
WO2006098755A3 (en) 2007-03-01
IL181510A (en) 2011-12-29
CA2635763A1 (en) 2006-09-21
US7372772B2 (en) 2008-05-13
AU2009200778A1 (en) 2009-03-19
RU2347234C2 (ru) 2009-02-20
KR100855421B1 (ko) 2008-08-29
RU2007110538A (ru) 2008-10-10
IL208797A0 (en) 2010-12-30
CN102004238B (zh) 2012-05-23
US8149649B1 (en) 2012-04-03
AU2005329071A1 (en) 2006-09-21
US20060044942A1 (en) 2006-03-02
EP1784656B1 (en) 2014-05-07
WO2006098755A2 (en) 2006-09-21
KR20070114104A (ko) 2007-11-29
US20120082006A1 (en) 2012-04-05
SG155242A1 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
AU2005329071B2 (en) Self-calibrating shooter estimation
CN101095062B (zh) 用于消歧枪械位置的系统和方法
JP3203347B2 (ja) 超音速投射物軌跡判定方法および装置
US7359285B2 (en) Systems and methods for determining shooter locations with weak muzzle detection
KR100658004B1 (ko) 발사체의 탄도 결정시 만곡을 보정하기 위한 방법 및시스템
Bedard et al. Ferret: a small arms fire detection system: localization concepts
Ash et al. Performance of shockwave-based shooter localization under model misspecification
KR101943631B1 (ko) TDoA 기반의 소총화기 탄착점 추정 시스템
Grasing et al. Development of acoustic sniper localization methods and models
Levanon Acoustic hit indicator
Lee et al. Acoustic target impact point identification system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110504

Termination date: 20160811