CN101331504A - 基于处理模型的虚拟传感器系统和方法 - Google Patents

基于处理模型的虚拟传感器系统和方法 Download PDF

Info

Publication number
CN101331504A
CN101331504A CNA200680046898XA CN200680046898A CN101331504A CN 101331504 A CN101331504 A CN 101331504A CN A200680046898X A CNA200680046898X A CN A200680046898XA CN 200680046898 A CN200680046898 A CN 200680046898A CN 101331504 A CN101331504 A CN 101331504A
Authority
CN
China
Prior art keywords
parameter
virtual
measurement
sensor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200680046898XA
Other languages
English (en)
Inventor
A·J·格里尼克
M·塞斯金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Publication of CN101331504A publication Critical patent/CN101331504A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Abstract

提供一种用于虚拟传感器系统(130)的方法。该方法包括:建立用以表示在多个传感参数(306)和多个测量参数(302)之间的相互关系的虚拟传感器处理模型(304);和获得与所述多个测量参数对应的一组值。该方法还包括:同时基于与所述多个测量参数对应的所述一组值和所述虚拟传感器处理模型,计算所述多个传感参数的值;和向控制系统(120)提供所述多个传感参数的值。

Description

基于处理模型的虚拟传感器系统和方法
技术领域
本发明一般地涉及基于计算机的处理建模技术,更具体地,涉及使用处理模型的虚拟传感器系统和方法。
背景技术
在许多产品(例如,现代作业机械)中广泛使用物理传感器,以测量和监控物理现象,例如,温度、速度和来自机动车辆的排放物。物理传感器通常直接测量物理现象,并将这些测量结果转换成通过控制系统进一步处理的测量数据。虽然物理传感器直接测量物理现象,但是物理传感器和相关的硬件通常很昂贵,并且有时候很不可靠。此外,当控制系统依赖于物理传感器来正确运行时,物理传感器的故障会使得这种控制系统无法运行。例如,在发动机中的速度传感器或定时传感器的故障可导致发动机整体上关机,即使发动机本身仍旧可以运行。
开发出虚拟传感器,以处理其它各种物理测量的值,以及生成由物理传感器先前直接测量的值,从而代替直接测量。例如,1995年1月31日Keller等人公布的美国专利No.5,386,373(‘373专利)公开了一种通过传感器确认的虚拟连续排放监控系统。所述‘373专利使用反向传播-激活模型和蒙特卡洛(monte-carlo)检索技术来建立和优化用于虚拟传感系统的计算模型,以从其它测量的参数导出传感参数。然而,特别是在产生和/或优化计算模型时,这种传统技术通常无法解决在各个测量参数之间的内部关联,以及无法将其它测量的参数与传感参数关联。
根据所公开系统的某些特点的方法和系统旨在解决上述的一个或多个问题。
发明内容
本发明的公开内容的一方面包括一种用于虚拟传感器系统的方法。该方法包括:建立用以表示在多个传感参数和多个测量参数之间的相互关系的虚拟传感器处理模型;和获得与所述多个测量参数对应的一组值。该方法还包括:同时基于与所述多个测量参数对应的所述一组值和所述虚拟传感器处理模型,计算所述多个传感参数的值;和向控制系统提供所述多个传感参数的值。
本发明的公开内容的另一方面包括一种用于建立虚拟传感器处理模型的计算机系统。该计算机系统包括:数据库,被配置为存储与所述虚拟传感器处理模型相关的信息;和处理器。该处理器可被配置为:获得与一个或多个输入变量和所述多个传感参数相关的数据记录;和从所述一个或多个输入变量选择所述多个测量参数。该处理器还可被配置为:生成用以表示在所述多个测量参数和所述多个传感参数之间的相互关系的计算模型;和确定所述计算模型的所述多个测量参数的期望统计分布。此外,该处理器还可被配置为:基于所述期望统计分布重新校准所述多个测量参数,以定义期望输入空间。
本发明的公开内容的另一方面包括一种作业机械。该作业机械可包括:动力源,被配置为向所述作业机械提供动力;控制系统,被配置为控制所述动力源。该作业机械还可包括:虚拟传感器系统,包括用以表示在多个传感参数和多个测量参数之间的相互关系的虚拟传感器处理模型。所述虚拟传感器系统可被配置为:获得与所述多个测量参数对应的一组值;和同时基于与所述多个测量参数对应的所述一组值和所述虚拟传感器处理模型,计算所述多个传感参数的值。所述虚拟传感器系统还可被配置为:向所述控制系统提供所述多个传感参数的值。此外,所述控制系统基于所述多个传感参数的值控制所述动力源。
本发明的公开内容的另一方面包括一种在被配置为建立虚拟传感器处理模型的计算机系统中使用的计算机可读介质。该计算机可读介质可具有用于执行一种方法的计算机可执行指令。该方法可包括:获得与一个或多个输入变量和所述多个传感参数相关的数据记录;和从所述一个或多个输入变量选择所述多个测量参数。该方法还可包括:生成用以表示在所述多个测量参数和所述多个传感参数之间的相互关系的计算模型;确定所述计算模型的所述多个测量参数的期望统计分布;和基于所述期望统计分布重新校准所述多个测量参数,以定义期望输入空间。
附图说明
图1示出其中可结合根据某些公开实施例的特点和原理的示例性作业机械;
图2示出根据某些公开实施例的示例性虚拟传感器系统的框图;
图3示出根据某些公开实施例的示例性虚拟传感器系统的逻辑框图;
图4示出根据某些公开实施例的示例性传感器模型生成和优化处理的流程图;
图5示出根据某些公开实施例的示例性控制处理的流程图;和
图6示出根据某些公开实施例的另一示例性控制处理的流程图。
具体实施方式
现在,将详细参照在附图中示出的示例性实施例。只要可能,在整个附图中将使用相同的标号表示相同或相似的部分。
图1示出其中可以结合根据某些公开实施例的特点和原理的示例性作业机械100。作业机械100可以指用于执行与特定行业(例如,采矿业、建筑业、农业、运输业等)相关的某些类型操作的,并且在多个作业环境(例如,建筑工地、矿场、发电站和发电机、公路应用等)之间或多个作业环境中运行的任意类型固定或移动机械。移动机械的非限制性实例包括:商用机械,例如,卡车、起重机、运土车、采矿车、锄耕机、物料搬运设备、农业设备、船舶、飞机和在作业环境中运行的任意可移动机械。作业机械100还可包括任意类型的商用车,例如,小汽车、运货车和其它车辆。虽然,如图1所示,作业机械100是运土型作业机械,但是可以假定,作业机械100可以是任意类型的作业机械。
如图1所示,作业机械100可包括:发动机110、发动机控制模块(ECM)120、虚拟传感器系统130、物理传感器140和142和数据链路150。发动机110可包括为作业机械100产生动力的任意适合类型的发动机或动力源,例如,内燃机或燃料电池发电机。ECM 120可包括任意适当类型的发动机控制系统,其被配置为执行发动机控制功能,从而发动机110可以正确运行。ECM 120可包括任意数目的装置,例如,微处理器或微控制器、存储器模块、通信装置、输入/输出装置、存储装置等,以执行这种控制功能。此外,ECM 120也可以控制作业机械100的其它系统,例如,传输系统和/或液压系统等。计算机软件指令可被存储在ECM 120或加载至ECM 120。ECM 120可执行计算机软件指令,以执行各种控制功能和处理。
ECM 120可耦合至数据链路150,以从其它组件接收数据或向其它组件发送数据,所述其它组件例如是发动机110、物理传感器140和142、虚拟传感器系统130和/或作业机械100的任意其它组件(未示出)。数据链路150可包括任意适合类型的数据通信介质,例如,电缆、电线、无线电和/或激光等。物理传感器140可包括一个或多个传感器,用于测量作业机械运行环境的某些参数。例如,物理传感器140可包括排放物传感器,用于测量作业机械100的排放物,例如,氮氧化物(NOX)、二氧化硫(SO2)、一氧化碳(CO)、总还原硫(TRS)等。具体地,NOX排放物的传感和还原对于发动机110的正常运行非常重要。另一方面,物理传感器142可包括在发动机110或其它作业机械组件(未示出)中用于提供关于发动机110或其它组件的各个测量参数(例如,温度、速度等)的适当传感器。
虚拟传感器系统130可包括能基于计算模型和多个测量参数产生传感参数的值的任意适当类型控制系统。所述传感参数可表示通过特定物理传感器直接测量的那些测量参数。例如,物理NOX排放物传感器可测量作业机械100的NOX排放物水平,以及向其它组件(例如,ECM 120)提供NOX排放物水平的值,即传感参数。然而,传感参数还可包括可由物理传感器直接测量和/或基于物理传感器的读取内容计算的任意输出参数。另一方面,测量参数可指的是与传感参数相关的并且表示作业机械100的一个或多个组件(例如,发动机110)的状态的任意参数。例如,对于传感参数——NOX排放物水平来说,测量参数可包括环境参数,例如,压缩比、涡轮增压器效率、后冷却器特征、温度值、压力值、周围条件、燃料比和发动机速度等。
此外,虚拟传感器系统130可配置为独立的控制系统,或可选择地可以与例如ECM 120的其它控制系统结合。图2示出虚拟传感器系统130的示例性功能框图。
如图2所示,虚拟传感器系统120可包括:处理器202、存储器模块204、数据库206、I/O接口208、网络接口210和存储装置212。然而,在虚拟传感器系统120中也可以包括其它组件。
处理器202可包括任意适合类型的通用微处理器、数字信号处理器或微控制器。处理器202可被配置为专用于控制发动机110的独立处理器模块。可选择地,处理器202可被配置为用于执行与虚拟传感器无关的其它功能的共享处理器模块。
存储器模块204可包括一个或多个存储器装置,包括但不限于,ROM、闪存、动态RAM和静态RAM。存储器模块204可被配置以存储由处理器202所使用的信息。数据库206可包括含有与测量参数的特征相关的信息、传感参数、数学模型和/或任意其它控制信息的任意类型适合的数据库。
此外,I/O接口208也可以连接至数据链路150,以从各个传感器或其它组件(例如,物理传感器140和142)获取数据和/或向这些组件和向ECM120发送数据。网络接口210可包括能够基于一个或多个通信协议与其它计算机系统通信的任意类型网络装置。存储装置212可包括任意适合类型的海量存储装置,用于存储处理器202需要运行的任意类型的信息。例如,存储装置212可包括一个或多个硬盘装置、光盘装置或用于提供存储空间的其它存储装置。
如上所述,虚拟传感器系统130可包括处理模型,以向ECM 120提供某些传感参数的值。图3示出示例性虚拟传感器系统130的逻辑框图。
如图3所示,可建立虚拟传感器处理模型304,以构建在输入参数302(例如,测量参数)和输出参数306(例如,传感参数)之间的相互关系。在设立虚拟传感器处理模型304之后,可向虚拟传感器处理模型304提供输入参数302的值,以基于输入参数302的给定值以及由虚拟传感器处理模型304所设立的在输入参数302和输出参数306之间的相互关系生成输出参数306的值。
在某些实施例中,虚拟传感器系统130可包括NOX虚拟传感器,用以提供从作业机械100的排气系统(未示出)排放的NOX水平。输入参数302可包括与NOX排放物水平相关的任意适合类型的数据。例如,输入参数302可包括用以控制发动机110的各种响应特征的运行的参数和/或与发动机110的运行对应的条件相关的参数。例如,输入参数302可包括喷油定时、压缩比、涡轮增压器效率、后冷却器特征、温度值(例如,进气歧管温度)、压力值(例如,进气歧管压力)、周围条件(例如,周围湿度)、燃料比和发动机速度等。然而,也可以包括其它参数。输入参数302也可以通过某些物理传感器(例如,物理传感器142)测量,或通过其它控制系统(例如,ECM 120)创建。虚拟传感器系统130可经由耦合至数据链路150的输入端310获得输入参数302的值。
另一方面,输出参数306可对应于传感参数。例如,NOX虚拟传感器的输出参数306可包括NOX排放物水平,和/或由NOX虚拟传感应用使用的任意其它类型的输出参数。输出参数306(例如,NOX排放物水平)可经由耦合至数据链路150的输出端320被发送到ECM 120。
虚拟传感器处理模型304可包括用以指示在输入参数302和输出参数306之间的相互关系的任意适合类型的数学或物理模型。例如,虚拟传感器处理模型304可以是基于神经网络的数学模型,其可被培养成用以捕获在输入参数302和输出参数306之间的相互关系。也可以使用其它类型的数学模型,例如,模糊逻辑模型、线性系统模型和/或非线性系统模型。可以使用从建立虚拟传感器处理模型304的特定发动机应用所收集的数据记录来培养或确认虚拟传感器处理模型304。即,可以根据与使用数据记录的特定类型模型对应的特定规则建立虚拟传感器处理模型304,并且可以使用数据记录的一部分检验虚拟传感器处理模型304的相互关系。
在虚拟传感器处理模型304被培养和确定之后,虚拟传感器处理模型304可被优化,以定义输入参数302的期望输入空间和/或输出参数306的期望分布。确认的或优化的虚拟传感器处理模型304可用于在提供一组输入参数102的值时产生输出参数306的对应值。在上述实例中,虚拟传感器处理模型304可用于基于测量参数(例如,周围湿度、进气歧管压力、进气歧管温度、燃料比和发动机速度等)产生NOX排放物水平。
返回图2,可基于存储在虚拟传感器系统130上或加载到虚拟传感器系统130上的计算机程序通过处理器202执行虚拟传感器处理模型304的设立和运行。可选择地,虚拟传感器处理模型304的设立可以由其它计算机系统(例如,ECM 120或被配置以创建处理模型的独立通用计算机)实现。然后,可将创建的处理模型加载到虚拟传感器系统130,用于运行。
处理器202可执行虚拟传感器处理模型生成和优化处理,以生成和优化虚拟传感器处理模型304。图4示出由处理器202执行的示例性模型生成和优化处理。
如图4所示,在模型生成和优化处理的开始,处理器202可获得与输入参数302和输出参数306相关的数据记录(步骤402)。数据记录可包括用以表征包含NOX排放物水平的发动机运行和排放物水平的信息。可提供物理传感器140(例如,物理NOX排放物传感器),以生成关于输出参数306(例如,传感参数,如NOX水平)的数据记录。ECM 120和/或物理传感器142可提供关于输入参数302(例如,测量参数,如,进气歧管温度、进气歧管压力、燃料比和发动机速度等)的数据记录。此外,数据记录可包括输入参数和输出参数两者,并且可以在各种预定运行条件下基于各种发动机或基于单独的测试发动机来收集。
数据记录也可以从为收集这样的数据而设计的试验中收集。可选择地,数据记录可以通过其它相关处理(例如,其它排放物建模或分析处理)人工生成。数据记录还包括用于构成虚拟传感器处理模型304的培养数据,和用于确定虚拟传感器处理模型304的检测数据。此外,数据记录还可包括模拟数据,用于观察和优化虚拟传感器处理模型304。
数据记录可反应输入参数102和输出参数106的特征,例如,统计分布、正常范围和/或精确容度等。一旦获得数据记录(步骤402),则处理器可预处理数据记录,以清除对于明显错误的数据记录,并排除冗余(步骤404)。处理器202可去除大致相同的数据记录和/或去除超出合理范围的数据记录,以用于模型生成和优化。在数据记录被预处理之后,处理器202可通过分析数据记录来选择适当的输入参数(步骤406)。
数据记录可以与许多输入变量(例如,对应于喷油定时、压缩比、涡轮增压器效率、后冷却器特征、各种温度参数、各种压力参数、各种周围条件、燃料比和发动机速度等的变量)关联。输入变量的数目可以大于用于虚拟传感器处理模型304的特定一组输入参数102的数目,即,输入参数102可以是输入变量的子集。例如,输入参数302可以包括输入变量中的进气歧管温度、进气歧管压力、周围湿度、燃料比和发动机速度等。
大量数目的输入变量可大大增加在数学模型的生成和运行期间的计算时间。需要减少输入变量的数目,以在实际计算时间限度内创建数学模型。此外,在某些情况下,在数据记录中输入变量的数目会超过数据记录的数目,并导致稀疏数据情形。在某些数学模型中,必须忽略某些额外的输入变量,从而可基于减少的变量数目创建实际数学模型。
处理器202可以根据预定标准从输入变量选择输入参数302。例如,处理器202可通过试验和/或专家意见选择输入参数302。可选择地,在某些实施例中,处理器202可基于在数据记录的正常数据集和异常数据集之间的马氏(mahalanobis)距离来选择输入参数。可以使用适合的方法通过处理器202定义正常数据集和异常数据集。例如,正常数据集可包括与产生期望输出参数的输入参数302相关的特征数据。另一方面,异常数据集可包括超出容度的或者需要避免的任意特征数据。正常数据集和异常数据集可以由处理器202预定义。
马氏距离指的是可基于在数据集中的参数之间的相互关系用于测量数据概况的数学表示。马氏距离与欧氏(Euclidean)距离不同,因为马氏距离考虑的是数据集的相互关系。数据集X(例如,多元矢量)的马氏距离可表示为:
MDi=Xix)∑-1(Xix)′(1)
其中μx是X的平均数,∑-1是X的逆方差-协方差矩阵。MDi是数据点Xi距离其平均数μx的距离的权数,从而在相同多元法向的等密度线上的观察结果将具有相同的距离。这种观察结果可用于从具有不同方差的分离数据组选择相关的参数。
处理器202可选择输入参数302作为输入变量的期望子集,从而最大化和优化在正常数据集和异常数据集之间的马氏距离。可通过处理器202使用遗传算法来搜索期望子集的输入变量,其目的为最大化马氏距离。处理器202可基于预定标准来选择输入变量的候选子集,并且计算正常数据集的马氏距离MDnormal和异常数据集的马氏距离MDabnormal。处理器202还可以计算在正常数据集和异常数据之间的马氏距离(即,马氏距离MDx=MDnormal-MDabnormal的偏差)。然而,也可以使用其它类型的偏差。
如果遗传算法收敛(即,遗传算法找到在与候选子集对应的正常数据集和异常数据集之间的最大化或优化马氏距离),则处理器202可选择输入变量的候选子集。如果遗传算法不收敛,则可以创建输入变量的不同候选子集,用于进一步搜索。这一搜索处理可继续,直到遗传算法收敛并选择输入变量的期望子集(例如,输入参数302)时为止。
可选择地,如上所述,也可以使用马氏距离,通过选择用以实现期望马氏距离的数据记录的一部分来减少数据记录的数目。
在选择输入参数302(例如,进气歧管温度、进气歧管压力、周围湿度、燃料比和发动机速度等)之后,处理器202可生成虚拟传感器处理模型304,以构建在输入参数302和输出参数306之间的相互关系(步骤408)。在某些实施例中,虚拟传感器处理模型304可对应于计算模型,例如,在任意适合类型的神经网络上构建的计算模型。可使用的神经网络计算模型的类型可包括反向传播、前馈模型、级联神经网络和/或混合神经网络等。所使用的神经网络的特定类型或结构可取决于特定应用。也可以使用其它类型的计算模型,例如,线性系统或非线性系统模型等。
可通过使用所选择的数据记录来培养神经网络计算模型(即,虚拟传感器处理模型304)。例如,神经网络计算模型可包括在输出参数(例如,NOX排放物水平)和输入参数302(进气歧管温度、进气歧管压力、周围湿度、燃料比和发动机速度等)之间的相互关系。可以通过预定标准来评估神经网络计算模型,以确定是否完成培养。该标准可以包括精确度、时间和/或培养反复的数目等的期望范围。
在培养了神经网络之后(即,基于预定标准首先建立了计算模型),处理器202可统计地确定计算模型(步骤410)。统计的确定指的是将神经网络计算模型的输出与实际或期望的输出进行比较以确定计算模型的精确度的分析处理。可保留数据记录的一部分,以用于确定处理中。
可选择地,处理器202也可以生成用于确定处理中的模拟或确定数据。可独立于确定取样或结合取样来执行这一过程。可根据用于建模的数据记录来确定输入的统计分布。可使用例如Latin Hypercube模拟的统计模拟来生成假定输入数据记录。这些输入数据记录通过计算模型来处理,得到输出特征的一个或多个分布。来自统计模型的输出特征的分布可以与从总体观察的输出特征的分布进行比较。可以对于计算模型的输出分布和观察输出分布来执行统计质量测试,以保证模型完整性。
一旦经过培养和确定,在提供了输入参数302的值时,可使用虚拟传感器处理模型304预测输出参数306的值。此外,处理器202可通过基于在输入参数302和输出参数306的期望分布之间的关系确定输入参数302的期望分布,从而优化虚拟传感器处理模型304(步骤412)。
处理器202可基于特定应用分析在输入参数302的期望分布和输出参数306的期望分布之间的关系。例如,处理器202可选择对于输出参数306的期望范围(例如,期望的或在某一预定范围内的NOX排放物水平)。然后,处理器202可运行计算模型的模拟,以找到对于各个输入参数(例如,进气歧管温度、进气歧管压力、周围湿度、燃料比和发动机速度等中的一个)的期望统计分布。即,处理器202可分别确定与输出参数306的正常范围对应的各个输入参数的分布(例如,平均数、标准差)。在确定了对于所有各个输入参数的各自分布之后,处理器202可组合对于所有各个输入参数的期望分布,以确定对于全部输入参数302的期望分布和特征。
可选择地,处理器202可同时识别输入参数302的期望分布,以最大化获得期望结果的可能性。在某些实施例中,处理器202可基于zeta统计同时确定输入参数302的期望分布。zeta统计可表示在输入参数、它们的值的范围和期望结果之间的关系。zeta统计可表示为
ζ = Σ 1 j Σ 1 i | S ij | ( σ i x - i ) ( x - j σ j ) , 其中,xi代表第i个输入的平均数或期望值;xj代表第j个结果的平均数或期望值;σi代表第i个输入的标准差;σj代表第j个结果的标准差;|Sij|代表第j个结果与第i个输入的偏导数或灵敏度。
在某些情况下,xi可小于或等于0。可将3σi的值增加至xi,以纠正这种有问题的情形。然而,如果在增加了3σi的值之后,xi仍旧等于0,则处理器202可确定σj可能也是0,并且在优化下的处理模型可能是不期望的。在某些实施例中,处理器202可为σi设置最小阈值,以保证处理模型的可靠性。在某些其它情况下,σj可等于0。然后,处理器202可确定在优化下的模型可能不足以反应在某种确定范围内的输出参数。处理器202可以向ζ分配不确定大的数目。
处理器202可识别输入参数302的期望分布,从而最大化或优化神经网络计算模型(即,虚拟传感器处理模型304)的zeta统计。可通过处理器202使用适合类型的遗传算法来搜索输入参数302的期望分布,其目的为最大化zeta统计。处理器202可选择具有预定搜索范围的输入参数302的候选集值以及运行虚拟传感器处理模型304的模拟,以基于输入参数302、输出参数306和神经网络计算模型计算zeta统计参数。处理器202可通过分析输入参数302的候选集值获得xi和σi,以及通过分析模拟的结果获得xj和σj。此外,处理器202可从培养的神经网络获得|Sij|,作为第i个输入对第j个结果的影响的指示。
如果遗传算法收敛(即,遗传算法找到与输入参数302的候选集对应的虚拟传感器处理模型304的最大化或优化zeta统计),则处理器202可选择输入参数302的候选集。如果遗传算法不收敛,则可以通过遗传算法创建输入参数302的不同候选集值,用于进一步搜索。这一搜索处理可继续,直到遗传算法收敛并识别输入参数302的期望集时为止。处理器202可基于期望的输入参数集进一步确定输入参数302的期望分布(例如,平均数和标准差)。一旦确定了期望分布,则处理器可定义有效输入空间,其可包括在期望分布中的任意输入参数(步骤414)。
在一个实施例中,某些输入参数的统计分布是不可能可知的,或不能实际控制的。例如,输入参数可以与装置的物理属性(例如,发动机部件的量纲属性)关联,或者输入参数可以与虚拟传感器处理模型304自身中的恒定变量关联。这些输入参数可以用于zeta统计计算中,以搜索或识别对于与恒定值对应的其它输入参数的期望分布和/或这些输入参数的统计分布。
此外,可选择地,可建立多个虚拟传感器处理模型。可通过使用任意适合类型的模拟方法(例如,统计模拟)来模拟多个建立的虚拟传感器处理模型。可比较基于这些多虚拟传感器处理模型的模拟的输出参数306,以基于预定标准(例如,具有从对应物理传感器输出的最小方差等)选择最适合的虚拟传感器处理模型。所选择的最适合虚拟传感器处理模型304可用于虚拟传感器应用中。
返回图1,在虚拟传感器处理模型304被培养、确定、优化和/或选择之后,ECM 120和虚拟传感器系统130可以向作业机械100的相关组件提供控制功能。例如,ECM 120可以根据由虚拟传感器系统130提供的以及具体地由虚拟传感器模型304提供的NOX排放物水平来控制发动机110。
在某些实施例中,虚拟传感器系统130可用于代替对应的物理传感器。例如,虚拟传感器系统130可代替由ECM 120使用的一个或多个NOX排放物传感器。ECM 120可基于虚拟传感器系统130执行控制处理。图5示出由ECM 120执行的示例性控制处理。
如图5所示,ECM 120可控制和/或有助于物理传感器140和/或142以及发动机110测量相关参数,例如,进气歧管温度、进气歧管压力、周围湿度、燃料比和发动机速度等(步骤502)。在测量了进气歧管温度、进气歧管压力、周围湿度、燃料比和发动机速度之后,ECM 120可以向虚拟传感器系统130提供这些测量的参数(步骤504)。ECM 120可以在数据链路150上提供测量的参数,从而虚拟传感器系统130可以从数据链路150获得测量的参数。可选择地,虚拟传感器系统130可以从数据链路150或者从其它物理传感器或者装置直接读取这些测量的参数。
如上所述,虚拟传感器系统130包括虚拟传感器处理模型304。虚拟传感器系统130可以向虚拟传感器处理模型304提供测量参数(例如,进气歧管温度、进气歧管压力、周围湿度、燃料比和发动机速度等)作为输入参数302。然后,虚拟传感器处理模型304可提供输出参数306,例如,NOX排放物水平。
ECM 120可以经由数据链路150从虚拟传感器系统130获得输出参数306(例如,NOX排放物水平)(步骤506)。在某些情况下,ECM 120可能不知道输出参数306的来源。即,ECM 120可能不知道输出参数306是来自虚拟传感器系统130还是来自物理传感器。例如,ECM 120可以在不需要知道这种数据来源的情况下从数据链路150获得NOX排放物水平。在ECM 120从虚拟传感器系统130获得NOX排放物水平之后,ECM 120可基于NOX排放物水平控制发动机110和/或作业机械100的其它组件(步骤508)。例如,ECM 120可执行某些排放物增强或最小化处理。
在某些其它实施例中,虚拟传感器系统130可以与物理传感器结合使用,或作为物理传感器的后备装置。例如,可以在一个或多个NOX排放物传感器故障时使用虚拟传感器系统130。ECM 120可基于虚拟传感器系统130和对应的物理传感器执行控制处理。图6示出由ECM 120执行的另一示例性控制处理。
如图6所示,ECM 120可控制和/或有助于物理传感器140和/或142以及发动机110测量相关参数,例如,进气歧管温度、进气歧管压力、周围湿度、燃料比和发动机速度等(步骤602)。ECM 120也可以向虚拟传感器系统130提供这些测量的参数(步骤604)。然后,虚拟传感器系统130,特别地,虚拟传感器处理模型304可提供输出参数306,例如,NOX排放物水平。
此外,ECM 120可以经由数据链路150从虚拟传感器系统130获得输出参数306(例如,NOX排放物水平)(步骤606)。附加地或同时地,ECM 120也可以从一个或多个物理传感器(例如,物理传感器142)获得NOX排放物水平(步骤608)。ECM 120可以检查关于物理传感器的运行状况(步骤610)。ECM 120可包括某些逻辑装置,以确定物理传感器是否故障。如果物理传感器出现故障(步骤610;是),则ECM 120可以从虚拟传感器系统130获得NOX排放物水平并基于来自虚拟传感器系统130的NOX排放物水平控制发动机110和/或作业机械100的其它组件(步骤612)。
另一方面,如果物理传感器没有出现故障(步骤610;否),则ECM120可以使用来自物理传感器的NOX排放物水平,控制发动机110和/或作业机械100的其它组件(步骤614)。可选择地,ECM 120可以从虚拟传感器系统130和物理传感器获得NOX排放物水平,以确定在NOX排放物水平之间是否存在任何偏差。如果偏差超出预定阈值,则ECM 120可断定出现故障,并切换到虚拟传感器系统130,或使用既不是来自虚拟传感器系统130也不是来自物理传感器的预设值。
此外,ECM 120还可以获得在物理传感器140和142中不可用的测量参数。例如,虚拟传感器系统130可包括用以表示在某一地理区域(例如,科罗拉多州等)中的氧密度和基于空间卫星以及气候数据之间的相互关系的处理模型。即,虚拟传感器系统130可提供具有测量参数(例如,氧密度)的ECM 120,所述测量参数可能在物理传感器中不可用。
工业实用性
这里公开的系统和方法可以在在基本上比其它虚拟传感技术更少时间内提供有效和精确的虚拟传感器处理模型。这种技术可用于广泛范围的虚拟传感器中,例如,用于发动机、结构、环境和材料的传感器等。具体地,这里公开的系统和方法提供了当由于计算复杂性和限制性使用其它技术难以建立处理模型时的实际解决方案。当同时优化输入参数以导出输出参数时,可最小化计算处理。这里公开的系统和方法可以结合其它处理建模技术一起使用,以大大增加速度、实践性和/或灵活性。
这里公开的系统和方法也可提供灵活的解决方案。这里公开的虚拟传感器系统可以与对应的物理传感器互换使用。通过使用对于虚拟传感器和物理传感器两者的共同数据链路,可以通过虚拟传感器系统代替的相同的物理传感器培养虚拟传感器系统的虚拟传感器模型。控制系统可以基于虚拟传感器系统或物理传感器系统运行,而不需要区分哪一个是数据源。
这里公开的虚拟传感器系统可用于代替物理传感器,并且可以单独地和独立于物理传感器运行。这里公开的虚拟传感器也可用于物理传感器的后备装置。此外,虚拟传感器系统可以提供对于一个物理传感器不可用的参数,例如,从传感环境以外的数据。
这里公开的系统和方法也可以由作业机械制造商使用,以通过代替昂贵或易于出现故障的物理传感器来降低成本和增加可靠性。也可以通过经由这里公开的虚拟传感器系统增加后备传感源来改善可靠性和灵活性。这里公开的虚拟传感器技术可用于在组件中提供广大范围的参数,例如,排放物、发动机、传输、导航和/或控制等。此外,这里公开的系统的部件或这里公开的方法的步骤也可以由计算机系统提供商用于协助或集成其它处理模型。
这里公开的示例性系统的其它实施例、特点、方面和原理对于本领域普通技术人员将是清楚的,并且可以在各种环境和系统中实现。

Claims (10)

1.一种用于虚拟传感器系统(130)的方法,包括:
建立步骤,建立用以表示在多个传感参数(306)和多个测量参数(302)之间的相互关系的虚拟传感器处理模型(304);
获得步骤,获得与所述多个测量参数对应的一组值;
计算步骤,同时基于与所述多个测量参数对应的所述一组值和所述虚拟传感器处理模型,计算所述多个传感参数的值;和
提供步骤,向控制系统(120)提供所述多个传感参数的值。
2.根据权利要求1所述的方法,其中所述建立步骤包括:
获取步骤,获得与一个或多个输入变量和所述多个传感参数相关的数据记录;
选择步骤,从所述一个或多个输入变量选择所述多个测量参数;
生成步骤,生成用以表示在所述多个测量参数和所述多个传感参数之间的相互关系的计算模型;
确定步骤,确定所述计算模型的所述多个测量参数的期望统计分布;和
重新校准步骤,基于所述期望统计分布重新校准所述多个测量参数,以定义期望输入空间。
3.根据权利要求2所述的方法,其中所述选择步骤还包括:
预处理所述数据记录;和
使用遗传算法,以基于在所述数据记录的正常数据集和异常数据集之间的马氏距离从所述一个或多个输入变量中选择所述多个测量参数。
4.根据权利要求2所述的方法,其中所述确定步骤还包括:
通过使用遗传算法确定具有最大zeta统计的所述测量参数的候选集;和
基于所述候选集确定所述测量参数的期望分布,
其中所述zeta统计ζ可表示为:
ζ = Σ 1 j Σ 1 i | S ij | ( σ i x ‾ i ) ( x ‾ j σ j )
假设,xi代表第i个输入的平均数;xj代表第j个输出的平均数;σi代表第i个输入的标准差;σj代表第j个输出的标准差;|Sij|代表所述计算模型的第j个输出与第i个输入的灵敏度。
5.根据权利要求1所述的方法,其中所述提供步骤包括:
从物理传感器(140)分别获得所述多个传感参数的值;
确定所述物理传感器出现故障;和
从所述虚拟传感器处理模型向所述控制系统提供所述多个传感参数的值。
6.根据权利要求1所述的方法,其中所述多个传感参数包括:NOX排放物水平。
7.根据权利要求1所述的方法,其中所述多个测量参数包括:进气歧管温度、进气歧管压力、周围湿度、燃料比和发动机速度。
8.一种作业机械(100),包括:
动力源(110),被配置为向所述作业机械提供动力;
控制系统(120),被配置为控制所述动力源;和
虚拟传感器系统(130),包括用以表示在多个传感参数(306)和多个测量参数(302)之间的相互关系的虚拟传感器处理模型(304),所述虚拟传感器系统被配置为:
获得与所述多个测量参数对应的一组值;
同时基于与所述多个测量参数对应的所述一组值和所述虚拟传感器处理模型,计算所述多个传感参数的值;和
向所述控制系统提供所述多个传感参数的值,
其中,所述控制系统基于所述多个传感参数的值控制所述动力源。
9.根据权利要求8所述的作业机械,其中所述虚拟传感器处理模型通过以下步骤建立,包括:
获得与一个或多个输入变量和所述多个传感参数相关的数据记录;
从所述一个或多个输入变量选择所述多个测量参数;
生成用以表示在所述多个测量参数和所述多个传感参数之间的相互关系的计算模型;
确定所述计算模型的所述多个测量参数的期望统计分布;和
基于所述期望统计分布重新校准所述多个测量参数,以定义期望输入空间。
10.根据权利要求8所述的作业机械,还包括:
在所述控制系统和所述虚拟传感器系统之间的数据链路(150),其中所述虚拟传感器系统经由所述数据链路向所述控制系统提供所述多个传感参数的值;和
一个或多个物理传感器(140),被配置为经由所述数据链路向所述控制系统独立提供所述多个传感参数的对应值,
其中所述控制系统还被配置为:
确定所述物理传感器出现故障;和
基于来自所述虚拟传感器系统的所述多个传感参数的值控制所述动力源。
CNA200680046898XA 2005-11-18 2006-09-08 基于处理模型的虚拟传感器系统和方法 Pending CN101331504A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/281,978 2005-11-18
US11/281,978 US7499842B2 (en) 2005-11-18 2005-11-18 Process model based virtual sensor and method

Publications (1)

Publication Number Publication Date
CN101331504A true CN101331504A (zh) 2008-12-24

Family

ID=37507552

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200680046898XA Pending CN101331504A (zh) 2005-11-18 2006-09-08 基于处理模型的虚拟传感器系统和方法

Country Status (6)

Country Link
US (1) US7499842B2 (zh)
EP (1) EP1949312A1 (zh)
JP (1) JP5026433B2 (zh)
CN (1) CN101331504A (zh)
AU (1) AU2006315933B2 (zh)
WO (1) WO2007058695A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110311A (zh) * 2013-04-18 2014-10-22 福特环球技术公司 湿度传感器和发动机系统
CN105204337A (zh) * 2015-09-24 2015-12-30 哈尔滨工程大学 一种基于虚拟传感器的气垫船传感器故障处理方法
CN105604807A (zh) * 2015-12-31 2016-05-25 北京金风科创风电设备有限公司 风电机组监测方法及装置
CN105629951A (zh) * 2015-12-30 2016-06-01 南京航空航天大学 发动机实验环境下传感器信号的重构方法
CN107000755A (zh) * 2014-08-04 2017-08-01 模道威有限责任公司 用于估计影响车辆动力学的变量的方法和对应的虚拟传感器
CN109308035A (zh) * 2017-07-28 2019-02-05 西门子股份公司 用于控制技术系统的操作的系统、方法和控制单元
CN109668588A (zh) * 2019-02-27 2019-04-23 天津大学 基于虚拟传感器的风冷式制冷机组传感器故障诊断方法
CN110056021A (zh) * 2011-05-16 2019-07-26 住友重机械工业株式会社 挖土机及其监控装置及挖土机的输出装置
CN110843755A (zh) * 2019-11-19 2020-02-28 奇瑞汽车股份有限公司 一种估测电动汽车制动压力的方法和设备
CN111417968A (zh) * 2017-12-01 2020-07-14 欧姆龙株式会社 数据生成装置、数据生成方法、数据生成程序及传感器装置
CN113632024A (zh) * 2019-03-27 2021-11-09 西门子股份公司 上级机器平台上的虚拟传感器
CN114460466A (zh) * 2022-04-12 2022-05-10 杭州杰牌传动科技有限公司 一种用于传动监测的虚拟传感器设备及其监测方法
CN114599870A (zh) * 2019-10-25 2022-06-07 沃尔沃卡车集团 使用神经网络的虚拟涡轮增压器速度传感器的系统和方法

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7565333B2 (en) * 2005-04-08 2009-07-21 Caterpillar Inc. Control system and method
US8364610B2 (en) 2005-04-08 2013-01-29 Caterpillar Inc. Process modeling and optimization method and system
US8209156B2 (en) * 2005-04-08 2012-06-26 Caterpillar Inc. Asymmetric random scatter process for probabilistic modeling system for product design
US7877239B2 (en) * 2005-04-08 2011-01-25 Caterpillar Inc Symmetric random scatter process for probabilistic modeling system for product design
US20060230097A1 (en) * 2005-04-08 2006-10-12 Caterpillar Inc. Process model monitoring method and system
US20060229854A1 (en) * 2005-04-08 2006-10-12 Caterpillar Inc. Computer system architecture for probabilistic modeling
US20060229753A1 (en) * 2005-04-08 2006-10-12 Caterpillar Inc. Probabilistic modeling system for product design
US20060229852A1 (en) * 2005-04-08 2006-10-12 Caterpillar Inc. Zeta statistic process method and system
US20070061144A1 (en) * 2005-08-30 2007-03-15 Caterpillar Inc. Batch statistics process model method and system
US7487134B2 (en) * 2005-10-25 2009-02-03 Caterpillar Inc. Medical risk stratifying method and system
US20070118487A1 (en) * 2005-11-18 2007-05-24 Caterpillar Inc. Product cost modeling method and system
US7505949B2 (en) * 2006-01-31 2009-03-17 Caterpillar Inc. Process model error correction method and system
US20070203810A1 (en) * 2006-02-13 2007-08-30 Caterpillar Inc. Supply chain modeling method and system
JP6030278B2 (ja) * 2006-03-16 2016-11-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 電子デバイス製造システムの操作を改善する方法及び装置
US8478506B2 (en) 2006-09-29 2013-07-02 Caterpillar Inc. Virtual sensor based engine control system and method
US20080154811A1 (en) * 2006-12-21 2008-06-26 Caterpillar Inc. Method and system for verifying virtual sensors
US7483774B2 (en) * 2006-12-21 2009-01-27 Caterpillar Inc. Method and system for intelligent maintenance
US7813869B2 (en) * 2007-03-30 2010-10-12 Caterpillar Inc Prediction based engine control system and method
US7787969B2 (en) * 2007-06-15 2010-08-31 Caterpillar Inc Virtual sensor system and method
US7831416B2 (en) * 2007-07-17 2010-11-09 Caterpillar Inc Probabilistic modeling system for product design
US7788070B2 (en) * 2007-07-30 2010-08-31 Caterpillar Inc. Product design optimization method and system
US7542879B2 (en) * 2007-08-31 2009-06-02 Caterpillar Inc. Virtual sensor based control system and method
US7593804B2 (en) * 2007-10-31 2009-09-22 Caterpillar Inc. Fixed-point virtual sensor control system and method
US8224468B2 (en) 2007-11-02 2012-07-17 Caterpillar Inc. Calibration certificate for virtual sensor network (VSN)
US8036764B2 (en) 2007-11-02 2011-10-11 Caterpillar Inc. Virtual sensor network (VSN) system and method
US20090139210A1 (en) * 2007-11-30 2009-06-04 Rodrigo Lain Sanchez Gas concentration sensor drift and failure detection system
US8099993B2 (en) * 2007-12-20 2012-01-24 General Electric Company Method and apparatus for verifying the operation of an accelerometer
JP4491491B2 (ja) * 2008-03-21 2010-06-30 本田技研工業株式会社 制御対象を計測する計測点を最適化するための装置
GB2490818B (en) * 2008-05-19 2013-07-17 Ford Global Tech Llc A Method of Producing a Pair of Virtual Sensors for an Engine
GB2460397B (en) * 2008-05-19 2012-12-12 Ford Global Tech Llc A Method and system for controlling the operation of an engine
US20090293457A1 (en) * 2008-05-30 2009-12-03 Grichnik Anthony J System and method for controlling NOx reactant supply
US8086640B2 (en) * 2008-05-30 2011-12-27 Caterpillar Inc. System and method for improving data coverage in modeling systems
US20090300422A1 (en) * 2008-05-30 2009-12-03 Caterpillar Inc. Analysis method and system using virtual sensors
US7917333B2 (en) 2008-08-20 2011-03-29 Caterpillar Inc. Virtual sensor network (VSN) based control system and method
JP2010117267A (ja) * 2008-11-13 2010-05-27 Nippon Telegr & Teleph Corp <Ntt> 非平常検知システムとそのセンサ選択方法及びセンサ選択プログラム
KR101302134B1 (ko) * 2009-12-18 2013-08-30 한국전자통신연구원 복합 센서정보 제공 장치 및 방법
US20110153035A1 (en) * 2009-12-22 2011-06-23 Caterpillar Inc. Sensor Failure Detection System And Method
US8793004B2 (en) 2011-06-15 2014-07-29 Caterpillar Inc. Virtual sensor system and method for generating output parameters
US8700546B2 (en) * 2011-12-20 2014-04-15 Honeywell International Inc. Model based calibration of inferential sensing
US8977373B2 (en) 2011-12-28 2015-03-10 Caterpillar Inc. Systems and methods for extending physical sensor range using virtual sensors
WO2014043076A1 (en) * 2012-09-11 2014-03-20 Raytheon Company Multi-source sensor stream virtualization
JP5928299B2 (ja) * 2012-10-25 2016-06-01 株式会社デンソー 最適化用モデルの構築方法及び構築装置
WO2014178924A1 (en) * 2013-04-29 2014-11-06 Enernoc, Inc. Apparatus and method for selection of fault detection algorithms for a building management system
US9528914B2 (en) * 2013-09-27 2016-12-27 Rosemount, Inc. Non-intrusive sensor system
ES2786926T3 (es) 2013-10-17 2020-10-14 Utc Fire & Security Americas Panel de seguridad con sensores virtuales
JP6344158B2 (ja) 2014-09-01 2018-06-20 株式会社Ihi 故障検出装置
WO2016068929A1 (en) * 2014-10-30 2016-05-06 Siemens Aktiengesellschaft Using soft-sensors in a programmable logic controller
AT516817A1 (de) 2015-01-23 2016-08-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Betreiben einer Anordnung umfassend eine rotierende Arbeitsmaschine
CN105511944B (zh) * 2016-01-07 2018-09-28 上海海事大学 一种云系统内部虚拟机的异常检测方法
US10127800B2 (en) * 2016-03-08 2018-11-13 True Analytics, LLC Method for sensor maintenance of redundant sensor loops
CN106325100B (zh) * 2016-08-30 2019-10-25 徐州重型机械有限公司 一种基于起重机车载控制系统的吊装模拟方法
JP6562883B2 (ja) 2016-09-20 2019-08-21 株式会社東芝 特性値推定装置および特性値推定方法
WO2019040125A1 (en) 2017-08-21 2019-02-28 Landmark Graphics Corporation INTEGRATED MONITORING AND CONTROL
JP6501018B1 (ja) * 2018-04-20 2019-04-17 トヨタ自動車株式会社 未燃燃料量の機械学習装置
JP6741087B1 (ja) * 2019-02-01 2020-08-19 トヨタ自動車株式会社 内燃機関の制御装置、車載電子制御ユニット、機械学習システム、内燃機関の制御方法、電子制御ユニットの製造方法及び出力パラメータ算出装置
US11556867B2 (en) * 2019-10-16 2023-01-17 Caterpillar Inc. System and method for worksite project tracking
US11686650B2 (en) 2020-12-31 2023-06-27 Robert Bosch Gmbh Dynamic spatiotemporal beamforming
US20220205451A1 (en) * 2020-12-31 2022-06-30 Robert Bosch Gmbh Sensing via signal to signal translation
JP7176143B2 (ja) * 2021-03-31 2022-11-21 Sppテクノロジーズ株式会社 基板処理装置のプロセス判定装置、基板処理システム、基板処理装置のプロセス判定方法、学習モデル群、学習モデル群の生成方法及びプログラム
JP7041773B1 (ja) 2021-05-26 2022-03-24 Sppテクノロジーズ株式会社 基板処理装置のプロセス判定装置、基板処理システム、基板処理装置のプロセス判定方法、学習モデルの生成方法及びプログラム
DE102022206347A1 (de) * 2022-06-23 2023-12-28 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Evaluieren eines Sensormodells, Verfahren zum Trainieren eines Erkennungsalgorithmus und Sensorsystem
DE102022121211B4 (de) * 2022-08-23 2024-03-28 Schenck Process Europe Gmbh Verfahren zum Betreiben einer Sensor-Anordnung und Sensor-Anordnung sowie Einrichtung zur Datenverarbeitung und Vorrichtung

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US556601A (en) * 1896-03-17 Rotary weeder
US3316395A (en) 1963-05-23 1967-04-25 Credit Corp Comp Credit risk computer
US4136329A (en) 1977-05-12 1979-01-23 Transportation Logic Corporation Engine condition-responsive shutdown and warning apparatus
DE3104196C2 (de) 1981-02-06 1988-07-28 Bayerische Motoren Werke AG, 8000 München Anzeigevorrichtung für Kraftfahrzeuge
US5014220A (en) 1988-09-06 1991-05-07 The Boeing Company Reliability model generator
US5262941A (en) 1990-03-30 1993-11-16 Itt Corporation Expert credit recommendation method and system
DE69212673T2 (de) 1991-03-14 1997-03-13 Matsushita Electric Ind Co Ltd Prüfmustererzeugungseinrichtung
US5163412A (en) 1991-11-08 1992-11-17 Neutronics Enterprises, Inc. Pollution control system for older vehicles
WO1993012475A1 (de) 1991-12-09 1993-06-24 Siemens Aktiengesellschaft Verfahren zur optimierung von steuerparametern für ein system, das in abhängigkeit der steuerparameter ein ist-verhalten aufweist
US5594637A (en) 1993-05-26 1997-01-14 Base Ten Systems, Inc. System and method for assessing medical risk
US5434796A (en) 1993-06-30 1995-07-18 Daylight Chemical Information Systems, Inc. Method and apparatus for designing molecules with desired properties by evolving successive populations
US5386373A (en) * 1993-08-05 1995-01-31 Pavilion Technologies, Inc. Virtual continuous emission monitoring system with sensor validation
US5539638A (en) * 1993-08-05 1996-07-23 Pavilion Technologies, Inc. Virtual emissions monitor for automobile
US5604895A (en) 1994-02-22 1997-02-18 Motorola Inc. Method and apparatus for inserting computer code into a high level language (HLL) software model of an electrical circuit to monitor test coverage of the software model when exposed to test inputs
US6513018B1 (en) 1994-05-05 2003-01-28 Fair, Isaac And Company, Inc. Method and apparatus for scoring the likelihood of a desired performance result
US5666297A (en) 1994-05-13 1997-09-09 Aspen Technology, Inc. Plant simulation and optimization software apparatus and method using dual execution models
US5561610A (en) * 1994-06-30 1996-10-01 Caterpillar Inc. Method and apparatus for indicating a fault condition
US5566091A (en) * 1994-06-30 1996-10-15 Caterpillar Inc. Method and apparatus for machine health inference by comparing two like loaded components
US5835902A (en) 1994-11-02 1998-11-10 Jannarone; Robert J. Concurrent learning and performance information processing system
US5608865A (en) 1995-03-14 1997-03-04 Network Integrity, Inc. Stand-in Computer file server providing fast recovery from computer file server failures
US5604306A (en) * 1995-07-28 1997-02-18 Caterpillar Inc. Apparatus and method for detecting a plugged air filter on an engine
US5585553A (en) 1995-07-28 1996-12-17 Caterpillar Inc. Apparatus and method for diagnosing an engine using a boost pressure model
US5719796A (en) 1995-12-04 1998-02-17 Advanced Micro Devices, Inc. System for monitoring and analyzing manufacturing processes using statistical simulation with single step feedback
JPH09158775A (ja) 1995-12-06 1997-06-17 Toyota Motor Corp 内燃機関の吸気圧センサ異常検出装置
US5752007A (en) * 1996-03-11 1998-05-12 Fisher-Rosemount Systems, Inc. System and method using separators for developing training records for use in creating an empirical model of a process
US6438430B1 (en) 1996-05-06 2002-08-20 Pavilion Technologies, Inc. Kiln thermal and combustion control
US5727128A (en) * 1996-05-08 1998-03-10 Fisher-Rosemount Systems, Inc. System and method for automatically determining a set of variables for use in creating a process model
US6199007B1 (en) * 1996-07-09 2001-03-06 Caterpillar Inc. Method and system for determining an absolute power loss condition in an internal combustion engine
JP3703117B2 (ja) 1996-07-10 2005-10-05 ヤマハ発動機株式会社 モデルベース制御方法および装置
US6208982B1 (en) 1996-11-18 2001-03-27 Lockheed Martin Energy Research Corporation Method and apparatus for solving complex and computationally intensive inverse problems in real-time
US5750887A (en) * 1996-11-18 1998-05-12 Caterpillar Inc. Method for determining a remaining life of engine oil
US5842202A (en) * 1996-11-27 1998-11-24 Massachusetts Institute Of Technology Systems and methods for data quality management
US6236908B1 (en) 1997-05-07 2001-05-22 Ford Global Technologies, Inc. Virtual vehicle sensors based on neural networks trained using data generated by simulation models
US5950147A (en) * 1997-06-05 1999-09-07 Caterpillar Inc. Method and apparatus for predicting a fault condition
US6370544B1 (en) 1997-06-18 2002-04-09 Itt Manufacturing Enterprises, Inc. System and method for integrating enterprise management application with network management operations
US6086617A (en) 1997-07-18 2000-07-11 Engineous Software, Inc. User directed heuristic design optimization search
US6405122B1 (en) * 1997-10-14 2002-06-11 Yamaha Hatsudoki Kabushiki Kaisha Method and apparatus for estimating data for engine control
US5914890A (en) * 1997-10-30 1999-06-22 Caterpillar Inc. Method for determining the condition of engine oil based on soot modeling
US6145066A (en) 1997-11-14 2000-11-07 Amdahl Corporation Computer system with transparent data migration between storage volumes
US6477660B1 (en) 1998-03-03 2002-11-05 Sap Aktiengesellschaft Data model for supply chain planning
US5987976A (en) * 1998-03-12 1999-11-23 Caterpillar Inc. Method for determining the condition of engine oil based on TBN modeling
US6119074A (en) * 1998-05-20 2000-09-12 Caterpillar Inc. Method and apparatus of predicting a fault condition
US6269351B1 (en) 1999-03-31 2001-07-31 Dryken Technologies, Inc. Method and system for training an artificial neural network
US6266668B1 (en) 1998-08-04 2001-07-24 Dryken Technologies, Inc. System and method for dynamic data-mining and on-line communication of customized information
US20060117274A1 (en) 1998-08-31 2006-06-01 Tseng Ping-Sheng Behavior processor system and method
US6725208B1 (en) 1998-10-06 2004-04-20 Pavilion Technologies, Inc. Bayesian neural networks for optimization and control
US6240343B1 (en) * 1998-12-28 2001-05-29 Caterpillar Inc. Apparatus and method for diagnosing an engine using computer based models in combination with a neural network
US6092016A (en) 1999-01-25 2000-07-18 Caterpillar, Inc. Apparatus and method for diagnosing an engine using an exhaust temperature model
JP2000276206A (ja) 1999-03-24 2000-10-06 Yamaha Motor Co Ltd 総合特性最適化方法及び装置
US6941287B1 (en) 1999-04-30 2005-09-06 E. I. Du Pont De Nemours And Company Distributed hierarchical evolutionary modeling and visualization of empirical data
US6223133B1 (en) 1999-05-14 2001-04-24 Exxon Research And Engineering Company Method for optimizing multivariate calibrations
US6195648B1 (en) 1999-08-10 2001-02-27 Frank Simon Loan repay enforcement system
US6442511B1 (en) * 1999-09-03 2002-08-27 Caterpillar Inc. Method and apparatus for determining the severity of a trend toward an impending machine failure and responding to the same
US6976062B1 (en) 1999-09-22 2005-12-13 Intermec Ip Corp. Automated software upgrade utility
US6546379B1 (en) 1999-10-26 2003-04-08 International Business Machines Corporation Cascade boosting of predictive models
JP2001159903A (ja) 1999-12-01 2001-06-12 Yamaha Motor Co Ltd 組合せ完成品用単位装置の最適化装置
US6775647B1 (en) 2000-03-02 2004-08-10 American Technology & Services, Inc. Method and system for estimating manufacturing costs
US6298718B1 (en) 2000-03-08 2001-10-09 Cummins Engine Company, Inc. Turbocharger compressor diagnostic system
US6594989B1 (en) 2000-03-17 2003-07-22 Ford Global Technologies, Llc Method and apparatus for enhancing fuel economy of a lean burn internal combustion engine
US6952662B2 (en) * 2000-03-30 2005-10-04 Smartsignal Corporation Signal differentiation system using improved non-linear operator
JP4723057B2 (ja) 2000-06-29 2011-07-13 横浜ゴム株式会社 製品形状設計方法およびこれを用いて設計される空気入りタイヤ
FR2812389B1 (fr) * 2000-07-27 2002-09-13 Inst Francais Du Petrole Methode et systeme pour estimer en temps reel le mode d'ecoulement d'une veine fluide polyphasique, en tous points d'une conduite
US20020042784A1 (en) 2000-10-06 2002-04-11 Kerven David S. System and method for automatically searching and analyzing intellectual property-related materials
US6584768B1 (en) 2000-11-16 2003-07-01 The Majestic Companies, Ltd. Vehicle exhaust filtration system and method
US6556939B1 (en) * 2000-11-22 2003-04-29 Smartsignal Corporation Inferential signal generator for instrumented equipment and processes
US6859770B2 (en) 2000-11-30 2005-02-22 Hewlett-Packard Development Company, L.P. Method and apparatus for generating transaction-based stimulus for simulation of VLSI circuits using event coverage analysis
MXPA01012613A (es) 2000-12-07 2003-08-20 Visteon Global Tech Inc Metodo para calibrar un modelo matematico.
US6859785B2 (en) 2001-01-11 2005-02-22 Case Strategy Llp Diagnostic method and apparatus for business growth strategy
US20020103996A1 (en) 2001-01-31 2002-08-01 Levasseur Joshua T. Method and system for installing an operating system
US6975962B2 (en) 2001-06-11 2005-12-13 Smartsignal Corporation Residual signal alert generation for condition monitoring using approximated SPRT distribution
US20020198821A1 (en) 2001-06-21 2002-12-26 Rodrigo Munoz Method and apparatus for matching risk to return
US20030018503A1 (en) 2001-07-19 2003-01-23 Shulman Ronald F. Computer-based system and method for monitoring the profitability of a manufacturing plant
US6763708B2 (en) 2001-07-31 2004-07-20 General Motors Corporation Passive model-based EGR diagnostic
US7050950B2 (en) 2001-11-08 2006-05-23 General Electric Company System, method and computer product for incremental improvement of algorithm performance during algorithm development
US7644863B2 (en) 2001-11-14 2010-01-12 Sap Aktiengesellschaft Agent using detailed predictive model
US7143046B2 (en) 2001-12-28 2006-11-28 Lucent Technologies Inc. System and method for compressing a data table using models
US20030126053A1 (en) 2001-12-28 2003-07-03 Jonathan Boswell System and method for pricing of a financial product or service using a waterfall tool
EP1454203A2 (en) 2002-02-05 2004-09-08 Cleaire Advanced Emission Controls Apparatus and method for simultaneous monitoring, logging, and controlling of an industrial process
US7237238B2 (en) 2002-03-01 2007-06-26 Dell Products L.P. Method and apparatus for automated operating systems upgrade
US6698203B2 (en) 2002-03-19 2004-03-02 Cummins, Inc. System for estimating absolute boost pressure in a turbocharged internal combustion engine
US6687597B2 (en) 2002-03-28 2004-02-03 Saskatchewan Research Council Neural control system and method for alternatively fueled engines
US7561971B2 (en) 2002-03-28 2009-07-14 Exagen Diagnostics, Inc. Methods and devices relating to estimating classifier performance
US20030200296A1 (en) 2002-04-22 2003-10-23 Orillion Corporation Apparatus and method for modeling, and storing within a database, services on a telecommunications network
US6785604B2 (en) * 2002-05-15 2004-08-31 Caterpillar Inc Diagnostic systems for turbocharged engines
US6882929B2 (en) * 2002-05-15 2005-04-19 Caterpillar Inc NOx emission-control system using a virtual sensor
US6935313B2 (en) 2002-05-15 2005-08-30 Caterpillar Inc System and method for diagnosing and calibrating internal combustion engines
US7035834B2 (en) * 2002-05-15 2006-04-25 Caterpillar Inc. Engine control system using a cascaded neural network
US7000229B2 (en) 2002-07-24 2006-02-14 Sun Microsystems, Inc. Method and system for live operating environment upgrades
US6950712B2 (en) 2002-07-30 2005-09-27 Yamaha Hatsudoki Kabushiki Kaisha System and method for nonlinear dynamic control based on soft computing with discrete constraints
US7533008B2 (en) 2002-08-19 2009-05-12 General Electric Capital Corporation System and method for simulating a discrete event process using business system data
US6711676B1 (en) 2002-10-15 2004-03-23 Zomaya Group, Inc. System and method for providing computer upgrade information
DE10248991B4 (de) * 2002-10-21 2004-12-23 Siemens Ag Vorrichtung zur Simulation des Steuerungs- und Maschinenverhaltens von Werkzeug- oder Produktionsmaschinen
US6823675B2 (en) * 2002-11-13 2004-11-30 General Electric Company Adaptive model-based control systems and methods for controlling a gas turbine
US7356393B1 (en) 2002-11-18 2008-04-08 Turfcentric, Inc. Integrated system for routine maintenance of mechanized equipment
US6865883B2 (en) 2002-12-12 2005-03-15 Detroit Diesel Corporation System and method for regenerating exhaust system filtering and catalyst components
US7213007B2 (en) * 2002-12-24 2007-05-01 Caterpillar Inc Method for forecasting using a genetic algorithm
US7027953B2 (en) 2002-12-30 2006-04-11 Rsl Electronics Ltd. Method and system for diagnostics and prognostics of a mechanical system
US7191161B1 (en) 2003-07-31 2007-03-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for constructing composite response surfaces by combining neural networks with polynominal interpolation or estimation techniques
US7251540B2 (en) * 2003-08-20 2007-07-31 Caterpillar Inc Method of analyzing a product
US7194392B2 (en) * 2003-10-23 2007-03-20 Taner Tuken System for estimating model parameters
JP4369825B2 (ja) 2004-08-11 2009-11-25 株式会社日立製作所 車両故障診断装置および車載端末
US7127892B2 (en) 2004-08-13 2006-10-31 Cummins, Inc. Techniques for determining turbocharger speed
US7124047B2 (en) 2004-09-03 2006-10-17 Eaton Corporation Mathematical model useful for determining and calibrating output of a linear sensor
US7178328B2 (en) 2004-12-20 2007-02-20 General Motors Corporation System for controlling the urea supply to SCR catalysts

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056021A (zh) * 2011-05-16 2019-07-26 住友重机械工业株式会社 挖土机及其监控装置及挖土机的输出装置
CN104110311B (zh) * 2013-04-18 2018-07-13 福特环球技术公司 湿度传感器和发动机系统
CN104110311A (zh) * 2013-04-18 2014-10-22 福特环球技术公司 湿度传感器和发动机系统
CN107000755A (zh) * 2014-08-04 2017-08-01 模道威有限责任公司 用于估计影响车辆动力学的变量的方法和对应的虚拟传感器
CN105204337A (zh) * 2015-09-24 2015-12-30 哈尔滨工程大学 一种基于虚拟传感器的气垫船传感器故障处理方法
CN105629951A (zh) * 2015-12-30 2016-06-01 南京航空航天大学 发动机实验环境下传感器信号的重构方法
CN105604807A (zh) * 2015-12-31 2016-05-25 北京金风科创风电设备有限公司 风电机组监测方法及装置
CN105604807B (zh) * 2015-12-31 2019-02-15 北京金风科创风电设备有限公司 风电机组监测方法及装置
US11048249B2 (en) 2017-07-28 2021-06-29 Siemens Aktiengesellschaft Controlling and maintaining operational status during component failures
CN109308035A (zh) * 2017-07-28 2019-02-05 西门子股份公司 用于控制技术系统的操作的系统、方法和控制单元
CN109308035B (zh) * 2017-07-28 2022-05-17 西门子股份公司 用于控制技术系统的操作的系统、方法和控制单元
CN111417968A (zh) * 2017-12-01 2020-07-14 欧姆龙株式会社 数据生成装置、数据生成方法、数据生成程序及传感器装置
CN111417968B (zh) * 2017-12-01 2023-12-15 欧姆龙株式会社 数据生成装置、数据生成方法、数据生成程序及传感器装置
CN109668588A (zh) * 2019-02-27 2019-04-23 天津大学 基于虚拟传感器的风冷式制冷机组传感器故障诊断方法
CN113632024A (zh) * 2019-03-27 2021-11-09 西门子股份公司 上级机器平台上的虚拟传感器
CN114599870A (zh) * 2019-10-25 2022-06-07 沃尔沃卡车集团 使用神经网络的虚拟涡轮增压器速度传感器的系统和方法
CN110843755A (zh) * 2019-11-19 2020-02-28 奇瑞汽车股份有限公司 一种估测电动汽车制动压力的方法和设备
CN114460466A (zh) * 2022-04-12 2022-05-10 杭州杰牌传动科技有限公司 一种用于传动监测的虚拟传感器设备及其监测方法
CN114460466B (zh) * 2022-04-12 2022-08-05 杭州杰牌传动科技有限公司 一种用于传动监测的虚拟传感器设备及其监测方法

Also Published As

Publication number Publication date
US7499842B2 (en) 2009-03-03
US20070118338A1 (en) 2007-05-24
AU2006315933A1 (en) 2007-05-24
EP1949312A1 (en) 2008-07-30
AU2006315933B2 (en) 2011-12-01
JP5026433B2 (ja) 2012-09-12
WO2007058695A1 (en) 2007-05-24
JP2009520948A (ja) 2009-05-28

Similar Documents

Publication Publication Date Title
CN101331504A (zh) 基于处理模型的虚拟传感器系统和方法
US7787969B2 (en) Virtual sensor system and method
US7542879B2 (en) Virtual sensor based control system and method
US7505949B2 (en) Process model error correction method and system
US7499777B2 (en) Diagnostic and prognostic method and system
US7565333B2 (en) Control system and method
Ochella et al. Artificial intelligence in prognostics and health management of engineering systems
US8793004B2 (en) Virtual sensor system and method for generating output parameters
US8977373B2 (en) Systems and methods for extending physical sensor range using virtual sensors
US7483774B2 (en) Method and system for intelligent maintenance
US8478506B2 (en) Virtual sensor based engine control system and method
US7464063B2 (en) Information processor, state judging unit and diagnostic unit, information processing method, state judging method and diagnosing method
EP2128592A1 (en) Diagnostic device
US20080154811A1 (en) Method and system for verifying virtual sensors
Wang et al. A Bayesian inference-based approach for performance prognostics towards uncertainty quantification and its applications on the marine diesel engine
US20090300422A1 (en) Analysis method and system using virtual sensors
CN106663086A (zh) 用于核回归模型的集体的设备和方法
CN115618732B (zh) 核反应堆数字孪生关键参数自主优化数据反演方法
Movsessian et al. Feature selection techniques for modelling tower fatigue loads of a wind turbine with neural networks
Yang et al. Similarity-based information fusion grey model for remaining useful life prediction of aircraft engines
Movsessian et al. Modelling tower fatigue loads of a wind turbine using data mining techniques on SCADA data
Ingole et al. Investigation of Different Regression Models For The Predictive Maintenance of Aircraft's Engine
Chen et al. Remaining Useful Life Prognostics and Uncertainty Quantification for Aircraft Engines Based on Convolutional Bayesian Long Short-Term Memory Neural Network
Kopuru A machine learning framework for prediction of diagnostic trouble codes in automobiles
Jayaraman Enhancing failure prediction from timeseries histogram data: through fine-tuned lower-dimensional representations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication