CN101313354A - 超高密度超声阵列中的分级切换 - Google Patents

超高密度超声阵列中的分级切换 Download PDF

Info

Publication number
CN101313354A
CN101313354A CNA2006800439328A CN200680043932A CN101313354A CN 101313354 A CN101313354 A CN 101313354A CN A2006800439328 A CNA2006800439328 A CN A2006800439328A CN 200680043932 A CN200680043932 A CN 200680043932A CN 101313354 A CN101313354 A CN 101313354A
Authority
CN
China
Prior art keywords
transducer
drive signal
layer
ground floor
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800439328A
Other languages
English (en)
Other versions
CN101313354B (zh
Inventor
K·沃特曼
Y·梅丹
A·伊蔡恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Insightec Ltd
Original Assignee
Insightec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Insightec Ltd filed Critical Insightec Ltd
Publication of CN101313354A publication Critical patent/CN101313354A/zh
Application granted granted Critical
Publication of CN101313354B publication Critical patent/CN101313354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation

Abstract

一种聚焦超声系统包括具有多重换能器元件的换能器、产生并且输出多个驱动信号的驱动电路(每个驱动信号之间偏移一个相应相差)和选择性地将驱动信号耦合到相应换能器元件的控制器,该控制器包括多个第一层切换模块和第二层切换模块。每个第一层模块接收多个驱动信号作为输入,并且响应于驱动信号选择信号输出驱动信号的其中之一。每个第二层模块耦合到相应分组的换能器元件,并且响应于换能器元件选择信号,选择性地将从第一层切换模块输出的相应所选驱动信号耦合到一个或多个换能器元件。

Description

超高密度超声阵列中的分级切换
技术领域
【0001】本申请总的涉及用于将来自多元件换能器(例如高密度、相控阵列换能器)的高强度、治疗性声能输送到病患的目标组织区域的系统。
背景技术
【0002】公知,使用诸如超声波(即具有大于大约20千赫兹的频率的声波)的高强度、聚焦的声波能量来产生用于治疗诸如肿瘤的内部人体组织的热烧蚀能量。同样公知,采用诸如核磁共振(MRI)系统的成像系统,以将这样的高强度超声能量的输送导向目标组织区域,并且提供关于实际输送的热能的实时反馈。一个这样的图像引导的聚焦超声系统是由位于以色列海法的InSightec有限公司生产和经销的Exablate
Figure A20068004393200041
2000系统(www.Insightec.com)。作为图解,图1是图像引导的聚焦超声系统100的简化示意表示,该聚焦超声系统100用于产生并输送聚焦声能束112到病患110的目标组织块104。系统100采用超声换能器102,该超声换能器102被几何成形并且在物理上相对病患110而设置,以将超声能量束112集中在位于目标组织块104内的三维焦点区域。换能器102可以基本上是刚性、半刚性的或者基本上是柔性的,并且可以由各种材料制成,诸如塑料、聚合物、金属和合金。换能器102可以被生产为单个单元,或者,由多个部件组装而成。尽管示出的换能器102具有“球冠”形状,但可以使用换能器的各种其他几何形状和构造来输送聚焦的声束,包括线性(平面)构造。超声系统100可以还包括耦合膜(未示出),诸如充气体或使用脱气水填充的充气囊,用于提供或改善换能器102与病患110的皮肤表面之间的声耦合。
【0003】换能器102可以由安装在换能器102的远端(向外)表面118(最好参见图2)上的相对大量的单独受控元件116形成。每个换能器元件116本身可以包括电连接到从系统控制器106提供的同一驱动信号的一个或多个(相邻)压电构件。在运行期间,通过将相应电驱动信号转换成机械运动和得到波能,各个压电构件的每一个都贡献了一小部分超声能量束112。随着相应波会聚于目标组织块104中的焦点区域,从换能器元件116的各个压电构件输送的波能共同形成声能束112。在焦点区域中,束112的波能被组织吸收(即被削弱),因此产生热并且将组织温度升高到细胞被变性(“烧蚀”)的程度。
【0004】在输送波能之前、在此期间以及在此之后,成像器(例如MRI系统)114用于产生目标组织块104的三维图像。图像是热敏感的,因此可以监视被烧蚀的组织的实际热剂量边界(即几何边界和热梯度)。至少部分的通过换能器元件116的物理排列和换能器102的物理定位来确定声束112的焦点区域的位置、形状和强度。也可以至少部分的通过束112的称作“电子转向”的过程控制各个换能器元件116的相应输出(例如相位和幅度),从而控制聚焦区域的位置、形状和强度。这样的物理定位系统和技术,以及包括驱动和控制各个换能器元件输出的电子束转向的示例,可以参见第6,506,154、6,506,171、6,582,381、6,613,004和6,618,620号美国专利。
【0005】为了适应治疗过程中的变化并且进入使用更常规的(例如球冠)超声换能器进行治疗难以(如果不是不可能的话)进入的体内区域,希望使用包含相对大量的单独元件的超密集的换能器阵列。尽管每个元件优选地相对较小,例如大约为所发送的声能的波长的量级,然而考虑到有较大数目的可用元件,则仅需要激活这些元件的相对小的子集,以输送足够量的声能到焦点区域。然而,仍必须将各个驱动信号提供给每个换能器元件,以供换能器元件输送能量,并且仍希望能够使用许多可能的驱动信号相位的任何一个来激活任何给定元件,以使换能器阵列获得最优性能。尽管切换机制可以用于将适当驱动信号连接到相应换能器元件,但随着换能器元件的数目的增长,常规切换机制的使用和控制变得麻烦和成本过高。
发明内容
【0006】根据本发明的一个实施例,提供了一种系统,用于在聚焦超声系统中选择性地将相应驱动信号连接到超高密度换能器元件阵列的相应换能器元件。在一种实现方式中,用于发送用于热组织治疗的声能的超声波换能器包括相对大数目的换能器元件。作为非限制性示例,换能器可以采用柔性或半柔性带的形式,所述带可以直接或间接地附着到外部身体表面,用于将目标声能输送到身体的内部区域中的组织。各个换能器元件可以单独形成或者配置在相对小的附着于换能器体的基板(例如其中每个基板包括换能器元件的阵列)上。为了以适当相位驱动所选换能器元件,可以使用驱动信号发生器产生具有相同频率的许多可能驱动信号,每个驱动信号以所选相位偏移量与其他驱动信号异相。然后使用两层、分级的切换结构将所选驱动信号连接到所选换能器元件,所述所选换能器元件将被激活以用于给定组织的声处理。
【0007】在一个实施例中,第一层切换结构选择要提供给一个或多个换能器元件的所标识的子集的驱动信号,并且第二层切换结构将所选驱动信号连接到所标识的换能器元件(一个或多个)。在一个实施例中,第一层实现为多个第一层切换模块,并且第二层实现为多个第二层切换模块。每个第一层模块具有多个输入,每个输入耦合到相应的驱动信号,其中输入的数目等于驱动信号的数目。输入经由相应第一层开关(例如晶体管或MEM设备)选择性地可连接到公共第一层模块输出。第一层模块接收相应驱动信号选择控制信号,用于使第一层开关的所选一个被激活,由此将驱动信号的所选一个耦合到相应第一层模块输出。
【0008】每个第二层切换模块具有公共输入,该公共输入连接到相应第一层模块的输出。第二层模块输入经由多个相应的第二层开关(例如晶体管和/或MEM设备)选择性地可连接到一个或多个第二层模块输出。第二层模块接收相应元件选择控制信号,用于使第二层开关的所选一个被激活,由此将相应驱动信号耦合到所选第二层输出。k个换能器元件的各个组被连接(例如硬连线或通过使用各个求和网络)到第二层模块的相应输出,其中n个总的换能器元件以每组k个元件的方式连接到总共n/k个第二层模块。
【0009】可以基本上以1∶1的比率提供相应第一和第二层切换模块,其中给定的第一层切换模块的输出直接连接到第二层切换模块的输入。可以理解,两层切换结构的物理实现不需要一定采取或由不同的第一和第二“模块”形成,并且本发明的实施例可以采取各种物理形式。
附图说明
【0010】在附图的图中,作为示例而非限制示出本发明,其中相同附图标记表示类似元件,并且其中
【0011】图1-2是示例性的图像引导的聚焦超声系统的简化示意表示;
【0012】图3是超高密度换能器元件的简化示意图解;
【0013】图4a-c是根据本发明的一个实施例包括多层切换结构的控制系统的简化示意图解,该多层切换结构用于选择性地将驱动信号连接到聚焦超声系统的超高密度换能器阵列的各个换能器元件;以及
【0014】图5的流程图示出了根据本发明的一个实施例由系统用来提供所选驱动信号到多个所选换能器元件的过程。
具体实施方式
【0015】在以下描述中,提到的“一个实施例”或“实施例”表示所涉及的特征包括在本发明的至少一个实施例中。进一步地,在本说明书中分别提及的“一个实施例”也不一定指相同的实施例,但是这些实施例并非相互排斥的,除非这样说明并且排除。
【0016】本发明的实施例包括用于选择性地将多个分离的驱动信号之一耦合于高密度阵列的所选换能器元件的系统。阵列的换能器元件被划分成多个独立的分组,其中每个换能器元件的分组被选择性地耦合到对应的驱动信号。通过这种方式,给定分组中的每个换能器元件可以以相同相位运行。仅将特定分组的单个换能器元件连接至相应驱动信号是人们所期望的,或者优选地,将分组中的多于一个的换能器元件连接到一个驱动信号。在可替代的实施例(在此未作阐述或未作进一步描述)中,可以利用求和网络,即在邻近的换能器元件之间用线连接的无源部件的网络,将每个分组选择性地耦合至多个驱动信号。这种可替换的方法使得能够对可用于提供给各个换能器元件分组的驱动信号(否则的话,驱动信号的数量是有限的)进行操作和改变。简要来说,求和网络根据计划的驱动信号以及在邻近元件之间的一个或多个关系构成正确的驱动信号。这些网络是静态的,并且可以代表用于对驱动信号的任意微调(trimming)以及几何调整进行修正的方式,通过静态偏移或对邻近的换能器元件的驱动信号求和对其进行预计算或预调整。在这些可替换的实施例中,在给定的分组中每个换能器元件可以利用特定求和网络的结果(product)的相位操作。再一次地,仅将一个分组的单个换能器元件连接至相应的相位信号是人们所期望的,或者优选地,将多于一个的换能器元件连接到信号。
【0017】更具体地,根据本发明实施例的切换网络被设计为利用最小数量的源信号将适当的驱动信号发送到换能器阵列的每个换能器元件,以驱动在阵列中非常大数量的换能器元件。切换网络使用切换模块,所述切换模块通过使用分级方法使得能够将驱动信号动态发送到任意特定元件。
【0018】在一种实现方式中,提供多层切换结构以将每个分组的换能器元件的一个或多个与所选的驱动信号连接。第一层切换结构接收多个驱动信号,并选择性地输出具有特定相位偏移的单个驱动信号。第二层切换结构接收并耦合所选的驱动信号到所选的换能器元件或换能器元件的多个分组。例如,第一层切换元件可以为换能器元件的第一分组选择具有第一相位偏移的第一驱动信号,以及为换能器元件的第二分组选择具有第二相位偏移的第二驱动信号。第二层切换结构可以包括多个第二层切换模块,诸如例如,用于换能器元件的每个分组的一个第二层切换模块。每个第二层切换模块接收从第一层切换结构输出的相应驱动信号,并且选择性地将所接收的驱动信号耦合到一个或更多个换能器元件,所述换能器元件连接到要被激活以用于给定声处理的模块。
【0019】如图3所示,为根据一个实施例构建的换能器300,其包括用于在聚焦超声系统中产生声波能量的各个换能器元件304的高密度阵列。在不同的实施例中,换能器300可以实现为例如柔性基板或带,比如以带状方式将所述基板或带放置在患者外表面(皮肤)的周围和/或耦合于患者的外表面(皮肤)。在另一个实施例中,换能器300可以刚性结构来替换实现,该刚性结构直接或间接地耦合于患者。在图3所示的实施例中,换能器300包括换能器板302a到302m的阵列,而每个板302包括各个换能器元件304a-304i的阵列。这样,在其中每个换能器板302a到302m均具有相同(或基本上相同)数量的换能器元件304i的实施例中,换能器元件的总数量n等于(近似等于)m*i。每一个板的各个换能器元件304a到304i硬连线于切换前端(图4),以选择性地将激活驱动信号耦合于产生声波能量的元件。例如,可以将k个换能器元件304的相应分组硬连线于与切换前端相关的相应切换模块(以下将结合图4进行描述)的对应输出。
【0020】连接于给定第二层模块的特定换能器元件将在设计时进行考虑,并且连接方式可以随本发明的实施例而变化。例如,人们期望能够基于在每个分组中实现相应各个元件的物理接近或变化来选择连接于给定第二层模块的k个元件的位置。可替换的,人们期望能够任意地将换能器元件的分组连接到相应切换模块,而不需要考虑k个元件在换能器上的特定位置。在一个实施例中,分组大小k对应于位于单个板302上的换能器元件304的数量,并且将分组一个板一个板地连接。在另一个实施例中,分组包括位于不同板302上的各个元件304。例如,每个分组可以包括来自每个板302a到302m的一个换能器元件304,其中该组的大小为m。在其他实施例中,每个分组包括不同数量的换能器元件304,所述换能器元件34可以随机地或伪随机地分布在相应板302a到302n上。此外,可以不同形式而非仅在板阵列302(其仅为一个示例)上提供提供换能器元件304,本发明的实施例可以用于并且适用于具有基本上为大数量的单独可激活元件的任何换能器实施例,并且尤其适用于包含相对高数量的单独可激活元件的超高密度阵列。
【0021】虽然各个换能器元件优选地相对小(并且因此每个能发送相对低功率的波),然而它们在单独功率输出方面的缺乏由用于给定声处理可能同时被起动(fire)的元件的可数量来弥补。特别地,对于给定声处理,通常激活换能器元件的总数量的相对小的百分比(比如大约5%或10%)。待激活的各个换能器元件,连同每个元件的相应驱动信号属性(例如相位和幅度),通过合并在聚焦超声系统中的计划系统来选定或确定。换能器元件可以相对焦点区域被“定位”,比如通过利用定位系统来识别换能器元件在参考系中的相应位置,其中所述参考系包括目标组织区域和声窗(acousticwindow)(传输路径)。该信息连同包括目标组织区域的体内区域的三维图像可以用于识别待激活的各个换能器元件的优选和/或最优组合。元件选择标准包括许多因素,诸如比如避免声能通过敏感的体组织(例如肋骨或肺)传输。
【0022】图4a为示意第一切换前端实施例400的方框图。所述第一切换前端实施例400大体上包括驱动信号发生器402、控制器404,以及多个切换元件406a至406j。驱动信号(或“相量”)发生器402在选定的频率产生多个驱动信号403,所述驱动信号可以用来驱动换能器元件304a至304n,在所有的切换元件406a至406j中使用换能器元件304a至304n是出于简化的目的,但这并不意味相同的元件连接于所有的切换元件。
【0023】具体地说,由驱动信号发生器402产生的各个驱动信号403彼此存在相移,使得每个驱动信号相对基带信号(base signal)均具有显著的相位偏移。作为非限定性示例,在一个实施例中,驱动信号发生器402可以提供在选定频率的十二个显著不同的驱动信号403,每个驱动信号之间在相位上均连续偏移30°,即相对基带信号(0°)各个驱动信号相位偏移30°、60°、90°、120°、150°、180°、210°、240°、270°、300°和330°。
【0024】还有可能存在很多其他实施例,比如驱动信号发生器402可以以选定频率来提供十八个不同的驱动信号403,并且每一个在相位上连续偏移20°,即0°、20°、40°、60°、80°、100°、120°、140°、160°、180°、200°、220°、240°、260°、280°、300°、320°和340°。在从求和网络而非从单个驱动信号被驱动的实施例中,也可以组合其他相位来驱动元件。期望根据在给定的声处理期间各个信号将驱动的换能器元件的实际数量,来向上或向下调整各个驱动信号的输出功率(幅度),以在各个声波会聚在焦点区域中时,减少它们声阻抗的变化。
【0025】控制器404输出用于控制切换元件406a至406j的控制信号。正如控制器404所指定的,每个切换元件406a至406j运行以从由驱动信号发生器402产生的多个驱动信号403中选择一个驱动信号403’,并将该选定的驱动信号403’提供给换能器元件304a至304n中所选定的那些。
【0026】在一个实现方式中,切换元件406a至406j的每一个为分层切换元件,所述分层切换元件包括,例如,第一层切换模块408a至408j以及第二层切换模块410a至410j。第一层切换模块408a至408j用以从由驱动信号发生器402输出的多个驱动信号403中选择一个驱动信号403’,且第二层切换模块410a至410j用以将该选定的驱动信号403’提供给换能器元件304a至304n中所选定的那些。
【0027】如图4a和4b所示,第一层切换模块408a从驱动信号发生器402接收多个驱动信号403,并且从控制器404接收驱动信号选择器405。基于驱动信号选择器405,第一层切换模块408a运行以从多个驱动信号403中选择一个驱动信号403’,并且输出所选驱动信号403’至第二层切换模块410。
【0028】驱动信号选择器405包含足够的信息以允许第一层切换模块408a从多个驱动信号403中选择一个驱动信号403’。驱动信号选择器405可以包含多个信号,如图4b所示,或者可以包含单个信号,如图4a所示。在一个实施方案中,第一层切换模块408a可以包含多路分解器,该多路分解器允许使用单个驱动信号选择器405。
【0029】如图4a和4b所示,第二层切换模块410从第一层切换模块408a接收选定的驱动信号403’,并且从控制器404接收一个或多个换能器元件选择器411。在一个或多个换能器元件选择器411中所接收的信息足以描述出在特定时间要开启分组中的哪些换能器元件304a至304n。尽管在图2中将一个或多个换能器元件选择信号411描述为多个并行接收的信号,但所述一个或多个换能器元件选择信号411可以被串行或并行接收。此外,可以将一个换能器元件选择信号411提供给第二层切换模块410a,将在数量上等于分组中的换能器元件304a至304n的数量的大量换能器元件选择信号411提供给第二层切换模块410a,或可以提供其他数量的换能器元件选择信号411。在一个实施方案中,第二层切换模块410a包含多路分解器,该多路分解器允许使用单个输入信号411。
【0030】在一个或更多个换能器元件选择器中所接收的信息足以描述出在特定时间要开启分组中的哪些换能器元件304a至304n。基于一个或多个换能器元件选择器,向那些待开启的换能器元件选择性的提供从第一层切换模块408a至408b接收的驱动信号。
【0031】已经按照分离的切换元件406a至406j对切换机构做了描述,其中每一个切换元件均包括第一层切换模块408a至408j及第二层切换模块410a至410j。具体地说,可以想到单个第一层切换模块408被提供用于多个第二层切换模块410a至410j。图4c示意出切换结构的可替换配置。
【0032】图4c是示意用于切换换能器元件(“切换前端”)的系统的方框图。图4c的系统420类似于图4a的系统400。然而,在图4c的系统420中,第一层切换模块到第二层切换模块的映射并不需要为一对一。具体的说,图4c的系统420可以包括向多个第二层切换模块424a至424k提供驱动信号的单个第一层切换模块422a。
【0033】如图4c所示,类似于上文参考图4a所描述的,系统420可以包括驱动信号发生器402以及控制器404。此外,系统420可以包括第一层切换结构426和第二层切换结构428。第一层切换结构426可以由一个或多个第一层切换模块422a至422j构成,且第二层切换结构428可以由一个或多个第二层切换模块424a至424k构成。
【0034】第一层切换模块422a至422j的每一个可以被耦合于一个或多个第二层切换模块424a至424k。第一层切换模块422a至422j的每一个可以被配置成输出一个驱动信号403’到与之耦合的第二层切换模块424a至424k中的每一个。第一层切换模块422a至422j无需向第二层切换模块424a至424k的每一个输出相同的驱动信号,但可以向第二层切换模块424a提供第一驱动信号403’、向另一个第二层切换模块424b提供第二驱动信号403”,等等。
【0035】第二层切换模块424a至424k的每一个可以关联于换能器元件304a至304p的一个分组430。第二层切换模块424a至424k的每一个被耦合于分组430中的换能器元件304a至304p。第二层切换模块424a至424k的每一个可以从第一层切换模块422a至422j接收一个驱动信号403’,并且可以输出所接收的驱动信号403’至分组430中的换能器元件304a至304p的所选择的那些。
【0036】如以上参照图3所描述的,换能器元件304a至304p的每个分组430可以包括,例如,位于一个板上的多个换能器元件,或包括例如位于多个板上的多个换能器元件。在可替换的实施例中,换能器元件可以不位于板上,但仍然形成为分组。
【0037】在一个实施方案中,第一层切换元件422a至422j的每一个接收来自驱动信号发生器402的多个驱动信号403,并且接收来自控制器404的一个或多个驱动信号选择器405。对于耦合于它的第二层切换元件424a至424k中的每一个,第一层切换元件426a至426j运行以基于驱动信号选择器405从多个驱动信号403中选择驱动信号403’。第一层切换元件422a至422j的每一个向耦合于它的第二层切换模块424a至424k的每一个输出合适的选定的(一个或多个)驱动信号403’。
【0038】第二层切换模块424a至424k的每一个接收来自第一层切换模块422a至422j的选定的驱动信号403’,并且接收来自控制器404的一个或多个换能器元件选择器411。在换能器元件选择器411中所接收的信息足以描述出在特定时间要开启分组430中的哪些换能器元件304a至304p。基于换能器元件选择器411,向那些待开启的换能器元件304a至304p选择性地提供从第一层切换模块422a至422j接收的驱动信号403’。
【0039】已经按照耦合于第二层切换模块424a至424k的分离的第一层切换模块422a至422j对切换机构做了描述。具体地说,可以想到单个第一层切换模块422a可以被提供用于多个第二层切换模块424a至424k。单个第一层切换模块422a可以接收来自驱动信号发生器402的多个驱动信号403,并且可以将一个驱动信号403’输出到第二层切换模块424a至424k的每一个。
【0040】在另一个实施方案中,多个第一层切换模块422a至422j每一个均耦合于多个第二层切换模块424a至424k。在该实施方案中,耦合于每个第一层切换模块424a至424j的第二层切换模块422a至422k的数量是受限制的,例如,为了保证具有足够的信号强度以驱动换能器元件304a至304p。
【0041】在一些实施方案中,每个驱动信号403可以应用到数量可变的换能器元件304a至304p,因为每个驱动信号403可以提供给数量可变的第二层切换模块424a至424j,并且因为第二层切换模块424a至424j的每一个可以向数量可变的换能器元件305a至305p提供驱动信号403。然而,当第二层切换模块424的数量和换能器元件304a至304p的数量较大时,统计分布会限制这种改变。因此,就不一定基于负荷(load)调整驱动信号403的功率。然而,在一些实施方案中,可以基于待驱动的换能器元件304a至304p的数量来调整每个驱动信号403的功率。例如,控制器404可以调整驱动信号403的功率。
【0042】图5为示意出本发明实施例所使用的用于向多个换能器元件提供驱动信号的过程的流程图。如图5所示,在步骤500,其中换能器元件被识别以用于给定的声处理,并且相位被识别以用于每个换能器元件。可以通过例如控制器来执行步骤500,所述控制器可以接收诸如MRI数据的图像数据,并确定哪些换能器元件将被开启以及在哪些相位运行每个换能器元件。
【0043】在步骤502,可以接收多个驱动信号。可以例如从驱动信号发生器接收所述多个驱动信号。所述多个驱动信号可以存在相移,因此每个驱动信号具有不同的相位。
【0044】在步骤504,可以从所述多个驱动信号中选择驱动信号。例如可以基于从控制器所接收的驱动信号选择器来选择驱动信号。
【0045】在步骤506中,可以选择一个或多个换能器元件。例如可以从换能器元件的分组中选择换能器元件。可以基于例如从控制器所接收的一个或多个换能器元件选择器中选择所述换能器元件。
【0046】在步骤508中,将所选的驱动信号应用到所选的换能器元件。例如应用所述驱动信号以激活换能器元件从而产生超声能量。
【0047】在以上详细说明中,已经参照本发明的具体实施例对其进行了描述。然而,在不脱离本发明更宽精神和范围的情况下,可以进行不同的修改或变化,这是明显的。例如,读者可以理解,在此处描述的过程流程图中所示出的过程动作的具体顺序和组合仅为示意性的,且可以使用不同或附加的过程动作,或过程动作的不同组合或顺序来实施本发明。
【0048】例如,虽然按照输出用于所有换能器元件的驱动信号的一个驱动信号发生器对本发明做了描述,但可以预期的是,也可以提供多于一个的驱动信号发生器。每个驱动信号发生器可以专用于向特定的切换机构或特定的换能器元件提供多个驱动信号。替换地或另外地,每个驱动信号发生器还可以用于提供具有一个或多个特定相位的一个或更多个信号。进一步的,如以上所简要描述的,可以利用求和网络将每个分组选择性地耦合于多个驱动信号,以启动可用驱动信号的进一步操作。在这些可替换的实施例中,给定分组中的每个换能器元件可以运行在作为特定求和网络的结果的相位。

Claims (11)

1、一种用于输送目标声能的系统,包括:
换能器,其具有多重换能器元件;
控制器;
多个第一层切换模块,每个第一层切换模块接收具有相差的多个驱动信号作为输入,并且被配置成根据从所述控制器接收到的相应驱动信号选择信号选择性地输出所述驱动信号其中之一,和
多个第二层切换模块,每个第二层切换模块接收从相应第一层模块输出的所选驱动信号作为输入,并且被配置成根据从所述控制器接收的相应换能器元件选择信号选择性地将所述驱动信号耦合到相应的换能器元件分组的一个或多个换能器元件。
2、权利要求1所述的系统,其中所述换能器元件的相应分组固定连接到所述相应第二层切换模块。
3、权利要求1或2所述的系统,其中每个多重换能器元件是多个换能器元件分组的相应一个的一部分,并且其中每个分组的换能器元件固定连接到所述第二层切换模块的相应一个。
4、权利要求3所述的系统,其中所述多重换能器元件被实现为多个换能器元件阵列,每个阵列形成在单独基板上。
5、权利要求4所述的系统,其中基本上至少一个分组的所有换能器元件位于单个阵列。
6、权利要求4所述的系统,其中基本上至少一个分组的所有换能器元件位于不同阵列。
7、权利要求1-6的任何一个所述的系统,还包括多个切换元件,每个切换元件包括相应第一层模块和相应第二层模块,其中所述第二层模块接收从同一切换元件上的所述第一层模块输出的所选驱动信号作为输入。
8、权利要求1-6的任何一个所述的系统,还包括第一层切换结构和第二层切换结构,所述第一层切换结构包括所述多个第一层模块,并且所述第二层切换结构包括所述多个第二层模块。
9、权利要求1-8的任何一个所述的系统,其中所述控制器被配置成向所述第一和第二层切换模块提供相应驱动信号和换能器元件选择信号,以激活换能器元件的所选子集,由此发送目标声能脉冲。
10、权利要求9所述的系统,其中每个多重换能器元件是多个换能器元件分组的相应一个的一部分,所述每个分组的换能器元件固定连接到所述第二层切换模块的相应一个,并且其中所述换能器元件的子集包括少于至少一个分组的所有换能器元件的换能器元件。
11、权利要求9所述的系统,其中所述多重换能器元件被实现为多个换能器元件阵列,每个阵列形成在单独基板上,并且其中所述换能器元件的子集包括少于至少一个阵列的所有换能器元件的换能器元件。
CN2006800439328A 2005-11-23 2006-11-22 超高密度超声阵列中的分级切换 Active CN101313354B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US73986205P 2005-11-23 2005-11-23
US60/739,862 2005-11-23
PCT/IB2006/003300 WO2007085892A2 (en) 2005-11-23 2006-11-22 Hierarchical switching in ultra-high density ultrasound array

Publications (2)

Publication Number Publication Date
CN101313354A true CN101313354A (zh) 2008-11-26
CN101313354B CN101313354B (zh) 2012-02-15

Family

ID=38309560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800439328A Active CN101313354B (zh) 2005-11-23 2006-11-22 超高密度超声阵列中的分级切换

Country Status (5)

Country Link
US (1) US8608672B2 (zh)
EP (1) EP1960993B1 (zh)
JP (1) JP5087007B2 (zh)
CN (1) CN101313354B (zh)
WO (1) WO2007085892A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483913A (zh) * 2009-03-02 2012-05-30 代表亚利桑那大学的亚利桑那校董会 固态声学超材料和使用其聚焦声音的方法
CN102974046A (zh) * 2011-09-05 2013-03-20 三星电子株式会社 医疗设备及其控制方法
US20190284721A1 (en) * 2016-05-20 2019-09-19 A&At Llc Non-round solution spun spandex filaments and methods and devices for production thereof

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256430B2 (en) 2001-06-15 2012-09-04 Monteris Medical, Inc. Hyperthermia treatment and probe therefor
US6618620B1 (en) 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US8088067B2 (en) 2002-12-23 2012-01-03 Insightec Ltd. Tissue aberration corrections in ultrasound therapy
US7611462B2 (en) 2003-05-22 2009-11-03 Insightec-Image Guided Treatment Ltd. Acoustic beam forming in phased arrays including large numbers of transducer elements
US8409099B2 (en) 2004-08-26 2013-04-02 Insightec Ltd. Focused ultrasound system for surrounding a body tissue mass and treatment method
US20070016039A1 (en) 2005-06-21 2007-01-18 Insightec-Image Guided Treatment Ltd. Controlled, non-linear focused ultrasound treatment
CN101313354B (zh) 2005-11-23 2012-02-15 因赛泰克有限公司 超高密度超声阵列中的分级切换
US8235901B2 (en) 2006-04-26 2012-08-07 Insightec, Ltd. Focused ultrasound system with far field tail suppression
US8251908B2 (en) 2007-10-01 2012-08-28 Insightec Ltd. Motion compensated image-guided focused ultrasound therapy system
US8038629B2 (en) * 2007-10-02 2011-10-18 Board Of Regents, The University Of Texas System Digital endotracheal tube sound acquisition and localization device
US8425424B2 (en) 2008-11-19 2013-04-23 Inightee Ltd. Closed-loop clot lysis
US8488813B2 (en) * 2009-04-01 2013-07-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Reconfigurable acoustic transducer device
US8617073B2 (en) 2009-04-17 2013-12-31 Insightec Ltd. Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
BRPI1008271A2 (pt) * 2009-06-02 2016-03-15 Koninkl Philips Electronics Nv sistema terapéutico, programa de computador e método de monitoramento de um tratamento térmico de tecido corpóreo
US9623266B2 (en) 2009-08-04 2017-04-18 Insightec Ltd. Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing
US9177543B2 (en) 2009-08-26 2015-11-03 Insightec Ltd. Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI
EP2489034B1 (en) 2009-10-14 2016-11-30 Insightec Ltd. Mapping ultrasound transducers
US9852727B2 (en) 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
US8932237B2 (en) 2010-04-28 2015-01-13 Insightec, Ltd. Efficient ultrasound focusing
US9575165B2 (en) * 2010-05-25 2017-02-21 General Electric Company Ultrasound probe and ultrasound imaging system
US9981148B2 (en) 2010-10-22 2018-05-29 Insightec, Ltd. Adaptive active cooling during focused ultrasound treatment
WO2013105987A2 (en) 2011-02-15 2013-07-18 Hemosonics, Llc Characterization of blood hemostasis and oxygen transport parameters
WO2013059358A2 (en) 2011-10-17 2013-04-25 Butterfly Network, Inc. Transmissive imaging and related apparatus and methods
US10016627B2 (en) 2012-06-11 2018-07-10 Koninklijke Philips N.V. Medical apparatus for heating a heating volume defined by a surface
CN104602638B (zh) 2012-06-27 2017-12-19 曼特瑞斯医药有限责任公司 用于影响对组织进行治疗的系统
US9667889B2 (en) 2013-04-03 2017-05-30 Butterfly Network, Inc. Portable electronic devices with integrated imaging capabilities
US9437802B2 (en) 2013-08-21 2016-09-06 Fujifilm Dimatix, Inc. Multi-layered thin film piezoelectric devices and methods of making the same
US9475093B2 (en) * 2013-10-03 2016-10-25 Fujifilm Dimatix, Inc. Piezoelectric ultrasonic transducer array with switched operational modes
US9525119B2 (en) 2013-12-11 2016-12-20 Fujifilm Dimatix, Inc. Flexible micromachined transducer device and method for fabricating same
US10675113B2 (en) 2014-03-18 2020-06-09 Monteris Medical Corporation Automated therapy of a three-dimensional tissue region
US20150265353A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
WO2015143025A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
WO2015164886A2 (en) 2014-08-05 2015-10-29 Waag Robert C Device, system, and method for hemispheric breast imaging
US11092680B2 (en) * 2014-12-19 2021-08-17 University Of Rochester Ultrasound system for high-speed and high resolution imaging applications
US9726647B2 (en) 2015-03-17 2017-08-08 Hemosonics, Llc Determining mechanical properties via ultrasound-induced resonance
US10327830B2 (en) 2015-04-01 2019-06-25 Monteris Medical Corporation Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor
WO2018004026A1 (ko) * 2016-06-28 2018-01-04 서강대학교 산학협력단 Hifu를 이용한 초음파 치료 장치 및 그 제어 방법
JP2019524221A (ja) * 2016-07-14 2019-09-05 インサイテック リミテッド 前例に基づく超音波フォーカシング
JP2022500093A (ja) * 2018-06-06 2022-01-04 インサイテック・リミテッド キャビテーションの最適化された監視を伴う集束超音波システム

Family Cites Families (247)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US581008A (en) * 1897-04-20 Bicycle-tire
US2795709A (en) 1953-12-21 1957-06-11 Bendix Aviat Corp Electroplated ceramic rings
US3142035A (en) 1960-02-04 1964-07-21 Harris Transducer Corp Ring-shaped transducer
US4000493A (en) * 1971-04-12 1976-12-28 Eastman Kodak Company Acoustooptic scanner apparatus and method
US3974475A (en) 1971-10-07 1976-08-10 Hoffmann-La Roche Inc. Method of and apparatus for focusing ultrasonic waves in a focal line
US3992693A (en) 1972-12-04 1976-11-16 The Bendix Corporation Underwater transducer and projector therefor
CA1050654A (en) 1974-04-25 1979-03-13 Varian Associates Reconstruction system and method for ultrasonic imaging
US3942150A (en) 1974-08-12 1976-03-02 The United States Of America As Represented By The Secretary Of The Navy Correction of spatial non-uniformities in sonar, radar, and holographic acoustic imaging systems
US4206653A (en) 1975-10-02 1980-06-10 E M I Limited Ultrasonic apparatus
GB2014310B (en) 1978-02-09 1982-09-22 Atomic Energy Authority Uk Ultrasonic testing apparatus
CA1137210A (en) 1979-04-26 1982-12-07 Francis S. Foster Ultrasonic imaging method and device using one transducer having a line focus aligned with another transducer
US4307613A (en) 1979-06-14 1981-12-29 University Of Connecticut Electronically focused ultrasonic transmitter
DE3119295A1 (de) 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum zerstoeren von konkrementen in koerperhoehlen
US4454597A (en) 1982-05-03 1984-06-12 The United States Of America As Represented By The Secretary Of The Navy Conformal array compensating beamformer
DE3216547C1 (de) * 1982-05-04 1983-10-06 Krautkraemer Gmbh Verfahren und Schaltungsvorrichtung zum Erzeugen und Veraendern einer vorbestimmten Anzahl voneinander unabhaengiger Gleichspannungen
DE3224453A1 (de) 1982-06-30 1984-01-05 Siemens AG, 1000 Berlin und 8000 München Ultraschall-tomographiegeraet
US4554925A (en) 1982-07-07 1985-11-26 Picker International, Ltd. Nuclear magnetic resonance imaging method
DE3319871A1 (de) 1983-06-01 1984-12-06 Richard Wolf Gmbh, 7134 Knittlingen Piezoelektrischer wandler zur zerstoerung von konkrementen im koerperinnern
US4505156A (en) 1983-06-21 1985-03-19 Sound Products Company L.P. Method and apparatus for switching multi-element transducer arrays
US4537074A (en) 1983-09-12 1985-08-27 Technicare Corporation Annular array ultrasonic transducers
US4549533A (en) 1984-01-30 1985-10-29 University Of Illinois Apparatus and method for generating and directing ultrasound
US4662222A (en) 1984-12-21 1987-05-05 Johnson Steven A Apparatus and method for acoustic imaging using inverse scattering techniques
US4865042A (en) 1985-08-16 1989-09-12 Hitachi, Ltd. Ultrasonic irradiation system
GB8529446D0 (en) 1985-11-29 1986-01-08 Univ Aberdeen Divergent ultrasound arrays
EP0256481B1 (de) 1986-08-20 1994-01-12 Siemens Aktiengesellschaft Verfahren und Einrichtung zur adaptiven Fokussierung bei einem medizinischen Ultraschall-Bildgabegerät
DE3663860D1 (en) 1986-12-24 1989-07-13 Hewlett Packard Gmbh Method of and apparatus for adjusting the intensity profile of an ultrasound beam
DE3732131A1 (de) 1987-09-24 1989-04-06 Wolf Gmbh Richard Fokussierender ultraschallwandler
US5209221A (en) 1988-03-01 1993-05-11 Richard Wolf Gmbh Ultrasonic treatment of pathological tissue
US4893284A (en) 1988-05-27 1990-01-09 General Electric Company Calibration of phased array ultrasound probe
US4893624A (en) 1988-06-21 1990-01-16 Massachusetts Institute Of Technology Diffuse focus ultrasound hyperthermia system
US5197475A (en) 1988-08-10 1993-03-30 The Board Of Regents, The University Of Texas System Method and apparatus for analyzing material properties using ultrasound
US5211160A (en) 1988-09-14 1993-05-18 Interpore Orthopaedics, Inc. Ultrasonic orthopedic treatment head and body-mounting means therefor
US5316000A (en) 1991-03-05 1994-05-31 Technomed International (Societe Anonyme) Use of at least one composite piezoelectric transducer in the manufacture of an ultrasonic therapy apparatus for applying therapy, in a body zone, in particular to concretions, to tissue, or to bones, of a living being and method of ultrasonic therapy
US5435312A (en) 1991-05-31 1995-07-25 Spivey; Brett A. Acoustic imaging device
DE4227800C2 (de) 1991-08-21 1996-12-19 Toshiba Kawasaki Kk Thrombuslösende Behandlungsvorrichtung
US5291890A (en) 1991-08-29 1994-03-08 General Electric Company Magnetic resonance surgery using heat waves produced with focussed ultrasound
JPH0592008A (ja) * 1991-10-03 1993-04-16 Toshiba Corp 衝撃波治療装置
JP3533217B2 (ja) 1991-12-20 2004-05-31 テクノメド メディカル システム 熱効果およびキャビテーション効果を有する超音波を出力する超音波治療装置
JP3325300B2 (ja) 1992-02-28 2002-09-17 株式会社東芝 超音波治療装置
DE4207463C2 (de) 1992-03-10 1996-03-28 Siemens Ag Anordnung zur Therapie von Gewebe mit Ultraschall
US5247935A (en) 1992-03-19 1993-09-28 General Electric Company Magnetic resonance guided focussed ultrasound surgery
US5271400A (en) 1992-04-01 1993-12-21 General Electric Company Tracking system to monitor the position and orientation of a device using magnetic resonance detection of a sample contained within the device
US5318025A (en) 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
DE4345308C2 (de) 1992-07-15 2001-02-01 Fukuda Denshi Kk Ultraschalldiagnosevorrichtung
US5275165A (en) 1992-11-06 1994-01-04 General Electric Company Magnetic resonance guided ultrasound therapy system with inclined track to move transducers in a small vertical space
US5573497A (en) 1994-11-30 1996-11-12 Technomed Medical Systems And Institut National High-intensity ultrasound therapy method and apparatus with controlled cavitation effect and reduced side lobes
DE4302537C1 (de) 1993-01-29 1994-04-28 Siemens Ag Therapiegerät zur Ortung und Behandlung einer Zone im Körper eines Lebewesens mit akustischen Wellen
JP3860227B2 (ja) 1993-03-10 2006-12-20 株式会社東芝 Mriガイド下で用いる超音波治療装置
US5553618A (en) 1993-03-12 1996-09-10 Kabushiki Kaisha Toshiba Method and apparatus for ultrasound medical treatment
US5307812A (en) 1993-03-26 1994-05-03 General Electric Company Heat surgery system monitored by real-time magnetic resonance profiling
WO1995001751A1 (en) 1993-07-01 1995-01-19 Boston Scientific Corporation Imaging, electrical potential sensing, and ablation catheters
US5379642A (en) 1993-07-19 1995-01-10 Diasonics Ultrasound, Inc. Method and apparatus for performing imaging
US5413550A (en) 1993-07-21 1995-05-09 Pti, Inc. Ultrasound therapy system with automatic dose control
US5368031A (en) 1993-08-29 1994-11-29 General Electric Company Magnetic resonance surgery using heat waves produced with a laser fiber
US5329930A (en) 1993-10-12 1994-07-19 General Electric Company Phased array sector scanner with multiplexed acoustic transducer elements
US5526814A (en) 1993-11-09 1996-06-18 General Electric Company Automatically positioned focussed energy system guided by medical imaging
US5368032A (en) 1993-11-09 1994-11-29 General Electric Company Manually positioned focussed energy system guided by medical imaging
JPH07184907A (ja) 1993-12-28 1995-07-25 Toshiba Corp 超音波治療装置
FR2715313B1 (fr) 1994-01-27 1996-05-31 Edap Int Procédé de commande d'un appareil de traitement par hyperthermie à l'aide d'ultrasons.
JPH07231895A (ja) * 1994-02-23 1995-09-05 Toshiba Corp 超音波治療装置
US5507790A (en) 1994-03-21 1996-04-16 Weiss; William V. Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism
GB9409133D0 (en) 1994-05-09 1994-11-30 Secr Defence Sonar ring transducer
US5549638A (en) 1994-05-17 1996-08-27 Burdette; Everette C. Ultrasound device for use in a thermotherapy apparatus
JP3644644B2 (ja) * 1994-05-25 2005-05-11 株式会社東芝 超音波治療装置
DE4421795C1 (de) 1994-06-22 1996-01-04 Siemens Ag In den Körper eines Lebewesens einführbare Quelle therapeutischer akustischer Wellen
US5803089A (en) 1994-09-15 1998-09-08 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5694936A (en) 1994-09-17 1997-12-09 Kabushiki Kaisha Toshiba Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation
US5490840A (en) 1994-09-26 1996-02-13 General Electric Company Targeted thermal release of drug-polymer conjugates
US5443068A (en) 1994-09-26 1995-08-22 General Electric Company Mechanical positioner for magnetic resonance guided ultrasound therapy
US5520188A (en) 1994-11-02 1996-05-28 Focus Surgery Inc. Annular array transducer
DE69528435D1 (de) 1994-11-22 2002-11-07 Baker Hughes Inc Verfahren zum Bohren und Komplettieren von Bohrlöchern
US5520612A (en) 1994-12-30 1996-05-28 Exogen, Inc. Acoustic system for bone-fracture therapy
US5617371A (en) 1995-02-08 1997-04-01 Diagnostic/Retrieval Systems, Inc. Method and apparatus for accurately determing the location of signal transducers in a passive sonar or other transducer array system
DE19507478C1 (de) 1995-03-03 1996-05-15 Siemens Ag Therapiegerät zur Behandlung mit fokussiertem Ultraschall
DE69634714T2 (de) 1995-03-31 2006-01-19 Kabushiki Kaisha Toshiba, Kawasaki Therapeutisches Ultraschallgerät
US6334846B1 (en) 1995-03-31 2002-01-01 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus
US5605154A (en) 1995-06-06 1997-02-25 Duke University Two-dimensional phase correction using a deformable ultrasonic transducer array
US5617857A (en) 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
US5582578A (en) 1995-08-01 1996-12-10 Duke University Method for the comminution of concretions
US5711300A (en) 1995-08-16 1998-01-27 General Electric Company Real time in vivo measurement of temperature changes with NMR imaging
US5590657A (en) 1995-11-06 1997-01-07 The Regents Of The University Of Michigan Phased array ultrasound system and method for cardiac ablation
US5606971A (en) 1995-11-13 1997-03-04 Artann Corporation, A Nj Corp. Method and device for shear wave elasticity imaging
US5810731A (en) 1995-11-13 1998-09-22 Artann Laboratories Method and apparatus for elasticity imaging using remotely induced shear wave
US5728062A (en) 1995-11-30 1998-03-17 Pharmasonics, Inc. Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers
DE69634976T2 (de) 1995-12-14 2006-04-20 Koninklijke Philips Electronics N.V. Verfahren und gerät zum erhitzen mit ultraschall, gesteuert durch bilderzeugung mit magnetischer resonanz
US5762616A (en) 1996-03-15 1998-06-09 Exogen, Inc. Apparatus for ultrasonic treatment of sites corresponding to the torso
US5752515A (en) 1996-08-21 1998-05-19 Brigham & Women's Hospital Methods and apparatus for image-guided ultrasound delivery of compounds through the blood-brain barrier
US5769790A (en) 1996-10-25 1998-06-23 General Electric Company Focused ultrasound surgery system guided by ultrasound imaging
US5810008A (en) 1996-12-03 1998-09-22 Isg Technologies Inc. Apparatus and method for visualizing ultrasonic images
US6111816A (en) * 1997-02-03 2000-08-29 Teratech Corporation Multi-dimensional beamforming device
CA2289191C (en) 1997-02-06 2004-10-05 Exogen, Inc. Method and apparatus for cartilage growth stimulation
US5904659A (en) 1997-02-14 1999-05-18 Exogen, Inc. Ultrasonic treatment for wounds
US5873845A (en) 1997-03-17 1999-02-23 General Electric Company Ultrasound transducer with focused ultrasound refraction plate
ATE258453T1 (de) 1997-04-18 2004-02-15 Exogen Inc Vorrichtung zur ultraschall-knochenbehandlung
US6263230B1 (en) 1997-05-08 2001-07-17 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
ATE419789T1 (de) 1997-05-23 2009-01-15 Prorhythm Inc Wegwerfbarer fokussierender ultraschallapplikator hoher intensität
DE19727081A1 (de) 1997-06-25 1999-01-07 Siemens Ag Verfahren zur Ortsbestimmung eines positionierbaren Objekts in einem Untersuchungsobjekt mittels magnetischer Resonanz und Vorrichtung zur Durchführung des Verfahrens
US6997925B2 (en) 1997-07-08 2006-02-14 Atrionx, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US6193659B1 (en) 1997-07-15 2001-02-27 Acuson Corporation Medical ultrasonic diagnostic imaging method and apparatus
US6128958A (en) * 1997-09-11 2000-10-10 The Regents Of The University Of Michigan Phased array system architecture
US6358246B1 (en) 1999-06-25 2002-03-19 Radiotherapeutics Corporation Method and system for heating solid tissue
US6071239A (en) 1997-10-27 2000-06-06 Cribbs; Robert W. Method and apparatus for lipolytic therapy using ultrasound energy
US6113559A (en) 1997-12-29 2000-09-05 Klopotek; Peter J. Method and apparatus for therapeutic treatment of skin with ultrasound
DE19800471A1 (de) 1998-01-09 1999-07-15 Philips Patentverwaltung MR-Verfahren mit im Untersuchungsbereich befindlichen Mikrospulen
US5947900A (en) 1998-04-13 1999-09-07 General Electric Company Dynamic scan plane tracking using MR position monitoring
US6135960A (en) 1998-08-31 2000-10-24 Holmberg; Linda Jean High-resolution, three-dimensional whole body ultrasound imaging system
US6042556A (en) 1998-09-04 2000-03-28 University Of Washington Method for determining phase advancement of transducer elements in high intensity focused ultrasound
US7722539B2 (en) 1998-09-18 2010-05-25 University Of Washington Treatment of unwanted tissue by the selective destruction of vasculature providing nutrients to the tissue
US6425867B1 (en) 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
JP4460691B2 (ja) * 1998-09-30 2010-05-12 株式会社東芝 超音波治療装置
JP4095729B2 (ja) 1998-10-26 2008-06-04 株式会社日立製作所 治療用超音波装置
US6701176B1 (en) 1998-11-04 2004-03-02 Johns Hopkins University School Of Medicine Magnetic-resonance-guided imaging, electrophysiology, and ablation
US6605043B1 (en) 1998-11-19 2003-08-12 Acuson Corp. Diagnostic medical ultrasound systems and transducers utilizing micro-mechanical components
AU1128600A (en) 1998-11-20 2000-06-13 Joie P. Jones Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound
US6246896B1 (en) 1998-11-24 2001-06-12 General Electric Company MRI guided ablation system
US6289233B1 (en) 1998-11-25 2001-09-11 General Electric Company High speed tracking of interventional devices using an MRI system
FR2786651B1 (fr) 1998-11-27 2002-10-25 Commissariat Energie Atomique Transducteur ultrasonore de contact, a elements multiples
US6309355B1 (en) 1998-12-22 2001-10-30 The Regents Of The University Of Michigan Method and assembly for performing ultrasound surgery using cavitation
US6428532B1 (en) 1998-12-30 2002-08-06 The General Hospital Corporation Selective tissue targeting by difference frequency of two wavelengths
AU2751200A (en) 1999-02-02 2000-08-25 Transurgical, Inc. Intrabody hifu applicator
IL129461A0 (en) 1999-04-15 2000-02-29 F R A Y Project Dev Ltd 3-D ultrasound imaging system
US6217530B1 (en) 1999-05-14 2001-04-17 University Of Washington Ultrasonic applicator for medical applications
FR2794018B1 (fr) 1999-05-26 2002-05-24 Technomed Medical Systems Appareil de localisation et de traitement par ultrasons
US6317619B1 (en) 1999-07-29 2001-11-13 U.S. Philips Corporation Apparatus, methods, and devices for magnetic resonance imaging controlled by the position of a moveable RF coil
US6242915B1 (en) 1999-08-27 2001-06-05 General Electric Company Field-frequency lock system for magnetic resonance system
JP4526648B2 (ja) 1999-09-09 2010-08-18 株式会社日立メディコ 磁気共鳴イメージング装置
JP3848572B2 (ja) 1999-09-10 2006-11-22 プロリズム,インコーポレイテッド 解剖学的組織を閉塞するための装置
US7510536B2 (en) 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
US6524251B2 (en) 1999-10-05 2003-02-25 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith
US6626855B1 (en) 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
US6618608B1 (en) 1999-11-30 2003-09-09 Txsonics, Ltd. Thermal imaging of fat and muscle using a simultaneous phase and magnitude double echo sequence
WO2001045550A2 (en) * 1999-12-23 2001-06-28 Therus Corporation Ultrasound transducers for imaging and therapy
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
FR2806611B1 (fr) 2000-03-22 2004-10-15 Hossein Kafai Appareil d'echographie pour l'exploration d'articulation temporo-mandibulaire
US6613004B1 (en) 2000-04-21 2003-09-02 Insightec-Txsonics, Ltd. Systems and methods for creating longer necrosed volumes using a phased array focused ultrasound system
US6419648B1 (en) 2000-04-21 2002-07-16 Insightec-Txsonics Ltd. Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
US6392330B1 (en) 2000-06-05 2002-05-21 Pegasus Technologies Ltd. Cylindrical ultrasound receivers and transceivers formed from piezoelectric film
DE10028560C2 (de) 2000-06-09 2002-10-24 Siemens Ag Verwendung von Koeffizienten bei einem Verfahren zum dreidimensionalen Korrigieren von Verzeichnungen und Magnetresonanzgerät zum Durchführen des Verfahrens
US6761691B2 (en) 2000-07-21 2004-07-13 Fuji Photo Film Co., Ltd. Image forming method used in ultrasonic diagnosis, ultrasonic diagnostic apparatus, signal processing apparatus, and recording medium for recording signal processing program
US6733450B1 (en) 2000-07-27 2004-05-11 Texas Systems, Board Of Regents Therapeutic methods and apparatus for use of sonication to enhance perfusion of tissue
US6506171B1 (en) 2000-07-27 2003-01-14 Insightec-Txsonics, Ltd System and methods for controlling distribution of acoustic energy around a focal point using a focused ultrasound system
US6582381B1 (en) 2000-07-31 2003-06-24 Txsonics Ltd. Mechanical positioner for MRI guided ultrasound therapy system
US6612988B2 (en) 2000-08-29 2003-09-02 Brigham And Women's Hospital, Inc. Ultrasound therapy
US6899680B2 (en) 2000-10-19 2005-05-31 Odetect As Ultrasound measurement techniques for bone analysis
US6679855B2 (en) 2000-11-07 2004-01-20 Gerald Horn Method and apparatus for the correction of presbyopia using high intensity focused ultrasound
US6506154B1 (en) 2000-11-28 2003-01-14 Insightec-Txsonics, Ltd. Systems and methods for controlling a phased array focused ultrasound system
US6613005B1 (en) 2000-11-28 2003-09-02 Insightec-Txsonics, Ltd. Systems and methods for steering a focused ultrasound array
WO2002043564A2 (en) 2000-11-28 2002-06-06 Allez Physionix Limited Systems and methods for making non-invasive physiological assessments
US6666833B1 (en) 2000-11-28 2003-12-23 Insightec-Txsonics Ltd Systems and methods for focussing an acoustic energy beam transmitted through non-uniform tissue medium
US6618620B1 (en) 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US6475150B2 (en) 2000-12-01 2002-11-05 The Regents Of The University Of California System and method for ultrasonic tomography
US6770031B2 (en) 2000-12-15 2004-08-03 Brigham And Women's Hospital, Inc. Ultrasound therapy
US6626854B2 (en) 2000-12-27 2003-09-30 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
US6645162B2 (en) 2000-12-27 2003-11-11 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
JP2002209905A (ja) 2001-01-22 2002-07-30 Hitachi Medical Corp 超音波治療プローブ及び超音波治療装置
US7094205B2 (en) 2001-04-06 2006-08-22 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California High-resolution 3D ultrasonic transmission imaging
US6478739B1 (en) 2001-05-11 2002-11-12 The Procter & Gamble Company Ultrasonic breast examination system
US6559644B2 (en) 2001-05-30 2003-05-06 Insightec - Txsonics Ltd. MRI-based temperature mapping with error compensation
US6735461B2 (en) 2001-06-19 2004-05-11 Insightec-Txsonics Ltd Focused ultrasound system with MRI synchronization
US6523272B1 (en) 2001-08-03 2003-02-25 George B. Morales Measuring device and method of manufacture
US7429248B1 (en) 2001-08-09 2008-09-30 Exogen, Inc. Method and apparatus for controlling acoustic modes in tissue healing applications
WO2003023449A1 (en) 2001-09-07 2003-03-20 Shell Internationale Research Maatschappij B.V. Concentrating seismic energy in a selected target point in an underground formation
FR2830468B1 (fr) 2001-10-04 2004-02-20 Inst Nat Sante Rech Med Dispositif et procede de production d'impulsions ultrasonores de forte pression
US6961606B2 (en) 2001-10-19 2005-11-01 Koninklijke Philips Electronics N.V. Multimodality medical imaging system and method with separable detector devices
US7175596B2 (en) 2001-10-29 2007-02-13 Insightec-Txsonics Ltd System and method for sensing and locating disturbances in an energy path of a focused ultrasound system
EP1450697A4 (en) 2001-11-09 2009-09-09 Univ Duke METHOD AND APPARATUS FOR REDUCING TISSUE INJURY IN SHOCK WAVE LITHOTRITIS
US6790180B2 (en) 2001-12-03 2004-09-14 Insightec-Txsonics Ltd. Apparatus, systems, and methods for measuring power output of an ultrasound transducer
US6522142B1 (en) 2001-12-14 2003-02-18 Insightec-Txsonics Ltd. MRI-guided temperature mapping of tissue undergoing thermal treatment
US6824516B2 (en) 2002-03-11 2004-11-30 Medsci Technologies, Inc. System for examining, mapping, diagnosing, and treating diseases of the prostate
US7128711B2 (en) 2002-03-25 2006-10-31 Insightec, Ltd. Positioning systems and methods for guided ultrasound therapy systems
US20030187371A1 (en) 2002-03-27 2003-10-02 Insightec-Txsonics Ltd. Systems and methods for enhanced focused ultrasound ablation using microbubbles
US6705993B2 (en) 2002-05-10 2004-03-16 Regents Of The University Of Minnesota Ultrasound imaging system and method using non-linear post-beamforming filter
US7264592B2 (en) 2002-06-28 2007-09-04 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Scanning devices for three-dimensional ultrasound mammography
US6705994B2 (en) 2002-07-08 2004-03-16 Insightec - Image Guided Treatment Ltd Tissue inhomogeneity correction in ultrasound imaging
US6676602B1 (en) 2002-07-25 2004-01-13 Siemens Medical Solutions Usa, Inc. Two dimensional array switching for beamforming in a volume
US20040059265A1 (en) 2002-09-12 2004-03-25 The Regents Of The University Of California Dynamic acoustic focusing utilizing time reversal
JP4386683B2 (ja) 2002-09-30 2009-12-16 富士フイルム株式会社 超音波送受信装置及び超音波送受信方法
US7077820B1 (en) 2002-10-21 2006-07-18 Advanced Medical Optics, Inc. Enhanced microburst ultrasonic power delivery system and method
US6860852B2 (en) 2002-10-25 2005-03-01 Compex Medical S.A. Ultrasound therapeutic device
US6629929B1 (en) 2002-11-08 2003-10-07 Koninklijke Philips Electronics N.V. Method and apparatus for automatically setting the transmit aperture and apodization of an ultrasound transducer array
ITFI20020228A1 (it) 2002-11-22 2004-05-23 Actis Active Sensors S R L Metodo di focalizzazione di una immagine ecografica e relativo sistema ecografico
US7267650B2 (en) 2002-12-16 2007-09-11 Cardiac Pacemakers, Inc. Ultrasound directed guiding catheter system and method
US8088067B2 (en) 2002-12-23 2012-01-03 Insightec Ltd. Tissue aberration corrections in ultrasound therapy
IL154101A0 (en) 2003-01-23 2003-07-31 Univ Ramot Minimally invasive controlled surgical system with feedback
US7344509B2 (en) 2003-04-17 2008-03-18 Kullervo Hynynen Shear mode therapeutic ultrasound
US7175599B2 (en) 2003-04-17 2007-02-13 Brigham And Women's Hospital, Inc. Shear mode diagnostic ultrasound
EP1471362A1 (en) 2003-04-24 2004-10-27 Universiteit Utrecht Holding B.V. Selective MR imaging of magnetic susceptibility deviations
US7611462B2 (en) 2003-05-22 2009-11-03 Insightec-Image Guided Treatment Ltd. Acoustic beam forming in phased arrays including large numbers of transducer elements
US7377900B2 (en) 2003-06-02 2008-05-27 Insightec - Image Guided Treatment Ltd. Endo-cavity focused ultrasound transducer
SE526718C2 (sv) 2003-06-04 2005-10-25 Ultrazonix Dnt Ab Ultraljudssond med en central öppning
EP1491914B1 (en) * 2003-06-25 2006-10-18 Aloka Co. Ltd. Ultrasound diagnosis apparatus comprising a 2D transducer with variable subarray shape pattern
JP4639045B2 (ja) 2003-07-11 2011-02-23 財団法人先端医療振興財団 磁気共鳴断層画像法による自己参照型・体動追従型の非侵襲体内温度分布計測方法及びその装置
JP4472395B2 (ja) 2003-08-07 2010-06-02 オリンパス株式会社 超音波手術システム
US20070276237A1 (en) 2003-12-11 2007-11-29 Xiang-Ning Li Volumetric Ultrasound Imaging System Using Two-Dimensional Array Transducer
US20050131301A1 (en) 2003-12-12 2005-06-16 Michael Peszynski Ultrasound probe receptacle
CN100434042C (zh) * 2004-01-06 2008-11-19 华南师范大学 生物组织光学和超声的采集和层析成像的方法及其装置
DE102004004297B4 (de) 2004-01-28 2013-06-27 Siemens Aktiengesellschaft Bildgebendes Tomographie-Gerät
US7507213B2 (en) 2004-03-16 2009-03-24 General Patent Llc Pressure pulse/shock wave therapy methods for organs
JP2005283308A (ja) 2004-03-29 2005-10-13 Lintec Corp プローブアレイの製造方法
WO2005094689A1 (en) 2004-04-02 2005-10-13 Koninklijke Philips Electronics N.V. Ultrasonic intracavity probe for 3d imaging
CA2505464C (en) 2004-04-28 2013-12-10 Sunnybrook And Women's College Health Sciences Centre Catheter tracking with phase information
EP1774920A4 (en) 2004-06-21 2011-01-05 Hiroshi Furuhata ULTRASONIC DEVICE FOR THE TREATMENT OF BRAIN INFARCT
US7699780B2 (en) 2004-08-11 2010-04-20 Insightec—Image-Guided Treatment Ltd. Focused ultrasound system with adaptive anatomical aperture shaping
US20060052706A1 (en) 2004-08-20 2006-03-09 Kullervo Hynynen Phased array ultrasound for cardiac ablation
US8409099B2 (en) 2004-08-26 2013-04-02 Insightec Ltd. Focused ultrasound system for surrounding a body tissue mass and treatment method
JP2008516640A (ja) 2004-09-01 2008-05-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 位置及び方向プローブに基づく磁気共鳴マーカー
US7452357B2 (en) 2004-10-22 2008-11-18 Ethicon Endo-Surgery, Inc. System and method for planning treatment of tissue
US20060184034A1 (en) 2005-01-27 2006-08-17 Ronen Haim Ultrasonic probe with an integrated display, tracking and pointing devices
US7553284B2 (en) 2005-02-02 2009-06-30 Vaitekunas Jeffrey J Focused ultrasound for pain reduction
WO2006087649A1 (en) 2005-02-17 2006-08-24 Koninklijke Philips Electronics, N.V. Method and apparatus for the visualization of the focus generated using focused ultrasound
US7771418B2 (en) 2005-03-09 2010-08-10 Sunnybrook Health Sciences Centre Treatment of diseased tissue using controlled ultrasonic heating
US8801701B2 (en) 2005-03-09 2014-08-12 Sunnybrook Health Sciences Centre Method and apparatus for obtaining quantitative temperature measurements in prostate and other tissue undergoing thermal therapy treatment
WO2006119572A1 (en) 2005-05-12 2006-11-16 Compumedics Medical Innovation Pty Ltd Ultrasound diagnosis and treatment apparatus
US20070016039A1 (en) 2005-06-21 2007-01-18 Insightec-Image Guided Treatment Ltd. Controlled, non-linear focused ultrasound treatment
US20070194658A1 (en) 2005-07-13 2007-08-23 Jimin Zhang Systems and methods for performing acoustic hemostasis of deep bleeding trauma in limbs
US20070073135A1 (en) 2005-09-13 2007-03-29 Warren Lee Integrated ultrasound imaging and ablation probe
US7804595B2 (en) 2005-09-14 2010-09-28 University Of Washington Using optical scattering to measure properties of ultrasound contrast agent shells
CN101313354B (zh) 2005-11-23 2012-02-15 因赛泰克有限公司 超高密度超声阵列中的分级切换
US20070167798A1 (en) 2005-11-23 2007-07-19 Cai Anming H Contrast agent augmented ultrasound therapy system with ultrasound imaging guidance for thrombus treatment
JP2007184907A (ja) 2005-12-05 2007-07-19 Canon Inc 画像読取装置及び画像読取方法
US8353834B2 (en) 2005-12-14 2013-01-15 Koninklijke Philips Electronics N.V. Method and apparatus for guidance and application of high intensity focused ultrasound for control of bleeding due to severed limbs
US20070149880A1 (en) 2005-12-22 2007-06-28 Boston Scientific Scimed, Inc. Device and method for determining the location of a vascular opening prior to application of HIFU energy to seal the opening
WO2007099824A1 (ja) 2006-02-23 2007-09-07 Hitachi Medical Corporation 超音波診断装置及び超音波診断方法
US7942835B2 (en) 2006-03-08 2011-05-17 American Medical Innovations, L.L.C. System and method for providing therapeutic treatment using a combination of ultrasound and vibrational stimulation
US8235901B2 (en) 2006-04-26 2012-08-07 Insightec, Ltd. Focused ultrasound system with far field tail suppression
US7738951B2 (en) * 2006-07-28 2010-06-15 Medtronic, Inc. Prioritized multicomplexor sensing circuit
US20100030076A1 (en) 2006-08-01 2010-02-04 Kobi Vortman Systems and Methods for Simultaneously Treating Multiple Target Sites
US7535794B2 (en) 2006-08-01 2009-05-19 Insightec, Ltd. Transducer surface mapping
US7652410B2 (en) 2006-08-01 2010-01-26 Insightec Ltd Ultrasound transducer with non-uniform elements
US20080033278A1 (en) 2006-08-01 2008-02-07 Insightec Ltd. System and method for tracking medical device using magnetic resonance detection
US20080125657A1 (en) 2006-09-27 2008-05-29 Chomas James E Automated contrast agent augmented ultrasound therapy for thrombus treatment
EP1906383B1 (en) 2006-09-29 2013-11-13 Tung Thih Electronic Co., Ltd. Ultrasound transducer apparatus
US20080183077A1 (en) 2006-10-19 2008-07-31 Siemens Corporate Research, Inc. High intensity focused ultrasound path determination
JP2010507932A (ja) 2006-10-23 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 超音波治療のための対称的かつ選択的に指向されたランダムアレイ
CN101190133B (zh) 2006-11-28 2011-05-18 深圳迈瑞生物医疗电子股份有限公司 超声波诊断系统中宽波束的发射方法和装置
DE602006004230D1 (de) 2006-12-18 2009-01-22 Aloka Co Ltd Diagnostisches Ultraschallgerät
US20100207631A1 (en) 2007-03-27 2010-08-19 Mcdowell Andrew F System and Method for Detecting Labeled Entities Using Microcoil Magnetic MRI
US7511501B2 (en) 2007-05-11 2009-03-31 General Electric Company Systems and apparatus for monitoring internal temperature of a gradient coil
US8251908B2 (en) 2007-10-01 2012-08-28 Insightec Ltd. Motion compensated image-guided focused ultrasound therapy system
WO2009055587A1 (en) 2007-10-23 2009-04-30 Abqmr, Inc. Microcoil magnetic resonance detectors
US9420988B2 (en) 2007-12-21 2016-08-23 Koninklijke Philips Electronics N.V. Systems and methods for tracking and guiding high intensity focused ultrasound beams
US8425424B2 (en) 2008-11-19 2013-04-23 Inightee Ltd. Closed-loop clot lysis
US20100179425A1 (en) 2009-01-13 2010-07-15 Eyal Zadicario Systems and methods for controlling ultrasound energy transmitted through non-uniform tissue and cooling of same
US8617073B2 (en) 2009-04-17 2013-12-31 Insightec Ltd. Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
WO2010143072A1 (en) 2009-06-10 2010-12-16 Insightec Ltd. Acoustic-feedback power control during focused ultrasound delivery
US9177543B2 (en) 2009-08-26 2015-11-03 Insightec Ltd. Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI
EP2489034B1 (en) 2009-10-14 2016-11-30 Insightec Ltd. Mapping ultrasound transducers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483913A (zh) * 2009-03-02 2012-05-30 代表亚利桑那大学的亚利桑那校董会 固态声学超材料和使用其聚焦声音的方法
CN102974046A (zh) * 2011-09-05 2013-03-20 三星电子株式会社 医疗设备及其控制方法
US20190284721A1 (en) * 2016-05-20 2019-09-19 A&At Llc Non-round solution spun spandex filaments and methods and devices for production thereof

Also Published As

Publication number Publication date
JP2009516558A (ja) 2009-04-23
WO2007085892A3 (en) 2008-05-08
EP1960993A1 (en) 2008-08-27
JP5087007B2 (ja) 2012-11-28
CN101313354B (zh) 2012-02-15
US20070167781A1 (en) 2007-07-19
WO2007085892A2 (en) 2007-08-02
US8608672B2 (en) 2013-12-17
EP1960993B1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
CN101313354B (zh) 超高密度超声阵列中的分级切换
US7280435B2 (en) Switching circuitry for reconfigurable arrays of sensor elements
US5928169A (en) Apparatus for treating a subject with focused ultrasound waves
CN107580474A (zh) 可变形超声阵列和系统
JP5932195B2 (ja) ヒト表面組織の制御された熱処理のためのシステム
CN106457311B (zh) 具有柔性衬底的压电换能器设备
CN100555695C (zh) 通道数减少的可重构线性传感器阵列
US7322936B2 (en) Ultrasound diagnosis apparatus
US5671746A (en) Elevation steerable ultrasound transducer array
US7217243B2 (en) Ultrasound diagnosis apparatus
US8485974B2 (en) Multiple-frequency ultrasonic phased array driving system
US7798967B2 (en) Ultrasound diagnosis apparatus
KR20140005289A (ko) 마이크로-돔 어레이들을 이용한 압전 변환기들
CN104271265A (zh) 多频超宽带宽换能器
CN100586395C (zh) 等相位二维阵列探头
JP3977827B2 (ja) 超音波診断装置
CN105075291B (zh) 单层压电片式超声波探头
JP2017517231A (ja) レンズ構造体を有する圧電変換器デバイス
US5846201A (en) Elevation plane focusing in an ultrasound imaging system
JP2017525308A (ja) 作動モードのシーケンスを構成するための圧電変換器デバイス
US8226538B2 (en) Biomedical used multiple-channel hemispherical focused ultrasound phased array apparatus
KR102168579B1 (ko) 트랜스듀서 지지체, 초음파 프로브 장치 및 초음파 영상 장치
JP2003270328A (ja) 超音波送受波器及び装置並びに魚群探知機
JPH10165399A (ja) 超音波診断装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant