CN101237907A - 包括目标检测的放射治疗方法 - Google Patents

包括目标检测的放射治疗方法 Download PDF

Info

Publication number
CN101237907A
CN101237907A CNA2005800469653A CN200580046965A CN101237907A CN 101237907 A CN101237907 A CN 101237907A CN A2005800469653 A CNA2005800469653 A CN A2005800469653A CN 200580046965 A CN200580046965 A CN 200580046965A CN 101237907 A CN101237907 A CN 101237907A
Authority
CN
China
Prior art keywords
target
radiotherapy
image
ray image
bidimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800469653A
Other languages
English (en)
Inventor
J·S·施尔德克劳特
N·D·卡希尔
S·杜尔加蒂
L·A·雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of CN101237907A publication Critical patent/CN101237907A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1059Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using cameras imaging the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • A61N2005/1062Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source using virtual X-ray images, e.g. digitally reconstructed radiographs [DRR]

Abstract

一种采用患者的放射治疗的三维计划图像来对患者进行放射治疗的方法,其中该计划图像包括放射治疗目标。所述方法包括如下步骤:采用计划图像来确定一个或多个期望的数字重建射线图像;采用数字射线图像单元来俘获对应一个或多个期望的数字重建射线图像中的每一个的至少一个二维射线图像;检测放射治疗目标在该至少一个俘获的两维射线图像的每一个中的位置;以及响应放射治疗目标在该俘获的至少一个两维射线图像中的检测位置,确定放射治疗的传送。

Description

包括目标检测的放射治疗方法
技术领域
本发明总体涉及放射治疗系统,特别涉及基于目标检测传送治疗辐射的系统。
背景技术
本发明提供一种自适应放射治疗方法(ART),其中在数字射线图像中检测目标组织的位置以保证治疗辐射的适当瞄准。
放射治疗中许多改进的目的在于向目标(例如癌肿瘤)传送治疗辐射的同时最小化对正常组织的辐射量。这些改进允许对肿瘤施加较大剂量的辐射,但受到必须限制周围正常组织所接收剂量的约束。
计划放射治疗以获得患者的三维图像开始,同时患者具有两个或更多附加的外部标记物。此成像方式允许医师精确地识别肿瘤边界。计算机层析摄影(CT)、磁共振成像(MRI)、正电子发射层析摄影(PET)以及超声波可用于实现此目的。
出现在图像中的肿瘤体积通常称为总肿瘤体积(GTV)。放大GTV以考虑肿瘤的微观扩展。此放大的体积通常称为临床肿瘤体积(CTV)。因为治疗步骤中可能的设置错误,可以进一步放大CTV。对于颅外肿瘤,还存在由于器官运动而造成的肿瘤相对于外部标记位置的不确定性。例如,肺部肿瘤随着患者呼吸而移动。放大CTV以补偿设置错误以及器官运动所造成的不确定性常常称作计划治疗体积(PTV)。
在放射治疗的设置期间,定位患者使得PTV处于系统的等角点。为正确定位患者,系统检测外部标记物的位置。因为PTV的位置相对于这些外部标记物已知,所以系统可将患者移到合适的位置。
在强度调制放射治疗(IMRT)中,治疗束扫描出围绕等角点的圆弧从而PTV在治疗期间接收辐射而其它组织在一小部分时间受到辐射。当束移动时,通过多叶片准直器(MLC)周期性地调整其形状以使得治疗辐射束的投影符合PTV的形状。为进一步节省正常组织,对多个分开的处理施加全部剂量。分开的治疗通常包括在数天到数周的周期中施加的20到40个部分剂量。
因为目标位置相对于需要接收治疗辐射的全部剂量的等角点不确定,所以PTV大于CTV。一个不确定的原因在于肿瘤相对于外部标记物在计划阶段的成像时间和治疗阶段的设置之间移动。而且,因为剂量通常在分开的治疗中施加,所以目标位置在每次治疗中可相对于外部标记物、内部器官和等角点不同地变化。
已经开发了多种方法以降低目标位置相对于系统等角点的不确定性。例如,如果呼吸引起的器官运动是一个不确定性的原因,那么可通过俘获计划图像和在特殊呼吸状态例如放松呼气下进行治疗而降低不确定性。
放射治疗系统有时配备有两个数字射线图像单元以在治疗之前获得立体的x射线图像。将这些图像与来自在计划阶段所俘获的CT图像的数字重构射线图像(DDR)比较。在射线图像和DRR中骨头或者植入的金属标记物的记录用于调整患者的位置以使得PTV处于等角点。
电子门成像可用于证实目标的位置。在电子门成像中,当治疗束经过患者后被成像。可以在放射治疗期间或者治疗之前使用设置为低密度的治疗束源来获得此图像。这种方法的缺点在于治疗辐射的光子能量通常高于1MV,因此软组织对比度较低。而且,门成像限于仅仅及时地在一个实例中两维地定位目标的单一辐射源。如E.C.Ford等人在“Cone-BeamCT with Megavoltage beams and an amorphous silicon electronicportal imaging device:Potential for Verification ofRadiotherapy of Lung Cancer,”Med.Phys.,Vol.29,No.12,pp.2913-2924(2002)中所述,可通过在多个角度收集门图像以及进行体积重构而克服此局限性。但是,这种方法的缺点在于目标位置验证造成对患者的大辐射剂量。而且,借助现有技术,验证目标位置所需要的时间太长而不能保证目标在验证位置的时间内不移动。
美国专利申请2004/0158146(Mate)涉及一种引导放射治疗系统,其具有外部辐射源可激发的植入标记物。对此植入标记物被成像从而其相对于靶的位置是已知的。在放射治疗的患者设置期间,由处于体外的传感器阵列定位内部标记物的位置。基于由传感器阵列确定的内部标记物位置,定位患者以使得目标处于等角点。
美国专利No.6,501,981B1(Schweilkard)涉及一种在存在呼吸运动时跟踪内部目标的方法。内部标记物置于目标附近。在治疗之前,当患者呼吸时对内部和外部标记物的位置成像。基于此图像数据计算内部和外部标记物之间的相关性。当治疗患者时,通过连续监视外部标记物的位置来预测目标位置。周期性地对内部标记物成像以获得其实际位置。
Shinichi等人在“Detection of Lung Tumor Movement in RealtimeTumor-Tracking Radiotherapy”Int.J.Radiation Oncology Biol.Phys.,Vol.51,No.2,pp304-310(2001)中描述了一种以三维实时跟踪内部2.0毫米金标记物的系统。四组诊断荧光镜用于对标记物成像。在治疗期间,当在距离标准位置一个允许位移内检测标记物时仅仅辐照目标。
当前放射治疗方法的缺点是放大临床肿瘤体积(CTV)以包括周围空间从而补偿目标相对于等角点位置的不确定性。因此,正常组织接收了破坏性的辐射剂量。
已经开发了采用降低目标位置不确定性的植入内部标记物的方法。遗憾地是,标记物植入需要增加手术,而且如果肿瘤位置不可到达或者如果出现太多肿瘤时可能不选择此标记物。而且,内标记物的位置可能与目标位置不密切相关。
本发明的特征在于提供可精确确定目标位置的系统。本发明的另一个特征在于提供一种不采用内部标记物以进行目标定位的系统。本发明的另一个特征在于提供一种快速确定目标位置而不必对正常组织施加大量多余辐射的系统。
发明内容
本发明提供一种在紧接治疗束辐照之前确定目标位置的装置。
更特别是,在计划阶段采用三维医疗成像形式俘获患者的图像。医师勾画此图像中的目标边界。
从计划图像产生一个或多个最佳数字重建射线图像(DRR)。当促进目标组织的可检验性时DRR最佳。通常应当最小化其它解剖结构和目标组织的交叠。而且目标在DDR中的边界应当明显。
放射治疗系统配置有一个或多个可调整数字射线图像单元。设置每个数字射线图像单元以从最佳DRR的投影产生射线图像。
紧接治疗束施加之前,采集一个或多个数字射线图像。图像处理单元基于计划图像中目标的特征识别目标在射线图像中的位置。
以多种方式使用图像处理单元的输出。如果目标不在等角点,则系统从治疗束的辐照重构。可选择地,重新定位患者或者束从而目标在放射治疗开始之前处于等角点。
根据本发明的一个方面,提供一种采用患者的放射治疗的三维计划图像对患者进行放射治疗的方法,其中计划图像包括放射治疗目标。此方法包括如下的步骤:采用三维计划图像确定用于俘获放射治疗目标的至少一个两维射线图像的期望图像俘获条件;检测放射治疗目标在此至少一个俘获的两维射线图像中的位置;以及响应于放射治疗目标在此至少一个两维射线图像中的检测位置,确定放射治疗的传送。
根据本发明的另一方面,提供一种采用患者的放射治疗的三维计划图像对患者进行放射治疗的方法,其中计划图像包括放射治疗目标。此方法包括如下的步骤:采用计划图像来确定一个或多个期望的数字重建图像;采用数字射线图像单元来俘获对应一个或多个期望的数字重建图像中每一个的至少一个二维射线图像;检测放射治疗目标在此至少一个俘获的两维射线图像的每一个中的位置;以及响应于放射治疗目标在此俘获的至少一个两维射线图像中的检测位置,确定放射治疗的传送。
附图说明
从下面如附图所描述的本发明实施例更具体的描述可清楚本发明的上述及其它目标、特征和优点。附图元件相互之间不一定成比例。
图1是具有目标定位检测的放射治疗装置的示意图。
图2是描述根据本发明的包括目标定位检测的放射治疗方法的流程图。
图3是描述根据本发明的目标定位方法的流程图。
图4是具有目标定位检测的放射治疗装置的示意图。
具体实施方式
接下来是参考附图的本发明优选实施例的详细描述,其中在多个附图的每一个中相同的附图标记表示相同的结构元件。
图1示出了具有自动目标定位检测的示例性放射治疗系统。参考图1,患者130位于支承部件例如治疗床132上。患者具有两个或多个附着的外部标记物138。用照相机139监视外部标记物的位置。
在整个治疗中治疗辐射源136对准等角点134。
射线图像单元由诊断X射线源135组成,而数字x射线成像设备133拍摄目标区131。放射治疗系统优选具有多于一个的射线图像单元以定位目标的三维位置。
诊断x射线源135和数字x射线成像设备133具有精确确定其位置和方向的装置。例如借助由照相机139检测的标记物或者通过任何其它的测量位置和方向的装置实现这一点。诊断x射线源和数字x射线成像设备的相对位置和方向用于确定射线图像中目标和其它组织的放大和变形。另外,还可精确测量诊断x射线源135和数字x射线成像设备133相对于治疗辐射源136和等角点134的坐标系的位置和方向。在本发明的实施例中,照相机139检测标记物在诊断x射线源135和数字x射线成像设备133上的位置并且自动确定其相对于治疗辐射源136和等角点134的坐标系的位置和方向。
图1中的目标检测和控制单元137具有多种功能。其安排射线图像单元以俘获其中便于检测目标的图像。其使得射线图像单元在紧接治疗之前和在治疗中俘获图像。其确定目标在所俘获的图像中相对于其中定义等角点的放射治疗坐标系的位置。其进一步为可以以多种方式使用的放射治疗控制单元140提供信息。该信息用于确定放射治疗是否开始。该信息可用于确定放射治疗应当继续还是停止。其可用于重新定位患者或者治疗辐射源从而使目标处于等角点。
在本发明的实施例中,在放射治疗期间连续地或者周期性地拍摄治疗辐射源136。在这些图像中检测目标位置以验证其仍然处于等角点。如果目标移出位置,则放射治疗停止。
在图2中表示了根据本发明的包括目标检测的放射治疗方法。此过程以步骤210开始,其中俘获患者的计划图像。可用于此目的的医疗成像形式包括计算机层析摄影(CT)、磁共振成像(MRI)、正电子发射层析摄影(PET)、PET-CT、超声波等等。在步骤211,操作员可能借助图像分割软件勾画目标边界。
步骤212的目的在于确定用于在步骤214采集的数字射线图像的最好的俘获条件。在步骤212,从计划图像计算数字重建射线图像(DRR)。操作员或者计算机软件确定促进目标检测的一个或多个DRR。一般地,当最小化目标与正常组织的交叠和区别目标的边界时,可促进目标检测。
在步骤213,设置一个或多个射线图像单元以俘获与在步骤212中所确定的DRR一致的图像。
在紧接以放射治疗束辐照患者之前进行步骤214。由诊断x射线源135和数字x射线检测器133借助图1所示出的每个射线图像单元俘获图像。
在图2中的步骤215,在采用射线图像单元俘获的射线图像中检测目标。两个或者多个射线图像中的目标检测可以三维定位目标。
在步骤216,基于步骤215的结果更改治疗放射的传送。更改选项包括但不限于实施(administering)剂量、限制实施剂量、重新定位患者、重新引导治疗辐射束、和更改治疗辐射束。如果更改包括重新定位、重新引导或者更改,则可在重新定位、重新引导或者更改之后实施剂量。
诊断x射线源(图1所示出的元件135)通常包括用于提高输入电功率的电压电平的变压器和用于将电压转换为单极性的整流器。X射线源包括其中从阴极发射的电子向阳极靶加速的x射线管。电子与靶的碰撞产生x射线光子。到达患者的x射线能量的分布取决于若干因素,其包括阳极和阴极之间的电压差,和设置在辐射源与患者之间的滤波器的x射线衰减特性。
在本发明的一个实施例中,采用双能量x射线图像俘获,例如美国专利6,683,934(Zhao)中所公开的。例如可以快速连续地俘获低能量和高能量x射线图像。例如,低能量x射线从50到70kVP,而高能量x射线从110到140kVP。此方法的特征在于用高能量俘获的图像首先示出了硬组织例如骨头。低能量图像则属于硬组织和软组织。采用已知的减去处理方法(在美国专利6,683,934中描述了一种这样的方法),可获得其中去除软组织的硬组织交叠的图像。这将促进软组织目标的检测。
可采用多种x射线成像设备(图1中元件133)以俘获目标和周围体积的图像。例如,可采用CCD照相机结合将x射线光子转换为较低能量光子的闪烁器。
优选地,x射线检测器是直接或者间接平板类型。间接平板检测器由闪烁器/光电二极管/薄膜晶体管(TFT)结构组成。示例性的闪烁体材料为碘化铯和硫氧化钆。美国专利4,996,413(McDaniel)公开了一种适合于本发明的示例性间接x射线检测器。光电二极管可以是结晶硅或者非晶硅。在直接x射线检测器中,x射线光子产生光电子而不必首先转换为较低能量的光子。直接检测器包括结合薄膜晶体管阵列的x射线光电导体。还可包括存储电容器以收集光生电荷。美国专利5,313,066(Lee)提供了一种可以在本发明使用的直接x射线图像俘获元件。
俘获促进目标检测的x射线图像要求使得几何模糊最小化。几何模糊随着减少目标至检测器的距离而降低。在放射治疗期间,患者通常躺在治疗床(图1中的元件132)上。这会使得难于将x射线成像设备定位在患者体内的目标附近。
同样,本发明优选采用柔性x射线成像设备,例如在对应美国专利申请2003/0031296(Hoheisel)的美国序列号10/206,730中所公开的设备。柔性x射线成像设备可作为治疗床的组成部分或者置于患者附近,而不太可能损坏检测器。
如前所述,双能量x射线图像俘获促进目标检测。在本发明的一个实施例中,借助由x射线滤波器隔开的两层或多层x射线成像元件可实现双能量俘获。例如,顶部x射线成像元件暴露在全部范围的x射线能量下。在此元件下面是去除低能量x射线光子的滤波器。接下来是仅仅暴露在高能量x射线光子下的x射线成像元件。此检测器产生硬组织图像,该硬组织图像和来自第一检测器的图像一起被用于产生其中促进软组织目标的检测的差值图像。
已知计算DDR(数字重建射线图像)图像的方法。例如,G.W.Sherouse,K.Novins,和E.Chaney在“Computation of digitally recons tructedradiographs for use in radiotherapy treatment design,”Int.J.Ra diat.Oncol.Biol.Phys.18,651-658(1990)中提供了从CT图像计算DDR(数字重建射线图像)图像的方法。在此方法中选择实际的点源。在投影平面中从该源向各点跟踪射线。基于CT图像中由从该源扩展至该点的射线交叉的体素的CT数来计算投影平面中此点的密度。在一种方法中将所交叉的体素的CT数转换为线性衰减系数并然后相加。
还可采用由F.F.Yin.等人在“MR image-guided portalverification for brain treatment field,”Int.J.Radiation Oncol.Biol.Phys.40,704-711(1998)中所描述的方法从MRI图像计算DRR图像。
在图2的步骤212中,步骤211的目标体积边界用于产生一个或多个促进目标检测的DRR。这可通过选择实际的源与投影平面位置从而使得其它组织与目标的交叠最小化并且使目标体积的投影和周围区域之间的对比度最大化而实现。“目标射线”被定义为经过其传播部分的目标体积的射线。当处于目标体积外部目标射线经过低衰减区域时使得交叠最小化。可选择地,当目标体积外部的目标射线衰减均匀时可有效地最小化交叠。可以补偿均匀衰减从而使其不妨碍目标检测。以小角度交叉目标体积边界的目标射线定义投影平面中目标体积的边界。当这些边界射线的路径衰减与相邻的非目标射线不同时对比度提高。
可产生一个或多个DRR图像以促进目标检测的另一种方法包括选择实际的源以及投影平面的位置,使得尽可能精确地解释了目标体积的形态特性。例如,如图4所示,如果目标体积400可以由长轴远比短轴长的椭圆体接近地近似,则投影平面与长轴平行(或者虚拟光轴垂直)的DRR可以比投影平面垂直于长轴的(或者虚拟光轴平行的)DRR更精确地定位目标体积。
可通过将目标体积400的投影当作借助图4所示出的每个射线图像单元俘获的投影而描述这一点。定向包括诊断x射线源401和数字x射线检测器403的第一射线图像单元,使得光轴与近似于目标体积400的椭圆体的长轴平行。定向包括诊断x射线源402和数字x射线检测器404的第二射线图像单元,使得光轴与近似于目标体积400的椭圆体的长轴垂直。
得到的射线图像405(由第一射线图像单元俘获)和406(由第二射线图像单元俘获)描述了目标体积400的不同投影。第一成像图像405示出了目标体积400的投影,其包括的面积比目标体积400在第二射线图像406中的投影小得多。
目标体积中的定位误差沿射线图像单元的光轴方向比沿与光轴垂直的方向大;因此,基于射线图像405的目标体积400的定位产生相对于目标体积400的全部尺寸大于基于射线图像406上定位而产生的定位误差的误差。
在更复杂的条件下(例如其中目标体积不是体素),可选择实际源和检测器平面以最佳地定位检测目标中的凹度,这可进一步促进构建最小的PTV。在3D目标建模领域已知从一个或多个2D投影重建目标体积产生仅仅包括在投影中所看到的那些凹度的重建体积或者“可视外壳”(例如参见“The Visual Hull Concept for Sil houette-Based ImageUnderstanding,”IEEE Trans.Pattern Analysis and MachineIntelligence,Volume 16,Nmuber 2,pp.150-162,February 1994)。因此,包括描述目标体积中凹度的目标体积的投影的DRR可以比随意角度的DRR更精确地定位PTV。
本领域技术人员清楚,选择最小化其它组织与目标的交叠并使目标体积的投影和周围区域之间对比度最大化的一个或多个DRR不必提供目标体积中凹度的最佳角度;而相反地,选择提供最佳描述目标体积中凹度的一个或多个DRR不必最小化其它组织与目标的交叠或者使目标体积的投影和周围区域之间的对比度最大化。因此,在认为所有(或者绝大多数)这些目标合适的条件下,可产生一个或多个DRR以共同地使目标最佳。这一点可包括多个DRR;一个或多个设计为使每个单独目标最佳,或者其可包括在某种程度上折衷每个目标而提供更好“球面”最佳效果的一个或多个DRR。
本发明采用一个或多个DRR的计算以确定促进目标检测的期望射线图像俘获条件。在本发明的实施例中,如“Fast Calculation ofdigitally reconstructed radiographs using light fields”MedicalImaging  2003;Image Processing,Proceedings of SPIEVol.5032(2003),pp.684-695所述,采用光场提高DRR计算的速度。
在图2的步骤215中,基于在步骤212计算的DRR中的目标特征在从步骤214俘获的射线图像中检测目标。图3详细描述了检测过程。参考图3,数字射线图像300的原始像素代码值与从源向检测器并受到散射的x射线额外影响的总x射线衰减记录成正比。另外,经常以其检测量子效率表示的检测器的特征确定数字射线图像的分辨率和信噪比。校正和转换处理步骤301的目的在于校正系统假象,降低噪声并使图像成为后续处理步骤所要求的标准形式。图像校正包括补偿不均匀的x射线辐照、检测器响应中的空间变化和通过患者的路径长度。可通过应用查询表来转换图像代码值。一个目标在于调整图像的平均代码值和标准偏差为目标值。此外,可将图像分解为变化分辨率的次频段。对次频段进行调整和重组。
图3中的步骤303产生目标增强的图像。一个替换但是等价的方法为产生目标不变但是非目标内容减少的图像。一种增强图像的方法为使与具有目标特征的模板标准化交叉相关。在优选实施例中,对图像进行灰度级形态操作。例如,以具有目标特征的灰度级形态打开将基本上使得目标不变但降低其它图像内容。
在图3的步骤304中,产生背景或者“非目标”增强图像在原理上与步骤303相似,只是其目的在于增强非目标内容例如正常组织或者相对于其它内容减少目标。例如,如果图像中的主要非目标内容为骨头例如肋骨,则可采用具有似肋骨特征的灰度级形态模板。
在本发明中,目标和背景图像内容的模板基于图2中步骤212的DRR图像中的目标和背景特征。
在步骤305,目标增强图像具有从其减去的背景增强图像。在此差别图像中,目标特征为高代码值而背景具有低代码值。这提高了后续步骤中的目标识别。
图3中步骤312的目标在于确定图像中目标的精确位置和内容。作为步骤305的结果,目标区域(如果出现在图像中)将相对于大多数其它图像内容具有高代码值。非目标区域也可能具有高代码值。在步骤312,可将图像分割算法(例如分水岭分割)应用于图像以识别可能属于目标的区域。
在图3的步骤306中,从所有的候选目标区域提取在步骤312识别的特征。提取的特征包括但不限于尺寸、形状、梯度值和方向、代码值统计、和结构。
分类步骤310基于各种输入确定候选目标区域是否实际上就是目标。此步骤的一个输入是为步骤306中每个候选目标区域提取的特征。可以在从不同视角俘获的多个射线图像中同时进行目标检测。步骤308示出来自其它图像的中间或者最终目标的检测结果输入分类步骤310。此信息可用于估计分类计算中的先验概率。分类器是公知的。可在步骤310中采用的分类器包括但不限于支持向量机、高斯最大似然法(GML)、学习矢量量化器(LVQ)、k-最近邻算法、和神经网络。
对分类步骤310的另一个输入为分类器数据309。在将关于目标特征307的数据用作输入的训练过程(training process)中产生分类器数据。例如,分类器数据可以由从出现在在图2的步骤212计算的DRR中的目标区域提取的特征组成。
图3的步骤310的输出为确定311是否检测目标并提供其在图像中的精确位置和边界。两个或多个图像中目标的定位可用于确定目标体积在三维空间中的位置。但是,在本发明的一个实施例中,单一图像中目标的定位和放大可以用于确定目标体积在三维空间中的位置。
在本发明的一个实施例中,替代检测治疗辐射所施加的目标,而是检测必须不受治疗辐射辐照的关键组织。在此实施例中,当在受治疗束辐照的体积中检测关键组织时,系统抑制治疗束的辐射。
本发明所引用的所有文献、专利、期刊文章和其它材料作为参考组合在此。
已经特别参考目前优选的实施例详细描述了本发明,但是应当理解可在本发明的实质和范围内进行变化和更改。因此,认真地认为当前公开的实施例是解释性而非限制性。本发明的范围由附加的权利要求表示,而认为落入其等价物含义和范围中的所有变化都包括在其中。

Claims (20)

1. 一种采用患者的放射治疗的三维计划图像对患者进行放射治疗的方法,其中计划图像包括放射治疗目标,所述方法包括如下的步骤:
采用三维计划图像来确定俘获放射治疗目标的至少一个两维射线图像的期望的图像俘获条件;
检测放射治疗目标在该至少一个俘获的两维射线图像中的位置;以及
响应于放射治疗目标在该至少一个俘获的两维射线图像中的检测位置,确定放射治疗的传送。
2. 如权利要求1所述的方法,其中通过一个或多个下面的内容来完成所述传送:实施辐射治疗;限制实施辐射治疗;重新定位患者;重新引导治疗辐射束;或者更改治疗辐射束。
3. 如权利要求1所述的方法,其中采用数字重建射线图像来确定图像俘获条件。
4. 如权利要求1所述的方法,其中确定期望的图像俘获条件以使放射治疗目标和患者组织的交叠最小化。
5. 如权利要求1所述的方法,其中确定期望的图像俘获条件以使放射治疗目标与其周围区域之间的对比度最大化。
6. 如权利要求1所述的方法,其中确定期望的图像俘获条件以使放射治疗目标的边界明显。
7. 如权利要求1所述的方法,其中确定期望的图像俘获条件以使和放射治疗目标交叠的患者组织的一部分基本上均匀衰减。
8. 如权利要求1所述的方法,其中确定期望的图像俘获条件以便投影放射治疗目标的最大尺寸。
9. 如权利要求1所述的方法,其中确定期望的图像俘获条件以获得放射治疗目标的凹度。
10. 如权利要求1所述的方法,其中采用双能量来采集至少一个两维射线图像。
11. 如权利要求1所述的方法,其中采用光场来计算期望的图像俘获条件。
12. 如权利要求1所述的方法,其中放射治疗装置进行放射治疗,而在放射治疗装置的坐标系中自动确定数字射线图像单元的位置和方向。
13. 如权利要求1所述的方法,还包括增强在至少一个两维射线图像中的放射治疗目标的步骤。
14. 如权利要求1所述的方法,还包括增强至少一个两维射线图像中的背景组织的步骤。
15. 如权利要求1所述的方法,还包括如下步骤:
增强至少一个两维射线图像中的放射治疗目标以产生增强的目标图像;
增强至少一个两维射线图像中的背景组织以产生增强的背景组织图像;以及
采用增强的目标图像和增强的背景组织图像来产生差值图像。
16. 如权利要求1所述的方法,其中基于对放射治疗目标在另一个俘获的两维射线图像中的检测,在多个俘获的两维射线图像之一中检测该放射治疗目标的位置。
17. 如权利要求1所述的方法,其中采用两个或多个两维射线图像,在三维空间中检测放射治疗目标的位置。
18. 如权利要求1所述的方法,其中采用放射治疗目标在一个两维射线图像中的位置以及该放射治疗目标的放大,在三维空间中检测放射治疗目标的位置。
19. 一种采用患者的放射治疗的三维计划图像来对患者进行放射治疗的方法,其中该计划图像包括放射治疗目标,所述方法包括如下的步骤:
采用计划图像来确定一个或多个期望的数字重建射线图像;
采用数字射线图像单元来俘获对应一个或多个期望的数字重建射线图像中的每一个的至少一个二维射线图像;
检测放射治疗目标在该至少一个俘获的两维射线图像的每一个中的位置;以及
响应放射治疗目标在该俘获的至少一个两维射线图像中的检测位置,确定放射治疗的传送。
20. 如权利要求19所述的方法,其中基于在一个或多个期望的数字重建射线图像的至少一个中的放射治疗目标的特征,检测放射治疗目标在至少一个两维射线图像中的位置。
CNA2005800469653A 2005-01-20 2005-12-16 包括目标检测的放射治疗方法 Pending CN101237907A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/039,422 2005-01-20
US11/039,422 US7453983B2 (en) 2005-01-20 2005-01-20 Radiation therapy method with target detection

Publications (1)

Publication Number Publication Date
CN101237907A true CN101237907A (zh) 2008-08-06

Family

ID=36337843

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800469653A Pending CN101237907A (zh) 2005-01-20 2005-12-16 包括目标检测的放射治疗方法

Country Status (5)

Country Link
US (1) US7453983B2 (zh)
EP (1) EP1896132A1 (zh)
JP (1) JP2008528102A (zh)
CN (1) CN101237907A (zh)
WO (1) WO2006078386A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247658A (zh) * 2010-02-12 2011-11-23 伊利克塔股份有限公司 放疗和成像装置
CN102908725A (zh) * 2011-08-03 2013-02-06 西门子公司 放射治疗中的造影剂强化成像
CN105641814A (zh) * 2014-11-19 2016-06-08 株式会社东芝 用于处理医学图像的装置、方法和程序以及放射治疗装置
CN108078576A (zh) * 2016-11-21 2018-05-29 株式会社东芝 医学图像处理的装置、方法、计算机可读程序以及移动对象跟踪装置和放射治疗系统
CN109999367A (zh) * 2017-12-20 2019-07-12 东芝能源系统株式会社 医用装置以及医用装置的控制方法
CN110585607A (zh) * 2011-03-31 2019-12-20 反射医疗公司 用于在发射引导的放射治疗中使用的系统和方法

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004039191B4 (de) * 2004-08-12 2007-09-27 Siemens Ag Verfahren und Vorrichtung zur Ermittlung und Überwachung von Parametern einer Bestrahlungstherapie
US7352370B2 (en) * 2005-06-02 2008-04-01 Accuray Incorporated Four-dimensional volume of interest
DE102005030646B4 (de) * 2005-06-30 2008-02-07 Siemens Ag Verfahren zur Kontur-Visualisierung von zumindest einer interessierenden Region in 2D-Durchleuchtungsbildern
US20070053491A1 (en) * 2005-09-07 2007-03-08 Eastman Kodak Company Adaptive radiation therapy method with target detection
KR20070113967A (ko) 2006-05-26 2007-11-29 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
KR20080026010A (ko) 2006-09-19 2008-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩을 이용한 데이터 전송 방법 및이를 구현하는 송수신 장치
US7620147B2 (en) * 2006-12-13 2009-11-17 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
US7496174B2 (en) 2006-10-16 2009-02-24 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US7894649B2 (en) * 2006-11-02 2011-02-22 Accuray Incorporated Target tracking using direct target registration
US7609810B2 (en) * 2006-12-14 2009-10-27 Byong Yong Yi Treatment-speed regulated tumor-tracking
EP2109399B1 (en) * 2007-02-07 2014-03-12 Koninklijke Philips N.V. Motion estimation in treatment planning
JP2010517672A (ja) * 2007-02-07 2010-05-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 数量的データ分析の運動補償及び治療
KR20080076683A (ko) 2007-02-14 2008-08-20 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
US8363783B2 (en) 2007-06-04 2013-01-29 Oraya Therapeutics, Inc. Method and device for ocular alignment and coupling of ocular structures
US8920406B2 (en) 2008-01-11 2014-12-30 Oraya Therapeutics, Inc. Device and assembly for positioning and stabilizing an eye
KR20090030200A (ko) 2007-09-19 2009-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩을 이용한 데이터 송수신 방법 및이를 지원하는 송수신기
EP3272395B1 (en) 2007-12-23 2019-07-17 Carl Zeiss Meditec, Inc. Devices for detecting, controlling, and predicting radiation delivery
US7801271B2 (en) 2007-12-23 2010-09-21 Oraya Therapeutics, Inc. Methods and devices for orthovoltage ocular radiotherapy and treatment planning
US8565487B2 (en) * 2008-02-06 2013-10-22 Meditouch Ltd. Method and system for measuring motion
US8017915B2 (en) 2008-03-14 2011-09-13 Reflexion Medical, Inc. Method and apparatus for emission guided radiation therapy
US8633445B2 (en) * 2008-05-19 2014-01-21 Varian Medical Systems, Inc. Multi-energy X-ray imaging
DE102008044901A1 (de) * 2008-08-29 2010-03-04 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Auswahl eines Bestrahlungsplans sowie Bestrahlungsanlage
US8483803B2 (en) * 2008-09-15 2013-07-09 Varian Medical Systems, Inc. Systems and methods for tracking and targeting object in a patient using imaging techniques
CN101937563B (zh) * 2009-07-03 2012-05-30 深圳泰山在线科技有限公司 一种目标检测方法和设备及其使用的图像采集装置
US20110201920A1 (en) 2010-02-12 2011-08-18 Elekta Ab (Publ) Radiotherapy and imaging apparatus
US8331532B2 (en) * 2010-02-18 2012-12-11 Varian Medical Systems International Ag Method and system for treating moving target
US8280002B2 (en) * 2010-07-01 2012-10-02 Siemens Medical Solutions Usa, Inc. Radiation treatment of moving targets
JPWO2012063653A1 (ja) * 2010-11-12 2014-05-12 株式会社日立メディコ 医用画像表示装置及び医用画像表示方法
BR112013018044A2 (pt) 2011-01-18 2019-09-03 Koninl Philips Electronics Nv aparelho terapêutico, produto de programa de computador e método de renderização de uma região alvo atingível
US9283404B2 (en) * 2011-01-21 2016-03-15 Headwater Partners Ii Llc Imaging observation timing for assisting radiation treatment
US9364687B2 (en) 2011-01-21 2016-06-14 Headwater Partners Ii Llc Imaging observation timing based on radiation treatment system element delay
US8900113B2 (en) 2011-01-21 2014-12-02 Headwater Partners Ii Llc Tracking of tumor location for targeted radiation treatment
US8948842B2 (en) 2011-01-21 2015-02-03 Headwater Partners Ii Llc Radiation treatment with multiple imaging elements
WO2012123850A1 (en) * 2011-03-15 2012-09-20 Koninklijke Philips Electronics N.V. Medical imaging device for providing an image representation supporting in positioning an intervention device
JP2012249960A (ja) * 2011-06-06 2012-12-20 Toshiba Corp 医用画像処理装置
WO2013058841A1 (en) * 2011-10-21 2013-04-25 Accuray, Inc. Apparatus for generating multi-energy x-ray images and methods of using the same
DE102011087127B4 (de) * 2011-11-25 2015-11-19 Siemens Aktiengesellschaft Bestimmung von Aufnahmeparametern bei einer Dual-Energy Tomosynthese
CN107924730B (zh) 2015-06-10 2021-09-28 反射医疗公司 高带宽双态多叶式准直器设计
US10350438B2 (en) 2015-06-30 2019-07-16 Elekta Ltd. System and method for target tracking using a quality indicator during radiation therapy
WO2017156316A1 (en) 2016-03-09 2017-09-14 Reflexion Medical, Inc. Fluence map generation methods for radiotherapy
US9855445B2 (en) 2016-04-01 2018-01-02 Varian Medical Systems, Inc. Radiation therapy systems and methods for delivering doses to a target volume
JP6668902B2 (ja) * 2016-04-12 2020-03-18 株式会社島津製作所 位置決め装置および位置決め装置の作動方法
WO2017190780A1 (en) * 2016-05-04 2017-11-09 Brainlab Ag Patient pre-positioning in frameless cranial radiosurgery using thermal imaging
US10532224B2 (en) 2016-08-29 2020-01-14 Accuray Incorporated Offline angle selection in rotational imaging and tracking systems
WO2018093849A1 (en) 2016-11-15 2018-05-24 Reflexion Medical, Inc. Methods for radiation delivery in emission-guided radiotherapy
CN116943051A (zh) 2016-11-15 2023-10-27 反射医疗公司 放射治疗患者平台
US10695586B2 (en) 2016-11-15 2020-06-30 Reflexion Medical, Inc. System for emission-guided high-energy photon delivery
CN106902478B (zh) * 2017-02-22 2019-06-18 天津大学 一种系统化放射治疗生物效应评估方法
US10434335B2 (en) * 2017-03-30 2019-10-08 Shimadzu Corporation Positioning apparatus and method of positioning by generation of DRR image from X-ray CT image data
WO2018183748A1 (en) 2017-03-30 2018-10-04 Reflexion Medical, Inc. Radiation therapy systems and methods with tumor tracking
EP3641884B8 (en) 2017-06-22 2024-01-03 RefleXion Medical, Inc. Methods for calculating bounded dose-volume histograms (dvh) for evaluating a treatment plan
US11273326B2 (en) * 2017-06-29 2022-03-15 Canon Medical Systems Corporation Radiotherapy system and treatment support apparatus
CN114699655A (zh) 2017-07-11 2022-07-05 反射医疗公司 用于pet检测器余辉管理的方法
US10092774B1 (en) 2017-07-21 2018-10-09 Varian Medical Systems International, AG Dose aspects of radiation therapy planning and treatment
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US10549117B2 (en) 2017-07-21 2020-02-04 Varian Medical Systems, Inc Geometric aspects of radiation therapy planning and treatment
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
JP7315961B2 (ja) 2017-08-09 2023-07-27 リフレクション メディカル, インコーポレイテッド 放出誘導放射線療法における異常検出のためのシステムおよび方法
JP6918388B2 (ja) 2017-09-22 2021-08-11 リフレクション メディカル, インコーポレイテッド シャトルモード放射線送達のためのシステムおよび方法
US11369806B2 (en) 2017-11-14 2022-06-28 Reflexion Medical, Inc. Systems and methods for patient monitoring for radiotherapy
EP3710111B1 (en) 2017-11-16 2021-12-29 Varian Medical Systems, Inc. Increased beam output and dynamic field shaping for radiotherapy system
JP7246903B2 (ja) * 2017-12-20 2023-03-28 キヤノンメディカルシステムズ株式会社 医用信号処理装置
WO2019160958A1 (en) 2018-02-13 2019-08-22 Reflexion Medical, Inc. Beam station treatment planning and radiation delivery methods
US10910188B2 (en) 2018-07-25 2021-02-02 Varian Medical Systems, Inc. Radiation anode target systems and methods
CN113164135A (zh) 2018-11-30 2021-07-23 爱可瑞公司 用于改善成像中的散射估计和校正的方法和设备
US11357467B2 (en) 2018-11-30 2022-06-14 Accuray, Inc. Multi-pass computed tomography scans for improved workflow and performance
US10814144B2 (en) 2019-03-06 2020-10-27 Varian Medical Systems, Inc. Radiation treatment based on dose rate
US11116995B2 (en) 2019-03-06 2021-09-14 Varian Medical Systems, Inc. Radiation treatment planning based on dose rate
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
US11090508B2 (en) 2019-03-08 2021-08-17 Varian Medical Systems Particle Therapy Gmbh & Co. Kg System and method for biological treatment planning and decision support
US10918886B2 (en) 2019-06-10 2021-02-16 Varian Medical Systems, Inc. Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11291859B2 (en) 2019-10-03 2022-04-05 Varian Medical Systems, Inc. Radiation treatment planning for delivering high dose rates to spots in a target
US11166690B2 (en) 2020-03-19 2021-11-09 Accuray, Inc. Noise and artifact reduction for image scatter correction
WO2021184314A1 (zh) * 2020-03-19 2021-09-23 西安大医集团股份有限公司 图像配准方法、装置、放疗设备和计算机可读存储介质
US11865361B2 (en) 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning
US11541252B2 (en) 2020-06-23 2023-01-03 Varian Medical Systems, Inc. Defining dose rate for pencil beam scanning
US11957934B2 (en) 2020-07-01 2024-04-16 Siemens Healthineers International Ag Methods and systems using modeling of crystalline materials for spot placement for radiation therapy
CN213724492U (zh) * 2020-07-21 2021-07-20 福建医科大学附属协和医院 一种放射治疗定位金标回收装置
US11647975B2 (en) 2021-06-04 2023-05-16 Accuray, Inc. Radiotherapy apparatus and methods for treatment and imaging using hybrid MeV-keV, multi-energy data acquisition for enhanced imaging
US11605186B2 (en) 2021-06-30 2023-03-14 Accuray, Inc. Anchored kernel scatter estimate
US11794039B2 (en) 2021-07-13 2023-10-24 Accuray, Inc. Multimodal radiation apparatus and methods
US11854123B2 (en) 2021-07-23 2023-12-26 Accuray, Inc. Sparse background measurement and correction for improving imaging
US20230097277A1 (en) * 2021-09-29 2023-03-30 Siemens Heal Thineers International Ag On-line adaptive deep inspiration breath-hold treatment

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996413A (en) 1990-02-27 1991-02-26 General Electric Company Apparatus and method for reading data from an image detector
US5207223A (en) * 1990-10-19 1993-05-04 Accuray, Inc. Apparatus for and method of performing stereotaxic surgery
US5313066A (en) 1992-05-20 1994-05-17 E. I. Du Pont De Nemours And Company Electronic method and apparatus for acquiring an X-ray image
US5956083A (en) 1996-10-29 1999-09-21 Eastman Kodak Company Camera and method for capturing motion sequences useful for integral image element formation
JP3053389B1 (ja) * 1998-12-03 2000-06-19 三菱電機株式会社 動体追跡照射装置
US6501981B1 (en) 1999-03-16 2002-12-31 Accuray, Inc. Apparatus and method for compensating for respiratory and patient motions during treatment
DE19953177A1 (de) * 1999-11-04 2001-06-21 Brainlab Ag Exakte Patientenpositionierung durch Vergleich von rekonstruierten und Linac-Röntgenbildern
JP2003522576A (ja) * 2000-02-18 2003-07-29 ウィリアム・ボーモント・ホスピタル 平坦なパネル画像装置を有するコーンビームコンピュータ断層撮像装置
US6683934B1 (en) 2000-06-05 2004-01-27 General Electric Company Dual energy x-ray imaging system and method for radiography and mammography
JP2002210029A (ja) * 2001-01-19 2002-07-30 Mitsubishi Electric Corp 放射線治療装置
US20020193685A1 (en) 2001-06-08 2002-12-19 Calypso Medical, Inc. Guided Radiation Therapy System
DE10136756C2 (de) 2001-07-27 2003-07-31 Siemens Ag Röntgendiagnostikeinrichtung mit einem flexiblen Festkörper-Röntgendetektor
US6914959B2 (en) * 2001-08-09 2005-07-05 Analogic Corporation Combined radiation therapy and imaging system and method
WO2003076003A2 (en) * 2002-03-06 2003-09-18 Tomotherapy Incorporated Method for modification of radiotherapy treatment delivery
US20050251029A1 (en) * 2004-04-21 2005-11-10 Ali Khamene Radiation therapy treatment plan
US20070053491A1 (en) * 2005-09-07 2007-03-08 Eastman Kodak Company Adaptive radiation therapy method with target detection

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247658A (zh) * 2010-02-12 2011-11-23 伊利克塔股份有限公司 放疗和成像装置
CN102247658B (zh) * 2010-02-12 2015-11-25 伊利克塔股份有限公司 放疗和成像装置
CN110585607A (zh) * 2011-03-31 2019-12-20 反射医疗公司 用于在发射引导的放射治疗中使用的系统和方法
CN110585607B (zh) * 2011-03-31 2022-07-19 反射医疗公司 用于在发射引导的放射治疗中使用的系统和方法
CN102908725A (zh) * 2011-08-03 2013-02-06 西门子公司 放射治疗中的造影剂强化成像
US9132284B2 (en) 2011-08-03 2015-09-15 Siemens Aktiengesellschaft Contrast agent-enhanced imaging during radiation therapy
CN105641814A (zh) * 2014-11-19 2016-06-08 株式会社东芝 用于处理医学图像的装置、方法和程序以及放射治疗装置
CN105641814B (zh) * 2014-11-19 2019-01-18 东芝能源系统株式会社 用于处理医学图像的装置、方法和程序以及放射治疗装置
CN108078576A (zh) * 2016-11-21 2018-05-29 株式会社东芝 医学图像处理的装置、方法、计算机可读程序以及移动对象跟踪装置和放射治疗系统
CN108078576B (zh) * 2016-11-21 2021-03-09 株式会社东芝 医学图像处理的装置、方法、计算机可读程序以及移动对象跟踪装置和放射治疗系统
CN109999367A (zh) * 2017-12-20 2019-07-12 东芝能源系统株式会社 医用装置以及医用装置的控制方法

Also Published As

Publication number Publication date
WO2006078386A2 (en) 2006-07-27
US7453983B2 (en) 2008-11-18
US20060182326A1 (en) 2006-08-17
EP1896132A1 (en) 2008-03-12
JP2008528102A (ja) 2008-07-31

Similar Documents

Publication Publication Date Title
CN101237907A (zh) 包括目标检测的放射治疗方法
JP4271941B2 (ja) 患者の断層撮影投影画像を増強するための方法
US7187792B2 (en) Apparatus and method for determining measure of similarity between images
Jaffray et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy
US9014446B2 (en) Efficient user interaction with polygonal meshes for medical image segmentation
US8306185B2 (en) Radiotherapeutic treatment plan adaptation
US9076222B2 (en) Use of collection of plans to develop new optimization objectives
US8121368B2 (en) 3D real-time tracking of human anatomy using combined kV and MV imaging
JP6246137B2 (ja) 関心組織のスペクトル撮像及び追跡を用いた適応式放射線治療
Mao et al. Fast internal marker tracking algorithm for onboard MV and kV imaging systems
CA2693351A1 (en) Methods and systems for compensating for changes in anatomy of radiotherapy patients
Chen et al. A review of image-guided radiotherapy
Munbodh et al. Automated 2D‐3D registration of a radiograph and a cone beam CT using line‐segment enhancement a
Mostafavi et al. Detection and localization of radiotherapy targets by template matching
Bryant et al. Registration of clinical volumes to beams‐eye‐view images for real‐time tracking
Arimura et al. Computerized method for estimation of the location of a lung tumor on EPID cine images without implanted markers in stereotactic body radiotherapy
CN116056757A (zh) 多传感器引导的放射疗法
Li et al. Synthetic treatment beam imaging for motion monitoring during spine SBRT treatments—a phantom study
CA2489157A1 (en) Method for reconstruction of limited data images using fusion-aligned reprojection and normal-error-aligned reprojection
Roed et al. The potential of polymer gel dosimeters for 3D MR-IGRT quality assurance
Cheong et al. Markerless tumor motion tracking in cine images from megavoltage electronic portal imaging device
Rozario et al. An intra-fraction markerless daily lung tumor localization algorithm for EPID images
Zhong et al. A markerless beam’s eye view tumor tracking algorithm based on unsupervised deformable registration learning framework of VoxelMorph in medical image with partial data
JP2022081324A (ja) 位置決め装置、放射線治療システム、および位置決め方法
CN116407780A (zh) 一种目标区域的位置监测方法、系统及存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080806