CN101176988A - 电化学机械研磨系统和用于检测研磨终点的方法 - Google Patents

电化学机械研磨系统和用于检测研磨终点的方法 Download PDF

Info

Publication number
CN101176988A
CN101176988A CNA2007101815298A CN200710181529A CN101176988A CN 101176988 A CN101176988 A CN 101176988A CN A2007101815298 A CNA2007101815298 A CN A2007101815298A CN 200710181529 A CN200710181529 A CN 200710181529A CN 101176988 A CN101176988 A CN 101176988A
Authority
CN
China
Prior art keywords
base material
grinding
endpoint
thickness
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101815298A
Other languages
English (en)
Inventor
艾伦·杜布斯特
王彦
梁秀
陈良毓
安东尼·P·马奈斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN101176988A publication Critical patent/CN101176988A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing
    • B23H5/08Electrolytic grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Abstract

本发明公开了一种侦测研磨终点的方法和系统,其中放置基材与研磨垫相接触;通过电解液在研磨垫的电极和基材上的一个或多个导电物质之间传送电子讯号,该电子讯号驱动基材上的一个或多个导电物质的电解研磨制程;以及侦测电解研磨的研磨终点,其中上述侦测电解研磨的研磨终点的步骤包含:确定在电解研磨该基材的过程中,自基材移除的总电量;以及将移除的总电量与从基材去除的物质厚度相关联。

Description

电化学机械研磨系统和用于检测研磨终点的方法
本申请为于2004年7月22日进入中国国家阶段的申请号为03802547.7的专利申请(PCT申请号为PCT/US03/01760、国际申请日为2003年01月21日)的分案申请,在此引用其全部内容作为参考。
技术领域
本发明涉及与研磨、平坦化、电镀及其相关制程的组合有关,更明确言之,是关于研磨制程的终点侦测及其电化学机械与电子研磨的监控。
背景技术
深次微米多重金属化制程是为下一个极大规模集成电路(ULSI)的主要技术之一,其中位居此技术核心的多重内联机需将其具有高深宽比的孔隙,包括接触窗、介层窗、渠沟等其它特征加以平坦化。可靠的制造这些内联机的特性,对于极大规模集成电路的成功以及持续致力于增加个别基材和晶粒的积集度与品质乃是非常重要的。
制造集成电路及其它电子产品时,多层导体、半导体及介电材料乃沉积于一基材表面或将之除去。导体、半导体及介电材料的薄层可藉由数次的沉积技术而成,近来一般的沉积技术的制程包含有物理气相沉积(PVD),例如已知的溅镀法,化学气相沉积(CVD),电浆增强式化学气相沉积(PECVD)以及电化学电镀(ECP)。
当材料一层层接续地沉积与除去后,基材最上方的表面上将变成不平坦而需要进行平坦化。利用电化学电镀制程所沉积的铜膜就是一个不平坦表面制程的例子,该铜膜的表面形状完全地依照已存在的表面不平坦的晶圆表面,特别是线宽大于10微米的晶圆。平坦化一个表面或者研磨一个表面乃为一个将材料从基材表面除去以形成一个十分平顺且平坦的表面的制程。在除去不要的表面形状与表面缺陷时,特别是粗糙的平面、结块的材料、晶格缺陷、刮痕、遭污染的薄膜或材料,平坦化是有用的。为了后续多层的金属化及处理,藉由去除用以填补及提供平坦表面的多余沉积材料以形成基材上的特征电路,平坦化制程亦是十分有帮助的。
化学机械平坦或是化学机械研磨(CMP)是一个用于平坦基材的常见技术。化学机械研磨利用一化学化合物,特别是一种浆料或它种流体介质,以选择性地从基材上去除物质。在传统化学机械研磨的技术中,一个化学机械研磨的装置里,一个基材载具或研磨头乃安装在一个载具组件中,并且朝向与研磨垫接触的位置。该载具组件乃提供基材一个可控制的压力,以压挤基材顶住该研磨垫。该研磨垫利用一个外部的驱动力与该基材相对移动。化学机械研磨装置使得基材表面与研磨垫间相互研磨或摩擦,并且于此同时散布一研磨化合物以影响其化学变化及/或机械变化,并不断的从基材表面除去物质。
另一种平坦化技术是电化学机械研磨(ECMP),此技术藉由电化学溶解将导电物质从基材表面移除,并同时利用较传统化学机械研磨制程为小的机械摩擦研磨该基材。电化学溶解是利用施加于阴极与基材间的一偏压,将基材表面的导电物质移除至周围的导电液中。明确言之,该偏压是利用与基材支撑装置上基材表面相接触的一导体环而施加,该基材支撑装置例如是一个基材加载头。机械磨蚀是利用基材与传统的研磨垫相接触,并使其两者间产生一相对运动而生。
研磨的目的之一是移除一可预定数量的物质。因此,任何研磨技术皆需要一个终点侦测,以决定何时适当数量的物质已经移除。然而,由于研磨制程系于基材与研磨垫间的接触运作,因此并不容易目视判断。
此外,不同的研磨情况会阻碍研磨终点的正确判断。不同的研磨液化合物、研磨垫的状况、研磨垫与基材间的相对速度以及研磨垫上基材的负载...等皆可造成去除物质速率的变化,此速率将改变研磨至研磨终点所需的时间。因此,研磨终点不可能仅仅以研磨时间的方程式来评估。
另一个求得研磨终点的预测方法乃是从研磨表面去除基材,并量取基材上剩余薄膜的厚度。于研磨过程中重复此步骤,而可以决定从基材所去除的物质的量。如此一来,一个去除物质的线性逼近可以用来决定研磨终点。然而,这个方法相当费时,而且对于量测间隔间所产生的移除速率的突然变化并未考量在内。
目前已有数种非侵入性的终点侦测方法为人所知,其中一种具代表性终点侦测的态样至少需要接近被研磨基材表面的一部份,例如,藉由沿着研磨垫的边缘或透过研磨垫上的窗口滑下一部份的基材,并同时分析该暴露的基材部分。举例来说,在那些藉由研磨而暴露内嵌在介电层内的金属线的区域,随着该金属线的暴露,该被研磨表面全部或混合的反射率亦随之改变。藉由监测研磨表面的反射率或来自表面的反射光的波长,暴露于介电层的该些金属线及其研磨终点将可因而被侦测出来。然而,此方法无法提供研磨终点的决定方法,除非于研磨过程中一个埋藏层可被暴露出来。此外,这个方法在预测研磨终点上有些不稳定,除非所有的底层线区同时暴露出来。更甚者,此侦测状态乃脆弱且易因研磨液或电解液的量测或侦测状态的暴露而失败。
第二种侦测研磨终点的方法乃监控不同的制程参数,并且当一个或多个参数突然变化的时候预测一个终点。举例来说,研磨垫及基材表面的摩擦系数乃是一个基材表面状况的方程式,当薄膜底下的物质因研磨而暴露出来且产生变化时,其摩擦系数易产生变化,这将影响提供给研磨垫预定速度而所必须的转矩。藉由监控这变化,终点便可被侦测出来。
在一个理想的系统中,除了基材表面外没有任何参数改变,则终点侦测的制程参数可被接受。然而,当研磨基材时,研磨垫的状况及研磨垫与基材表面间的研磨液或电解液的组成亦会改变。如此的变化会模糊底部金属层的暴露,或虚拟成为一个终点的状态,而产生一个过早停止研磨的状况。
最后,相对传统的化学机械研磨(CMP),电化学机械研磨(ECMP)呈现了一个化学的、电子的以及物理的独特环境。因此,当包含上述的终点侦测技术存在于CMP制程中时,这些技术未必可以立即地延伸适用于ECMP制程。甚至那些可以延伸至ECMP制程的技术,亦需要昂贵的设备作翻新改进。一个较佳的方法将可减轻或避免翻新既有系统的挑战。
因此,对于研磨终点侦测而言,尤其是对于ECMP制程而言,需要一种准确而且可靠的决定方法以停止研磨。
发明内容
本发明的一实施例提供一个方法,以侦测电解液环境下的一研磨终点。该方法包括:放置基材与研磨垫相接触;通过电解液在研磨垫的电极和基材上的一个或多个导电物质之间传送电子讯号,该电子讯号驱动基材上的一个或多个导电物质的电解研磨制程;以及侦测电解研磨的研磨终点,其中上述侦测电解研磨的研磨终点的步骤包含:确定在电解研磨该基材的过程中,自基材移除的总电量;以及将移除的总电量与从基材去除的物质厚度相关联。
本发明另一实施例提供一种电化学机械研磨系统,该系统至少包含:导电研磨垫;电源供应器,其可通过经由电解液从置于导电研磨垫中的电极到置于研磨垫上的基材限定的电路通路而提供电子讯号;和终点侦测系统,其可监控电子讯号的讯号特征,用以侦测出研磨终点,其中该终点侦测系统配置用于通过执行以下操作而侦测研磨终点,包含:确定自基材移除的总电量;将移除的总电量与自基材去除的物质厚度相关联;以及确定基材预先量测的起始厚度减去去除的物质厚度是否等于或者小于基材的选定目标厚度。
附图说明
以上所述本发明的特征、优点以及目的根据可从以下细述及图面中获得,而且可以清楚了解本发明更特殊的描述。然而,需注意的是,以下附加的图标仅仅说明本发明的数个典型实施例,可以了解的是其并非用以限制本发明的范围。本发明可以与其它相同有效的实施例相配合而实施。
图1为电解研磨系统的横切面剖视图。
图2为一个例示的研磨垫之一上视图。
图3为配置一个控制器以及终点侦测器配置的电解研磨系统的横切面剖视图。
图4A-C为一系列一基材与一研磨头的横切面剖视图,以描述一研磨循环。
图5为一个电流曲线的图标呈现,其说明相对于时间而言一电流的变化,其电压保持在一个实质固定的常数。
图6为一个电流曲线的图标呈现,其说明相对于时间而言一电流的变化,于第一时间其电压保持在一个实质固定的第一常数,以及于第二时间中的实质固定的第二常数。
图7为一个电压曲线的图标呈现,其说明相对于时间而言一电压的变化,其电流保持在一个实质固定的常数。
图8显示一个实验决定的曲线的例子,该曲线与总电量与移除的物质有关。
图9描述一个电流/移除速率的关系式,其中y轴系为铜的移除速率,以及该x轴为总电量(根据漏电流补偿)。
图中标号说明
100  研磨工作站  102  槽体
104  电极        105  研磨工具
106  支撑碟      107  基材
108  上盖        110  底部
111  旋转器      112  机轴
113  基材        114  排出孔
116  孔隙        118  密封处
120  导电液      122  沟渠
124  马达        130  研磨头
132  空间        133  贮存槽
134  孔洞        136  下表面
140  过滤器      142  泵
144  供应管      152  中心部份
154  槽板        158  凹槽
170  喷嘴        172  流体传输系统
202  导电组件    300  研磨工作站
302  电源供应器  310A 参考电极
312  控制系统    314  控制器
316  终点侦测器  318  仪表
402  基本材料    404  特征电路
406  金属层      408  保护层
500  曲线        510  窗口
600  电流曲线    700  电压曲线
900描绘线
具体实施方式
本发明提供一个侦测研磨步骤终点的系统与方法。一般来说,一个电解研磨(electropolishing)系统利用一电源供应器,其配置是用于经由一电解液以传导一电压。再一实施例中,监控藉由此电源供应器提供的信号的信号特征,以决定一研磨终点。需说明的是,此被监控的信号特征包含电流与电压。在另一个实施例中,经过全部时间的总电流乃与全部移除的物质相关。在其它的例子中,一个藉由终点侦测的非侵入式的制程控制方法亦被提供出来。
这里所使用的词汇与词组乃是熟知此项技艺者所用之一般惯用的意义,除非有进一步的定义。化学机械研磨应广义地解释与包含在内,但其意义并不仅限于藉由化学反应、机械活动或上述二者合并的方法而研磨一基材表面。电解研磨应被广义地解释与包含在内,但其意义并不仅限于藉由电子的及/或电化学的反应的应用以平坦化一基材。电化学机械研磨(ECMP)应被广义地解释及包含在内,但其意义并不仅限于藉由电化学反应、机械活动或上述二者合并的应用以平坦化一基材,而自基材表面将物质移除。电化学机械平坦制程(ECMPP)应被广义地解释及包含在内,但其意义并不仅限于藉由电化学沉积物质于一基材上以及同时藉由电化学反应、机械活动或上述二者合并的应用以平坦该沉积物质。
阳极溶解应被广义地解释及包含在内,但其意义并不仅限于应用一阳极偏压直接或间接于一基材上,而造成自基材表面移除导电物质于周遭的电解液中。贯穿(Perforation)应被广义地解释及包含在内,但其意义并不仅限于部份或全部经由一物质以形成一孔隙(Aperture)、洞(Hole)、开口(Opening)、沟渠(Channel)或出入口(Passage)。
本发明的实施例中广泛地为一研磨系统提供终点侦测的方法。一般而言,任何上述定义的研磨技术皆可独立或综合使用的。尤其是,其研磨及平坦可同时或交替地发生。前述的众实施例可广泛地视为电解研磨的特征。
图1描述一电化学机械研磨(ECMP)站100,其可为一更大的平台或工具的一部份。一种叫做MIRRA的研磨工具可以调整以利本发明,其为一化学机械研磨器,产自Santa Clara California的Applied Materials公司。
一般而言,此电化学机械研磨(ECMP)站100包含一研磨头130适用于稳固一基材113。进一步来说,研磨头130是为藉由一支柱137而安装于一旋转器111的一悬臂梁。此旋转器111使研磨头130旋转,经由包含此ECMP工作站100的数个工作站至一定位。实施例数个范例中的研磨头130可以与描述于2000年2月25日获证的美国第6,024,630号专利的研磨设备100一起使用。一个特别可适用的研磨头是一个TITAN HEADTM晶圆运送器,其由位于Santa Clara California的Applied Materials公司制造。
ECMP工作站100更包含一槽体102,一电极104,研磨工具105,一研磨头支撑碟106以及一上盖108。于一实施例中,此槽体102是与此研磨装置100的基材107连接,此槽体102,上盖108以及支撑碟106可以相对于基材107而移动。因此,槽体102,上盖108以及支撑碟106可以轴向往基材107移动以利研磨头130的清洁,当旋转器111将基材113编入ECMP工作站100与其它研磨站(未显示)之间。
槽体102一般定义为一容器或一含有电解液的空间132,其内含有一导电流体,例如一导电液120(显示于一贮存槽133),且其中的电极104,研磨工具105以及支撑碟106通常为其覆盖。使用于处理基材113的电解液120可以电化学方式移除物质,例如铜、铝、钨、金、银或其它导电物质。因此,槽体102可以是一碗状构件,由一塑料物质所制成,例如是氟聚合物(fouropolymers)、铁氟龙(TEFLON)、PFA、聚乙烯(PE)、PES或其它可与电解平坦以及电解研磨兼容的化学物质。
槽体102具有一底部110,其包含一孔隙116以及一排出孔114。此孔隙116通常位于底部110的中央,并允许一机轴112贯穿其中。一密封处118系位于该孔隙116与该机轴112之间并允许该机轴旋转以防止位于槽体102的流体流经孔隙116。马达带动机轴112旋转,该马达与该机轴112的底端相连接。该马达可以是一能带动机轴以一预定速度或数个预定速度旋转的致动器。
于机轴上端,机轴携带支撑碟或支撑垫106。此支撑碟106提供研磨工具105一嵌入表面,其可以藉由一夹钳机构或一黏着剂(例如:一压力感测黏着剂)牢固于支撑碟106。虽然如显示的连接于机轴112,在另一实施例中,此支撑碟106可利用扣件(例如:螺丝钉或其它扣件装置)与槽体102相稳固,因此降低对于机轴112的需要程度。支撑碟106可与电极104具有一空间的距离,以提供一较佳的电解液循环。
于一实施例中,支撑碟106可由与电解液120兼容的物质构成,其对于研磨并不会造成不利的影响。需说明的是,支撑碟106是由一聚合物所制成,举例而言,包含氟聚合物、聚乙烯、铁氟龙、PFA、PES、HDPE、UHMW或其它相类物等。于一实施例中,支撑碟106包含许多穿孔或沟渠形成于其中。此穿孔与研磨工具105相连接,其合称为沟渠122,且自支撑碟106的底部表面延伸至研磨工具105的上表面。沟渠122的提供使得支撑碟106与研磨工具105通常可由电解液120穿过。其选择的孔径与密度系提供由支撑碟106至基材113的电解液120的均匀分布。
研磨工具105可以是与流体环境及制程规格兼容的物质的一衬垫、一网状物或一带状物。研磨工具105位于槽体102的上端,并且由支撑碟106支撑其下表面。于一实施例中,研磨工具105至少包含一导电物质的部份导电表面以利于制程中与基材表面相接触。因此,研磨工具105可以是一导电研磨物质或是一导电研磨物质的混合物,而沉积于一传统的研磨物质上。导电物质可以插入于支撑碟106与研磨工具105之间,而部分导电端于研磨过程与基材相接触。此导电研磨物质与传统研磨物质一般具有机械性质,其并不因为于持续的电场中而变差降级,且于酸性或碱性电解液中可以抵抗变差降级。
导电研磨物质可包含导电聚合物、聚合物的合成含有导电物质、导电金属、导电填充料、导电掺杂物质或及其组合。导电聚合物包含聚合物质,其本身系具有导电性,例如:聚乙炔、PEDT(polyethylenedioxythiophene),其可于市面上以BaytronTM、polyaniline、polypyrrole及其组合为商标的商品获得。
该具有导电物质的聚合物质可以包含聚合的贵重金属混合物质,聚合的贵重金属混合物质可以使用作为本文描述之导电研磨物质,其通常与周围的电解液作化性的嵌入,例如那些与贵重金属嵌入的可以抵抗氧化作用。一个聚合贵重金属混合物质的例子是一白金聚合混合物质。本发明拟使用可与周围的电解液作化性反应的该聚合贵重金属混合物质,当聚合贵重金属混合物质以其它物质与一周围电解液相隔离时。
被当作研么物质使用的导电金属系与周围电解液相对的嵌入化学反应中,白金即其中导电金属之一例,其被当以研磨物质使用。导电金属可以形成研磨物质的一部份或全部的研磨表面。当形成一部份的研磨表面时,导电金属通常被配置于一传统研磨物质内。
导电研磨物质可以更包含导电填充料或者导电掺杂物质,配置于一束缚物质内,例如是上述的导电聚合物或者传统的研磨物质。导电填充料的例子包含碳粉粒、纳米碳管(nanotubes)、纳米泡沫材料(nanofoam)、航空用碳胶(areogel)及其组合。碳的奈米级微管系为含碳的导电中空细管,具有纳米级的直径。导电填充料或者导电掺杂物质系以足够提供一研磨工具所需的导电性的容量,配置于该束缚物质内。此数服务直系为典型的传统研磨物质。
传统研磨物质可包含聚合的物质,例如聚氨酯(polyurethane)、聚碳酸酯(polycarbonate)、聚苯硫化物(polyphenylene sulfide;PPS)或及其组合,以及使用于研磨基材表面的其它研磨物质。其传统的例子包含那些发现于集成电路的研磨媒介,例如:聚氨酯以及混合填充料的聚氨酯,其可以从市面上位于Phoenix Arizona的Rodel公司获得。本发明更一部拟使用其它传统的研磨物质,例如是一层压缩物质,其包含传统软性物质,例如压缩含氨基钾酸酯的毛毡纤维。
一般而言,该导电研磨物质或导电研磨物质的合成物以及传统研磨物质皆提供以制造一导电研磨工具,其具有大约10Ωcm或10Ωcm以下的容积电阻,或大约每平方10Ω或更少的表面电阻。在某一方面,导电研磨工具具有大约1Ωcm或更少的电阻。一个导电研磨物质的例子是一白金薄层,其于0℃时具有9.81Ωcm,而配置于一聚氨酯薄层之上。
导电研磨物质合成物与传统研磨物质可包含大约5wt.%以及大约60wt.%的导电研磨物质于研磨工具105中,一个导电研磨物质合成物与传统研磨物质的例子包含碳纤维或碳的纳米极微管,配置于聚氨酯或聚碳酸酯的传统研磨物质内,以提供研磨工具所须足够的总量,以使其具有大约10Ωcm或更少的容积电阻以及大约每平方10Ω或更少的表面电阻。
进一步说,本发明拟使用嵌入于传统研磨物质的研磨材料。于此实施例中,该固定的研磨微粒通常包含导电研磨物质。
或者,该研磨工具105包含一金属网配置于传统的研磨物质中,该金属网可包含一化性嵌入导电物质,例如:白金。若该金属网与电解液化性隔离时,例如藉由一传统材料的保角薄膜,该金属网亦可包含可与周围电解液产生变化的物质,例如:铜。
请参阅图2,其特别显示一个研磨工具105的实施例的上视图。通常,研磨工具105为有孔的碟型衬垫,其具有一导电组件202配置于一研磨上表面。须说明的是,该导电组件202为一环状构件大约配置于研磨工具105的中心轴。更普遍而言,此导电组件202可以是任何形状的。尤其是于上述的金属网的实施例中,该导电组件202并不需要是一个单一构件,而可以是数个组合导电组件。导电组件202的位置及其大小可选择以确保与一基材(例如基材113)相接触,而无论位于研磨工具105上的基材的位置如何。
因为研磨工具105至少部份可导电,于电化学制程中,研磨工具105可与基材合并作为一电极。参阅图1,对于接触一基材表面的研磨工具105而言,电极104为一相反电极。电极104可以是一阳极或阴极,取决于施加于电极104与研磨工具105间的正偏压(阳极)或负偏压(阴极)。
举例而言,从基材表面上电解液所沉积的物质,电极104作为一阳极,该基材表面及/或研磨工具105则作为一阴极。当从基材表面移除物质时,例如藉由施加一偏压而分解,电极104的功能为一阴极,基材表面及/或研磨工具105则作为一阳极,于该分解程序中。
电极104通常定位于支撑碟106与槽体102的底部110,该位置可使电极104沉浸于电解液120之中。电极104能为一似碟状的构件,一具有数个贯穿孔的平板,或者数个电极片配置于多孔状构件或容器内。一个可穿透性构件(未显示)可以配置介于支撑碟106与电极104之间,以防止微粒或沉淀物从电极104上释出进入电解液中。该可穿透性构件亦可当作为一个过滤器,在制程过程中防止气体自相反电极处外泄而接触到基材。可穿透性构件的孔径与密度,是以制程最佳化的方式定义的。
对于电化学移除制程而言,例如:阳极分解,除了例如铜溶解中的沉积材料,白金,电极104可包含一非消耗性材料的电极。然而,假如较好的话,对于铜溶解而言,电极104亦可由铜制成。
于运作时,电解液120从一贮存器133中经由喷嘴170流入空间132。电解液120藉由配置于文件板154上的数个孔洞134而防止溢满空间132。孔洞134通常提供电解液120一经由上盖108的信道而流出空间132,并流入槽体102的较低部位。至少孔洞134的一部分位于凹槽158的下表面136与中心部份152之间。当孔洞134高于凹槽158的下表面136时,电解液120充满空间132,而因此与基材113与研磨工具105相接触。因此,于上盖108与支撑碟106间的相当空间的全部距离内,基材113保持与电解液120接触。
收集于槽体102的电解液120通常流经位于底部110的排出孔114,而流入流体传输系统172。典型的流体传输系统172包含贮存器133以及一个泵142。流入流体传输系统172的电解液120系收集于贮存器133中,泵142从贮存器133中经由一供应管144传输电解液120于喷嘴170中,其电解液120于ECMP工作站102中循环利用。一个过滤器140通常配置于贮存器133与喷嘴170之间以移除呈现在电解液120中的微粒与结成核团的物质。
电解容液包含一般市面上可获得的电解液。例如:于含铜物质的移除中,电解液包含硫酸、硫酸盐基电解液或者硼酸、硼酸盐基电解液,例如:硼酸钾(K3PO4)、(NH4)H2PO4、(NH4)2HPO4或其组合。电解液亦包含硫酸盐基电解液的衍生物,例如:硫酸铜,以及硼酸盐基电解液的衍生物,例如:硼酸铜。具有多氯酸-醋酸溶液与其衍生物及其组合亦可使用。此外,本发明拟使用传统用于电解平坦或电解研磨制程的电解液组合物,包含亮剂、螯合剂以及整平器等。电解溶液的莫耳浓度介于大约0.2与大约1.2之间,较佳的是,选择电解液是选择与金属反应,但并不与底层的物质反应,例如是介电质。
在操作过程,施加一电压差于电极104与105之间,直接与电极105接触的基材113将与电极105具相同电压。当基材的原子物质转变成电解液的离子时,研磨工作站的电路回路就完成了。基材113的同步机械研磨亦藉由基材与研磨工具105间的相对运动而达成。尤其是,监控研磨循环以决定一个研磨终点。一个具有电源供应器以及终点侦测系统的研磨工作站将于图3中描述。
图3显示研磨工作站300的一个实施例,其可以代表上述的研磨工作站100。因此,描述于图1与图2中相似的图标对照数字亦作相似的组件的指示。一般来说,此相似组件包含曹体102、研磨头130、基材113、电极104、机轴112、孔状衬垫支撑碟106、研磨工具105以及导电组件202(其形成第二电极)。
研磨工作站300由一个或多个电源供应器提供能量,例如电源供应器302。于一实施例中,电源供应器302为一直流(DC)电源供应器。然而,电源供应器302亦可以是一交流(AC)电源供应器。以某一方面而言,一个直流电源供应器最好可以避免间隔地移除与沉积物质于基材上。一般而言,电源供应器302能提供大约0瓦至100瓦,电压大约0伏特至10伏特的电源。虽然如此,电源供应器302的特别运转规格可以根据应用的状况而改变。
电源供应器302特别调整以透过电解液120而提供一电压或一电流。为此目的,电源供应器302以一正压端连接一第一电极,并藉由一负压端连接一第二电极。于一实施例中,第一电极是研磨工具105的一导电部分,例如是导电组件202。结果,至少于部分的一个研磨循环中,第一电极直接与位于研磨工具105之上的一基材相接触。第二电极为相反电极104,例如,其位于槽体102底层上。与第一电极相反的是,第二电极可以不直接与基材做物理接触。
在一实施例中,研磨工作站300包含一参考电极。例如,一参考电极310A可以配直于支撑碟106与相反电极104之间。更一般来说,一参考电即可以位于槽体内的任何位置,只要参考电极沉浸于电解液120内。举例而言,一参考电极310B显示悬浮于槽体102的一侧璧与研磨工具105之间。此参考电极保持一固定电化学电压于基材上。因此,参考电击的提供使得移除率与电流回路内导电性的变化无关,其电流回路的导电性变化例如可能由相反电极104上松散的铜沉积所导致。
研磨系统300的运作系由一控制系统312所控制。于一实施例中,控制系统312包含一控制器314以及一终点侦测器316。控制器314可连接研磨系统300的每一个组件,包含电源供应器302、流体传输系统172、马达124以及携带头130。此终点侦测器316用以监控由电源供应器302所提供信号的信号特征。为此目的,终点侦测器316可与位于电源供应器302电力线上的仪表318作电性连接。虽然显示的仪表318是与电源供应器302分离,但其可以是电源供应器302整合的一部分。于一实施例中,仪表318是一电压表以量测电压。在另一实施例中,该仪表是用以量测电压与电流。从仪表318上读取可被终点侦测器316所使用,以决定是否达到一标准。其中一标准是该基材是否已研磨足够(亦即,已经达到一个研磨终点)。假如一个研磨终点已经达到的话,终点侦测器306会通知控制器314,届时其可发出一个或多个控制信号以激活其余的步骤及/或暂停基材的研磨。
至少于一实施例中,终点是指一研磨循环中的一个时间点,此时足够的金属量已经从一基材上移除。根据终点的侦测,其可能继续研磨一段时间以移除残留的金属。
接着参考图4A-C,以描述一个终点侦测的操作。参阅图4A,其显示基材113的侧视图以及研磨工具105。研磨工具105沉浸于电解液120内,该电解液由电源供应器302所施加的一电压或一电流而形成一离子导体。基材113位于电解液120之上,并可往下移往研磨工具105。一般而言,基材113包含一基本材料402(典型由硅制成)而具有本文的特征。此基本材料402可由数层介电材料、半导体材料以及导电材料所覆盖。最外边的金属层406于特征电路404内已先沉积,并位于介电材料、半导体薄层以及导电层之上。更具体说,该金属层406为铜。一保护层408覆盖于金属层406之上,此保护层408用以确保研磨发生时其可主要与研磨工具105接触。导电液一部分的保护剂可保护即将被研磨的金属层上的凹陷区域,更具体而言,保护剂包含BTA、TTA等等。根据图4B的显示,保护层408并未出现于研磨工具105与金属层406的界面间。图4B的研磨系机械研磨(其为基材113与研磨工具105间相对运动的结果)与阳极分解(其为基材113与电解液120间化学反应的结果)之一种综合。
研磨步骤将继续直到多余的金属块已经移除,届时,终点侦测器306将指示控制器314一个研磨终点已经达成。图4C描述一个研磨终点时基材之一个表面状况。铜金属线(亦即,特征电路404内的铜)由于被保护计保护以及其未与研磨工具105接触的事实,而未被研磨。于一实施例中,允许于某段时间内继续研磨,以确保移除足够的金属残留物。此种研磨称为“过度研磨”,因为研磨终点已经被侦测出,过度研磨可被小心的计时与控制以减少铜产生碟形现象(dishing),并使晶圆产量达最佳化。
参考图5,曲线500显示电解研磨电流(由电源供应器302提供)相对于时间的变化。电流值系显示于垂直轴上,时间则显示于横轴上。经由曲线500所例示的研磨循环,电佣供应器302维持一相当的固定电压。如此模式的操作是当作“电压模式”操作,因为一个固定的电压施加于研磨室。需注意的是,电流曲线直接由仪表318所产生并未像图5所示般的平滑,但其信号可藉由一电子过滤器或软件平均化处理而被平滑
于t0至t1的第一时间区间中,于电流产生很小的变化或者没有变化的情形下进行研磨。于此时间区间中的基材状态由图4B显示。此时,根据由金属层406供应而可获得的金属离子(例如一个铜薄层的铜离子),保持一个相对高的电流。在时间t1时,信号上的下降是对应于一连续薄膜与一不连续薄膜之间的转变。t1的信号下降可由终点侦测器316所侦测,于时间t1时,终点侦测器316可发出信号给控制器以维持相同的电压(如图5所示)或者改变制程至一较低的电压(如以下所示以及图6)。
于t1至t2的第二个时间区间时,其显示电流减少,其可由终点侦测器316所侦测。此时间区间可由图4B以及图4C所示的研磨状态间的时间区间所代表。电流的减少是因为溶解于电解液中金属离子减少的缘故,介于t1与t2间的时间区间典型地对应于一个特薄连续金属层与一个不连续金属层之间的转变。一个不连续金属层的研磨会导致较少的铜离子释放于电解液中,而造成一个较低的电流。于时间t2,电流开始稳定下来,亦即,曲线500的斜率趋近于0。这是因为金属离子(亦即,金属层406)的来源已经实质地减少耗尽。一个相当程度的电流稳定即代表达到一个研磨终点,研磨终点的基材状态显示于图4C,而且该终点由终点侦测器316所侦测。在t2至t3的第三个时间区间中,基材可以选择更多的研磨(亦即,过度研磨)以进一步移除金属残留物。当研磨暂停时以及基材从研磨工具上移走之后,t2至t3的时间区间可以根据一个特殊的图案设计以及密度而改变。于时间t3时,电源供应器被关闭,并且基材被移至另一个研磨系统的工作站以进行其余的处理(例如:清洗或研磨隔层)。
在图5所示的例子,电源供应器302维持一单一电压。虽然如此,在另一个实施例中,其施加的电压可以于两个或更多的数值间变化。例如,图6的电流曲线600描述电压从第一数值变化至第二数值时对于电流的影响。更明确而言,第一电压数值于时间t0至t2的区间中维持固定,在此时间区间中的t0至t1部分时间中,电流一开始维持一实质的固定量I0。在时间t1至t2之间,可以看出一个明显的电流减少。在时间t2时,电压切换至第二数值。
从较高的电压值切换至较低的电压值是为了增加晶圆的产量,更明确地说,较高的电压值相对应于一个较高的电流,而且因此对应一个较高的移除速率。然而,一个较高的移除速率相对于产量是属较佳的,但是就以铜的碟型现象、残留铜金属、表面加工等等现象而言,较高的电压值却无法提供最好的结果。因此,一但剩余的铜薄层变的非常薄但仍呈连续状时,电压届时将切换至较低的数值。更明确地说,此切换是根据最佳化的产量而选择的预先决定的时间数值而计时。以此方法,可以使产量与结果(例如:薄膜品质)达到制程最佳化的目的。
于电压切换至第二电压值后,电流是再度维持于一个十值得固定数值I1,明确地说,在时间t2至t3间,该实质固定的电流值维持一定。于时间t3时,可观察到第二次电流的减少,此电流的减少是由终点侦测器306所监控着,直到于时间t4时侦测出一个研磨终点。在时间t4至t5间,可以保持一个整体研磨步骤,之后,该研磨循环则完成,而且该基材可以从研磨工作站移走以进行后续制程。
如上所述,曲线500以及600,是以“电流模式”操作,其间,电流于一固定电压下被监控着。于另一个实施例中,对于“电流模式”操作,电压的变化可被监控,而电流保持在一个实质的固定值。图7显示于电流模式操作下一个电压曲线700,其以一监控的信号特征表示。电压曲线700根据一垂直轴所显示的电压值,以及一相对于横轴所示的时间的变化而定义。经由研磨循环,维持电流于一个实质的固定值。于一个研磨的起始时段中(t0至t1),电压维持在一个实质的固定常数V0,在时间t1时,可观察出电压由V0增加至V1。于时间t2时,经由终点侦测器316侦测到一个终点,其可观察出一定程度的稳定电压。于时间t2至t3间,进行一个结束研磨的步骤之后,研磨将被暂停。
因此,无论操作模式为何(亦即,电流模式或是电压模式),根据电源供应器302所提供的一个信号的信号特征将可侦测出一个研磨终点。在每个例子中,相同或相似的运算法则将被使用于侦测终点。于一实施例中,一个有名的运算法则是使用来侦测该信号特征之一个预定改变速率。举例而言,使用于蚀刻系统的蚀刻终点侦测运算法则可修正而与本发明使用的。在每一个蚀刻系统,反射光线的波长是被特别地监控着。波长的改变代表着一个物质已经被充分地蚀刻。因此,本发明的一个实施例中,有利的利用这些及其类似的运算法则以获取其优点。更普遍而言,熟知该项技艺者将认知到其它可使用以获得优点的运算法则以及技术。
一个特殊的终点运算法则将参照图5而叙述的,此例示的运算法则使用定义为“窗口(Windows)”510A-F的软件。这些窗口的目的是用来监控一调终点曲线。如此一来,描述一条曲线预期的状态将作为用来选择窗口的大小及数目,窗口的大小及数目可以藉由ECMP研磨工作站的操作者定义的,并于窗口间变化。尤其是,这些窗口并非固定于图5上的一特殊时间间隔,而是根据曲线500的改变而反应的。
制程的一开始(当电源供应器开启的同时),电流数值系为I1,第一对窗口510A-B的高度设定使I1必须落于一电流预定的范围内。假如I1并未落于窗口高度内,研磨工作站欧姆电阻则并未落于规格之内,而且并未适当地运作。于本发明,制程将藉由终点侦测器316而自动停止。
在适当的运作时,电流在时间t0与t1间是稳定的。换言之,终点曲线500从窗口510A-B的一端进入,再从窗口510A-B的另一端出去。在时间t1时,等待研磨的金属层变的不连续,电流突降并且曲线500从窗口510C的底端离开。曲线500从窗口510C的底端离开代表着一个电流对于终点侦测器316的突降。此信号离开数个窗口510D-E的底端,直到剩余的铜已经被移除(亦即,直到时间t2)。在时间t2时,再没有任何铜可研磨,而且电流系再度为稳定的I2。因此,曲线500离开窗口510F的一端,而且终点侦测器316在时间t2时侦测出制程的终点。电流I2是对应于没有金属离子(或者一个可以忽视的金属离子数量)被释放于电解液的状态,如此一来,相对于I1而言(例如:几安培),典型的I2是非常小的(例如:几毫安)。一个过度研磨的步骤可以执行直到时间t3时,以移除任何的残留物质。
另一个实施例中,终点侦测器316计算所有从晶圆移除的总电量(charge),以决定移除物质的数量。此计算系相对于时间而积分,此全部的电流信号提供给研磨的小单位(cell)/晶圆(此处是指全部电流信号或小单位电流信号)。藉由确认位于小单位电流信号下的面积(由该小单位电流信号的积分所提供)所提供已移除的物质以及任何漏电流,将可决定一个研磨终点,藉由对应已移除的总电量(为任何漏电流而校正的小单位电流信号的积分)与已移除的物质总量。以下将作更详细的描述,此总电量/移除关系可以理论或实验决定的。一个晶圆的研磨循环的终点侦测因而仅需要知道尚未研磨前起始晶圆的厚度,此晶圆将研磨至起始晶圆的厚度与移除后度之间的差等于所需的厚度即可。
目标厚度=起始厚度-移除物质的厚度(方程式一)
其中移除物质的厚度为一个电量的方程式,其系由电流的积分而得(其可为任何漏电流而校正的,详见以下所述)。其中的电流信号仅系周期性的取样(亦即,终点侦测器306使用接收自电源供应器302中仪表318的电流数值样本),此积分大约是一个如下所示的总合:
Quantity of Current(t)=integral(0,t)[I(t)dt]{sum(0,t)[I(t)*(samplingperiod)](方程式二)
经由已计算整体时间内的电流总合(亦即已移除的总电量),此“移除物质的厚度”将可参考预定的总电量/移除关系而决定的。于一个实施例中,此总电量/移除关系是储存于数据结构中,例如查询手册中。因此,查询手册对应由终点侦测器316所计算的数值(亦即,由总合而定的已移除的总电量,参考上述的方程式二)与从基材移除的物质总量。为每一个不同制程状况以及基材型态的变化提供一个个别的查询手册。举例而言,不同的查询手册将提供给已图案化与未图案化的不同基材。这些查询手册将可进一步以电解液组成、待移除物质的型态等等而有不同的特性。如此一来,终点侦测器316将可为适应不同制程状况与基材类型的变化,而作终点侦测的调整。
因此,在一实施例中,终点侦测器316计算电流信号的积分值,而且读取适当的查询手册以决定相对应的移除物质总量。
本发明所述的查询手册,可以了解的是其仅代表一个实施例。更一般而言,任何技术藉由对应一个计算的总电量与移除物质总量将可使用以受益的。
一般而言,查询手册是可使用理论推导信息或实验推倒信息。在其它的案例,在电化学机械研磨中,于小单位所量测的电流(亦即,总电流/小单位电流)是与移除的金属(例如:铜)有关。该小单位(总)电流是由下述所组成:(i)漏电流,以及(ii)晶圆上的移除物质(亦即,实际上移除制程可以是,例如,Cu+/Cu++/Cu复合移除)。漏电流通常可以以非有效电流与其来源做为其特性,此来源包含研磨工具105的导电组件的化学变化(例如:图2的导电组件202)以及可能发生的不同的氧化作用。当使用一种区段开关(zone switch)时,第一种漏电流可获实质地减少。一个区段开关系任何研磨工具105中导电组件的结构,当研磨进行时,其闲歇地使其与基材相接触。例如:研磨工具105可与数个径向导电组件装配,于研磨进行中,其仅当导电组件与基材接触时方与电源供应器302电性连结。一旦导电组件从基材下方旋转出去时,导电源件与电源供应器302间的电性接触即告终止。
第二种类型漏电流的重要度系取决于特别的研磨反应。在铜研磨的例子中,铜氧化作用的可能性大于排放氧气反应,因此,当这两种氧化反应产生竞争时,大部分的电流流往铜氧化反应。所以说,当研磨铜金属时,由晶圆上氧气排放的漏电流可以被忽略。在任何的例子中,漏电流可轻易地使用一硅晶圆而得以校正,此将提供漏电流与施加于小单位的电压之间的关系。
既已决定(或忽略)了漏电流,则总电流便可藉由决定从晶圆上移除的贡献量而能得知。届时,全程的总电量以及移除速率则可用某个时间点上的已移除的总电量与已移除的物质总量来表示。如同以下所述的,此可由理论或实验而完成的。仅为了说明起见,其研磨的物质假设是铜金属。显而易见的是本发明将可利用于其它任何的导电金属。
在一实施例中,电流/移除速率以及电量/移除关系系由实验而决定的。举例而言,当以电流模式操作电源供应器302时,从一晶圆上所移除的物质的数量可周期性的量取(藉由量取片电阻的方式)。
或者,可为一系列不同状况下的晶圆制程量取电流(例如:微量不同的研磨次数、电压偏压等)。此方式的下,可获得一个校正曲线。于一个特别的例子中,于不同的状况下研磨20片晶圆,并且纪录平均的电流。研磨循环的前后分别量取晶圆的厚度,以决定平均的移除速率。校正曲线(以y=1.1185x+1.2512表示之)显示平均电流与平均移除速率之间的一个线性关系,并允许一个预测一个已知电流的移除速率。
既已建立一个电流与移除速率的关系式后,现在尚待建立已移除的总电量(由如同上述的方程式二所量取的电流数值总合获得)与已移除的物质厚度之间的关系式。图8显示一个由实验决定曲线的例子,其与总电量(参考x轴上的电流量(A*sec))与已移除物质(参考y轴上的移除量)有关。图8是用来建立一个查检表。
于操作过程中,一个总电量的值系使用周期量取的电流数值而计算的,适当的查检表将可获得以决定移除物质的厚度。终点侦测运算法则届时可决定是否已经达到一个目标厚度。如果是的话,研磨制程将暂停,而且基材将从腔室中移走。
再另一个实施例中,电流/移除速率以及电量/移除关系系由实验决定的。此电流/移除速率关系可由下列方式描述:电流->单位时间的电量->单位时间的移除原子->晶圆上的移除速率。
此电流/移除速率关系可取决于是否该晶圆是一个空白晶圆或是一个已经图案化后的晶圆及其化学作用。在任何的实例中,此电流/移除速率关系可由理论获得,假如反应方程式已知的话。举例来说,假设已知于一已的制程中仅有Cu++(并非Cu+)将被移除,进一步假设已量测出一个200mm的晶圆(表面面积为314cm2)上有一个1000/min的均匀移除速率。已知对一个铜晶体来说,a=b=c=361.49pm=3.6149。因此,一个单位细胞的体积为47.233。因为于每个单位细胞内有四个原子以及两个电子,则移除每单位细胞所需的总电量系为:4原子*2电子*1.6e-19C。更进一步说,因为1000的体积为314e193,因此每1000单位细胞的数量314*e19/47.23=6.64e19。因而已移除的总电量则为6.64e19*(4原子*2电子*1.6e-19C)=85C/min。所以,一个1000/min的移除速率系相对于1.42Amps的Cu++电流。一个200mm的晶圆,因此,其电流/移除速率关系式为每k埃/分有1.4安培。如此一来,一个欲求范围的电流与移除速率可决定此电流/移除速率关系式。
图9以一个线性的描绘线900描述一个电流/移除速率关系式,其中y轴系为铜金属的移除速率,x轴系为总电量(根据漏电流补偿)。需注意的是此关系乃为实质地线性关系。因此,描绘线900可由y=mx+b描述,其中m为线的斜率。此线的斜率取决于发生的氧化作用过程。举例而言,当发生移除Cu+以及Cu++时,斜率取决于Cu+/Cu++的移除速率。藉由上述的说明,回想计算单纯Cu++时的移除电流关系式为每k埃/分有1.42安培,相类似的方式计算单纯的Cu+电流关系式为每k埃/分有0.71安培。因此,假如包含Cu+以及Cu++两者的移除时,电流/移除速率关系式将介于0.71与1.42安培每k埃/分。最后,有效电流将取决于其所参与的特殊化学作用。
既已建立的单位细胞电流与移除速率间的关系式,尚待建立的仅为建立一个此关系式有意义的应用,用以决定一个研磨循环终点。如上所述,终点的决定系藉由从已量测的电流计算已移除的总电量。因此,其所需的乃式求取在一个已知时间下,已移除的总电量与已移除的物质总量之间的关系。因为根据以上所述的方法,已建立一个介于单位细胞电流与移除速率间的理论关系,此推导的关系式可以以已移除的总电量与已移除的物质总量来表示。此已移除的总电量与已移除的物质总量之间的关系将可用来建立查询手册,其可由终点侦测器316来使用,以决定再一个已知的时间点所需移除的物质的数量,以及,一个研磨循环的终点。更明确的说,可藉由量测时间过程的电流量并解以下的方程式(其为方程式一的特殊例子)以求得该厚度:
Thickness(t)=Initial_Thickness-Sum(0,t)[(Current(t)-Leakage(V(t)))*Current_To_Removal_Cofficient](方程式三)
其中Current_To_Removal_Cofficient系为电流/移除速率曲线(例如图9的描绘线900)的斜率(m),以及漏电流系为一常数(“b”)。因此,不同制程/晶圆的可以储存于查询手册中,对于一个已知的制程其可用来读取适当的“m”与“b”数值。
假如一个晶圆已经图案化,则需考虑密度系数,其假如选择度为100%,仅于升起的区域发生移除。密度系数根据数的理由而为铜厚度的方程式,其包含所有突出物之间起始高度的差距,以及其所需平坦的特征电路的不同速度。更进一步而言,因为当其轮廓已平坦时高起的区域随着研磨密度接近1而减少。因此,系数1/密度(厚度(时间))(coefficient1/Density(Thickness(t)))可以用来校正一个图案化晶圆的厚度评估。
Thickness(t)=Initial_Thickness-Sum(0,t)[(Current(t)-Leakage(V(t)))*Current_To_Removal_Cofficient/Density(Thickness(t))]
(方程式四)
因此,由方程式四中可以看出其比方程式三更属一个普遍一般的方程式,因为对于一个空白未图案化的晶圆来说此系数1/密度(厚度(时间))为1,此时方程式三与方程式四相同。再说明一次,为求解厚度所需的此些使用方程式四的系数与漏电流可储存于查询手册中。
一般而言,在此所描述的终点侦测运算法则可以以硬件、软件或两者合并的方式执行的。因此本发明之一实施例系以计算机使用的一程序产品执行的,例如,分别显示于图1与图3的系统100以及300。此程序产品中的程序系定义较佳实施例的数功能,以及可由不同的信号承载媒体(或计算机可读取的媒体)所储存,其可包含(i)永久储存于非可写入的储存媒体中的信息(例如:计算机中仅可读取记忆装置,如CD-ROM光盘片由CD-ROM光驱读取)(ii)储存于可擦写储存媒体中的可修改信息(例如:计算机中的软盘机或硬盘)(iii)藉由一通讯系统而传送至一计算机的信息,例如,经由一计算机或包含无线传输的电话网络,但并不仅限于以上所述。之后的实施例更包含从网际网络或其它网络下载的信息,当这种信号承载媒体携带计算机可读取的装置,而指挥本发明功能时,其乃代表本发明的数个实施例。
熟知该项技艺者当可认知以上所述的实施例仅为说明起见,本发明可适用于众多其它的实施例中。举例而言,前述的数个实施例描述一个面朝下(face down)的研磨电解技术,亦即,处理中的基材相对于研磨垫而言乃位于一个面朝下的方位。然而,在其它的实施例中,其乃运用一个面朝上的电解研磨技术。这些与其它的实施例将视为落于本发明的范围中。
以上所述乃根据本发明的实施例,本发明的其它实施例以及本发明的更进一步的实施例乃视为未脱离本发明的基本范围以及权利要求范围之外。

Claims (3)

1.一种侦测研磨终点的方法,包括:
放置基材与研磨垫相接触;
通过电解液在研磨垫的电极和基材上的一个或多个导电物质之间传送电子讯号,该电子讯号驱动基材上的一个或多个导电物质的电解研磨制程;以及
侦测电解研磨的研磨终点,其中上述侦测电解研磨的研磨终点的步骤包含:
确定在电解研磨该基材的过程中,自基材移除的总电量;以及
将移除的总电量与从基材去除的物质厚度相关联。
2.如权利要求1所述的方法,其中上述侦测该电解研磨的研磨终点步骤包含:
确定基材预先量测的起始厚度减去去除的物质厚度的差值是否等于或者小于基材的选定目标厚度。
3.一种电化学机械研磨系统,该系统至少包含:
导电研磨垫;
电源供应器,其可通过经由电解液从置于导电研磨垫中的电极到置于研磨垫上的基材限定的电路通路而提供电子讯号;和
终点侦测系统,其可监控电子讯号的讯号特征,用以侦测出研磨终点,
其中该终点侦测系统配置用于通过执行以下操作而侦测研磨终点,包含:
确定自基材移除的总电量;
将移除的总电量与自基材去除的物质厚度相关联;以及
确定基材预先量测的起始厚度减去去除的物质厚度是否等于或者小于基材的选定目标厚度。
CNA2007101815298A 2002-01-22 2003-01-21 电化学机械研磨系统和用于检测研磨终点的方法 Pending CN101176988A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/056,316 2002-01-22
US10/056,316 US6837983B2 (en) 2002-01-22 2002-01-22 Endpoint detection for electro chemical mechanical polishing and electropolishing processes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB038025477A Division CN100425404C (zh) 2002-01-22 2003-01-21 电化学机械研磨系统和用于检测研磨终点的方法

Publications (1)

Publication Number Publication Date
CN101176988A true CN101176988A (zh) 2008-05-14

Family

ID=22003599

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB038025477A Expired - Fee Related CN100425404C (zh) 2002-01-22 2003-01-21 电化学机械研磨系统和用于检测研磨终点的方法
CNA2007101815298A Pending CN101176988A (zh) 2002-01-22 2003-01-21 电化学机械研磨系统和用于检测研磨终点的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB038025477A Expired - Fee Related CN100425404C (zh) 2002-01-22 2003-01-21 电化学机械研磨系统和用于检测研磨终点的方法

Country Status (9)

Country Link
US (2) US6837983B2 (zh)
EP (1) EP1467840B1 (zh)
JP (2) JP2005516383A (zh)
KR (1) KR101011095B1 (zh)
CN (2) CN100425404C (zh)
AT (1) ATE366641T1 (zh)
DE (1) DE60314841T2 (zh)
TW (1) TWI278378B (zh)
WO (1) WO2003061905A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110962040A (zh) * 2018-09-28 2020-04-07 台湾积体电路制造股份有限公司 清洁方法以及清洁系统

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077721B2 (en) * 2000-02-17 2006-07-18 Applied Materials, Inc. Pad assembly for electrochemical mechanical processing
US6848970B2 (en) * 2002-09-16 2005-02-01 Applied Materials, Inc. Process control in electrochemically assisted planarization
JP2002046024A (ja) * 2000-08-04 2002-02-12 Sony Corp 電解研磨装置、電解研磨方法および被研磨ウエハ
US7129160B2 (en) * 2002-08-29 2006-10-31 Micron Technology, Inc. Method for simultaneously removing multiple conductive materials from microelectronic substrates
US6896776B2 (en) * 2000-12-18 2005-05-24 Applied Materials Inc. Method and apparatus for electro-chemical processing
US7128825B2 (en) * 2001-03-14 2006-10-31 Applied Materials, Inc. Method and composition for polishing a substrate
US6899804B2 (en) * 2001-12-21 2005-05-31 Applied Materials, Inc. Electrolyte composition and treatment for electrolytic chemical mechanical polishing
US7323416B2 (en) * 2001-03-14 2008-01-29 Applied Materials, Inc. Method and composition for polishing a substrate
US20060169597A1 (en) * 2001-03-14 2006-08-03 Applied Materials, Inc. Method and composition for polishing a substrate
US7582564B2 (en) * 2001-03-14 2009-09-01 Applied Materials, Inc. Process and composition for conductive material removal by electrochemical mechanical polishing
JP3807295B2 (ja) * 2001-11-30 2006-08-09 ソニー株式会社 研磨方法
US6837983B2 (en) * 2002-01-22 2005-01-04 Applied Materials, Inc. Endpoint detection for electro chemical mechanical polishing and electropolishing processes
US6752916B1 (en) * 2002-02-01 2004-06-22 Lsi Logic Corporation Electrochemical planarization end point detection
US7112270B2 (en) * 2002-09-16 2006-09-26 Applied Materials, Inc. Algorithm for real-time process control of electro-polishing
US20050061674A1 (en) * 2002-09-16 2005-03-24 Yan Wang Endpoint compensation in electroprocessing
WO2004041467A1 (ja) * 2002-11-08 2004-05-21 Ebara Corporation 電解加工装置及び電解加工方法
US7084466B1 (en) * 2002-12-09 2006-08-01 Novellus Systems, Inc. Liquid detection end effector sensor and method of using the same
US7842169B2 (en) 2003-03-04 2010-11-30 Applied Materials, Inc. Method and apparatus for local polishing control
JP2004327561A (ja) * 2003-04-22 2004-11-18 Ebara Corp 基板処理方法及び基板処理装置
US7390429B2 (en) * 2003-06-06 2008-06-24 Applied Materials, Inc. Method and composition for electrochemical mechanical polishing processing
US20050121141A1 (en) * 2003-11-13 2005-06-09 Manens Antoine P. Real time process control for a polishing process
TWI392003B (zh) * 2003-11-26 2013-04-01 Acm Res Inc 監視金屬層的電解拋光製程的方法與系統、電解拋光形成在晶圓上的金屬層之系統與其監視方法與系統
US20060021974A1 (en) * 2004-01-29 2006-02-02 Applied Materials, Inc. Method and composition for polishing a substrate
US7153777B2 (en) * 2004-02-20 2006-12-26 Micron Technology, Inc. Methods and apparatuses for electrochemical-mechanical polishing
JP2005340600A (ja) * 2004-05-28 2005-12-08 Renesas Technology Corp 研磨装置及び半導体装置の製造方法
KR100905561B1 (ko) * 2004-09-14 2009-07-02 어플라이드 머티어리얼스, 인코포레이티드 금속 및 배리어 층의 전기화학적 기계적 프로세싱 공정
US7084064B2 (en) * 2004-09-14 2006-08-01 Applied Materials, Inc. Full sequence metal and barrier layer electrochemical mechanical processing
US7655565B2 (en) 2005-01-26 2010-02-02 Applied Materials, Inc. Electroprocessing profile control
US20060219663A1 (en) * 2005-03-31 2006-10-05 Applied Materials, Inc. Metal CMP process on one or more polishing stations using slurries with oxidizers
US20060249394A1 (en) * 2005-05-05 2006-11-09 Applied Materials, Inc. Process and composition for electrochemical mechanical polishing
US20060249395A1 (en) * 2005-05-05 2006-11-09 Applied Material, Inc. Process and composition for electrochemical mechanical polishing
US7416648B2 (en) * 2005-05-12 2008-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensor system for monitoring condition of electrode for electrochemical process tools
US20080029400A1 (en) * 2005-05-13 2008-02-07 Stephen Mazur Selective electroplating onto recessed surfaces
US20070034526A1 (en) * 2005-08-12 2007-02-15 Natsuki Makino Electrolytic processing apparatus and method
US20070108066A1 (en) * 2005-10-28 2007-05-17 Applied Materials, Inc. Voltage mode current control
WO2007117301A2 (en) * 2005-11-01 2007-10-18 Applied Materials, Inc. Ball contact cover for copper loss reduction and spike reduction
US20070158201A1 (en) * 2006-01-06 2007-07-12 Applied Materials, Inc. Electrochemical processing with dynamic process control
US20070243709A1 (en) * 2006-04-14 2007-10-18 Applied Materials, Inc. Planarization of substrates at a high polishing rate using electrochemical mechanical polishing
US20070254485A1 (en) * 2006-04-28 2007-11-01 Daxin Mao Abrasive composition for electrochemical mechanical polishing
US20080067077A1 (en) * 2006-09-04 2008-03-20 Akira Kodera Electrolytic liquid for electrolytic polishing and electrolytic polishing method
US20080277787A1 (en) * 2007-05-09 2008-11-13 Liu Feng Q Method and pad design for the removal of barrier material by electrochemical mechanical processing
KR101016237B1 (ko) * 2008-07-03 2011-02-25 홍익대학교 산학협력단 전해연마의 종료시점 결정방법
DE102009046750B4 (de) * 2008-12-31 2019-02-14 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Elektrochemisches Einebnungssystem mit verbesserter Elektrolytströmung
EP2719800B1 (en) * 2011-06-09 2018-03-21 Tokyo Stainless Grinding Co., Ltd. Method for producing steel
CN103389428B (zh) * 2013-07-31 2016-03-23 杭州士兰微电子股份有限公司 微机电工艺监控结构和监控方法
CN104440513A (zh) * 2013-09-22 2015-03-25 盛美半导体设备(上海)有限公司 硅片加工装置及方法
JP6228613B2 (ja) * 2013-12-25 2017-11-08 株式会社日立製作所 ナノポア形成方法、ナノポア形成装置及びセット
US9676075B2 (en) 2015-06-12 2017-06-13 Globalfoundries Inc. Methods and structures for achieving target resistance post CMP using in-situ resistance measurements
CN108350599B (zh) * 2015-10-30 2020-03-20 盛美半导体设备(上海)股份有限公司 在恒压模式下电化学抛光的方法
JP6774244B2 (ja) * 2016-07-22 2020-10-21 株式会社ディスコ 研削装置
US10562147B2 (en) * 2016-08-31 2020-02-18 Applied Materials, Inc. Polishing system with annular platen or polishing pad for substrate monitoring
CN108550515B (zh) * 2018-04-11 2019-11-08 江阴市光科光电精密设备有限公司 离子注入工艺腔体的研磨工艺
CN108608314B (zh) * 2018-06-08 2019-10-11 大连理工大学 一种用于双面电化学机械抛光平面构件的设备及方法
US11491611B2 (en) * 2018-08-14 2022-11-08 Illinois Tool Works Inc. Splash guards for grinder/polisher machines and grinder/polisher machines having splash guards
CN110257895B (zh) * 2019-06-24 2021-03-23 江苏守航实业有限公司 一种半导体材料的电解抛光方法及装置
CN110465842B (zh) * 2019-08-09 2020-06-23 湖北华宁防腐技术股份有限公司 一种用于防腐胶板生产线的打磨装置及其使用方法
CN113399766B (zh) * 2021-06-02 2022-06-14 贵州大学 一种高速钢轧辊材质电解磨削所用电解液的试验方法
WO2023249678A1 (en) * 2022-06-22 2023-12-28 Applied Materials, Inc. Window logic for control of polishing process

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3162588A (en) * 1961-04-17 1964-12-22 Hammond Machinery Builders Inc Belt type electrolytic grinding machine
US3448023A (en) * 1966-01-20 1969-06-03 Hammond Machinery Builders Inc Belt type electro-chemical (or electrolytic) grinding machine
US3873512A (en) * 1973-04-30 1975-03-25 Martin Marietta Corp Machining method
GB1539309A (en) * 1976-12-14 1979-01-31 Inoue Japax Res Electrochemical polishing
JPS62127492A (ja) * 1985-11-26 1987-06-09 Shigeo Hoshino カ−ボン繊維を用いる電気めつきの方法
US4839993A (en) * 1986-01-28 1989-06-20 Fujisu Limited Polishing machine for ferrule of optical fiber connector
US4793895A (en) 1988-01-25 1988-12-27 Ibm Corporation In situ conductivity monitoring technique for chemical/mechanical planarization endpoint detection
JPH01193166A (ja) * 1988-01-28 1989-08-03 Showa Denko Kk 半導体ウェハ鏡面研磨用パッド
US4934102A (en) 1988-10-04 1990-06-19 International Business Machines Corporation System for mechanical planarization
CH678156A5 (zh) * 1989-03-20 1991-08-15 Exnii Metallorezh Stankov
US5136817A (en) * 1990-02-28 1992-08-11 Nihon Dempa Kogyo Co., Ltd. Automatic lapping apparatus for piezoelectric materials
US5081421A (en) 1990-05-01 1992-01-14 At&T Bell Laboratories In situ monitoring technique and apparatus for chemical/mechanical planarization endpoint detection
US5096550A (en) * 1990-10-15 1992-03-17 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for spatially uniform electropolishing and electrolytic etching
US5217586A (en) 1992-01-09 1993-06-08 International Business Machines Corporation Electrochemical tool for uniform metal removal during electropolishing
US5225034A (en) 1992-06-04 1993-07-06 Micron Technology, Inc. Method of chemical mechanical polishing predominantly copper containing metal layers in semiconductor processing
MY114512A (en) * 1992-08-19 2002-11-30 Rodel Inc Polymeric substrate with polymeric microelements
US5562529A (en) * 1992-10-08 1996-10-08 Fujitsu Limited Apparatus and method for uniformly polishing a wafer
US5461007A (en) * 1994-06-02 1995-10-24 Motorola, Inc. Process for polishing and analyzing a layer over a patterned semiconductor substrate
US5534106A (en) 1994-07-26 1996-07-09 Kabushiki Kaisha Toshiba Apparatus for processing semiconductor wafers
US5567300A (en) 1994-09-02 1996-10-22 Ibm Corporation Electrochemical metal removal technique for planarization of surfaces
US6017265A (en) * 1995-06-07 2000-01-25 Rodel, Inc. Methods for using polishing pads
US5486282A (en) 1994-11-30 1996-01-23 Ibm Corporation Electroetching process for seed layer removal in electrochemical fabrication of wafers
US5893796A (en) * 1995-03-28 1999-04-13 Applied Materials, Inc. Forming a transparent window in a polishing pad for a chemical mechanical polishing apparatus
JPH08304010A (ja) * 1995-04-28 1996-11-22 Sony Corp デプスセンサー
US6024630A (en) * 1995-06-09 2000-02-15 Applied Materials, Inc. Fluid-pressure regulated wafer polishing head
US5863412A (en) * 1995-10-17 1999-01-26 Canon Kabushiki Kaisha Etching method and process for producing a semiconductor element using said etching method
US5738574A (en) * 1995-10-27 1998-04-14 Applied Materials, Inc. Continuous processing system for chemical mechanical polishing
US5804507A (en) * 1995-10-27 1998-09-08 Applied Materials, Inc. Radially oscillating carousel processing system for chemical mechanical polishing
JPH09134904A (ja) * 1995-11-09 1997-05-20 Nissan Motor Co Ltd 半導体基板の研磨方法
US5575706A (en) 1996-01-11 1996-11-19 Taiwan Semiconductor Manufacturing Company Ltd. Chemical/mechanical planarization (CMP) apparatus and polish method
US5766446A (en) * 1996-03-05 1998-06-16 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
US5871392A (en) * 1996-06-13 1999-02-16 Micron Technology, Inc. Under-pad for chemical-mechanical planarization of semiconductor wafers
JP3354794B2 (ja) 1996-06-27 2002-12-09 東芝テック株式会社 記録ヘッドの駆動方法
US5846882A (en) 1996-10-03 1998-12-08 Applied Materials, Inc. Endpoint detector for a chemical mechanical polishing system
FR2758285B3 (fr) * 1997-01-13 1998-12-04 Struers As Procede de fixation d'un agent abrasif ou de polissage, sous forme de feuille, sur un support magnetique
US6020264A (en) * 1997-01-31 2000-02-01 International Business Machines Corporation Method and apparatus for in-line oxide thickness determination in chemical-mechanical polishing
US5938801A (en) * 1997-02-12 1999-08-17 Micron Technology, Inc. Polishing pad and a method for making a polishing pad with covalently bonded particles
US5911619A (en) 1997-03-26 1999-06-15 International Business Machines Corporation Apparatus for electrochemical mechanical planarization
US5807165A (en) 1997-03-26 1998-09-15 International Business Machines Corporation Method of electrochemical mechanical planarization
US5990010A (en) * 1997-04-08 1999-11-23 Lsi Logic Corporation Pre-conditioning polishing pads for chemical-mechanical polishing
JPH10329007A (ja) * 1997-05-28 1998-12-15 Sony Corp 化学的機械研磨装置
JPH1142554A (ja) 1997-07-25 1999-02-16 Nec Corp 研磨量制御装置
US5931719A (en) * 1997-08-25 1999-08-03 Lsi Logic Corporation Method and apparatus for using pressure differentials through a polishing pad to improve performance in chemical mechanical polishing
US6103096A (en) 1997-11-12 2000-08-15 International Business Machines Corporation Apparatus and method for the electrochemical etching of a wafer
WO1999026758A1 (en) * 1997-11-25 1999-06-03 John Hopkins University Electrochemical-control of abrasive polishing and machining rates
US6153043A (en) * 1998-02-06 2000-11-28 International Business Machines Corporation Elimination of photo-induced electrochemical dissolution in chemical mechanical polishing
US6391166B1 (en) * 1998-02-12 2002-05-21 Acm Research, Inc. Plating apparatus and method
US6004880A (en) * 1998-02-20 1999-12-21 Lsi Logic Corporation Method of single step damascene process for deposition and global planarization
JP3295888B2 (ja) * 1998-04-22 2002-06-24 株式会社藤森技術研究所 ケミカルマシンポリッシャの研磨盤用研磨ドレッサ
US6210257B1 (en) * 1998-05-29 2001-04-03 Micron Technology, Inc. Web-format polishing pads and methods for manufacturing and using web-format polishing pads in mechanical and chemical-mechanical planarization of microelectronic substrates
US6395152B1 (en) * 1998-07-09 2002-05-28 Acm Research, Inc. Methods and apparatus for electropolishing metal interconnections on semiconductor devices
US6447668B1 (en) * 1998-07-09 2002-09-10 Acm Research, Inc. Methods and apparatus for end-point detection
US6159079A (en) * 1998-09-08 2000-12-12 Applied Materials, Inc. Carrier head for chemical mechanical polishing a substrate
US6248222B1 (en) * 1998-09-08 2001-06-19 Acm Research, Inc. Methods and apparatus for holding and positioning semiconductor workpieces during electropolishing and/or electroplating of the workpieces
US6176992B1 (en) 1998-11-03 2001-01-23 Nutool, Inc. Method and apparatus for electro-chemical mechanical deposition
JP2000141215A (ja) * 1998-11-05 2000-05-23 Sony Corp 平坦化研磨装置及び平坦化研磨方法
US6541381B2 (en) 1998-11-06 2003-04-01 Beaver Creek Concepts Inc Finishing method for semiconductor wafers using a lubricating boundary layer
US6726823B1 (en) * 1998-11-28 2004-04-27 Acm Research, Inc. Methods and apparatus for holding and positioning semiconductor workpieces during electropolishing and/or electroplating of the workpieces
US6251235B1 (en) * 1999-03-30 2001-06-26 Nutool, Inc. Apparatus for forming an electrical contact with a semiconductor substrate
US6497800B1 (en) * 2000-03-17 2002-12-24 Nutool Inc. Device providing electrical contact to the surface of a semiconductor workpiece during metal plating
US6413388B1 (en) * 2000-02-23 2002-07-02 Nutool Inc. Pad designs and structures for a versatile materials processing apparatus
US6409904B1 (en) * 1998-12-01 2002-06-25 Nutool, Inc. Method and apparatus for depositing and controlling the texture of a thin film
US6328872B1 (en) * 1999-04-03 2001-12-11 Nutool, Inc. Method and apparatus for plating and polishing a semiconductor substrate
JP3047904B1 (ja) 1999-02-03 2000-06-05 日本電気株式会社 研磨装置
US6244935B1 (en) * 1999-02-04 2001-06-12 Applied Materials, Inc. Apparatus and methods for chemical mechanical polishing with an advanceable polishing sheet
US6066030A (en) 1999-03-04 2000-05-23 International Business Machines Corporation Electroetch and chemical mechanical polishing equipment
JP3777495B2 (ja) * 1999-03-31 2006-05-24 株式会社荏原製作所 ポリッシング方法及び装置
US6217426B1 (en) * 1999-04-06 2001-04-17 Applied Materials, Inc. CMP polishing pad
US6238271B1 (en) * 1999-04-30 2001-05-29 Speed Fam-Ipec Corp. Methods and apparatus for improved polishing of workpieces
US20020077037A1 (en) * 1999-05-03 2002-06-20 Tietz James V. Fixed abrasive articles
US6156124A (en) * 1999-06-18 2000-12-05 Applied Materials, Inc. Wafer transfer station for a chemical mechanical polisher
US6224460B1 (en) * 1999-06-30 2001-05-01 Vlsi Technology, Inc. Laser interferometry endpoint detection with windowless polishing pad for chemical mechanical polishing process
US6381169B1 (en) * 1999-07-01 2002-04-30 The Regents Of The University Of California High density non-volatile memory device
US6297159B1 (en) * 1999-07-07 2001-10-02 Advanced Micro Devices, Inc. Method and apparatus for chemical polishing using field responsive materials
US6234870B1 (en) 1999-08-24 2001-05-22 International Business Machines Corporation Serial intelligent electro-chemical-mechanical wafer processor
US6406363B1 (en) * 1999-08-31 2002-06-18 Lam Research Corporation Unsupported chemical mechanical polishing belt
JP4513145B2 (ja) * 1999-09-07 2010-07-28 ソニー株式会社 半導体装置の製造方法および研磨方法
US6159075A (en) * 1999-10-13 2000-12-12 Vlsi Technology, Inc. Method and system for in-situ optimization for semiconductor wafers in a chemical mechanical polishing process
US6379223B1 (en) * 1999-11-29 2002-04-30 Applied Materials, Inc. Method and apparatus for electrochemical-mechanical planarization
US6368184B1 (en) * 2000-01-06 2002-04-09 Advanced Micro Devices, Inc. Apparatus for determining metal CMP endpoint using integrated polishing pad electrodes
US6630059B1 (en) * 2000-01-14 2003-10-07 Nutool, Inc. Workpeice proximity plating apparatus
US6368190B1 (en) * 2000-01-26 2002-04-09 Agere Systems Guardian Corp. Electrochemical mechanical planarization apparatus and method
US7066800B2 (en) * 2000-02-17 2006-06-27 Applied Materials Inc. Conductive polishing article for electrochemical mechanical polishing
US6991528B2 (en) * 2000-02-17 2006-01-31 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20030213703A1 (en) * 2002-05-16 2003-11-20 Applied Materials, Inc. Method and apparatus for substrate polishing
US7374644B2 (en) * 2000-02-17 2008-05-20 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US6797623B2 (en) 2000-03-09 2004-09-28 Sony Corporation Methods of producing and polishing semiconductor device and polishing apparatus
JP2001326204A (ja) * 2000-03-09 2001-11-22 Sony Corp 半導体装置の製造方法および研磨方法
US6482307B2 (en) * 2000-05-12 2002-11-19 Nutool, Inc. Method of and apparatus for making electrical contact to wafer surface for full-face electroplating or electropolishing
JP2001269862A (ja) * 2000-03-27 2001-10-02 Toshiba Corp 研磨パッド、研磨装置及び研磨方法
US6402591B1 (en) * 2000-03-31 2002-06-11 Lam Research Corporation Planarization system for chemical-mechanical polishing
US7112121B2 (en) 2000-08-30 2006-09-26 Micron Technology, Inc. Methods and apparatus for electrical, mechanical and/or chemical removal of conductive material from a microelectronic substrate
US7160176B2 (en) 2000-08-30 2007-01-09 Micron Technology, Inc. Methods and apparatus for electrically and/or chemically-mechanically removing conductive material from a microelectronic substrate
JP2002093761A (ja) * 2000-09-19 2002-03-29 Sony Corp 研磨方法、研磨装置、メッキ方法およびメッキ装置
US6736952B2 (en) * 2001-02-12 2004-05-18 Speedfam-Ipec Corporation Method and apparatus for electrochemical planarization of a workpiece
US6811680B2 (en) * 2001-03-14 2004-11-02 Applied Materials Inc. Planarization of substrates using electrochemical mechanical polishing
US6899804B2 (en) * 2001-12-21 2005-05-31 Applied Materials, Inc. Electrolyte composition and treatment for electrolytic chemical mechanical polishing
US6638863B2 (en) * 2001-04-24 2003-10-28 Acm Research, Inc. Electropolishing metal layers on wafers having trenches or vias with dummy structures
KR100663662B1 (ko) * 2001-06-21 2007-01-03 마이크론 테크놀로지 인코포레이티드 마이크로전자 기판으로부터 도전성 물질을 전기적, 기계적 및/또는 화학적으로 제거하기 위한 장치 및 방법
JP2003029038A (ja) * 2001-07-17 2003-01-29 Nitto Denko Corp 光学フィルム、偏光板及び表示装置
US6776693B2 (en) * 2001-12-19 2004-08-17 Applied Materials Inc. Method and apparatus for face-up substrate polishing
US6837983B2 (en) * 2002-01-22 2005-01-04 Applied Materials, Inc. Endpoint detection for electro chemical mechanical polishing and electropolishing processes
WO2003066282A2 (en) * 2002-02-04 2003-08-14 Kla-Tencor Technologies Corp. Systems and methods for characterizing a polishing process
JP4205914B2 (ja) * 2002-08-27 2009-01-07 株式会社ルネサステクノロジ 半導体装置の製造方法及び製造装置
US6739953B1 (en) * 2003-04-09 2004-05-25 Lsi Logic Corporation Mechanical stress free processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110962040A (zh) * 2018-09-28 2020-04-07 台湾积体电路制造股份有限公司 清洁方法以及清洁系统
CN110962040B (zh) * 2018-09-28 2021-06-29 台湾积体电路制造股份有限公司 研磨方法以及研磨系统

Also Published As

Publication number Publication date
ATE366641T1 (de) 2007-08-15
DE60314841D1 (de) 2007-08-23
US20030136684A1 (en) 2003-07-24
KR101011095B1 (ko) 2011-01-25
EP1467840B1 (en) 2007-07-11
US6837983B2 (en) 2005-01-04
JP2010147489A (ja) 2010-07-01
CN100425404C (zh) 2008-10-15
JP2005516383A (ja) 2005-06-02
CN1652898A (zh) 2005-08-10
WO2003061905A1 (en) 2003-07-31
KR20040078131A (ko) 2004-09-08
DE60314841T2 (de) 2008-03-13
TWI278378B (en) 2007-04-11
EP1467840A1 (en) 2004-10-20
TW200302150A (en) 2003-08-01
US20050077188A1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
CN100425404C (zh) 电化学机械研磨系统和用于检测研磨终点的方法
US6379223B1 (en) Method and apparatus for electrochemical-mechanical planarization
TW543104B (en) Anode assembly for plating and planarizing a conductive layer
US7112121B2 (en) Methods and apparatus for electrical, mechanical and/or chemical removal of conductive material from a microelectronic substrate
US6848977B1 (en) Polishing pad for electrochemical mechanical polishing
TW523558B (en) Method and apparatus for electrochemical mechanical deposition
CN100497748C (zh) 电解抛光组件以及对导电层执行电解抛光的方法
US20080017521A1 (en) Process control in electro-chemical mechanical polishing
WO2004094107A1 (en) Conductive polishing pad with anode and cathode
US20030010648A1 (en) Electrochemically assisted chemical polish
US20060217040A1 (en) Methods and apparatus for removing conductive material from a microelectronic substrate
CN101880902A (zh) 用于沉积半导体晶片薄膜和使其平面化的装置和方法
CN101022910A (zh) 全序列金属和阻挡层电化学机械处理
WO2002085570A2 (en) Conductive polishing article for electrochemical mechanical polishing
CN100507092C (zh) 电解加工装置及电解加工方法
WO2004078411A2 (en) Method and apparatus for local polishing control
US20040072445A1 (en) Effective method to improve surface finish in electrochemically assisted CMP
JP2007050506A (ja) 電解加工装置
TW200428508A (en) Method and system for real-time process control of electro-polishing
US6863794B2 (en) Method and apparatus for forming metal layers
US6264536B1 (en) Reducing polish platen corrosion during integrated circuit fabrication
US7695597B1 (en) Conductive planarization assembly for electrochemical mechanical planarization of a work piece
JP2005539384A (ja) 電気化学的に支援されたcmpにおける除去プロファイルの制御
US20070151866A1 (en) Substrate polishing with surface pretreatment
JP4446271B2 (ja) ミクロ電子基板から導電物質を電気的、機械的および/または化学的に除去する方法および装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication