CN101252870A - 用于雷达辅助的导管导向和控制的系统与方法 - Google Patents

用于雷达辅助的导管导向和控制的系统与方法 Download PDF

Info

Publication number
CN101252870A
CN101252870A CNA2004800374767A CN200480037476A CN101252870A CN 101252870 A CN101252870 A CN 101252870A CN A2004800374767 A CNA2004800374767 A CN A2004800374767A CN 200480037476 A CN200480037476 A CN 200480037476A CN 101252870 A CN101252870 A CN 101252870A
Authority
CN
China
Prior art keywords
tip
radar
far
magnetic field
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800374767A
Other languages
English (en)
Inventor
乔舒亚·沙哈尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnetecs Inc
Original Assignee
Magnetecs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnetecs Inc filed Critical Magnetecs Inc
Publication of CN101252870A publication Critical patent/CN101252870A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/064Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • A61B2034/732Arrangement of the coils or magnets arranged around the patient, e.g. in a gantry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7455Details of notification to user or communication with user or patient ; user input means characterised by tactile indication, e.g. vibration or electrical stimulation

Abstract

一种导管导向控制和成像(CGCI)系统,其中描述了在位置上检测、显示和影响附在外科工具上的磁末梢,从而允许执行诊断和治疗过程。可以如此安装的工具包括导管、导线和例如激光器和球囊的辅助工具。磁末梢执行两个功能。首先,它允许通过使用例如雷达距离探测器或雷达成像系统的雷达系统来测量该末梢的位置和方向。结合雷达系统允许CGCI装置在外科手术期间准确地检测嵌入患者的外科工具的位置、方向和旋转。在一个实施例中,利用例如X射线、荧光检查、超声波、MRI、CAT扫描,PET扫描等的手术室成像设备来显示由雷达产生的图像。在一个实施例中,利用与由6个自由度(6-DOF)传感器定位的参照标志来同步图像。通过应用患者身体外部的适当磁场,与雷达和6-DOF传感器相结合的CGCI装置使得能够将工具末梢拖拉、推动、转动,并强制地保持在希望的位置。磁末梢的虚拟表示充当操作者控制。该控制与患者身体内的磁末梢具有一对一的位置关系。另外,如果磁末梢遇到障碍,该控制向操作者的手部沿适当的一个或多个轴提供触觉反馈。与磁末梢位置和方向反馈相结合的该控制的输出允许伺服系统控制外部的磁场。

Description

用于雷达辅助的导管导向和控制的系统与方法
技术领域
本发明涉及一种系统和技术,用于在使用雷达系统来确定患者体内导管位置的同时,导向引导和推进患者体内的、例如导管和导管类设备的侵入性医疗设备。
背景技术
通常,通过将侵入性设备插入切口或身体开口来执行导管插入术。例如导线(guidewire)和球囊的辅助工具经常沿导管进入要执行医疗过程的区域。这些过程依赖于通过推动、旋转或操纵保留在人体外部的近端,手动地推进侵入性设备的远端。实时X射线成像是一种用于在该过程期间确定侵入性设备的远端的普通方法。继续操纵,直到远端到达要执行诊断或治疗过程的目的区域为止。该技术要求外科医生/操作者部分的较高技术。只有在延长的培训阶段和较长实践之后才能达到这种技术。还要求较高的手工灵巧性。
由于将导管推进人体内的希望位置所涉及的困难,许多诊断的和治疗过程经常采用导线。导线首先被推进入心脏或血管,并且用作针对具体导管的跟踪和导向。例如,该技术用于将导管推进左心室,并且当研究主动脉缩窄时,该技术尤其重要。横穿变窄的瓣膜孔对于操作者是一个挑战。类似地,经常将导线处理进入阻塞的冠状动脉和横穿阻碍的斑。在导线上推进载有例如球囊、激光器、stent的治疗导管,并且将其放在斑(plaque)的位置。然后,通过向球囊充气、操作激光束或放置stent来打开变窄的位置。有时,动脉是扭曲的和严重变窄的,并且该斑是不规则、硬化的,或者甚至完全阻塞了动脉。在这些情况下,在变窄的位置之外的导线放置是非常困难和多次不成功的。
因此,存在对于一种装置和方法的充分和不满的需要,该装置和方法用于导向、引导、推进和定位侵入性设备的位置,并且用于准确地控制它们的位置;用于提供三维成像;并且用于最小化地使用X射线或其它电离型的辐射。
发明内容
本发明通过提供一种比现有技术系统需要更少培训和更少技术的磁导管导向和控制装置,解决了这些和其它问题。在一个实施例中,雷达系统用于确定身体内的导管的远端,因此,最小化或消除了例如X射线的电离辐射的使用。可选地,导管导向系统可以与X射线系统(或其它成像系统)结合使用,以向操作者提供额外的图像。此外,在磁导管导向系统中使用的磁系统还可以用于定位导管末梢,以向操作者和控制系统提供位置反馈。在一个实施例中,磁场源用于产生充足强度和方向的磁场,从而将磁响应导管末梢沿希望的方向移动希望的量。
一个实施例包括一种导管以及一种导向和控制装置,可以准确并相对轻松地允许外科医生/操作者将导管末梢放入患者体内。导管导向和控制装置可以将导管末梢保持在正确位置。一个实施例包括一种导管以及一种导向和控制装置,可以引导导管的远端通过动脉,并且强制地将其推进通过斑或者其它障碍。一个实施例包括一种导管导向和控制装置,显示导管末梢位置,显著减小暴露于患者和工作人员的X射线。一个实施例包括一种更直观和更易于使用的导管导向和控制装置,显示导管末梢的三维位置,在导管末梢施加力,从而按希望拖拉、推动、转动或保持该末梢,并且能够产生该末梢具有可调整的频率和幅度的振动或脉动的移动,从而帮助推进该末梢通过斑或其它障碍。一个实施例在操作者控制处提供触觉反馈,以指示该末梢遇到了障碍。
在一个实施例中,导管导向控制和成像(GCI)系统通过使用雷达系统来定位该导管的远端,允许外科医生推进、准确地定位导管,并且查看导管的三维位置。在一个实施例中,雷达数据可以与X射线图像相结合,从而产生一个包括雷达和X射线数据的合成显示。在一个实施例中,雷达系统包括合成孔径雷达(SAR)。在一个实施例中,雷达系统包括超宽带雷达。在一个实施例中,雷达系统包括脉冲雷达。
在一个实施例中,该装置包括被称作“虚拟末梢”的用户输入设备,除了作为实际或物理的导管末梢推进患者体内的表示,它还具有与导管末梢的位置关系。虚拟末梢包括类似于操纵杆的物理配件,其可以由外科医生/操作者来操纵,并且还被设计成如果实际的末梢遇到障碍,则沿适当的一个或多个轴向外科医生传递触觉反馈。换句话说,虚拟末梢包括操纵杆类型的设备,其允许外科医生引导实际的导管末梢通过患者身体。当实际的导管末梢遇到障碍时,虚拟末梢向外科医生提供触觉反馈,以指示障碍的出现。
在一个实施例中,物理导管末梢(导管的远端)包括响应患者身体外部所产生的磁场的永磁体。外部磁场将该末梢拖拉、推动、转动或保持在希望的位置。本领域的普通技术人员将认识到,永磁体可以被电磁体代替或增强。
在一个实施例中,物理导管末梢(导管的远端)包括永磁体和两个压电回路,或者半导体聚合物回路,以允许雷达系统检测从该回路发出的共振信号的二次谐波。
在一个实施例中,GCI装置通过采用具有六个自由度(6-DOF)的传感器而使用一种图像同步技术,以便能够形成参考的立体定向框架(stereo tactic frame)。
在一个实施例中,GCI装置的电磁电路设备包括使用铁磁物质(例如铁酸盐物质)的C臂几何结构,从而提高磁电路的效率。
在一个实施例中,GCI装置使用数字变换来计算要提供给各个电磁体以用于控制磁场的电流,所述磁场用于以有效方式推动、拖拉和旋转导管末梢。
在一个实施例中,GCI装置包括UWB脉冲雷达和6-DOF传感器,被配置成检测导管末梢和移动身体器官并同步它们的移动。
在一个实施例中,通过机动化(motorized)机构来转向GCI装置,以使电磁极被移动到减小了推进、拖拉和旋转导管末梢所需的功率的位置和方向。
在一个实施例中,GCI装置用于在电生理学(EP)过程期间执行心脏起搏器的植入。
在一个实施例中,关于导管末梢和一个或多个参照标志(fiduciarymarker),GCI装置使用雷达或其它传感器来测量、报告和识别在体内的移动器官(例如,心脏、肺等)的位置,从而提供导向控制和成像来补偿器官的移动,从而简化外科医生通过身体操纵导管的任务。
在一个实施例中,通过调节应用在患者身体外部的磁力,操作者控制向控制导管末梢位置的饲服系统提供位置和方向命令输入。经由包括雷达系统和6-DOF传感器的传感装置完成实际的末梢位置和方向的测量。该测量用于向饲服系统和操作者接口提供反馈。在一个实施例中,饲服系统具有校正输入,其补偿例如心脏的身体部件或器官的动态位置,从而抵消响应,使得实际的末梢与跳动的心脏实质上一致地移动。
在一个实施例中,导管导向系统的操作如下:i)操作者调整虚拟末梢的物理位置,ii)对虚拟末梢位置的改变进行编码,并与来自雷达系统和6-DOF传感器的数据一起提供给控制系统,iii)控制系统产生发送给饲服系统控制装置的饲服系统命令,iv)饲服系统控制装置操作饲服机构,从而通过改变电磁簇的距离和角度、并且激发电磁体从而引起在患者体内的实际磁导管末梢的位置改变,来调整一个或多个电磁簇的位置,v)然后,由雷达系统感应实际导管末梢的新位置,并且由6-DOF传感器感应多个参照标志的位置,从而能够进行由荧光检查检查和/或其它成像形式所产生的图像上导管位置的同步和叠加,以及vi)向饲服系统控制装置和操作者接口提供反馈,并且相对于患者体内结构,更新所显示的实际导管末梢位置图像。
操作者可以进行虚拟导管末梢位置的进一步调整,并重复步骤ii到vi的序列。在一个实施例中,当实际导管末梢在其路径遇到障碍或阻碍时,来自饲服系统控制装置的反馈生成命令逻辑。该命令逻辑用于控制步进电动机,步进电动机与虚拟导管末梢物理地相连。步进电动机用于沿适当的方向产生可以由操作者感觉到的阻碍,并且因此提供给用户触觉反馈。
附图说明
参考附图来描述本发明的各个特征。
图1是用于外科系统的高层系统方框图,其包括操作者接口、导管导向系统、外科设备(例如,要引导的导管)、成像和同步过程以及患者。
图1A是用于在GCI外科过程中使用的成像模块的方框图,包括导管导向系统、雷达系统、6-DOF传感器和转向运动机构。
图2是示出了电磁体的极性配置的正交示意图。
图2A示出了形成具有C臂的磁电路的、类似簇的电磁体排列中的极性配置。
图2B是线圈、臂和桌子、雷达和6-DOF传感器的几何布局的表示。
图2C是用于驱动电磁线圈的系统的方框图。
图2D是形成GCI系统的矢量的矩阵表示。
图2E是GCI系统中的特征矩阵的表示。
图2F是以上图2E所示的逆特征矩阵的表示。
图2G是在GCI系统中使用的特征矩阵与其逆矩阵的乘积的表示。
图2H是图2G的逻辑流图。
图2I表示磁簇、雷达系统和光学传感器的前视图。
图2J是表示磁簇、雷达系统、光学传感器、C臂和手术台的侧视图。
图2K示出了雷达系统、6-DOF传感器和C臂上的转向的移动机构。
图2L示出了导管末梢的实际位置(AP)和希望的位置(DP)的“C”曲线表示。
图3是雷达相控阵雷达模块及其相关联的用于测量导管位置的电子装置的方框图。
图3A描述了在识别导管末梢位置和方向中的雷达系统的使用。
图3B示出了在参照标志领域中定位导管。
图4是6-DOF传感器及其相关联的电子装置的方框图,用于测量参照标志的位置和图像捕获的同步。
图5示出了GCI装置与cineoangiographic设备一起使用。
图5A表示如何使用参照标志和6-DOF来同步荧光检查图像和来自雷达数据的导管的合成图像。
图5B示出了在执行心脏起搏器电极植入的同时,在5A中标出的装置的使用。
图6和6A是用于在CGCI装置中使用的导管配件和导向配件的透视图。
图6B是配合磁末梢和两个压电回路的导管的表示。
图7是包括雷达系统和6-DOF传感器的GCI系统的计算和逻辑流的图形表示。
图8是CGCI装置中的信号流的功能性方框图。
图9表示与双平面二重X射线系统所产生的立体图像相结合的导管导向系统的使用。
图10表示6-DOF传感器的一个实施例。
图11是表示虚拟末梢用户输入设备的能力的透视图。
具体实施方式
通常,通过将侵入式设备插入切口或身体开口来执行导管插入术。经常通过或基于主要导管推进例如导线和球囊的辅助工具,将其推进到执行医疗过程的区域。这些过程依赖于通过推动、旋转或操纵保留在人体外部的远端,直到远端到达要执行诊断或治疗过程的目的区域为止。
图1是针对外科系统1500的系统方框图,该外科系统包括操作者接口500、导管导向和成像(CGI)系统503、外科设备502(例如,导管末梢377等)、一个或多个用户输入设备900以及患者390。用户输入设备900可以包括一个或多个操纵杆、鼠标、键盘、虚拟末梢405和允许外科医生提供命令输入来控制导管末梢377的移动和方向的其它设备。GCI系统503包括控制器501和成像与同步模块701。该图示出了各个功能单元与操作者接口500、辅助设备502和患者390之间的整体关系。在一个实施例中,GCI系统控制器501计算导管的远端的实际末梢(AT)位置,如在与图7相关的文字中进一步所述。使用来自虚拟末梢(VT)405的数据和成像与同步模块701,GCI系统控制器501确定位置误差,所述位置误差是实际末梢位置(AP)和希望末梢位置(DP)之间的差。在一个实施例中,控制器501控制电磁体沿所选择的方向移动导管末梢,以使位置误差最小。在一个实施例中,GCI系统501通过向VT 405提供力反馈来向操作者提供触觉反馈,如结合图7和图11所述。
图1A是针对外科系统800的系统的方框图,所述系统表示了GCI系统503的一个实施例。系统800包括控制器501、雷达系统950、位置传感器960、以及(可选的)转向移动机构970。在一个实施例中,传感器960包括如图10所述的六个自由度(6-DOF)的传感器。雷达系统950可以被配置为超宽带雷达、脉冲雷达、连续波(CW)雷达、调频CW(FM-CW)雷达、脉冲多普勒雷达等。在一个实施例中,雷达系统950包括相控阵雷达。在一个实施例中,雷达系统950使用合成孔径雷达(SAR)处理来产生雷达图像。在一个实施例中,雷达系统950包括超宽带雷达,例如,在美国专利No.5,774,091中所述,在此将其作为整体一并参考。在一个实施例中,雷达950被配置为雷达距离探测器以识别导管末梢的位置。6-DOF传感器960被配置成定位位于患者上的参考标志(参照标志)。例如,关于参考标志的位置的数据可以用于图像获取同步。机动化的转向和移动控制机构970允许电磁体相对于患者390移动,如图2K所述。
使用雷达来识别导管末梢的位置与使用荧光检查、超声波、霍耳效应传感器、磁致伸缩传感器或SQUID相比更具有优点。雷达可以提供准确的动态位置定义,其提供实时、高分辨率、高逼真度信号。雷达与强磁场相兼容。距离测量的自我校准可以基于飞行时间或多普勒处理。在忽略例如胸腔、骨架等“硬”表面的同时,雷达进一步提供了导管位置的测量,因为它们不干扰测量或妨碍测量的准确性。另外,器官的移动和位移(在心脏舒张和心脏收缩期间,肺部扩张和胸腔位移以及心脏输出)不需要雷达信号的调整或校正。由于高于1GHz的雷达发射可以与采样频率50Hz或更高一起使用,而心脏移动和导管动态出现在0.1Hz到2Hz,可以在出现移动时使用雷达。
雷达的使用减少了对于通常与昂贵的方式相关联的复杂图像获取技术的需要,这些昂贵的方式例如荧光检查、超声波、霍耳效应传感器、磁致伸缩技术或SQUID,它们要求计算密集的处理,以便解释图示,并将其缩减为坐标数据集。通过使用雷达易于使移动中的导管末梢和器官的位置数据同步可用。此外,可以与相控阵或合成孔径处理一起使用的雷达得到位于体内的导管的详细图像和身体的结构。在一个实施例中,雷达系统包括信号具有高分辨率扫描距离波门的超宽带(UWB)雷达。在一个实施例中,差分采样接收机用于有效地消除由发射天线的邻近在接收机中引入的振铃和其它偏差。如X射线系统,雷达系统可以检测位于例如骨架的障碍之后对象的障碍的出现。由于衰减变化,可以检测和辨别具有不同介电常数的不同物质的出现,例如脂肪组织、肌肉组织、水等。在检测出现在心脏内腔的其它导管的空间位置的同时,雷达的输出可以与例如用于电生理学(EP)研究的多个导管的相似单元进行相关。雷达系统可以使用相控阵天线和/或SAR,从而产生身体结构、导管末梢和器官的3D合成雷达图像
通过使用6-DOF传感器960,可以确定患者相对于CGI系统(包括雷达系统950)的位置,从而定位多个参照标志。此外,在一个实施例中,来自传感器960的数据用于相对于成像系统来定位身体,以使来自雷达的导管位置数据可以与由成像系统所产生的图像叠加(合成)。雷达和6-DOF传感器相对于立体定向框架(stereotactic frame)准确定位导管末梢的能力,允许由转向系统970移动CGCI电磁体簇,从而优化磁极相对于患者的位置,并且从而减小操纵导管末梢所需的功率。
图2、2A和2B示出了在GCI装置503中使用的电磁体的极性配置,具有以花状结构或簇配置的六个线圈901-906。线圈901-903被配置作为安装在C臂391顶部的簇920,并且线圈904-906被配置作为安装在C臂391底部的簇930。形成上部簇920的三个线圈901、902和903,彼此进一步相对移动120度,底部的三个线圈904、905和906也是一样。此外,如C臂391底部的簇930向上倾斜,C臂391顶部的簇920的线圈还以15到20度的角度向下倾斜一些,如图2B所示。C臂391支持配件被配置成闭合簇920和簇930之间的磁场电路。C臂顶部的簇920相对于底部的簇旋转60度的角度。在簇920和簇930之间设有操作台389。
在图2B中,顺时针计数,将C臂391顶部的线圈标记为901、902和903,并且底部线圈标记为904、905和906,沿计数器顺时针方向计数。线圈901和903作为一对工作,并且被指定为线圈的X轴对,线圈902和904作为另一对工作,并且被指定为线圈的Y轴对,以及线圈905和906作为第三对工作,并且被指定为线圈的Z轴对(在该排列中,X、Y和Z线圈轴不正交)。
如图2、2A和2B中所示的簇排列向医生提供了对患者相对自由的访问,而Z轴电磁体905和906不阻碍可用的访问空间。图9表示使用双平面回路的可选实施例。图2和图9的实施例用于适应成像技术,例如X射线、CAT扫描、PET扫描、超声波等。图9中所示的配置允许通过使用具有双X射线源的双平面结构来使用立体图像。图2、2A和2B提供了与计算机断层X射线照相系统和/或成像系统相兼容的几何形状。图9中所示的配置和图2、2A和2B中所示的配置为安装操作接口设备500、外科医疗设备502和GCI装置501的部件提供了有利条件。
图2C是用于线圈901-906的驱动系统的方框图。控制器530计算提供给X轴运算放大器911的希望X轴驱动信号。X轴运算放大器的输出被提供给电流放大器910。电流放大器910将电流提供给串联驱动线圈901和903。可选地,可以并联(未示出)驱动线圈901、903。控制器530计算提供给Y轴运算放大器913的希望Y轴驱动信号。将Y轴运算放大器的输出提供给电流放大器912。电流放大器912将电流提供给串联驱动线圈902和904。可选地,可以并联(未示出)驱动线圈902、904。控制器530计算提供给Z轴运算放大器915的希望Z轴驱动信号。将Z轴运算放大器的输出提供给电流放大器914。电流放大器914将电流提供给串联驱动线圈905和906。可选地,可以并联(未示出)驱动线圈905、906。电源899向放大器910-915提供功率。
用于三个通道X、Y和Z的信号可以被表示为如图2D所示的矢量V 923,具有三个分量Vjx、Vjy和Vjz。操作者使用例如虚拟末梢的用户输入设备900来命令沿一个或多个轴的移动。将来自用户输入设备900的信号提供给计算模块922。在闭环系统中,还将来自例如雷达950的传感器的末梢位置数据提供给计算模块922。在开环系统中,不需要提供末梢位置数据。计算模块922解译位置数据,并对针对三个轴的三个信号的矩阵执行逆运算。计算模块922将位置矢量V 923乘以矩阵M的逆927,如图2F和2G所示,从而计算模块922的输出是M逆乘以V,其中M是线圈901到906的簇的特征矩阵925。将来自计算模块922的变换X、Y和Z输出提供给各自的放大器911、913和915以产生磁场,并从而沿操作者命令的方向移动导管末梢。以图2H的方框图形式表示了开环系统的输入的变换,其中将输入信号V 931提供给Mchar-Inverse模块932。模块932计算矩阵乘积Mchar-Inverse和矢量V,以得到变换的坐标矢量。将变换的坐标矢量提供给放大器阵列935,放大器阵列935产生提供给线圈901-906的各个电流的输出电流。线圈901-906产生结果的场矢量B 933。场矢量B 933使导管末梢的移动,从而将临床医生的手的移动解译为适当的信号,并且因此将导管末梢移动到希望的位置。
图2K示出了雷达系统950、6-DOF传感器960以及与C臂391、簇920,930和操作台389相关的转向移动机构970。移动机构970被配置成移动磁簇920以定向簇920,从而优化(例如,降低)用于电磁体901-906的操作的功率需求。使用例如计算机数字控制(CNC)设备的机动化机构970,在图2K中所示的机械排列使得能够移动受控和转向GCI系统503。使用机动化转向和计算受控的机构970充分降低了系统的整体功率需求,以使能够利用较少的功率实现希望的磁场强度。在一个实施例中,希望的磁场强度至少是0.3特斯拉。
图2K和2L示出了机动化转向和计算机受控的机构970的使用,从而调整上部电磁体簇920相对于下部电磁体簇930的距离r 971,以便在保持希望磁场强度的同时,得到用于线圈的优化功率设置。该过程通过以下实现:首先,通过使用雷达系统950查找导管末梢377相对于电磁体的位置,并且通过使用6-DOF传感器960,使导管末梢377的位置与参照标志700Ax至700Bx(还称作参考标志700Ax至700Bx)同步。将参考标志700Ax至700Bx放置在患者身上以提供参考点。该排列在由荧光检查或其它成像系统所产生的图像702上产生数学复制(manifold)701(如结合图7所述)。由P1标记的导管末梢377的实际位置(AP)981和希望位置(DP)982之间的距离由外科医生设置并由P2标记。两个坐标P1和P2之间的差是位置误差(PE)983。然后,由图 2C-2H中所述的GCI控制器501计算力F和得到的电磁场B。该处理查找位置误差(PE)983,控制器501将位置误差解译为线圈901-906需要的电流I。然后,控制器改变上部电磁体簇920相对于下部电磁体簇930的距离r 971和角度Φ984,同时,转向和控制机构970,从而设置电磁体簇920相对于930的距离r和角度Φ984,以便实现用于GCI装置503性能的优化功率设置。一旦由控制器设置簇920相对于簇930的位置,控制器将所计算的电流I反馈给电磁体,从而产生希望的导管末梢377的移动。调整电磁体簇920相对于930的距离r 971和角度Φ984从而得到用于GCI装置501的优化功率设置的该过程,可以通过由等式(1)所指定的线积分来描述,其中,通过关于矢量r=ix,jy+kz对该函数进行积分,在空间中计算点P(P是在患者390体内的导管末梢377的位置坐标),该矢量表示在“C”曲线985上的任意点P(x,y,z)处的导管末梢377的位置。“C”曲线985是在点P1(导管末梢377的实际位置(AP)981)与点P2(由操作员/外科医生设置的希望位置982)之间形成的线积分。然后,相对于距离对“C”曲线985进行积分,以便计算将导管末梢377从P1移动到P2所需的力F。连接所讨论的两点(即该末梢的实际位置(AP)和希望的位置(DP))的线积分是:
∫ P 1 P 2 F · dr = ∫ x 1 x 2 F x · dr + ∫ y 1 y 2 F y · dr + ∫ z 1 z 2 F z · dr - - - ( 1 )
力F和得到的电磁场B与适当的电流需求I相对应,从而实现优化的功率设置,以便推动、拖拉和旋转导管末梢377以将其带到希望的位置。因此,当转向机构改变距离r 971的值时,唯一的变量是电流矢量I。
图3是雷达系统1000的方框图,其可以用作雷达系统950的一个实施例。图3中所示的雷达1000包括具有发射/接收天线单元的相控阵雷达模块1100和射频(RF)模块1150。雷达系统1000包括相控阵1100、放大器1101、A/D转换器1102、快速傅立叶变换模块1103和微控制器1105。该装置还包括RAM形式的存储器模块1112、以及ROM形式的查找表1111。一个实施例包括:语音消息收发和告警模块1110、一组控制开关1109、和显示器1108。由雷达系统1000所产生的数据经由通信端口1113被提供给GCI装置501。
雷达系统1000包括相控阵,并经由用于检测导管末梢377的形成的时空(MIST)波束来进行微波成像。将天线或天线阵拿到距离患者身体相对较近处,并且从每一个天线顺序地发射超宽带(UWB)信号。作为雷达回波接收的后向反射信号通过雷达单元的时空波束形成器,所述时空波束形成器被设计成作为位置的函数,对后向散射信号的能量进行成像。波束形成器在空间上聚焦后向散射信号,从而在补偿依赖于频率的传播效应的同时,将其从背景杂波和噪声中分辨出来。在感兴趣的区域中,正常组织和导管末梢377的介电性质之间的显著对比(由例如钐-钴SmCo5或钕-铁-硼NdFeB等的铁酸盐形成),充分后向散射了图像中的能量级,从而区别正常的组织与导管末梢377,提供检测和分辨。数据自适应算法用于去除所接收的信号中的伪象,由于从身体组织界面(例如皮肤层)的后向散射引起该伪象。包含与关于生物组织的背景介电信息相对比的导管末梢的已知介电常数的一个或多个查找表可以用于识别雷达图像中的特征。
用于生物组织内导管末梢377的微波检测的物理基础基于身体组织的介电性质相对于导管末梢377的标识的对比。对生物组织的介电值与导管末梢的介电值的对比进行放大、滤波和测量。结果,导管末梢377具有微波散射横截面,其介电特性不同于相当大尺寸的生物组织,由接收机记录的非常不同的后向散射能量指示并处理该微波散射横截面,从而在监视器325(如图5所示)上提供画面表示,其中在两个介质之间具有显著对比。由雷达1000所产生的导管末梢377的画面视图可以叠加在X射线荧光检查图像和其坐标数据集合上,该坐标数据集合连接到GCI控制器501,用于由位置伺服反馈回路使用。因此,经由时空(MIST)波束形成的微波成像用于检测来自导管末梢377的后向散射能量,而背景是生物组织。
雷达系统1000检测嵌入在生物组织内的、例如导管末梢377的各种微波散射的出现和位置。时空波束形成器假设阵列中的每一个天线都将低功率超宽带(UWB)信号发射到生物组织中。可以作为时域脉冲物理地产生UWB信号,或通过使用扫频输入合成地产生。在一个实施例中,雷达系统1000使用聚焦导管末梢377的后向散射信号的波束形成器,从而在补偿依赖频率的传播效应的同时,区别由正常组织的异质所引起的杂波与噪声。时空波束形成器通过以下实现这种空间聚焦:首先,时移所接收的信号,以对齐来自目标位置的回波。相控阵雷达1000的一个实施例形成一组有限冲击响应(FIR)滤波器,例如天线槽内的高介电掺杂,其形成参考信号,其中掺杂是相对于感兴趣的设备。对来自天线通道的信号进行求和以产生波束形成器输出。例如FIR滤波器中加权的技术可以与例如Savitzky-golay平衡滤波器的“最小均方拟合”技术一起使用,从而提供所接收到的信号的增强,并计算其能量,作为介电性质相对于身体组织的散射的背景噪声的函数,从而提供这种信号的合成表示。系统可以区别由生物组织和导管末梢377所反射的能量中的差别,并且显示这种能量差作为相对于参照标志700Ax至700Bx的位置和坐标的函数,从而提供正比于后向散射信号强度的图像,所述图像进一步由GCI控制器501用于计算导管末梢377相对于参照标志的立体定向框架的位置坐标和方向。在图5和5A中进一步描述导管末梢377相对于立体定向框架的坐标设置的形成的细节以及这种图像与立体定向框架702的同步。在一个实施例中,雷达模块1000使用FFT算法1103,该FFT算法1103使用在查找表1111中的滤波技术以允许雷达传感器950分辨在医疗过程中公知使用的具体对象的介电特性的变化,例如导线379和/或具有压电回路951、952的导管953,从而提供例如导管、导线、电极等的各种类型器具的区别。
图3A是嵌入了一个或两个压电回路951、952(例如铅-锆酸盐-钛酸盐(PZT))和/或分子共轭聚合物(例如开关二极管(聚乙炔))的导管末梢377的图形表示。由于材料的非线性,由回路951、952所产生的二次谐波在二次谐波中提供了可识别的返回标识。当由雷达发射基波(例如5MHz)时,二次谐波(例如10MHz)容易由雷达系统1000所识别。雷达系统1000可以在导管末梢(其由例如钐-钴SmCo5或钕-铁-硼NdFeB的铁酸盐形成)与PZT回路951和952之间进行辨别。在从导管末梢377和PZT回路951、952所返回的信号之间的区别能力允许雷达系统1000对从身体组织所接收的背景杂波进行过滤,并识别回路951、952的位置和方向、以及导管末梢377的位置坐标。使用导管末梢377相对于PZT 951和952的两个不同介电性质和电气特性的技术,向导管末梢377提供了由雷达系统1000唯一且容易识别的雷达标识。
图3A还示出了具有发射和接收天线的雷达系统1000如何用于检测导管末梢377相对于其两个PZT回路951和952的位置坐标和方向。雷达系统1000采用几何处理,并且由驻留的微控制器1105采用使用其相关联的FFT滤波器1103。如图6B所示,导管类设备设有磁响应末梢377。在一个实施例中,该末梢377包括一个永磁体。永磁体的极性由两个PZT回路标记,其中北极由PZT回路952和铁酸盐的远端指示,其中导管376的半灵活部分953由附加的PZT回路951标记,还标记了铁酸盐南极。雷达系统1000发射照亮铁酸盐导管末梢377的冲击能量。由雷达接收来自导管末梢377的返回信号,并且通过观察能量的飞行时间来记录其位置,从而确定导管末梢377的位置,作为三维空间中的位置坐标。通过采用两个PZT回路951和952,雷达检测器1000还可以辨别末梢377相对于两个PZT回路的位置,从而参考导管末梢377的位置坐标,提供PZT回路952相对于第二压电回路951的测量。由于产生相对于入射波的二次谐波的PZT材料的非线性特性,雷达检测器1000可以辨别从PZT回路952和951返回的信号。通过比较基波和二次谐波的强度,雷达系统1000可以辨别两个PZT回路相对于铁酸盐377的位置和方向,从而提供导管末梢377的位置和方向。
图3B、5和5B示出了通过使用雷达检测器1000以及使用参照标志700Ax和700Bx来测量导管末梢的位置和方向的技术,以便形成用于导管动态的参考框架的技术,例如相对于参考框架移动。如图3B和5B中所示,参照标志700Ax和700Bx形成复制701。由6-DOF传感器测量标志700Ax和700Bx的位置。
图4是6-DOF传感器系统2100的方框图,其是6-DOF传感器960的一个实施例。系统2001包括6-DOF光学传感器2100以及其相关联的电子设备,用于测量位于患者身体390上的、用于限定立体定向框架的参照标志700A1、700A2、700A3和700A4以及700B1、700B2、700B3和700B4的位置。如图5所示,参照标志700A1、700A2、700A3和700A4以及700B1、700B2、700B3和700B4使得在视频监视器325上所示的图像702能够与导管末梢377的位置的同步701。在图10中更详细地描述6-DOF光学传感器2100。系统2000包括6-DOF光学传感器2100、仪器用放大器2101、A/D转换器2102、快速傅立叶变换模块2103以及微控制器2105。一个实施例包括语音消息收发和告警模块2110、一组控制开关2109和显示器2108。将由6-DOF传感器2000产生的数据经由通信端口2113提供给GCI装置501。
图5示出了GCI装置501到cineoangiographic设备502的一般性连接。cineoangiographic设备502通过操作者接口设备500与GCI装置501相接。动脉树的cineoangiographic图像在视频监视器325上示出,导管末梢377的位置叠加在该图像上。为了当前描述的方便而不作为限制,这里将图像称作荧光检查图像,可以理解,可以由任何可以产生身体结构图像的技术产生图像,所述技术包括但不局限于X射线成像、荧光检查、超声波成像、MRI、CAT扫描,PET扫描、雷达成像等。通过使用6-DOF传感器及其位于患者的身体390上的额外参照标志700A1、700A2、700A3和700A4以及700B1、700B2、700B3和700B4来同步这些图像的显示,从而定位提供参考标志的立体定向框架,并使视频监视器325上的图像702与导管末梢377的位置同步701。
图5A示出了如何在监视器325上将图像702与从雷达系统950所获得的导管377的合成图像叠加在一起,以及如何使用6-DOF传感器2000和位于患者身体390上的参照标志700A1、700A2、700A3和700A4以及700B1、700B2、700B3和700B4来同步图像702和合成图像。图5A还描述了支持关于框架701的导管末梢377的位置限定的立体定向框架701的形成。该方法使用形成为近似立方体并且由6-DOF传感器2100所检测的参照标志。形成为复制701的整个数据集合包括一组图像702、导管末梢377的雷达图像数据(例如,来自雷达系统1000的数据)、以及参照标志700Ax至700Bx。
将由雷达系统950所获取的导管末梢377或导线379的图像的同步叠加到参照标志上,数字地表示该参照标志,并与图像702动态连接。完成该操作,从而创建一个结合的复制701,其叠加在荧光检查图像702上,并且相对于所讨论的解剖组织与感兴趣的区域一起移动。例如,跳动的心脏及其心脏输出、肺部扩展和收缩、或患者的痉挛,所有这些可以动态地获取并连接在一起,从而得到导管末梢与所讨论的身体器官之间实质上一致的移动。
图5A还示出了将参照标志700A1、700A2、700A3、700A4、700B1、700B2、700B3和700B4叠加到所产生的、如图5中图像所示的荧光检查/超声波图像702上的图像获取技术。所提供的方案识别导管末梢377关于图像702的动态位置。由参照标志700Ax和700Bx形成并使用6-DOF传感器2000的参考框架701,限定了立体定向框架701相对于导管末梢的位置。此外,通过采用几何投影法的技术,该方法提供了关于导管末梢377的同步的图像获取,从而在动态基础上提供了相对于参照标志700Ax和700Bx和导管末梢377的图像702的叠加,因此,提供具有参考框架的位置定义,并记为图5A中的701。
图5A示出了同步算法701的使用,其中由参照标志700A1、700A2、700A3、700A4、700B1、700B2、700B3和700B4所形成的空间由一个n维空间表示,在所述n维空间中参照标志700Ax和700Bx由矢量fi{f1,f2,...fn}表示,并且由函数gi{g1,g2,...gn}指定由雷达1000所提供的导管末梢377位置数据。在n维空间中的矢量f、g的长度由(701)定义。空间上的和由积分
Figure A20048003747600212
得到,此外,在n维空间中的点f(参照标志)和g(导管末梢377位置)之间的距离是
Figure A20048003747600221
因此
∫ a b [ f ( t ) - g ( t ) ] 2 dt - - - ( 2 )
该结果是函数f(t)和g(t)的方差。700Ax、700Bx的矢量定义fi和导管末梢377的矢量定义gi之间的角度由 Φ = Σ i = 1 n f i g i Σ i = 1 n f i 2 Σ i = 1 n g i 2 表示,并且其中
cos Φ = ∫ a b f ( t ) g ( t ) dt ∫ a b f 2 ( t ) dt ∫ a b g 2 ( t ) dt - - - ( 3 )
这是因为fi和gi正交( ∫ a b f ( x ) g ( x ) dx = 0 )。
6-DOF 2000传感器的位置数据集合被设置为矢量函数fi,与由雷达系统1000所产生并由矢量函数gi所表示的导管末梢377的位置数据集合正交,并且由等式(2)中所示的差表示它们的距离,并且其相对方向由等式(3)所示。因此,定义了导管末梢377相对于参照标志700Ax-700Bx的位置的复制701是矢量函数fi到矢量函数gi关于角度的差,并且在时域T上映射,其中T是{t1,t2,...tn}。总之,使导管末梢377位置关于由参照标志700Ax至700Bx所形成的立体定向框架进行同步的方法允许GCI控制器501首先提供闭合的饲服回路形式,其中,外科医生可以关于实际位置(AP=P1)设置希望的位置(DP=P2),同时机器沿“C”曲线985执行需要的算术计算。第二,由电磁体簇920和930关于相对于导管末梢377的距离r 971和角度Φ984产生最佳功率设置。
图5B示出了在执行起搏器电极植入的同时,图5A中所描述的装置的使用。图5B还示出了心脏起搏器801的植入,具有如所示位于相对于S.A.节点802、A.V.节点803和希氏(His)束804的区域中的电极。还示出了左右束支805。起搏器植入对于具有心脏节律或电导干扰的患者的存活是必需的。该步骤通过在心脏空腔壁(心室或心房)中植入较小的电极而执行。电极的另一端附在在胸部皮肤下植入的电设备801上,并且其产生刺激信号,从而刺激心脏节律。当由电极自动心脏除颤器(AICD)检测到威胁生命的心脏电干扰时,类似设备施加电击。在荧光检查下,通过推动和操作通过血管放置这些电极。通过使用装置GCI 501,配合磁末梢381的导线379用于通过使用GCI系统,携带起搏器801的电极和并将其放在它们的合适位置。利用参照标志700A1、700A2、700A3、700A4、700B1、700B2、700B3和700B4在合适位置,医生将导线379导航通过心脏内腔,同时使用来自雷达1000的位置数据来识别导线末梢381的连续动态参考框架,以及如图5所示由图5A进一步示出的6-DOF传感器2000的使用。操作电极放置在合适位置经常是困难的,并且由于解剖变异,结果是不理想的。控制器501的使用在执行这种复杂操作中提供了简便性,同时医生可以移动、推动并将起搏器801的电极放置在希望的解剖位置,而不会由于没有对导线和起搏器电极移动的准确导航、引导、控制和成像能力而放弃。
图6和6A是用于与GCI系统503一起使用的导管组件375和导线组件379的透视图。导管组件375是包括延伸到活动部分378的导管体376的管状工具,该活动部分378具有提高的灵活性,用于允许更坚硬的响应末梢377被准确地引导通过弯曲的路径。与GCI装置501相结合的磁导管组件375降低或消除了对于正常需要执行诊断和治疗过程的多个形状的需要。这是由于以下事实:在传统的导管插入过程期间,由于该处理是劳动密集的,并且依赖于手工灵巧性来调整导管通过例如心血管系统的弯曲路径,外科医生在将传统的导管引导到希望的位置中经常遇到困难。因此,制造外科医生可用的不同尺寸和形状的多个导管,以便在任务中帮助他/她,因为由于在患者内或患者之间自然的解剖变异,这种任务在不同的情况下要求不同的弯曲程度。如果不是所有患者,通过使用GCI系统501,仅需要单个导管用于大多数患者,因为现在利用机电系统的帮助完成导管插入过程,该机电系统将磁导管和导线组件375和/或379引导到患者身体390内的希望的位置,而不依赖于外科医生将导管盲目的推进患者身体390。磁导管和导线组合375、379提供需要克服弯曲路径的灵活性。
导线组件379包括导线体380和灵活部分382,其具有提高的灵活性,用于允许更坚硬的响应末梢381在突然转弯周围准确地进行引导,从而导航弯曲的路径。两个导管组件375和导线组合379各自的响应末梢377和381包括例如永磁体的磁元件。末梢377和381包括永磁体,其响应由上部电磁簇920和下部电磁簇930所产生的外部通量。
导管组件375的末梢377是管状的,并且导线组件379的响应末梢381是实圆柱体。导管组件375的响应末梢377是偶极,具有由纵向位于其中的磁元件的两端所产生的纵向极方向。导线组件379的响应末梢381是偶极,具有由纵向位于其中的磁元件377的两端所产生的纵向极方向。当上部电磁簇920和下部电磁簇930将对末梢377和381起作用时,这些纵向偶极允许两个响应末梢377和381与GCI装置501一起操作,并一致地将其“拖拉”到操作者指定的希望位置。
图6B是配合磁末梢和两个压电回路的导管的表示。图6B还示出了对要与GCI系统503一起使用的导管配件375和导线配件379所添加的改进,例外是导管组件953配合了额外的两个压电回路或半导体性质的聚合物951和952,如所示位置。与控制器501相结合的雷达系统950提供了导管末梢的额外检测形式,其中发射RF信号,从而激发两个压电回路或聚合物,并且从而提供导管末梢相对于磁体377的北极的旋转测量。GCI系统503可以定义末梢377的旋转角度,并且在那些熟悉压电回路或聚合物951、952技术的技术人员所公知的更详细的方案中,可以提供额外的位置信息来定义导管末梢377相对于如图5、5A和5B所描述的立体定向框架701的位置、方向和旋转。
图7示出了由系统控制器(SC)501所执行的逻辑计算流程,用于确定实际导管末梢(AP)377的位置。控制器还结合导管末梢位置数据(由雷达系统950测量)和参照标志位置数据(由6-DOF传感器960测量),从而确定在患者身体内的导管末梢的位置,并从而将导管位置与图像数据(如果可用)同步。
1.控制器501示出X轴控制器和放大器(XCA)911和910、Y轴控制器和放大器(YCA)913和912、以及Z轴控制器和放大器(ZCA)915和914的输出。
2.控制器501从雷达系统950读取数据,识别导管末梢377的真实位置(AP)981。
3.控制器501从用户输入设备900读取数据,用于由外科医生定向的导管末梢的新的希望位置(DP)982。
4.控制器501执行针对“C”曲线985的数学方法。
5.控制器501从6-DOF传感器读取数据,定义形成立体定向框架的参照标志700Ax、700Bx的位置。
6.控制器501从图像源502得到数字图像数据702。
7.控制器501将来自导管末梢位置377的数据与从6-DOF传感器所获得的数据同步,并且将所结合的数据设置为复制701的形式。
8.控制器501将复制701叠加到从图像源702所得到的数字图像上。
9.控制器501计算电磁体簇920和930的最优距离r 971和角度Φ984,从而提供电磁体簇920和930相对于患者390的位置的最优功率设置。
10.控制器501按需要重复上述步骤1至9。
11.控制器501计算误差位置(PE)983,它是导管末梢377的实际位置(AP)981和希望的位置(DP)982之间的差,也被称为图2L中的曲线“C”985,并由表达式(PE=[AP-DP])所表示。
12.控制器501重复最优的功率设置算法的处理,从而提供一种几何结构,其包含由外科医生设置的导管末梢377的实际位置和该末梢的希望位置之间的行程。
13.控制器501命令上部电磁体簇920,使用机动化转向和计算机控制的装置970,从而以这种方式移动来获得针对电磁体系统的最优配置。
14.控制器501向X轴控制器和放大器(XCA)911和910、Y轴控制器和放大器(YCA)913和912、以及Z轴控制器和放大器(ZCA)915和914输入通过由图2C至2H所识别的过程描述的已校正磁场数据,并对来自在实际末梢377上所产生的磁场B的三个正交分量(Bx,By,Bz)的5轴数据集合进行插值。
15.控制器501向X轴控制器和放大器(XCA)911和910、Y轴控制器和放大器(YCA)913和912、以及Z轴控制器和放大器(ZCA)915和914发送与新的希望坐标相对应的新的希望位置数据(DP)982,从而在线圈901至906中设置适当的电流。
16.控制器501还集成来自图像源702和雷达系统950的心脏位置(CP),包括,例如,来自心电图(EKG)502的选通数据和由参照标志700Ax至700Bx所形成的立体定向框架,从而动态地连接到心脏位置、实际导管末梢位置(AP)981和作为复制701的参照标志的各个输入。例如,由于心脏的跳动和肺的肺部移动,心脏位置(CP)的数据和肺部数据集合是动态且时不变。
17.控制器501按需要重复上述处理。
如果位置误差(PE)983在任何一个或多个轴中的预定时间内超过预定量,则控制器501向虚拟末梢(VT)405发送反馈数据,从而提供触觉反馈,以便将导管末梢377所遇到的障碍通知操作者。假设如果GCI装置501的正常操作在以上步骤1至14的预期数量的时间或循环内没有消除(PE)983,则实际的导管末梢377易于遇到障碍。这由操作者通过由该杆上的电阻所产生并作用于例如虚拟末梢405的一个或多个用户输入设备900触觉反馈而觉察。
图8是CGCI装置的信号流的功能方框图。该图示出了虚拟末梢405的操作,其提供了由外科医生对导管末梢的直觉的操纵杆类型的控制。外科医生以希望的方向推动、拖拉或旋转虚拟末梢405,从而引起导管末梢377在患者身体390内的类似移动。如果导管末梢377遇到障碍,虚拟末梢405以阻抗形式的触觉反馈来响应在适当的一个或多个轴中的移动。因此当其前进时,外科医生可以“感觉”到实际的末梢。当释放末梢405时,导管末梢377有力地保持在其当前位置中。GCI的系统控制器501将实际末梢位置(AP)981与从复制701所获取的并由雷达950和6-DOF传感器960所产生的心脏位置数据(CP)进行相关。这些数据集合被叠加在辅助设备502所产生的荧光检查图像702上,并且与所结合和所同步的末梢和作为复制701形成的X射线图像一起在监视器325上显示。三维实际末梢位置(AP)981的显示与AP数据是基于实时连续更新的。相对较少的X射线图像框架用于与CP数据一起覆盖该显示。因为在701合成图像中表示的X射线和雷达数据具有公共的参考点即参照标志,700Ax至700Bx(即,二者都是相对于跳动的心脏都是静止的),AP与CP数据的相关是可能的。因此,在提供观测心脏和导管末梢377的较好的方法同时,本技术显著减少了患者和工作人员对于X射线的暴露。
图8还通过示出其中获取操作用户数据设备900(例如虚拟末梢405)的外科医生的手部移动并将其解译为移动命令的过程,描述了GCI装置501的操作。在使用放大器910至915以产生用于线圈901至906的需要电流的同时,相对于移动导管末梢377所要求的力,提供了功率的优化。线圈在导管末梢377处产生B场,根据麦克斯韦尔等式,该场与在末梢377所产生的力/力矩相对应。由雷达系统950实时监视导管末梢377的移动,其中通过6-DOF传感器2000的使用,通过使用参照标志700Ax至700Bx的同步701处理来显示末梢位置和方向信息,从而选通位置以及由实际末梢所产生的反射力/力矩。连续地重复该处理,从而通过使用用户输入设备900来响应操作者的移动。图8所示的上述过程对于熟悉本领域的技术人员来说是清晰和直观的,并且在图1至7中更详细地描述。
如图4所示,处理描述如下:i)操作者将虚拟导管末梢405的物理位置调整到希望的位置,ii)在控制器501中对虚拟末梢405位置中的变化进行编码,iii)控制器501产生发送给饲服系统控制模块的命令,iv)饲服系统控制模块控制转向和移动控制装置970,以调整线圈901至906的位置,从而通过变化电磁体簇的角度Φ984和距离r 970,优化电磁体簇920相对于930的位置,v)将电流发送给引起在患者身体390内的实际磁导管末梢377的位置改变的线圈901-906,vi)然后,由雷达系统950和6-DOF传感器960感应实际导管末梢(AP)的新位置并且将导管位置叠加在由荧光检查和/或其它成像形式702所产生的图像上,以及vii)将反馈提供给饲服系统控制装置以及操作者接口的监视系统501。
图9表示在极性配置374中的电磁线圈132X、132Y、132Z、138X、138Y和138Z的排列,其示出了具有使用双平面X射线支持机构的交替磁系统的GCI装置503,与图2中所标注的如“C”臂391布局的排列相反。图9还示出了包括GCI装置501的元件之间的整体关系,其包括操作台389、患者390、T轴编码器394、耳轴388、支持组件385、极性支架391.1、G轴编码器393、X射线源383以及图像增强器384。该整体排列被称作极性配置374,并且与“C”臂方法391相对比,在“C”臂方法391中,电磁体901至906被配置作为簇920、930中的环形磁路的部分。图2、2A和2B中所示的结构是有利的,由于电磁场B的强度向缝隙的中心线增加,并且缝隙边缘处的梯度峰值使得GCI501形成叶状的磁场结构,通过使用图9中所标注的双平面轴对称的布置不容易获得所述磁场结构。GCI 501采用了这种设置,从而在例如图9中所标注的一个极性配置中提供推动、拖拉和引导磁耦合的导管末梢377。
在采用极性配置374中,装置使用T轴编码器394和G轴编码器393,其提供给系统台架(gantry)位置信息,用于在激发电磁体之前计算所需要的坐标旋转。极性配置374使用耳轴388,其用作支持组件385的构架(truss)。极性支架391.1绕支持组件385的G轴转动,并且极性组件391.1支持X射线源383和X射线图像增强器384,其产生与监视器325上的实际导管末梢位置叠加在一起的X射线图像。极性支架391.1提供了用于电磁体132X、132Y、132Z、138X、138Y和138Z按其适当的同轴排列的安装表面。
耳轴388以T轴387为中心。T轴编码器394机械地连接到耳轴388,以便对T轴中的支持组件385位置数据进行编码。转向轴(G轴)386与T轴378在极性支架391.1的中心点处相交。该中心点与X射线视场的中心点一致。G轴编码器393沿G轴386机械地连接到支持组件385。
6-DOF传感器提供关于参照标志的六个自由度(DOF)的传感。通过发射激光波束并检测离开标志的反射,6-DOF传感器完成该操作。在传感器内,波束被分离并被定向到三个光电二极管。数字化来自二极管的模拟信号,并将其提供给计算机,计算机可以命令用于机械或输出位置读取的正确动作。
图10表示6-DOF传感器,其中激光源2012照亮反射镜2014、2016,以将波束2018引导到传感器的主光轴。波束通过发散波束的两个负透镜(2020和2022)。在一个实施例中,发散角近似0.3弧度(半角),以便在传感器的表面约3.5cm处产生1cm直径的激光班。也可以使用其它发散角。通过选择其依次改变发散角和给定距离处的光斑尺寸的不同的负透镜2020、2022,可以改变传感器的视角领域。
例如,4mm直径的点2024和1×1mm的棒(bar)2026的两个反射参考标志,安装在不反射带上并应用于患者。激光从标志反射,并返回传感器。因为波束是发散的,当光返回传感器时,在允许大多数光在较小负透镜附近并通过相对较大的正透镜的区域中,反射被放大。透镜2019在其中心具有一个孔,以使输出波束2018穿过,并且具有聚焦长度,其平行校准发散的反射波束。换句话说,当该点位于传感器聚焦长度的一半附近时,通过弯曲来自点2024的反射光的发散射线,以便平行地进入传感器,透镜2019的正聚焦长度与透镜2020和2022的负聚焦长度相等。当平行校准的反射波束继续传播到传感器中时,其通过带通滤波器2030。滤波器2030使激光通过,但阻挡了其它波长的光。在传感器内,来自点2024的光由分光镜分为两个波束。波束的一半被反射90度,进入横向效应光电二极管2034。波束的另一半通过分光镜,进入正透镜2036,离开反射镜2040和2041,并到达另一个光电二极管2038。
来自棒26的光还通过滤波器2030。但是,因为反射棒2026相对于该点是倾斜的,从其反射的激光处于较大的发散角。反射的较大角度引起光通过滤波器2030不同位置,绕过透镜2019和分光镜,并照亮光电二极管。为了减小传感器对于除激光之外的外部光源的敏感度,发光二极管2023可以安装在传感器内,以提供受控的背景光。
三个光电二极管(2034、2038和2042)的每一个对于传感器和反射器(2024和2026)的相对位置具有不同的敏感度,当在设计中去耦时,允许任意变化要描绘的6个自由度中任何一个的位置。光电二极管2042对于棒2026和传感器之间的平移(Tz)以及关于垂直于点2024的表面的传感器的旋转(Rz)敏感。如果传感器处于棒2026的指定远距离(2019的聚焦长度的一半),则倾斜棒2026,以使其反射照亮光电二极管2042的中心。因此,可以计算从光电二极管2042中心的棒反射的任何上下偏差,作为从棒到传感器的距离(Tz)。同样,相对于该点中心的棒的径向位置用作关于Rz旋转的参考。因此,可以计算从光电二极管2042的中心的棒反射的左右偏差,作为传感器关于该点的垂直轴的旋转(Rz)。
相反,如下所述,光电二极管2038对关于X和Y轴的倾斜(Rx,Ry)最敏感。因为当到达反射参考标志2024时激光波束是发散的,所反射的波束大部分返回,但是主要在负透镜2014、2016的中心,即使当传感器关于负透镜倾斜时,即,返回的光进入垂直于参考点表面的传感器,与传感器的倾斜无关。尽管光与倾斜之前一样返回,光电二极管2038的位置与传感器的倾斜一起改变。因此,在倾斜期间,光电二极管2038相对于所反射光的恒定聚焦的移动提供了关于X和Y轴的倾斜(Rx,Ry)的敏感度。由于透镜的本质,二极管2038对于反射镜2024的纯粹平移不敏感,这是因为透镜将穿过它的所有平行射线聚焦到同一点,与射线来自何处无关,即,与在何处平移标志无关。
在光电二极管2034的情况下,分光镜2032将光反射到其上,而在路径中没有透镜。因此,与二极管2038不同,二极管2034对于相对于参考点的传感器的横向平移(Tx,Ty)敏感。光电二极管34还对于倾斜敏感;但是,可以在设计中使用来自光电二极管38的信息来抵消该效果。类似地,可以在设计中抵消光电二极管42与其它光电二极管的任何耦合。
利用模拟数字转换器数字化来自二极管的模拟数据,并提供给计算机用于处理,作为来自三个光电二极管的每一个的两个通道。在该形式中,数据不表示关于六个轴的纯移动,这是因为几乎两个通道具有多于一个移动的信息,即,通道是耦合的。可以去耦该信息得到关于所有六个自由度的纯移动测量。该去耦是可能的,因为每一个光电二极管提供不同的信息。光电二极管38仅对有关X和Y轴(Rx和Ry)的倾斜敏感。因此,来自这些通道的电压读数表示在那些轴中的纯倾斜,而不对其它移动的敏感(耦合)。相反地,光电二极管34对关于X和Y的移动、旋转和平移的四个轴(Tx,Ty,Rx&Ry)敏感。但是,通过减去来自光电二极管38的任何电压读数,光电二极管34的倾斜敏感度被忽略,并且剩余的电压仅表示关于X和Y的平移(Tx,Ty)。同样,光电二极管42对所有六个自由度敏感。但是,通过从其它两个光电二极管减去该电压,剩余的电压仅表示关于Z轴(Tz,Rz)的旋转和平移。
在对所有六个通道都进行去耦之后,可以向操作者显示数据和/或提供给GCI系统。
六DOF传感器可以跟踪所有6个自由度。因为在光电二极管上放大从标志激光波束发散、反射的激光波束,提高了准确度。结合高分辨率A-D转换器,这有利于在检测平移中提供微米级准确度,以及在检测方向中提供毫弧度级准确度。利用不同的光学器件,可以减小视场从而提高准确度,并且反之亦然。标志符合身体的轮廓,因此在身体上定位反射标志(参考)是3-DOF任务(Tx,Ty,Rz),可以由操作者或简单的3轴计算机控制的机器来执行该任务。6-DOF传感器无接触并且无表面依赖。作为光学传感器,它在物理上不接触身体。6-DOF传感器使用横向效应光电二极管而不是摄像机。由于光电二极管比摄像机小,6-DOF传感器相对小于基于摄像机的系统。
图11是示出了虚拟末梢用户输入设备405的能力的透视图。虚拟末梢405是多轴操纵杆类型设备,其允许外科医生提供输入来控制导管末梢377的位置、方向和旋转。虚拟末梢405包括:X输入3400、Y输入3404、Z输入3402和用于控制导管末梢的位置的phi旋转输入3403。虚拟末梢405还包括末梢旋转输入3405和末梢高度输入3404。如上所述,外科医生操作虚拟末梢405,并且虚拟末梢405将外科医生的移动传送给控制器501。然后,控制器501在线圈中产生电流,从而影响实际导管末梢377的移动,以引起实际导管末梢377跟随虚拟末梢405的移动。在一个实施例中,虚拟末梢405包括各种电动机和/或传动器(例如,永磁体电动机/传动器、步进电动机、线性电动机、压电电动机、线性传动器等),从而向操作者提供力反馈,以提供导管末梢377遇到妨碍或障碍的触觉指示。
尽管前面的描述包含很多特性,不应当将这解释为对于本发明范围的限制,而只是提供其实施例的描述。因此,例如,对于参照标志(参考标志)的位置传感的传感器在实施例中描述为6-DOF传感器。本领域的普通技术人员将认识到,也可以使用可以传感参考标志的位置的其它光学传感器(例如,摄像机),例如雷达、超声波传感器等的非光学传感器可以用于检测参照标志的位置。在一个实施例中,雷达系统950可以用于代替6-DOF传感器960,以检测雷达反射的参照标志。
在本发明的范围内还允许许多其它变体。例如,可以控制电磁体的调制,从而引起末梢的振动或脉动辅助穿过斑。响应的末梢可以是电磁而不是永磁体。可以由一个或多个永磁体产生身体外部的磁场。可以通过手工管理场产生设备来完成外部磁场的控制。通过使缠绕在该末梢上的一个或多个线圈响应外加时变场,可以使用具有其相关联的磁效应的AC感应。通过利用具有适当温度的流体进行刺激,在体温的少数度数内具有居里温度的材料可以用作用于选择性的末梢控制的磁通量开关;静电现象可以增强磁效应。人工智能可以代替操作者控制来产生命令输入;专家系统可以代替或增强操作者输入。该装置可以用于培育各种体腔和除心脏之外的器官。该装置可以用于人类和动物培育过程,例如卵细胞收获和胚胎植入。响应末梢可以附着在连贯的光导纤维束上,从而提供具有空前机动灵活性的内部结构的视图,通过使用被引导的导管将palletized源直接传递到肿瘤,可以精确地执行内部放射性同位素治疗。可以获取内部组织采样而无需重大手术;可以准确地定位配备有响应末梢的光纤光导,从而无需重大手术即可将激光传递到具体的内部位置。因此,本发明的范围仅由权利要求限制。

Claims (44)

1. 一种用于控制导管类工具的移动的装置,所述导管类工具具有响应磁场的远端并被配置成插入患者身体,所述装置包括:
磁场源,用于在身体外产生磁场;
转向系统,用于关于身体定向所述磁场源;
雷达系统,用于测量所述远端的位置;
传感器系统,用于测量多个参照标志的位置;
用户输入设备,用于输入命令以移动所述远端;
系统控制器,用于响应来自所述用户输入设备、所述雷达系统和所述传感器的输入,控制所述磁场源。
2. 根据权利要求1所述的装置,所述系统控制器包括闭环的反馈饲服系统。
3. 根据权利要求1所述的装置,所述雷达系统包括脉冲雷达。
4. 根据权利要求1所述的装置,所述远端包括一个或多个磁体。
5. 根据权利要求1所述的装置,其中所述系统控制器计算位置误差,并控制所述磁场源,以便沿一个方向移动所述远端,从而减小所述位置误差。
6. 根据权利要求1所述的装置,其中所述系统控制器将所述远端的位置数据与一组参照标志相集成。
7. 根据权利要求1所述的装置,其中所述系统控制器使所述远端的位置与荧光检查图像相同步。
8. 根据权利要求1所述的装置,还包括操作者接口单元。
9. 根据权利要求1所述的装置,其中所述系统控制器补偿器官的动态位置,从而抵消了所述远端对于所述磁场的响应,以使所述远端与所述器官实质上一致地移动。
10. 根据权利要求1所述的装置,其中由提供关于器官的动态位置的正确数据的辅助设备产生校正输入,并且其中所述校正数据与来自所述雷达系统的测量数据相结合,以抵消所述控制系统的响应,从而所述远端与所述器官实质上一致地移动。
11. 根据权利要求10所述的装置,其中所述辅助设备包括X射线设备、超声波设备和雷达设备中的至少之一。
12. 根据权利要求1所述的装置,其中所述用户输入设备包括允许用户控制输入的虚拟末梢控制设备。
13. 根据权利要求1所述的装置,还包括:具有力反馈的虚拟末梢。
14. 根据权利要求1所述的装置,还包括:
X轴控制器和放大器;
Y轴控制器和放大器;以及
Z轴控制器和放大器。
15. 根据权利要求1所述的装置,所述传感器系统包括6-DOF传感器。
16. 根据权利要求1所述的装置,其中所述雷达设备包括相控阵。
17. 根据权利要求1所述的装置,其中所述系统控制器协调X轴控制器、Y轴控制器和Z轴控制器的操作,并且其中所述用户输入设备包括虚拟末梢。
18. 根据权利要求17所述的装置,其中所述虚拟末梢向操作者提供触觉反馈。
19. 根据权利要求17所述的装置,其中所述虚拟末梢根据所述远端的实际位置和所述远端的希望位置之间的位置误差,向操作者提供触觉反馈。
20. 根据权利要求17所述的装置,其中所述系统控制器使所述远端跟随所述虚拟末梢的移动。
21. 根据权利要求1所述的装置,其中所述雷达系统被配置成测量由所述远端所产生的二次谐波。
22. 根据权利要求1所述的装置,还包括虚拟末梢控制器,其中所述虚拟末梢控制器向虚拟末梢输出触觉反馈响应控制。
23. 根据权利要求1所述的装置,其中所述系统控制器被配置成使用来自所述雷达设备和6-DOF传感器的至少部分数据来计算导管末梢的所述远端的位置,以便控制所述磁场源以减小所述位置误差。
24. 根据权利要求1所述的装置,其中所述系统控制器通过向所述用户输入设备提供反馈数据,发起触觉反馈响应。
25. 一种用于控制具有要插入身体的远端工具的移动的方法,包括:
通过产生外部磁场,向所述远端施加力;
调节所述力从而沿所希望的方向移动所述远端;以及
由雷达定位所述远端。
26. 根据权利要求25所述的方法,还包括当所述远端通过身体移动时,实质上实时地改变所述远端的可视表示。
27. 根据权利要求25所述的方法,还包括控制一个或多个电磁体以产生所述外部磁场。
28. 根据权利要求25所述的方法,还包括定位多个参照标志,并使所述标志与至少一部分身体的实时图像上的位置相同步。
29. 根据权利要求25所述的方法,还包括与希望的位置相比较,定义所述远端的当前位置。
30. 根据权利要求25所述的方法,其中确定所述工具远端的当前位置包括:
经由所述控制器输入动态心脏位置;以及
计算所述当前位置,作为所述心脏位置的函数。
31. 根据权利要求25的方法,还包括计算所述远端的位置误差。
32. 根据权利要求31所述的方法,还包括当所述位置误差大于指定的最小值时,改变到所述X轴控制器、Y轴控制器和Z轴控制器中至少一个的调制输入的占空周期和极性中的至少一个。
33. 根据权利要求31所述的方法,还包括如果所述位置误差沿至少一个轴超过了预定量,产生触觉反馈。
34. 根据权利要求31所述的方法,其中所述系统控制器使所述工具远端移动,从而其位置与来自虚拟末梢的位置数据相对应。
35. 一种用于控制具有要插入身体中的远端的工具的移动的装置,包括:
磁场源,在形成磁电路并产生磁场的C臂上,被配置在簇类排列中;
具有响应所述磁场的远端的工具;
关于所述远端设置的一个或多个压电回路;以及
系统控制器,用于调节所述磁场,以提供位置和命令输入,从耳控制所述工具远端位置;以及
雷达系统,用于测量所述远端的位置。
36. 根据权利要求35所述的装置,还包括闭合饲服回路系统,它从所述系统控制器接收所述位置和命令输入,以调节所述磁力。
37. 根据权利要求35所述的装置,还包括雷达系统,以定位所述远端。
38. 根据权利要求35所述的装置,其中所述系统控制器被配置成针对所述磁源计算各个力矩和相关联的电流,以配置所述磁场将所述远端移动到希望的位置。
39. 根据权利要求36所述的装置,其中所述系统控制器提供闭合饲服回路,所述闭合饲服回路校正身体内器官的移动,从而所述远端与所述器官实质上一致地移动。
40. 根据权利要求39所述的装置,其中由辅助设备产生关于器官的移动的数据,所述设备提供关于所述移动的动态数据,当所述动态数据与定义立体定向框架的多个参照标志的测量位置相结合时。
41. 根据权利要求40所述的装置,其中所述辅助设备包括以下中的至少一个:荧光检查成像系统、超声波成像系统、或雷达成像系统。
42. 根据权利要求35所述的装置,还包括虚拟末梢,其中至少一部分所述虚拟末梢的移动使所述系统控制器控制所述磁场源,以便相应地移动所述远端。
43. 根据权利要求35所述的装置,还包括机械系统,用于移动所述磁场源的部件,以便减小产生希望的磁场强度所需的电流。
44. 根据权利要求43所述的装置,其中所述系统控制器至少使用来自所述雷达系统的位置数据和来自所述6-DOF传感器的参照标志数据,来计算所述远端关于立体定向框架的位置。
CNA2004800374767A 2003-10-20 2004-10-20 用于雷达辅助的导管导向和控制的系统与方法 Pending CN101252870A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/690,472 US7280863B2 (en) 2003-10-20 2003-10-20 System and method for radar-assisted catheter guidance and control
US10/690,472 2003-10-20

Publications (1)

Publication Number Publication Date
CN101252870A true CN101252870A (zh) 2008-08-27

Family

ID=34549857

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800374767A Pending CN101252870A (zh) 2003-10-20 2004-10-20 用于雷达辅助的导管导向和控制的系统与方法

Country Status (9)

Country Link
US (2) US7280863B2 (zh)
EP (1) EP1691860B1 (zh)
JP (1) JP4741502B2 (zh)
CN (1) CN101252870A (zh)
AT (1) ATE507756T1 (zh)
CA (1) CA2542863C (zh)
DE (1) DE602004032564D1 (zh)
MX (1) MXJL06000017A (zh)
WO (1) WO2005042053A2 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102038514A (zh) * 2009-10-15 2011-05-04 西门子公司 具有距离传感器的计算机断层造影仪和距离测量的方法
CN102438551A (zh) * 2009-05-08 2012-05-02 皇家飞利浦电子股份有限公司 可植入医疗装置的超声规划和引导
CN102834854A (zh) * 2010-04-09 2012-12-19 迈达博有限公司 超声模拟训练系统
CN103006324A (zh) * 2011-09-26 2013-04-03 西门子公司 显示患者的检查区域中的血管或器官的成像方法和装置
CN106772262A (zh) * 2015-10-20 2017-05-31 古野电气株式会社 显示装置以及雷达装置
CN106725271A (zh) * 2016-12-21 2017-05-31 重庆金山医疗器械有限公司 胶囊内窥镜在生物体内自动越障的方法及系统
CN107205781A (zh) * 2014-12-05 2017-09-26 科林达斯公司 用于引导导线的系统和方法
CN108042203A (zh) * 2017-12-21 2018-05-18 清华大学深圳研究生院 一种基于超声测距的心脏三维标测系统及方法
CN108078616A (zh) * 2018-02-02 2018-05-29 李�浩 一种动脉穿刺引导装置及其使用方法
CN108114366A (zh) * 2018-01-31 2018-06-05 张振坤 一种肿瘤内科药物介入综合治疗装置
CN108169717A (zh) * 2017-12-26 2018-06-15 北京无线电测量研究所 嵌入式串口操纵机构及包含其的雷达显控装置
CN111175746A (zh) * 2020-02-14 2020-05-19 上海大学 一种穿刺针定位系统及方法
CN111632251A (zh) * 2011-10-14 2020-09-08 直观外科手术操作公司 导管系统
WO2020215811A1 (zh) * 2019-04-25 2020-10-29 天津御锦人工智能医疗科技有限公司 一种基于图像识别和3d-slam实时建模的新型内窥镜智能导航器系统
WO2021000424A1 (en) * 2019-07-03 2021-01-07 Orion Biotech Inc. Positioning and navigation system for surgery and operating method thereof
US11918340B2 (en) 2011-10-14 2024-03-05 Intuitive Surgical Opeartions, Inc. Electromagnetic sensor with probe and guide sensing elements

Families Citing this family (408)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703418B2 (en) * 1991-02-26 2004-03-09 Unimed Pharmaceuticals, Inc. Appetite stimulation and induction of weight gain in patients suffering from symptomatic HIV infection
US7066924B1 (en) * 1997-11-12 2006-06-27 Stereotaxis, Inc. Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip
US6505062B1 (en) * 1998-02-09 2003-01-07 Stereotaxis, Inc. Method for locating magnetic implant by source field
US20040030244A1 (en) * 1999-08-06 2004-02-12 Garibaldi Jeffrey M. Method and apparatus for magnetically controlling catheters in body lumens and cavities
US7313429B2 (en) 2002-01-23 2007-12-25 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US6702804B1 (en) 1999-10-04 2004-03-09 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US6401723B1 (en) * 2000-02-16 2002-06-11 Stereotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US6856006B2 (en) * 2002-03-28 2005-02-15 Siliconix Taiwan Ltd Encapsulation method and leadframe for leadless semiconductor packages
US7766856B2 (en) * 2001-05-06 2010-08-03 Stereotaxis, Inc. System and methods for advancing a catheter
ATE412372T1 (de) * 2001-05-06 2008-11-15 Stereotaxis Inc System zum vorschieben eines katheter
US7635342B2 (en) * 2001-05-06 2009-12-22 Stereotaxis, Inc. System and methods for medical device advancement and rotation
US7161453B2 (en) * 2002-01-23 2007-01-09 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US7248914B2 (en) * 2002-06-28 2007-07-24 Stereotaxis, Inc. Method of navigating medical devices in the presence of radiopaque material
US7769427B2 (en) * 2002-07-16 2010-08-03 Magnetics, Inc. Apparatus and method for catheter guidance control and imaging
US7991453B2 (en) * 2002-11-13 2011-08-02 Koninklijke Philips Electronics N.V Medical viewing system and method for detecting boundary structures
WO2004045387A2 (en) 2002-11-18 2004-06-03 Stereotaxis, Inc. Magnetically navigable balloon catheters
US7729743B2 (en) * 2003-01-07 2010-06-01 Koninklijke Philips Electronics N.V. Method and arrangement for tracking a medical instrument
US7389778B2 (en) 2003-05-02 2008-06-24 Stereotaxis, Inc. Variable magnetic moment MR navigation
US6980843B2 (en) * 2003-05-21 2005-12-27 Stereotaxis, Inc. Electrophysiology catheter
ITRM20030376A1 (it) 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
EP2452648B1 (en) 2003-09-12 2016-02-10 Vessix Vascular, Inc. System for selectable eccentric remodeling and/or ablation of atherosclerotic material
EP2153860A3 (en) * 2003-09-16 2010-08-11 Stereotaxis, Inc. User interface for remote control of medical devices
US7280863B2 (en) 2003-10-20 2007-10-09 Magnetecs, Inc. System and method for radar-assisted catheter guidance and control
US20050096538A1 (en) 2003-10-29 2005-05-05 Siemens Medical Solutions Usa, Inc. Image plane stabilization for medical imaging
ATE482664T1 (de) * 2004-01-20 2010-10-15 Koninkl Philips Electronics Nv Vorrichtung und verfahren zur navigation eines katheters
US20050281476A1 (en) * 2004-03-23 2005-12-22 Yoshihisa Tanikawa Examination apparatus
EP1731093B1 (en) * 2004-03-29 2013-01-09 Olympus Corporation System for detecting position in examinee
US10863945B2 (en) 2004-05-28 2020-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system with contact sensing feature
US9782130B2 (en) 2004-05-28 2017-10-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system
US10258285B2 (en) 2004-05-28 2019-04-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated creation of ablation lesions
US7632265B2 (en) 2004-05-28 2009-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Radio frequency ablation servo catheter and method
US8755864B2 (en) 2004-05-28 2014-06-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for diagnostic data mapping
US8528565B2 (en) 2004-05-28 2013-09-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated therapy delivery
WO2005119505A2 (en) 2004-06-04 2005-12-15 Stereotaxis, Inc. User interface for remote control of medical devices
EP1768747B1 (en) 2004-06-24 2013-08-07 Calypso Medical Technologies, INC. Systems for treating a lung of a patient using guided radiation therapy or surgery
US20060036163A1 (en) * 2004-07-19 2006-02-16 Viswanathan Raju R Method of, and apparatus for, controlling medical navigation systems
US20060144407A1 (en) * 2004-07-20 2006-07-06 Anthony Aliberto Magnetic navigation manipulation apparatus
US20080006280A1 (en) * 2004-07-20 2008-01-10 Anthony Aliberto Magnetic navigation maneuvering sheath
US20060144408A1 (en) * 2004-07-23 2006-07-06 Ferry Steven J Micro-catheter device and method of using same
US9586059B2 (en) 2004-07-23 2017-03-07 Varian Medical Systems, Inc. User interface for guided radiation therapy
US8437449B2 (en) 2004-07-23 2013-05-07 Varian Medical Systems, Inc. Dynamic/adaptive treatment planning for radiation therapy
EP4197447A1 (en) 2004-08-16 2023-06-21 Corindus, Inc. Image-guided navigation for catheter-based interventions
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US7831294B2 (en) * 2004-10-07 2010-11-09 Stereotaxis, Inc. System and method of surgical imagining with anatomical overlay for navigation of surgical devices
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
US7751867B2 (en) 2004-12-20 2010-07-06 Stereotaxis, Inc. Contact over-torque with three-dimensional anatomical data
US7708696B2 (en) * 2005-01-11 2010-05-04 Stereotaxis, Inc. Navigation using sensed physiological data as feedback
US7756308B2 (en) * 2005-02-07 2010-07-13 Stereotaxis, Inc. Registration of three dimensional image data to 2D-image-derived data
US20060200121A1 (en) * 2005-03-03 2006-09-07 Mowery Thomas M Navigable, multi-positional and variable tissue ablation apparatus and methods
DE102005014854A1 (de) * 2005-03-30 2006-10-12 Siemens Ag Verfahren zum Bereitstellen von Messdaten für die zielgenaue örtliche Positionierung eines Katheters
US7742803B2 (en) * 2005-05-06 2010-06-22 Stereotaxis, Inc. Voice controlled user interface for remote navigation systems
US20060281990A1 (en) * 2005-05-06 2006-12-14 Viswanathan Raju R User interfaces and navigation methods for vascular navigation
US8257302B2 (en) * 2005-05-10 2012-09-04 Corindus, Inc. User interface for remote control catheterization
US8027714B2 (en) * 2005-05-27 2011-09-27 Magnetecs, Inc. Apparatus and method for shaped magnetic field control for catheter, guidance, control, and imaging
US8155910B2 (en) * 2005-05-27 2012-04-10 St. Jude Medical, Atrial Fibrillation Divison, Inc. Robotically controlled catheter and method of its calibration
US7671784B2 (en) * 2005-05-31 2010-03-02 L-3 Communications Cyterra Corporation Computerized tomography using radar
US20070062546A1 (en) * 2005-06-02 2007-03-22 Viswanathan Raju R Electrophysiology catheter and system for gentle and firm wall contact
US20070060992A1 (en) * 2005-06-02 2007-03-15 Carlo Pappone Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery
DE102005028226A1 (de) * 2005-06-17 2006-12-28 Siemens Ag Vorrichtung zur Steuerung eines magnetischen Elements im Körper eines Patienten
US20070001905A1 (en) * 2005-06-30 2007-01-04 Esa Eronen Detecting the position of X-ray detector
US20070021744A1 (en) * 2005-07-07 2007-01-25 Creighton Francis M Iv Apparatus and method for performing ablation with imaging feedback
US9314222B2 (en) 2005-07-07 2016-04-19 Stereotaxis, Inc. Operation of a remote medical navigation system using ultrasound image
US20070038065A1 (en) * 2005-07-07 2007-02-15 Creighton Francis M Iv Operation of a remote medical navigation system using ultrasound image
US7603905B2 (en) * 2005-07-08 2009-10-20 Stereotaxis, Inc. Magnetic navigation and imaging system
US7769444B2 (en) * 2005-07-11 2010-08-03 Stereotaxis, Inc. Method of treating cardiac arrhythmias
US7690619B2 (en) * 2005-07-12 2010-04-06 Stereotaxis, Inc. Apparatus for pivotally orienting a projection device
US20070016131A1 (en) * 2005-07-12 2007-01-18 Munger Gareth T Flexible magnets for navigable medical devices
US7416335B2 (en) * 2005-07-15 2008-08-26 Sterotaxis, Inc. Magnetically shielded x-ray tube
US8192374B2 (en) * 2005-07-18 2012-06-05 Stereotaxis, Inc. Estimation of contact force by a medical device
US20070060829A1 (en) * 2005-07-21 2007-03-15 Carlo Pappone Method of finding the source of and treating cardiac arrhythmias
US20070062547A1 (en) * 2005-07-21 2007-03-22 Carlo Pappone Systems for and methods of tissue ablation
US7818076B2 (en) 2005-07-26 2010-10-19 Stereotaxis, Inc. Method and apparatus for multi-system remote surgical navigation from a single control center
US20070060962A1 (en) * 2005-07-26 2007-03-15 Carlo Pappone Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation
US20070043455A1 (en) * 2005-07-26 2007-02-22 Viswanathan Raju R Apparatus and methods for automated sequential movement control for operation of a remote navigation system
US7495537B2 (en) 2005-08-10 2009-02-24 Stereotaxis, Inc. Method and apparatus for dynamic magnetic field control using multiple magnets
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US20070055124A1 (en) * 2005-09-01 2007-03-08 Viswanathan Raju R Method and system for optimizing left-heart lead placement
US9283053B2 (en) 2005-09-19 2016-03-15 Varian Medical Systems, Inc. Apparatus and methods for implanting objects, such as bronchoscopically implanting markers in the lung of patients
EP1928337B1 (en) * 2005-09-29 2012-11-21 Corindus Inc. Apparatus for treatment of hollow organs
EP1937178B1 (en) * 2005-10-11 2011-12-14 Koninklijke Philips Electronics N.V. 3d tool path planning, simulation and control system
US20090216113A1 (en) 2005-11-17 2009-08-27 Eric Meier Apparatus and Methods for Using an Electromagnetic Transponder in Orthopedic Procedures
US20070167720A1 (en) * 2005-12-06 2007-07-19 Viswanathan Raju R Smart card control of medical devices
US20070149946A1 (en) * 2005-12-07 2007-06-28 Viswanathan Raju R Advancer system for coaxial medical devices
US7711148B2 (en) * 2005-12-07 2010-05-04 Siemens Medical Solutions Usa, Inc. Systems and methods for guidewire tracking using phase congruency
US8190238B2 (en) * 2005-12-09 2012-05-29 Hansen Medical, Inc. Robotic catheter system and methods
US20070161882A1 (en) * 2006-01-06 2007-07-12 Carlo Pappone Electrophysiology catheter and system for gentle and firm wall contact
US20080015670A1 (en) * 2006-01-17 2008-01-17 Carlo Pappone Methods and devices for cardiac ablation
US20070197899A1 (en) * 2006-01-17 2007-08-23 Ritter Rogers C Apparatus and method for magnetic navigation using boost magnets
US20070197906A1 (en) * 2006-01-24 2007-08-23 Ritter Rogers C Magnetic field shape-adjustable medical device and method of using the same
JP4836122B2 (ja) * 2006-02-09 2011-12-14 国立大学法人浜松医科大学 手術支援装置、方法及びプログラム
US7749249B2 (en) 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US7869854B2 (en) 2006-02-23 2011-01-11 Magnetecs, Inc. Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation
US7599774B2 (en) * 2006-03-10 2009-10-06 Gm Global Technology Operations, Inc. Method and system for adaptively compensating closed-loop front-wheel steering control
WO2008054856A2 (en) * 2006-04-14 2008-05-08 The Regents Of The University California Novel enhanced haptic feedback processes and products for robotic surgical prosthetics
US20070250041A1 (en) * 2006-04-19 2007-10-25 Werp Peter R Extendable Interventional Medical Devices
DE102006019415B4 (de) * 2006-04-26 2013-03-14 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Darstellung der Position einer medizinischen Einrichtung im Körper eines Lebewesens
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
EP1860458A1 (en) * 2006-05-22 2007-11-28 Interuniversitair Microelektronica Centrum Detection of resonant tags by UWB radar
US20080009712A1 (en) * 2006-06-16 2008-01-10 Adams Mark L Apparatus and Methods for Maneuvering a Therapeutic Tool Within a Body Lumen
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US20080015427A1 (en) * 2006-06-30 2008-01-17 Nathan Kastelein System and network for remote medical procedures
US7837610B2 (en) * 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
WO2008022148A2 (en) * 2006-08-14 2008-02-21 Stereotaxis, Inc. Method and apparatus for ablative recanalization of blocked vasculature
US7961924B2 (en) 2006-08-21 2011-06-14 Stereotaxis, Inc. Method of three-dimensional device localization using single-plane imaging
US8242972B2 (en) 2006-09-06 2012-08-14 Stereotaxis, Inc. System state driven display for medical procedures
US8244824B2 (en) * 2006-09-06 2012-08-14 Stereotaxis, Inc. Coordinated control for multiple computer-controlled medical systems
US7567233B2 (en) * 2006-09-06 2009-07-28 Stereotaxis, Inc. Global input device for multiple computer-controlled medical systems
US7747960B2 (en) * 2006-09-06 2010-06-29 Stereotaxis, Inc. Control for, and method of, operating at least two medical systems
US8273081B2 (en) * 2006-09-08 2012-09-25 Stereotaxis, Inc. Impedance-based cardiac therapy planning method with a remote surgical navigation system
WO2008033829A2 (en) 2006-09-11 2008-03-20 Stereotaxis, Inc. Automated mapping of anatomical features of heart chambers
WO2008049087A2 (en) 2006-10-18 2008-04-24 Minnow Medical, Inc. System for inducing desirable temperature effects on body tissue
CA2666661C (en) 2006-10-18 2015-01-20 Minnow Medical, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
WO2008049082A2 (en) 2006-10-18 2008-04-24 Minnow Medical, Inc. Inducing desirable temperature effects on body tissue
US8135185B2 (en) * 2006-10-20 2012-03-13 Stereotaxis, Inc. Location and display of occluded portions of vessels on 3-D angiographic images
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
JP5283888B2 (ja) * 2006-11-02 2013-09-04 株式会社東芝 超音波診断装置
US20080132910A1 (en) * 2006-11-07 2008-06-05 Carlo Pappone Control for a Remote Navigation System
AU2007329219A1 (en) * 2006-12-07 2008-06-12 Philometron, Inc. Platform for detection of tissue content and/or structural changes with closed-loop control in mammalian organisms
US20080218770A1 (en) 2007-02-02 2008-09-11 Hansen Medical, Inc. Robotic surgical instrument and methods using bragg fiber sensors
US20080208912A1 (en) * 2007-02-26 2008-08-28 Garibaldi Jeffrey M System and method for providing contextually relevant medical information
US8781193B2 (en) 2007-03-08 2014-07-15 Sync-Rx, Ltd. Automatic quantitative vessel analysis
WO2008107905A2 (en) 2007-03-08 2008-09-12 Sync-Rx, Ltd. Imaging and tools for use with moving organs
US9375164B2 (en) 2007-03-08 2016-06-28 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
WO2009153794A1 (en) 2008-06-19 2009-12-23 Sync-Rx, Ltd. Stepwise advancement of a medical tool
US11064964B2 (en) 2007-03-08 2021-07-20 Sync-Rx, Ltd Determining a characteristic of a lumen by measuring velocity of a contrast agent
US9968256B2 (en) 2007-03-08 2018-05-15 Sync-Rx Ltd. Automatic identification of a tool
US11197651B2 (en) 2007-03-08 2021-12-14 Sync-Rx, Ltd. Identification and presentation of device-to-vessel relative motion
US9305334B2 (en) 2007-03-08 2016-04-05 Sync-Rx, Ltd. Luminal background cleaning
US10716528B2 (en) 2007-03-08 2020-07-21 Sync-Rx, Ltd. Automatic display of previously-acquired endoluminal images
US9629571B2 (en) 2007-03-08 2017-04-25 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US20080228068A1 (en) * 2007-03-13 2008-09-18 Viswanathan Raju R Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data
US20080228065A1 (en) * 2007-03-13 2008-09-18 Viswanathan Raju R System and Method for Registration of Localization and Imaging Systems for Navigational Control of Medical Devices
US20080249395A1 (en) * 2007-04-06 2008-10-09 Yehoshua Shachar Method and apparatus for controlling catheter positioning and orientation
CN101311284A (zh) * 2007-05-24 2008-11-26 鸿富锦精密工业(深圳)有限公司 镁合金及镁合金薄材
US20080312673A1 (en) * 2007-06-05 2008-12-18 Viswanathan Raju R Method and apparatus for CTO crossing
US20080312528A1 (en) * 2007-06-15 2008-12-18 Bertolina James A Guidance of medical instrument using flouroscopy scanner with multple x-ray sources
US9468412B2 (en) * 2007-06-22 2016-10-18 General Electric Company System and method for accuracy verification for image based surgical navigation
US8024024B2 (en) 2007-06-27 2011-09-20 Stereotaxis, Inc. Remote control of medical devices using real time location data
EP2205145A4 (en) 2007-07-06 2013-06-19 Stereotaxis Inc MANAGEMENT OF A MEDICAL LIVE REMOTE DISPLAY
AU2008292840B2 (en) * 2007-08-30 2011-09-15 Syncro Medical Innovations, Inc. Guided catheter with removable magnetic guide
US8231618B2 (en) 2007-11-05 2012-07-31 Stereotaxis, Inc. Magnetically guided energy delivery apparatus
US20090131798A1 (en) * 2007-11-19 2009-05-21 Minar Christopher D Method and apparatus for intravascular imaging and occlusion crossing
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US9649048B2 (en) * 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
ES2651898T3 (es) 2007-11-26 2018-01-30 C.R. Bard Inc. Sistema integrado para la colocación intravascular de un catéter
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US20090306643A1 (en) * 2008-02-25 2009-12-10 Carlo Pappone Method and apparatus for delivery and detection of transmural cardiac ablation lesions
US8926511B2 (en) * 2008-02-29 2015-01-06 Biosense Webster, Inc. Location system with virtual touch screen
US20090253985A1 (en) * 2008-04-07 2009-10-08 Magnetecs, Inc. Apparatus and method for lorentz-active sheath display and control of surgical tools
US8690769B2 (en) 2008-04-21 2014-04-08 Philometron, Inc. Metabolic energy monitoring system
DE102008020217A1 (de) 2008-04-22 2009-11-05 Universität Stuttgart Vorrichtung und Verfahren zur Durchführung von Messungen in Hohlräumen
US20090275828A1 (en) * 2008-05-01 2009-11-05 Magnetecs, Inc. Method and apparatus for creating a high resolution map of the electrical and mechanical properties of the heart
EP4268758A3 (en) 2008-05-06 2024-01-03 Corindus, Inc. Catheter system
US20090287304A1 (en) 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US8989837B2 (en) 2009-12-01 2015-03-24 Kyma Medical Technologies Ltd. Methods and systems for determining fluid content of tissue
US8352015B2 (en) * 2008-05-27 2013-01-08 Kyma Medical Technologies, Ltd. Location tracking of a metallic object in a living body using a radar detector and guiding an ultrasound probe to direct ultrasound waves at the location
US9265438B2 (en) 2008-05-27 2016-02-23 Kyma Medical Technologies Ltd. Locating features in the heart using radio frequency imaging
EP2313143B1 (en) 2008-08-22 2014-09-24 C.R. Bard, Inc. Catheter assembly including ecg sensor and magnetic assemblies
WO2010025336A1 (en) * 2008-08-29 2010-03-04 Corindus Ltd. Catheter simulation and assistance system
WO2010025338A1 (en) * 2008-08-29 2010-03-04 Corindus Ltd. Catheter control system and graphical user interface
JP2012501689A (ja) * 2008-09-02 2012-01-26 シンクロ メディカル イノベーションズ, インコーポレイテッド カテーテル誘導のための磁気装置および使用方法
US20100057098A1 (en) * 2008-09-04 2010-03-04 David Zhiqiang Lan Apparatus Used to Perform Image Guided Medical Procedures
US9679499B2 (en) 2008-09-15 2017-06-13 Immersion Medical, Inc. Systems and methods for sensing hand motion by measuring remote displacement
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
WO2010056745A1 (en) 2008-11-17 2010-05-20 Minnow Medical, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US11064903B2 (en) 2008-11-18 2021-07-20 Sync-Rx, Ltd Apparatus and methods for mapping a sequence of images to a roadmap image
US9144394B2 (en) 2008-11-18 2015-09-29 Sync-Rx, Ltd. Apparatus and methods for determining a plurality of local calibration factors for an image
US9095313B2 (en) 2008-11-18 2015-08-04 Sync-Rx, Ltd. Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe
US8855744B2 (en) 2008-11-18 2014-10-07 Sync-Rx, Ltd. Displaying a device within an endoluminal image stack
US9974509B2 (en) 2008-11-18 2018-05-22 Sync-Rx Ltd. Image super enhancement
US10362962B2 (en) 2008-11-18 2019-07-30 Synx-Rx, Ltd. Accounting for skipped imaging locations during movement of an endoluminal imaging probe
US9101286B2 (en) 2008-11-18 2015-08-11 Sync-Rx, Ltd. Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points
US8457714B2 (en) * 2008-11-25 2013-06-04 Magnetecs, Inc. System and method for a catheter impedance seeking device
EP2376175B1 (en) 2008-12-12 2019-01-30 Corindus, Inc. Remote catheter procedure system
DE102008064379A1 (de) * 2008-12-22 2010-07-15 Siemens Aktiengesellschaft Magnetspulenanordnung mit festen und beweglichen Spulen
DE102009005110B3 (de) * 2009-01-19 2010-11-18 Siemens Aktiengesellschaft Bewegungsdetektion mittels UWB-Radarsystem während einer Partikel-Therapie-Bestrahlung
US9943704B1 (en) 2009-01-21 2018-04-17 Varian Medical Systems, Inc. Method and system for fiducials contained in removable device for radiation therapy
DE102009005745B4 (de) * 2009-01-23 2011-09-01 Ott-Jakob Spanntechnik Gmbh Vorrichtung zur Überwachung der Lage eines Werkzeugs oder Maschinenelements
WO2010088481A1 (en) * 2009-01-30 2010-08-05 The Trustees Of Columbia University In The City Of New York Controllable magnetic source to fixture intracorporeal apparatus
EP2408509B1 (en) 2009-03-18 2023-08-09 Corindus, Inc. Remote catheter system with steerable catheter
EP2414042A4 (en) 2009-03-31 2013-01-30 Matthew R Witten RADIATION THERAPY TREATMENT SYSTEM AND METHOD FOR PROVIDING USE OF A MIMETIC OPTIMIZATION ALGORITHM
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US10537713B2 (en) 2009-05-25 2020-01-21 Stereotaxis, Inc. Remote manipulator device
EP2440129A4 (en) 2009-06-08 2015-06-03 Mri Interventions Inc MRI-CONTROLLED SURGICAL SYSTEMS WITH PRESET SCAN SURFACES
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
ES2745861T3 (es) 2009-06-12 2020-03-03 Bard Access Systems Inc Aparato, algoritmo de procesamiento de datos asistido por ordenador y medio de almacenamiento informático para posicionar un dispositivo endovascular en o cerca del corazón
WO2010148083A2 (en) 2009-06-16 2010-12-23 Surgivision, Inc. Mri-guided devices and mri-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US9386942B2 (en) * 2009-06-26 2016-07-12 Cianna Medical, Inc. Apparatus, systems, and methods for localizing markers or tissue structures within a body
JP5700577B2 (ja) 2009-06-26 2015-04-15 シアナ メディカル,インク. 身体内のマーカあるいは組織構造を位置決めする装置、システム及び方法
EP2464407A4 (en) 2009-08-10 2014-04-02 Bard Access Systems Inc DEVICES AND METHODS FOR ENDOVASCULAR ELECTROGRAPHY
EP2482749B1 (en) 2009-10-01 2017-08-30 Kardium Inc. Kit for constricting tissue or a bodily orifice, for example, a mitral valve
EP4332989A3 (en) 2009-10-12 2024-05-01 Corindus, Inc. Catheter system with percutaneous device movement algorithm
US9962229B2 (en) 2009-10-12 2018-05-08 Corindus, Inc. System and method for navigating a guide wire
US20110091853A1 (en) * 2009-10-20 2011-04-21 Magnetecs, Inc. Method for simulating a catheter guidance system for control, development and training applications
US20110092808A1 (en) * 2009-10-20 2011-04-21 Magnetecs, Inc. Method for acquiring high density mapping data with a catheter guidance system
US20110112396A1 (en) * 2009-11-09 2011-05-12 Magnetecs, Inc. System and method for targeting catheter electrodes
US20110118590A1 (en) * 2009-11-18 2011-05-19 Siemens Medical Solutions Usa, Inc. System For Continuous Cardiac Imaging And Mapping
US8593141B1 (en) 2009-11-24 2013-11-26 Hypres, Inc. Magnetic resonance system and method employing a digital squid
WO2011072060A2 (en) 2009-12-08 2011-06-16 Magnetecs Corporation Diagnostic and therapeutic magnetic propulsion capsule and method for using the same
DE102010005744A1 (de) * 2010-01-26 2011-07-28 Siemens Aktiengesellschaft, 80333 Verfahren zum Betreiben eines Rechnersystems zum Unterstützen des Einbringens eines Führungsdrahts im Körpergewebe, sowie zugehörige Anordnung
JP2013518676A (ja) 2010-02-02 2013-05-23 シー・アール・バード・インコーポレーテッド カテーテルナビゲーションおよびチップの位置を特定するための装置および方法
EP2542290B1 (en) * 2010-03-02 2019-11-06 Corindus, Inc. Robotic catheter system with variable drive mechanism
JP2013523318A (ja) 2010-04-09 2013-06-17 べシックス・バスキュラー・インコーポレイテッド 組織の治療のための発電および制御の装置
US8970217B1 (en) 2010-04-14 2015-03-03 Hypres, Inc. System and method for noise reduction in magnetic resonance imaging
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
CN103037762B (zh) 2010-05-28 2016-07-13 C·R·巴德股份有限公司 用于与针插入引导系统一起使用的装置
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
WO2011158159A1 (en) * 2010-06-17 2011-12-22 Koninklijke Philips Electronics N.V. System for monitoring the position of a tube's distal end relative to a blood vessel
JP6081355B2 (ja) 2010-07-21 2017-02-15 キマ メディカル テクノロジーズ リミテッド 埋込み式無線周波数センサ
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9023033B2 (en) 2010-08-04 2015-05-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheters
US8945118B2 (en) 2010-08-04 2015-02-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter with flexible tether and introducer for a catheter
US8715280B2 (en) 2010-08-04 2014-05-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheters
EP2417925B1 (en) 2010-08-12 2016-12-07 Immersion Corporation Electrosurgical tool having tactile feedback
US9814870B2 (en) 2010-08-17 2017-11-14 Becton, Dickinson And Company Non-luer connectors
MX338127B (es) 2010-08-20 2016-04-04 Bard Inc C R Reconfirmacion de colocacion de una punta de cateter asistida por ecg.
US8468003B2 (en) * 2010-08-23 2013-06-18 Broncus Medical, Inc. Automated fiducial marker planning system and related methods
US9833293B2 (en) 2010-09-17 2017-12-05 Corindus, Inc. Robotic catheter system
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
EP2621578B1 (en) 2010-10-01 2023-11-29 Varian Medical Systems, Inc. Delivery catheter for delivering an implant, for example, bronchoscopically implanting a marker in a lung
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
TW201221174A (en) 2010-10-25 2012-06-01 Medtronic Ardian Luxembourg Microwave catheter apparatuses, systems, and methods for renal neuromodulation
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
CN103189009B (zh) 2010-10-29 2016-09-07 C·R·巴德股份有限公司 医疗设备的生物阻抗辅助放置
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
US8801710B2 (en) 2010-12-07 2014-08-12 Immersion Corporation Electrosurgical sealing tool having haptic feedback
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US9095262B2 (en) 2011-01-05 2015-08-04 Mehdi Razavi Guided ablation devices, systems, and methods
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US20120191086A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US20120197063A1 (en) * 2011-01-31 2012-08-02 Rainer Meinke Systems and Methods Which Remove Material From Blood Vessel Walls
EP2688632B1 (en) 2011-03-22 2016-05-18 Corindus Inc. Robotic catheter system including imaging system control
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9433768B2 (en) 2011-03-25 2016-09-06 Becton, Dickinson And Company Drug delivery connectors
AU2012278809B2 (en) 2011-07-06 2016-09-29 C.R. Bard, Inc. Needle length determination and calibration for insertion guidance system
US8845667B2 (en) 2011-07-18 2014-09-30 Immersion Corporation Surgical tool having a programmable rotary module for providing haptic feedback
WO2013013156A2 (en) 2011-07-20 2013-01-24 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
EP2734264B1 (en) 2011-07-22 2018-11-21 Boston Scientific Scimed, Inc. Nerve modulation system with a nerve modulation element positionable in a helical guide
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
US9750576B2 (en) 2011-09-20 2017-09-05 Corindus, Inc. Variable drive force apparatus and method for robotic catheter system
WO2013055826A1 (en) 2011-10-10 2013-04-18 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
CN108095821B (zh) 2011-11-08 2021-05-25 波士顿科学西美德公司 孔部肾神经消融
WO2013074813A1 (en) 2011-11-15 2013-05-23 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
AU2012358143B2 (en) 2011-12-23 2015-06-11 Boston Scientific Scimed, Inc. Expandable balloon or an electrode pad with a heat sensing device
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US20130293690A1 (en) * 2012-05-07 2013-11-07 Eric S. Olson Medical device navigation system stereoscopic display
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
EP2861238A4 (en) 2012-06-05 2016-03-16 Capricor Inc OPTIMIZED METHODS FOR GENERATING CARDIAC STEM CELLS FROM CARDIAC TISSUE AND THEIR USE IN CARDIAC THERAPY
JP6134789B2 (ja) 2012-06-26 2017-05-24 シンク−アールエックス,リミティド 管腔器官における流れに関連する画像処理
US9381063B2 (en) 2012-07-13 2016-07-05 Magnetecs Inc. Method and apparatus for magnetically guided catheter for renal denervation employing MOSFET sensor array
AU2013302799B2 (en) 2012-08-13 2018-03-01 Cedars-Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
GB2504999B8 (en) * 2012-08-17 2015-04-22 Sony Comp Entertainment Europe Apparatus and method for object positioning
CN104540465A (zh) 2012-08-24 2015-04-22 波士顿科学西美德公司 带有含单独微孔隙区域的球囊的血管内导管
EP2890444B1 (en) * 2012-08-30 2018-01-03 Cardiac Pacemakers, Inc. His bundle lead delivery system
WO2014043687A2 (en) 2012-09-17 2014-03-20 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
WO2014047411A1 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
WO2014047454A2 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
JP6074051B2 (ja) 2012-10-10 2017-02-01 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 血管内神経変調システム及び医療用デバイス
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US9713437B2 (en) 2013-01-26 2017-07-25 Cianna Medical, Inc. Microwave antenna apparatus, systems, and methods for localizing markers or tissue structures within a body
US10660542B2 (en) 2013-01-26 2020-05-26 Cianna Medical, Inc. RFID markers and systems and methods for identifying and locating them
KR102038629B1 (ko) 2013-02-04 2019-10-30 삼성전자주식회사 Mri-pet시스템
WO2014143571A1 (en) 2013-03-11 2014-09-18 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
WO2014163987A1 (en) 2013-03-11 2014-10-09 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9566414B2 (en) 2013-03-13 2017-02-14 Hansen Medical, Inc. Integrated catheter and guide wire controller
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US10849702B2 (en) 2013-03-15 2020-12-01 Auris Health, Inc. User input devices for controlling manipulation of guidewires and catheters
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US9283046B2 (en) 2013-03-15 2016-03-15 Hansen Medical, Inc. User interface for active drive apparatus with finite range of motion
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
CN105228546B (zh) 2013-03-15 2017-11-14 波士顿科学国际有限公司 利用阻抗补偿的用于治疗高血压的医疗器械和方法
EP4233991A1 (en) 2013-03-15 2023-08-30 Medtronic Ardian Luxembourg S.à.r.l. Controlled neuromodulation systems
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
JP2016524949A (ja) 2013-06-21 2016-08-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 回転可能シャフトを有する腎神経アブレーション用医療装置
EP3010437A1 (en) 2013-06-21 2016-04-27 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
EP2818056A1 (en) 2013-06-25 2014-12-31 Biosearch S.A. Probiotic bacteria comprising metals, metal nanoparticles and uses thereof
US11229490B2 (en) 2013-06-26 2022-01-25 Corindus, Inc. System and method for monitoring of guide catheter seating
US10779775B2 (en) 2013-06-26 2020-09-22 Corindus, Inc. X-ray marker guided automated guide wire or working catheter advancement
AU2014284558B2 (en) 2013-07-01 2017-08-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
EP3019106A1 (en) 2013-07-11 2016-05-18 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
EP3049007B1 (en) 2013-07-19 2019-06-12 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
JP6122217B2 (ja) 2013-07-22 2017-04-26 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経アブレーション用医療器具
US20160183910A1 (en) * 2013-07-23 2016-06-30 Koninklijke Philips N.V. Method and system for localizing body structures
CN105473093B (zh) 2013-08-22 2019-02-05 波士顿科学国际有限公司 具有至肾神经调制球囊的改善的粘附力的柔性电路
CN105555218B (zh) 2013-09-04 2019-01-15 波士顿科学国际有限公司 具有冲洗和冷却能力的射频(rf)球囊导管
EP3043733A1 (en) 2013-09-13 2016-07-20 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
WO2015057584A1 (en) 2013-10-15 2015-04-23 Boston Scientific Scimed, Inc. Medical device balloon
WO2015057961A1 (en) 2013-10-18 2015-04-23 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
WO2015061457A1 (en) 2013-10-25 2015-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
JP6309096B2 (ja) 2013-10-29 2018-04-11 キマ メディカル テクノロジーズ リミテッド アンテナシステムおよびデバイス、およびそれらの製造方法
US20150182726A1 (en) * 2013-12-30 2015-07-02 Catheter Robotics, Inc. Simultaneous Dual Catheter Control System And Method For Controlling An Imaging Catheter To Enable Treatment By Another Catheter
WO2015103617A1 (en) 2014-01-06 2015-07-09 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
KR20150083632A (ko) * 2014-01-10 2015-07-20 한국전자통신연구원 비접촉식 심폐신호 추정 방법 및 장치
JP2014230737A (ja) * 2014-02-01 2014-12-11 佐藤 洋 位置制御システム
EP3102136B1 (en) 2014-02-04 2018-06-27 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
EP4233711A3 (en) 2014-02-05 2023-10-18 Zoll Medical Israel Ltd. Apparatuses for determining blood pressure
ES2811323T3 (es) 2014-02-06 2021-03-11 Bard Inc C R Sistemas para el guiado y la colocación de un dispositivo intravascular
US11471697B2 (en) * 2015-02-10 2022-10-18 Andrew Hewitson Laser therapy device and method of use
EP2923669B1 (en) * 2014-03-24 2017-06-28 Hansen Medical, Inc. Systems and devices for catheter driving instinctiveness
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
US9919165B2 (en) 2014-05-07 2018-03-20 Varian Medical Systems, Inc. Systems and methods for fiducial to plan association
US10043284B2 (en) 2014-05-07 2018-08-07 Varian Medical Systems, Inc. Systems and methods for real-time tumor tracking
US11259715B2 (en) 2014-09-08 2022-03-01 Zoll Medical Israel Ltd. Monitoring and diagnostics systems and methods
CN107427327A (zh) 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统
AU2015327812B2 (en) 2014-10-03 2021-04-15 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
CN105629255B (zh) * 2014-11-03 2019-02-12 信泰光学(深圳)有限公司 测距仪
US10520792B2 (en) * 2014-11-03 2019-12-31 Sintai Optical (Shenzhen) Co., Ltd. Range finder
WO2016115175A1 (en) 2015-01-12 2016-07-21 KYMA Medical Technologies, Inc. Systems, apparatuses and methods for radio frequency-based attachment sensing
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
WO2016161209A1 (en) 2015-03-31 2016-10-06 St. Jude Medical, Cardiology Division, Inc. Methods and devices for delivering pulsed rf energy during catheter ablation
US10610326B2 (en) 2015-06-05 2020-04-07 Cianna Medical, Inc. Passive tags, and systems and methods for using them
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
EP3402543B1 (en) 2016-01-11 2021-09-08 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US11051712B2 (en) * 2016-02-09 2021-07-06 Verily Life Sciences Llc Systems and methods for determining the location and orientation of implanted devices
JP6929294B2 (ja) 2016-03-03 2021-09-01 シアナ メディカル,インク. 埋め込み可能なマーカ、それらを使用するための装置及び方法
US10827949B2 (en) 2016-04-06 2020-11-10 Cianna Medical, Inc. Reflector markers and systems and methods for identifying and locating them
JP7030714B2 (ja) 2016-04-06 2022-03-07 シアナ メディカル,インク. リフレクタマーカ、及びそれを認識し位置を特定するシステムと方法
US10327667B2 (en) 2016-05-13 2019-06-25 Becton, Dickinson And Company Electro-magnetic needle catheter insertion system
US11826522B2 (en) 2016-06-01 2023-11-28 Becton, Dickinson And Company Medical devices, systems and methods utilizing permanent magnet and magnetizable feature
US10583269B2 (en) * 2016-06-01 2020-03-10 Becton, Dickinson And Company Magnetized catheters, devices, uses and methods of using magnetized catheters
US20170347914A1 (en) 2016-06-01 2017-12-07 Becton, Dickinson And Company Invasive Medical Devices Including Magnetic Region And Systems And Methods
US11413429B2 (en) 2016-06-01 2022-08-16 Becton, Dickinson And Company Medical devices, systems and methods utilizing permanent magnet and magnetizable feature
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
US11037464B2 (en) 2016-07-21 2021-06-15 Auris Health, Inc. System with emulator movement tracking for controlling medical devices
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
US10032552B2 (en) 2016-08-30 2018-07-24 Becton, Dickinson And Company Cover for tissue penetrating device with integrated magnets and magnetic shielding
EP3515459A4 (en) 2016-09-20 2020-08-05 Cedars-Sinai Medical Center CELLS DERIVED FROM CARDIOSPHERES AND THEIR EXTRACELLULAR VESICLES TO DELAY OR REVERSE AGING AND AGE-RELATED DISORDERS
US9931025B1 (en) * 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
CN109788982B (zh) 2016-10-04 2021-11-02 圣犹达医疗用品心脏病学部门有限公司 消融导管尖端
CN106725272B (zh) * 2016-12-21 2019-02-12 重庆金山医疗器械有限公司 胶囊内窥镜
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
EP3612191A4 (en) 2017-04-19 2020-12-30 Cedars-Sinai Medical Center METHODS AND COMPOSITIONS FOR TREATING SKELETAL MUSCLE DYSTROPHY
KR20240035632A (ko) 2017-05-12 2024-03-15 아우리스 헬스, 인코포레이티드 생검 장치 및 시스템
AU2018290831A1 (en) 2017-06-28 2019-12-19 Auris Health, Inc. Instrument insertion compensation
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
WO2019030746A1 (en) 2017-08-10 2019-02-14 Zoll Medical Israel Ltd. SYSTEMS, DEVICES AND METHODS FOR PHYSIOLOGICAL MONITORING OF PATIENTS
EP3738538A1 (en) * 2017-08-17 2020-11-18 Micrima Limited Medical imaging system
EP3443898B1 (en) * 2017-08-17 2019-12-18 Micrima Limited A medical imaging system
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
WO2019113249A1 (en) 2017-12-06 2019-06-13 Auris Health, Inc. Systems and methods to correct for uncommanded instrument roll
JP7314136B2 (ja) 2017-12-08 2023-07-25 オーリス ヘルス インコーポレイテッド 医療器具のナビゲーションおよびターゲット用のシステムおよび方法
AU2018384820A1 (en) 2017-12-14 2020-05-21 Auris Health, Inc. System and method for estimating instrument location
US11660355B2 (en) 2017-12-20 2023-05-30 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery
US11253189B2 (en) 2018-01-24 2022-02-22 Medtronic Ardian Luxembourg S.A.R.L. Systems, devices, and methods for evaluating neuromodulation therapy via detection of magnetic fields
CN116370084A (zh) 2018-02-13 2023-07-04 奥瑞斯健康公司 用于驱动医疗器械的系统和方法
US11373330B2 (en) * 2018-03-27 2022-06-28 Siemens Healthcare Gmbh Image-based guidance for device path planning based on penalty function values and distances between ROI centerline and backprojected instrument centerline
US11471190B2 (en) 2018-04-02 2022-10-18 Cardiac Pacemakers, Inc. Bundle of his lead delivery catheter, system and method
EP3793465A4 (en) 2018-05-18 2022-03-02 Auris Health, Inc. CONTROL DEVICES FOR ROBOTIC ACTIVATION REMOTE CONTROL SYSTEMS
US11883150B2 (en) 2018-09-06 2024-01-30 Cianna Medical, Inc. Systems for identifying and locating reflectors using orthogonal sequences of reflector switching
US11642100B2 (en) 2018-09-20 2023-05-09 Mayo Foundation For Medical Education And Research Systems and methods for localizing a medical device using symmetric Doppler frequency shifts measured with ultrasound imaging
KR20210073542A (ko) 2018-09-28 2021-06-18 아우리스 헬스, 인코포레이티드 의료 기구를 도킹시키기 위한 시스템 및 방법
EP3852622A1 (en) 2018-10-16 2021-07-28 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
CN110013258B (zh) * 2019-03-19 2021-08-17 山东大学齐鲁医院 一种儿科抽血护理装置
CN110013259B (zh) * 2019-03-19 2021-09-03 河南科技大学第一附属医院(河南省显微外科研究所) 一种儿科抽血护理装置
US20220175481A1 (en) * 2019-03-21 2022-06-09 Arizona Board Of Regents On Behalf Of Arizona State University Magnetic needle steering systems and methods
EP3989793A4 (en) 2019-06-28 2023-07-19 Auris Health, Inc. CONSOLE OVERLAY ITS METHODS OF USE
KR102570009B1 (ko) * 2019-07-31 2023-08-23 삼성전자주식회사 Ar 객체 생성 방법 및 전자 장치
CN114727878A (zh) * 2019-09-25 2022-07-08 黄立臻 冷却大脑并诊断和治疗胶质母细胞瘤的装置和方法
WO2021137109A1 (en) 2019-12-31 2021-07-08 Auris Health, Inc. Alignment techniques for percutaneous access
JP2023508521A (ja) 2019-12-31 2023-03-02 オーリス ヘルス インコーポレイテッド 解剖学的特徴の識別及び標的化
US11602372B2 (en) 2019-12-31 2023-03-14 Auris Health, Inc. Alignment interfaces for percutaneous access
US20210369373A1 (en) * 2020-05-28 2021-12-02 The Chinese University Of Hong Kong Mobile-electromagnetic coil-based magnetic actuation systems
US20210376464A1 (en) * 2020-06-02 2021-12-02 Metawave Corporation Frequency offset using sige phase shifters
WO2023205621A2 (en) * 2022-04-18 2023-10-26 Board Of Regents, The University Of Texas System Magnetically steerable catheter

Family Cites Families (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3043309A (en) 1959-09-29 1962-07-10 Avco Corp Method of performing intestinal intubation
GB1035205A (en) 1962-11-30 1966-07-06 Yeda Res & Dev Improvements in the remote controlled propulsion of a body
US3622869A (en) 1967-06-28 1971-11-23 Marcel J E Golay Homogenizing coils for nmr apparatus
US3628527A (en) 1969-10-08 1971-12-21 Microcom Corp Biological electrode amplifier
US3746937A (en) 1971-07-12 1973-07-17 H Koike Electromagnetic linear motion device
US3961632A (en) 1974-12-13 1976-06-08 Moossun Mohamed H Stomach intubation and catheter placement system
US4063561A (en) 1975-08-25 1977-12-20 The Signal Companies, Inc. Direction control device for endotracheal tube
US4096862A (en) 1976-05-17 1978-06-27 Deluca Salvatore A Locating of tubes in the human body
SE7610696L (sv) 1976-09-28 1978-03-29 Reenstierna Bertil Sett och anordning for inleggning och fixering av "pacemaker - elektrod" i (mennisko-) hjerta
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4270252A (en) 1978-01-03 1981-06-02 Allied Chemical Corporation Apparatus to count and control crimps in a moving tow of yarn
US4244362A (en) 1978-11-29 1981-01-13 Anderson Charles C Endotracheal tube control device
JPS5588732A (en) * 1978-12-26 1980-07-04 Olympus Optical Co Endoscope
US4249536A (en) 1979-05-14 1981-02-10 Vega Roger E Urological catheter
US4354501A (en) * 1979-08-28 1982-10-19 Univ Washington Esophageal catheter including ultrasonic transducer for use in detection of air emboli
JPS56109968A (en) 1980-02-04 1981-08-31 Fuji Kinzoku Kosaku Kk Solenoid valve
US5090956A (en) 1983-10-31 1992-02-25 Catheter Research, Inc. Catheter with memory element-controlled steering
CA1276710C (en) 1983-11-30 1990-11-20 Kazuo Asakawa Robot force controlling system
US4671287A (en) 1983-12-29 1987-06-09 Fiddian Green Richard G Apparatus and method for sustaining vitality of organs of the gastrointestinal tract
EP0303054B1 (en) 1984-04-04 1993-06-09 Omron Tateisi Electronics Co. Electromagnetic drive and polarized relay
JPS61176326A (ja) 1985-02-01 1986-08-08 株式会社日立製作所 診断装置
US4943770A (en) 1987-04-21 1990-07-24 Mccormick Laboratories, Inc. Device for accurately detecting the position of a ferromagnetic material inside biological tissue
US5209234A (en) * 1987-10-02 1993-05-11 Lara Consultants S.R.L. Apparatus for the non-intrusive fragmentation of renal calculi, gallstones or the like
US4809713A (en) 1987-10-28 1989-03-07 Joseph Grayzel Catheter with magnetic fixation
EP0317705B1 (de) 1987-11-25 1992-09-30 Siemens Aktiengesellschaft Dosiergerät zum gesteuerten Injizieren von Flüssigkeiten aus einem Vorratsbehälter in einen Organismus
US5083562A (en) 1988-01-19 1992-01-28 Telectronics Pacing Systems, Inc. Method and apparatus for applying asymmetric biphasic truncated exponential countershocks
US4869247A (en) 1988-03-11 1989-09-26 The University Of Virginia Alumni Patents Foundation Video tumor fighting system
US4984581A (en) 1988-10-12 1991-01-15 Flexmedics Corporation Flexible guide having two-way shape memory alloy
US4929961A (en) * 1989-04-24 1990-05-29 Harada Kogyo Kabushiki Kaisha Non-grounded type ultrahigh frequency antenna
US5653713A (en) 1989-04-24 1997-08-05 Michelson; Gary Karlin Surgical rongeur
US5063935A (en) 1989-04-27 1991-11-12 C. R. Bard, Inc. Catheter guidewire with varying radiopacity
US5681260A (en) 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
US5226847A (en) * 1989-12-15 1993-07-13 General Electric Company Apparatus and method for acquiring imaging signals with reduced number of interconnect wires
US5125888A (en) 1990-01-10 1992-06-30 University Of Virginia Alumni Patents Foundation Magnetic stereotactic system for treatment delivery
US5167626A (en) * 1990-10-02 1992-12-01 Glaxo Inc. Medical capsule device actuated by radio-frequency (RF) signal
US5257636A (en) 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
EP0531081A1 (en) 1991-09-03 1993-03-10 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency fields
US5255680A (en) 1991-09-03 1993-10-26 General Electric Company Automatic gantry positioning for imaging systems
US5645065A (en) 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
ATE155059T1 (de) * 1992-01-21 1997-07-15 Stanford Res Inst Int Teleoperateursystem und verfahren mit teleanwesenheit
DK0940123T3 (da) 1992-02-21 2004-05-17 Boston Scient Ltd Ledetråd til ultralydsbilleddannelse
US5709661A (en) 1992-04-14 1998-01-20 Endo Sonics Europe B.V. Electronic catheter displacement sensor
US5249163A (en) * 1992-06-08 1993-09-28 Erickson Jon W Optical lever for acoustic and ultrasound sensor
US5269759A (en) 1992-07-28 1993-12-14 Cordis Corporation Magnetic guidewire coupling for vascular dilatation apparatus
AT399647B (de) 1992-07-31 1995-06-26 Truppe Michael Anordnung zur darstellung des inneren von körpern
US5588442A (en) 1992-08-12 1996-12-31 Scimed Life Systems, Inc. Shaft movement control apparatus and method
US5353807A (en) 1992-12-07 1994-10-11 Demarco Thomas J Magnetically guidable intubation device
US5396902A (en) 1993-02-03 1995-03-14 Medtronic, Inc. Steerable stylet and manipulative handle assembly
JPH06289111A (ja) 1993-04-02 1994-10-18 Stanley Electric Co Ltd ホール素子の駆動回路
AU7468494A (en) 1993-07-07 1995-02-06 Cornelius Borst Robotic system for close inspection and remote treatment of moving parts
IL116699A (en) 1996-01-08 2001-09-13 Biosense Ltd Method of building a heart map
US5625576A (en) * 1993-10-01 1997-04-29 Massachusetts Institute Of Technology Force reflecting haptic interface
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5683384A (en) 1993-11-08 1997-11-04 Zomed Multiple antenna ablation apparatus
US5821920A (en) * 1994-07-14 1998-10-13 Immersion Human Interface Corporation Control input device for interfacing an elongated flexible object with a computer system
US5654864A (en) 1994-07-25 1997-08-05 University Of Virginia Patent Foundation Control method for magnetic stereotaxis system
US5573012A (en) 1994-08-09 1996-11-12 The Regents Of The University Of California Body monitoring and imaging apparatus and method
US5492131A (en) * 1994-09-06 1996-02-20 Guided Medical Systems, Inc. Servo-catheter
US5624430A (en) 1994-11-28 1997-04-29 Eton; Darwin Magnetic device to assist transcorporeal guidewire placement
US5656030A (en) 1995-05-22 1997-08-12 Boston Scientific Corporation Bidirectional steerable catheter with deflectable distal tip
US5702433A (en) 1995-06-27 1997-12-30 Arrow International Investment Corp. Kink-resistant steerable catheter assembly for microwave ablation
US5650725A (en) 1995-09-01 1997-07-22 Associated Universities, Inc. Magnetic imager and method
US5711299A (en) * 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
US5971976A (en) 1996-02-20 1999-10-26 Computer Motion, Inc. Motion minimization and compensation system for use in surgical procedures
US5769843A (en) 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US5650864A (en) 1996-04-08 1997-07-22 Scanvision Full color single-sensor-array contact image sensor (CIS) using advanced signal processing techniques
US5775322A (en) * 1996-06-27 1998-07-07 Lucent Medical Systems, Inc. Tracheal tube and methods related thereto
US5844140A (en) * 1996-08-27 1998-12-01 Seale; Joseph B. Ultrasound beam alignment servo
US5980535A (en) * 1996-09-30 1999-11-09 Picker International, Inc. Apparatus for anatomical tracking
US5768843A (en) * 1996-10-21 1998-06-23 Dziedzic; Jerome J. Apparatus and method for mounting suspension ceiling panels
US6122538A (en) * 1997-01-16 2000-09-19 Acuson Corporation Motion--Monitoring method and system for medical devices
JP4265698B2 (ja) 1997-02-14 2009-05-20 バイオセンス・ウェブスター・インコーポレイテッド 拡張マッピング空間を用いるx線案内式外科手術位置決めシステム
US6038488A (en) 1997-02-27 2000-03-14 Bertec Corporation Catheter simulation device
US6129668A (en) 1997-05-08 2000-10-10 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US5843153A (en) 1997-07-15 1998-12-01 Sulzer Intermedics Inc. Steerable endocardial lead using magnetostrictive material and a magnetic field
US6015414A (en) 1997-08-29 2000-01-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter
US6128174A (en) 1997-08-29 2000-10-03 Stereotaxis, Inc. Method and apparatus for rapidly changing a magnetic field produced by electromagnets
US6200312B1 (en) 1997-09-11 2001-03-13 Vnus Medical Technologies, Inc. Expandable vein ligator catheter having multiple electrode leads
US6304769B1 (en) * 1997-10-16 2001-10-16 The Regents Of The University Of California Magnetically directable remote guidance systems, and methods of use thereof
US6157853A (en) 1997-11-12 2000-12-05 Stereotaxis, Inc. Method and apparatus using shaped field of repositionable magnet to guide implant
AU1796499A (en) 1997-11-12 1999-05-31 Stereotaxis, Inc. Articulated magnetic guidance systems and devices and methods for using same formagnetically-assisted surgery
US6014580A (en) * 1997-11-12 2000-01-11 Stereotaxis, Inc. Device and method for specifying magnetic field for surgical applications
AU6325798A (en) 1997-11-12 1999-05-31 Stereotaxis, Inc. Intracranial bolt and method of placing and using an intracranial bolt to position a medical device
US6212419B1 (en) 1997-11-12 2001-04-03 Walter M. Blume Method and apparatus using shaped field of repositionable magnet to guide implant
US6311082B1 (en) 1997-11-12 2001-10-30 Stereotaxis, Inc. Digital magnetic system for magnetic surgery
US6104944A (en) 1997-11-17 2000-08-15 Martinelli; Michael A. System and method for navigating a multiple electrode catheter
US6505062B1 (en) 1998-02-09 2003-01-07 Stereotaxis, Inc. Method for locating magnetic implant by source field
IL123646A (en) 1998-03-11 2010-05-31 Refael Beyar Remote control catheterization
WO1999060370A2 (en) * 1998-05-15 1999-11-25 Robin Medical, Inc. Method and apparatus for generating controlled torques
DE19823019C2 (de) * 1998-05-22 2002-04-04 Siemens Ag Trennvorrichtung für Feststoff und Verfahren zum Trennen von Feststoff
JP2000000310A (ja) * 1998-06-15 2000-01-07 Toshiba Corp インターベンション治療システム
US6315709B1 (en) 1998-08-07 2001-11-13 Stereotaxis, Inc. Magnetic vascular defect treatment system
WO2000007641A2 (en) 1998-08-07 2000-02-17 Stereotaxis, Inc. Method and apparatus for magnetically controlling catheters in body lumens and cavities
US6385472B1 (en) 1999-09-10 2002-05-07 Stereotaxis, Inc. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
US6428551B1 (en) 1999-03-30 2002-08-06 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
JP2002526148A (ja) 1998-10-02 2002-08-20 ステリオタクシス インコーポレイテツド 身体の腔および洞から物質を取り除くための磁気的にナビゲート可能なおよび/または制御可能な装置
US6704694B1 (en) * 1998-10-16 2004-03-09 Massachusetts Institute Of Technology Ray based interaction system
US6241671B1 (en) * 1998-11-03 2001-06-05 Stereotaxis, Inc. Open field system for magnetic surgery
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
AU2491300A (en) 1999-01-06 2000-07-24 Ball Semiconductor Inc. Wireless ekg
US6330467B1 (en) 1999-02-04 2001-12-11 Stereotaxis, Inc. Efficient magnet system for magnetically-assisted surgery
US6296604B1 (en) 1999-03-17 2001-10-02 Stereotaxis, Inc. Methods of and compositions for treating vascular defects
US6375606B1 (en) 1999-03-17 2002-04-23 Stereotaxis, Inc. Methods of and apparatus for treating vascular defects
US6148823A (en) * 1999-03-17 2000-11-21 Stereotaxis, Inc. Method of and system for controlling magnetic elements in the body using a gapped toroid magnet
DE19914455B4 (de) 1999-03-30 2005-07-14 Siemens Ag Verfahren zur Bestimmung der Bewegung eines Organs oder Therapiegebiets eines Patienten sowie hierfür geeignetes System
US6902528B1 (en) 1999-04-14 2005-06-07 Stereotaxis, Inc. Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
US6292678B1 (en) 1999-05-13 2001-09-18 Stereotaxis, Inc. Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor
US6478793B1 (en) 1999-06-11 2002-11-12 Sherwood Services Ag Ablation treatment of bone metastases
JP3668865B2 (ja) 1999-06-21 2005-07-06 株式会社日立製作所 手術装置
JP3293802B2 (ja) 1999-07-07 2002-06-17 エスエムシー株式会社 位置検出機能付きチャック
AU3885801A (en) 1999-09-20 2001-04-24 Stereotaxis, Inc. Magnetically guided myocardial treatment system
US6298257B1 (en) 1999-09-22 2001-10-02 Sterotaxis, Inc. Cardiac methods and system
US6702804B1 (en) 1999-10-04 2004-03-09 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US6381485B1 (en) * 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
JP3830319B2 (ja) 1999-12-16 2006-10-04 株式会社デンソー 回転角度検出センサの温度特性調整方法
US6401723B1 (en) 2000-02-16 2002-06-11 Stereotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
JP4388203B2 (ja) 2000-05-23 2009-12-24 ミネベア株式会社 複合型電磁アクチュエータ装置
WO2002007794A2 (en) 2000-07-24 2002-01-31 Stereotaxis, Inc. Magnetically navigated pacing leads, and methods for delivering medical devices
DE10066032B4 (de) 2000-07-28 2010-01-28 Infineon Technologies Ag Schaltungsanordnung zur Steuerung der Verstärkung einer Verstärkerschaltung
US6524303B1 (en) 2000-09-08 2003-02-25 Stereotaxis, Inc. Variable stiffness magnetic catheter
US6537196B1 (en) 2000-10-24 2003-03-25 Stereotaxis, Inc. Magnet assembly with variable field directions and methods of magnetically navigating medical objects
US6662034B2 (en) 2000-11-15 2003-12-09 Stereotaxis, Inc. Magnetically guidable electrophysiology catheter
US6677752B1 (en) 2000-11-20 2004-01-13 Stereotaxis, Inc. Close-in shielding system for magnetic medical treatment instruments
US6352363B1 (en) 2001-01-16 2002-03-05 Stereotaxis, Inc. Shielded x-ray source, method of shielding an x-ray source, and magnetic surgical system with shielded x-ray source
US20020103430A1 (en) 2001-01-29 2002-08-01 Hastings Roger N. Catheter navigation within an MR imaging device
DE10115341A1 (de) 2001-03-28 2002-10-02 Philips Corp Intellectual Pty Verfahren und bildgebendes Ultraschallsystem zur Besimmung der Position eines Katheters
US6771996B2 (en) 2001-05-24 2004-08-03 Cardiac Pacemakers, Inc. Ablation and high-resolution mapping catheter system for pulmonary vein foci elimination
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US6669693B2 (en) 2001-11-13 2003-12-30 Mayo Foundation For Medical Education And Research Tissue ablation device and methods of using
ATE369084T1 (de) 2002-03-15 2007-08-15 Bard Inc C R Apparat zur steuerung von ablationsenergie und elektrogrammaufnahme mittels einer vielzahl gemeinsamer elektroden in einem elektrophysiologie-katheter
US7769427B2 (en) 2002-07-16 2010-08-03 Magnetics, Inc. Apparatus and method for catheter guidance control and imaging
US6776165B2 (en) * 2002-09-12 2004-08-17 The Regents Of The University Of California Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles
DE10322739B4 (de) 2003-05-20 2006-10-26 Siemens Ag Verfahren zur markerlosen Navigation in präoperativen 3D-Bildern unter Verwendung eines intraoperativ gewonnenen 3D-C-Bogen-Bildes
US6980843B2 (en) 2003-05-21 2005-12-27 Stereotaxis, Inc. Electrophysiology catheter
US6914552B1 (en) * 2003-06-25 2005-07-05 The Regents Of The University Of California Magneto-radar detector and method
US7280863B2 (en) 2003-10-20 2007-10-09 Magnetecs, Inc. System and method for radar-assisted catheter guidance and control
WO2005119505A2 (en) 2004-06-04 2005-12-15 Stereotaxis, Inc. User interface for remote control of medical devices
US7918848B2 (en) 2005-03-25 2011-04-05 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US8027714B2 (en) 2005-05-27 2011-09-27 Magnetecs, Inc. Apparatus and method for shaped magnetic field control for catheter, guidance, control, and imaging
US20070062547A1 (en) 2005-07-21 2007-03-22 Carlo Pappone Systems for and methods of tissue ablation
US7495537B2 (en) 2005-08-10 2009-02-24 Stereotaxis, Inc. Method and apparatus for dynamic magnetic field control using multiple magnets
DE102005045073B4 (de) 2005-09-21 2012-03-22 Siemens Ag Verfahren zum visuellen Unterstützen einer invasiven Untersuchung oder Behandlung des Herzens mit Hilfe eines invasiven Instruments
US7869854B2 (en) 2006-02-23 2011-01-11 Magnetecs, Inc. Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation
US20080249395A1 (en) 2007-04-06 2008-10-09 Yehoshua Shachar Method and apparatus for controlling catheter positioning and orientation
US20080297287A1 (en) 2007-05-30 2008-12-04 Magnetecs, Inc. Magnetic linear actuator for deployable catheter tools
US20090253985A1 (en) 2008-04-07 2009-10-08 Magnetecs, Inc. Apparatus and method for lorentz-active sheath display and control of surgical tools
US20090275828A1 (en) 2008-05-01 2009-11-05 Magnetecs, Inc. Method and apparatus for creating a high resolution map of the electrical and mechanical properties of the heart

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438551A (zh) * 2009-05-08 2012-05-02 皇家飞利浦电子股份有限公司 可植入医疗装置的超声规划和引导
CN102038514A (zh) * 2009-10-15 2011-05-04 西门子公司 具有距离传感器的计算机断层造影仪和距离测量的方法
CN102834854A (zh) * 2010-04-09 2012-12-19 迈达博有限公司 超声模拟训练系统
CN102834854B (zh) * 2010-04-09 2016-08-31 迈达博有限公司 超声模拟训练系统
CN103006324A (zh) * 2011-09-26 2013-04-03 西门子公司 显示患者的检查区域中的血管或器官的成像方法和装置
US11918340B2 (en) 2011-10-14 2024-03-05 Intuitive Surgical Opeartions, Inc. Electromagnetic sensor with probe and guide sensing elements
CN111632251B (zh) * 2011-10-14 2023-06-27 直观外科手术操作公司 导管系统
CN111632251A (zh) * 2011-10-14 2020-09-08 直观外科手术操作公司 导管系统
CN107205781B (zh) * 2014-12-05 2020-03-13 科林达斯公司 用于引导导线的系统和方法
CN107205781A (zh) * 2014-12-05 2017-09-26 科林达斯公司 用于引导导线的系统和方法
CN106772262A (zh) * 2015-10-20 2017-05-31 古野电气株式会社 显示装置以及雷达装置
CN106772262B (zh) * 2015-10-20 2021-08-03 古野电气株式会社 显示装置以及雷达装置
CN106725271A (zh) * 2016-12-21 2017-05-31 重庆金山医疗器械有限公司 胶囊内窥镜在生物体内自动越障的方法及系统
CN108042203B (zh) * 2017-12-21 2020-07-17 清华大学深圳研究生院 一种基于超声测距的心脏三维标测系统及方法
CN108042203A (zh) * 2017-12-21 2018-05-18 清华大学深圳研究生院 一种基于超声测距的心脏三维标测系统及方法
CN108169717A (zh) * 2017-12-26 2018-06-15 北京无线电测量研究所 嵌入式串口操纵机构及包含其的雷达显控装置
CN108114366A (zh) * 2018-01-31 2018-06-05 张振坤 一种肿瘤内科药物介入综合治疗装置
CN108078616A (zh) * 2018-02-02 2018-05-29 李�浩 一种动脉穿刺引导装置及其使用方法
WO2020215811A1 (zh) * 2019-04-25 2020-10-29 天津御锦人工智能医疗科技有限公司 一种基于图像识别和3d-slam实时建模的新型内窥镜智能导航器系统
CN111839426A (zh) * 2019-04-25 2020-10-30 天津御锦人工智能医疗科技有限公司 一种基于图像识别和3d-slam实时建模的新型内窥镜智能导航器系统
WO2021000424A1 (en) * 2019-07-03 2021-01-07 Orion Biotech Inc. Positioning and navigation system for surgery and operating method thereof
CN111175746A (zh) * 2020-02-14 2020-05-19 上海大学 一种穿刺针定位系统及方法
CN111175746B (zh) * 2020-02-14 2023-05-09 上海大学 一种穿刺针定位系统及方法

Also Published As

Publication number Publication date
US7280863B2 (en) 2007-10-09
CA2542863C (en) 2012-03-13
JP4741502B2 (ja) 2011-08-03
CA2542863A1 (en) 2005-05-12
WO2005042053A2 (en) 2005-05-12
ATE507756T1 (de) 2011-05-15
JP2007512855A (ja) 2007-05-24
WO2005042053A3 (en) 2006-07-27
MXJL06000017A (es) 2007-09-03
EP1691860A2 (en) 2006-08-23
DE602004032564D1 (de) 2011-06-16
EP1691860B1 (en) 2011-05-04
US20080027313A1 (en) 2008-01-31
US20050096589A1 (en) 2005-05-05
EP1691860A4 (en) 2008-12-17
US7873402B2 (en) 2011-01-18

Similar Documents

Publication Publication Date Title
CN101252870A (zh) 用于雷达辅助的导管导向和控制的系统与方法
US8027714B2 (en) Apparatus and method for shaped magnetic field control for catheter, guidance, control, and imaging
EP1080695B1 (en) Medical treatment apparatus for supporting or controlling medical treatment
KR100862170B1 (ko) 전자기 위치 단일 축 시스템
US6546279B1 (en) Computer controlled guidance of a biopsy needle
CN100438826C (zh) 导管的导引控制及成像设备
US6157853A (en) Method and apparatus using shaped field of repositionable magnet to guide implant
CN101069645B (zh) 超声成像导管的方向控制
US6507751B2 (en) Method and apparatus using shaped field of repositionable magnet to guide implant
CN1853573B (zh) 使用超声以预获取图像配准电解剖图
CN100591282C (zh) 用于在患者体内引导医疗器械的系统
CN101474075B (zh) 微创手术导航系统
US20130217997A1 (en) Method and apparatus for localizing an ultrasound catheter
JPH10507104A (ja) 医療用機器の診断及び取扱いならびに映像システム
EP2209526A1 (en) Method and apparatus for positional tracking of a therapeutic ultrasound transducer
US20010039379A1 (en) Method of and device for visualizing the orientation of therapeutic sound waves onto an area to be treated or processed
EP1362553B1 (en) Catheter tracking system
Tamura et al. Intrabody three-dimensional position sensor for an ultrasound endoscope
KR20110078271A (ko) 전자기 센서를 통합한 혈관 내 초음파 프로브
KR20110078270A (ko) 관상 동맥의 움직임 경향성을 이용한 혈관치료용 마이크로 로봇의 위치 추적 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1121362

Country of ref document: HK

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20080827

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1121362

Country of ref document: HK