CN101354538B - 光刻设备和污染物去除或防止方法 - Google Patents

光刻设备和污染物去除或防止方法 Download PDF

Info

Publication number
CN101354538B
CN101354538B CN 200810130025 CN200810130025A CN101354538B CN 101354538 B CN101354538 B CN 101354538B CN 200810130025 CN200810130025 CN 200810130025 CN 200810130025 A CN200810130025 A CN 200810130025A CN 101354538 B CN101354538 B CN 101354538B
Authority
CN
China
Prior art keywords
liquid
immersion
clean
ozone
clean liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200810130025
Other languages
English (en)
Other versions
CN101354538A (zh
Inventor
A·M·C·P·德琼
H·詹森
M·H·A·里恩德尔斯
A·J·范德奈特
P·F·沃恩腾
J·C·J·范德东克
R·D·沃森
T·C·范登都尔
N·什库
J·W·克龙姆威杰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/862,817 external-priority patent/US7916269B2/en
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of CN101354538A publication Critical patent/CN101354538A/zh
Application granted granted Critical
Publication of CN101354538B publication Critical patent/CN101354538B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Abstract

本发明公开了一种光刻设备和污染物去除或防止方法。浸没式光刻设备通过使用清洁液体进行清洁,所述清洁液体主要由超纯净水以及(a)过氧化氢和臭氧的混合物、或(b)浓度高达5%的过氧化氢、或(c)浓度高达50ppm的臭氧、或(d)浓度高达10ppm的氧气、或(e)选自(a)-(d)的任何组合物构成。

Description

光刻设备和污染物去除或防止方法
本发明要求2007年7月24日递变的、发明名称为“LITHOGRAPHICAPPARATUS AND CONTAMINATION REMOVAL OR PREVENTIONMETHOD”的美国临时专利申请No.60/935,037的优先权。该申请的内容在此以引用的方式并入本文中。
技术领域
本发明涉及一种光刻设备,以及一种用于去除或防止光刻设备中的污染物的方法。
背景技术
光刻设备是一种将所需图案应用到衬底上(通常到所述衬底的目标部分上)的机器。例如,可以将光刻设备用在集成电路(IC)的制造中。在这种情况下,可以将可选地称为掩模或掩模版(reticle)的图案形成装置用于生成在所述IC的单层上待形成的电路图案。可以将该图案转移到衬底(例如,硅晶片)上的目标部分(例如,包括一部分管芯、一个或多个管芯)上。典型地,经由成像将所述图案转移到在所述衬底上设置的辐射敏感材料(抗蚀剂)层上。通常,单独的衬底将包含连续形成图案的相邻目标部分的网络。公知的光刻设备包括:所谓步进机,在所述步进机中,通过将全部图案一次曝光到所述目标部分上来辐射每一个目标部分;以及所谓扫描器,在所述扫描器中,通过辐射束沿给定方向(“扫描”方向)扫描所述图案、同时沿与该方向平行或反向平行的方向扫描所述衬底来辐射每一个目标部分。还可以通过将所述图案压印(imprinting)到所述衬底上,将所述图案从所述图案形成装置转移到所述衬底上。
已提出将光刻投影设备中的衬底浸没在具有相对高的折射率的液体(例如,水)中,以填充介于投影系统的最终元件和衬底之间的空隙。由于曝光辐射在该液体中具有更短的波长,所以上述做法的要点在于能够使更小的特征成像。(液体的作用还可以看作是增加系统的有效NA并且增大焦深)。还提出使用其他浸没液体,包括其中悬浮固体微粒(例如,石英)的水。
然而,将衬底或者衬底和衬底台浸没在液体溶池中(例如,见美国专利US 4,509,852,在此以引用的方式将该专利的内容并入本文中)意味着在扫描曝光过程中必须要加速大体积的液体。这需要另外的或者更大功率的电动机,并且液体中的湍流可能导致不期望的或者不可预料的影响。
提出来的解决方法之一是,液体供给系统通过使用液体限制系统只将液体提供在衬底的局部区域上(通常衬底具有比投影系统的最终元件更大的表面积)以及投影系统的最终元件和衬底之间。提出来的一种用于设置上述设备的方法在申请公开号为WO99/49504的PCT专利申请中公开了,在此以引用的方式将该专利申请的内容并入本文中。如图2和图3所示,液体优选地沿着衬底相对于最终元件移动的方向,通过至少一个入口IN供给到衬底上,在已经通过投影系统下面后,液体通过至少一个出口OUT去除。也就是说,当衬底在所述元件下沿着-X方向扫描时,液体在元件的+X一侧供给并且在-X一侧去除。图2是所述配置的示意图,其中液体通过入口IN供给,并在元件的另一侧通过出口OUT去除,所述出口OUT与低压力源相连。在图2的展示中,虽然液体沿着衬底相对于最终元件的移动方向供给,但这不是必需的。可以在最终元件周围设置各种方向和数目的入口和出口,图3示出了一个实例,其中在最终元件的周围在任一侧以规则的图案设置了四个入口和出口。
需要解决光刻设备中的污染物问题,例如,由去除顶层材料、抗蚀剂或这两者的颗粒所产生的污染物。现有的清洁方法通常不允许在线清洁,且相应地,完成所述清洁导致了设备很长的停机时间。
发明内容
一种有效的清洁方法可能涉及有机溶剂或其它强氧化清洁材料的使用,例如臭氧。这种强腐蚀性清洁剂的使用造成损坏部件表面的很大风险,并因此可能需要尽可能少地使用它们或者避免使用它们,以便限制所带来的损坏。此外,清洁材料可能在被曝光的表面上留下沉积物,且所述沉积物可能需要在使用所述设备之前被去除。冲洗以去除这种沉积物,应当是十分彻底的,并因此很耗时。这在采用不易被例如水冲洗掉的有机清洁溶剂时可能是特别困难的。
使用臭氧也可能造成特殊的困难,至少困难在于臭氧的极具危险性的自然属性,这导致在处理材料时危及安全。臭氧在使用后的去除也应当是十分彻底的,并增加了成本和清洁方法的复杂性。商业上可获得的臭氧发生器可能由于其产生危险的氢气而是不适合的。此外,多种商业工艺产生太多的杂质,所述杂质对于所需的超高纯度的环境是有用的。
在紫外(UV)辐射用于激活臭氧以产生更多活性的羟基的情况下,可以产生附加的清洁效应。然而,所述羟基自身存在的时间很短,且基本上仅存在于UV辐射的光斑之内。采用多个辐射源或多个反射镜以确保所述设备的所有部件被清洁可能是不现实的。
例如,旨在提供一种用于处理浸没式投影设备中的污染物的改进技术,所述技术可以解决至少一个上述问题。
根据本发明的一个方面,提供一种浸没式光刻设备,所述光刻设备包括:浸没系统,所述浸没系统配置用于至少部分地以浸没液填充浸没空隙;清洁液体供给系统,所述清洁液体供给系统配置用于将清洁液体提供到所述浸没空隙;以及清洁液体,所述清洁液体包含在所述浸没空隙中和/或在所述清洁液体供给系统中;其中所述清洁液体主要由超纯净水以及(a)过氧化氢和臭氧的混合物、或(b)浓度高达10%的过氧化氢、或(c)浓度高达50ppm的臭氧、或(d)浓度高达10ppm的氧气、或(e)选自(a)-(d)的任何组合物。
所述清洁液体供给系统可能是浸没液供给系统的一部分。所述浸没液供给系统用于在浸没过程中供给浸没流体。所述清洁液体供给系统可能全部地或部分地从所述浸没液供给系统分离。
根据本发明的另一个方面,提供一种用于防止或减少浸没式光刻设备中的污染物的方法,所述设备包括浸没系统,所述浸没系统配置用于至少部分地用浸没液填充浸没空隙,所述方法包括将清洁液体供给到所述浸没空隙,其中所述清洁液体主要由超纯净水以及(a)过氧化氢和臭氧的混合物、或(b)浓度高达5%的过氧化氢、或(c)浓度高达50ppm的臭氧、或(d)浓度高达10ppm的氧气、或(e)选自(a)-(d)的任何组合物构成。
附图说明
在此仅借助示例,参照所附示意图对本发明的实施例进行描述,在所附示意图中,相同的附图标记表示相同的部分,且其中:
图1示出根据本发明的实施例的光刻设备;
图2和图3示出用于光刻投影设备的液体供给系统;
图4示出了另一种用于光刻投影设备的液体供给系统;
图5示出了又一种液体供给系统;
图6a-c示出了液体去除装置;
图7示出了根据本发明的实施例的浸没液和清洁液体的供给管路;
图8示出了根据本发明的实施例的浸没液和清洁液体的供给管路;
图9示出了根据本发明的实施例的原地臭氧生成系统;
图10a-b示出反射构件的实施例;
图11示出反射构件的另一个实施例;以及
图12示出反射构件的又一个实施例。
具体实施方式
图1示意性地示出根据本发明的一个实施例的光刻设备。所述设备包括:
照射系统(照射器)IL,配置用于调节辐射束B(例如,紫外(UV)辐射或深紫外(DUV)辐射);
支撑结构(例如掩模台)MT,配置用于支撑图案形成装置(例如掩模)MA并与配置用于根据确定的参数精确地定位图案形成装置的第一定位装置PM相连;
衬底台(例如晶片台)WT,配置用于保持衬底(例如涂覆有抗蚀剂的晶片)W,并与配置用于根据确定的参数精确地定位衬底的第二定位装置PW相连;以及
投影系统(例如折射式投影透镜系统)PS,所述投影系统PS配置用于将由图案形成装置MA赋予辐射束B的图案投影到衬底W的目标部分C(例如包括一根或多根管芯)上。
所述照射系统可以包括各种类型的光学部件,例如折射型、反射型、磁性型、电磁型、静电型或其他类型的光学部件、或其任意组合,以引导、成形、或控制辐射。
图案形成装置支撑结构以依赖于图案形成装置的取向、光刻设备的设计以及诸如图案形成装置是否保持在真空环境中等其他条件的方式保持图案形成装置。所述图案形成装置支撑结构可以采用机械的、真空的、静电的或其他夹持技术保持图案形成装置。所述图案形成装置支撑结构可以是框架或台,例如,其可以根据需要成为固定的或可移动的。所述图案形成装置支撑结构可以确保图案形成装置位于所需的位置上(例如相对于投影系统)。在这里任何使用的术语“掩模版”或“掩模”都可以认为与更上位的术语“图案形成装置”同义。
这里所使用的术语“图案形成装置”应该被广义地理解为表示能够用于将图案在辐射束的横截面上赋予辐射束、以便在衬底的目标部分上形成图案的任何装置。应当注意,被赋予辐射束的图案可能不与在衬底的目标部分上所需的图案完全相符(例如如果该图案包括相移特征或所谓辅助特征)。通常,被赋予辐射束的图案将与在目标部分上形成的器件中的特定的功能层相对应,例如集成电路。
图案形成装置可以是透射式的或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列以及可编程液晶显示(LCD)面板。掩模在光刻中是公知的,并且包括诸如二元掩模类型、交替型相移掩模类型、衰减型相移掩模类型和各种混合掩模类型之类的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,可以独立地倾斜每一个小反射镜,以便沿不同方向反射入射的辐射束。所述已倾斜的反射镜将图案赋予由所述反射镜矩阵反射的辐射束。
应该将这里使用的术语“投影系统”广义地解释为包括任意类型的投影系统,包括折射型、反射型、反射折射型、磁性型、电磁型和静电型光学系统、或其任意组合,如对于所使用的曝光辐射所适合的、或对于诸如使用浸没液或使用真空之类的其他因素所适合的。这里使用的任何术语“投影透镜”可以认为是与更上位的术语“投影系统”同义。
如这里所示的,所述设备是透射型的(例如,采用透射式掩模)。替代地,所述设备可以是反射型的(例如,采用如上所述类型的可编程反射镜阵列,或采用反射式掩模)。
所述光刻设备可以是具有两个(双台)或更多衬底台(和/或两个或更多的图案形成装置支撑结构)的类型。在这种“多台”机器中,可以并行地使用附加的台和/或支撑结构,或可以在将一个或更多个其他台和/或支撑结构用于曝光的同时,在一个或更多个台和/或支撑结构上执行预备步骤。
参照图1,所述照射器IL接收从辐射源SO发出的辐射束。该源和所述光刻设备可以是分立的实体(例如当该源为准分子激光器时)。在这种情况下,不会将该源考虑成光刻设备的组成部分,并且通过包括例如合适的定向反射镜和/或扩束器的束传递系统BD的帮助,将所述辐射束从所述源SO传到所述照射器IL。在其他情况下,所述源可以是所述光刻设备的组成部分(例如当所述源是汞灯时)。可以将所述源SO和所述照射器IL、以及如果需要时的所述束传递系统BD一起称作辐射系统。
所述照射器IL可以包括用于调整所述辐射束的角强度分布的调整器AM。通常,可以对所述照射器的光瞳平面中的强度分布的至少所述外部和/或内部径向范围(一般分别称为σ-外部和σ-内部)进行调整。此外,所述照射器IL可以包括各种其他部件,例如积分器IN和聚光器CO。可以将所述照射器用于调节所述辐射束,以在其横截面中具有所需的均匀性和强度分布。
所述辐射束B入射到保持在支撑结构(例如,掩模台)MT上的所述图案形成装置(例如,掩模)MA上,并且通过所述图案形成装置来形成图案。已经穿过图案形成装置MA之后,所述辐射束B通过投影系统PS,所述PS将辐射束聚焦到所述衬底W的目标部分C上。通过第二定位装置PW和定位传感器IF(例如,干涉仪器件、线性编码器或电容传感器)的帮助,可以精确地移动所述衬底台WT,例如以便将不同的目标部分C定位于所述辐射束B的路径中。类似地,例如在从掩模库的机械获取之后,或在扫描期间,可以将所述第一定位装置PM和另一个定位传感器(图1中未明确示出)用于将图案形成装置MA相对于所述辐射束B的路径精确地定位。通常,可以通过形成所述第一定位装置PM的一部分的长行程模块(粗定位)和短行程模块(精定位)的帮助来实现图案形成装置支撑结构MT的移动。类似地,可以采用形成所述第二定位装置PW的一部分的长行程模块和短行程模块来实现所述衬底台WT的移动。在步进机的情况下(与扫描器相反),所述图案形成装置支撑结构MT可以仅与短行程致动器相连,或可以是固定的。可以使用图案形成装置对准标记M1、M2和衬底对准标记P1、P2来对准图案形成装置MA和衬底W。尽管所示的衬底对准标记占据了专用目标部分,但是它们可以位于目标部分之间的空隙(这些公知为划线对齐标记)上。类似地,在将多于一个的管芯设置在图案形成装置MA上的情况下,所述图案形成装置对准标记可以位于所述管芯之间。
可以将所述设备用于以下模式的至少一种:
1.在步进模式中,在将赋予所述辐射束的整个图案一次投影到目标部分C上的同时,将图案形成装置支撑结构MT和衬底台WT保持为基本静止(即,单一的静态曝光)。然后将所述衬底台WT沿X和/或Y方向移动,使得可以对不同目标部分C曝光。在步进模式中,曝光场的最大尺寸限制了在单一的静态曝光中成像的所述目标部分C的尺寸。
2.在扫描模式中,在将赋予所述辐射束的图案投影到目标部分C上的同时,对图案形成装置支撑结构MT和衬底台WT同步地进行扫描(即,单一的动态曝光)。衬底台WT相对于图案形成装置支撑结构MT的速度和方向可以通过所述投影系统PS的(缩小)放大率和图像反转特征来确定。在扫描模式中,曝光场的最大尺寸限制了单一的动态曝光中的所述目标部分的宽度(沿非扫描方向),而所述扫描移动的长度确定了所述目标部分的高度(沿所述扫描方向)。
3.在另一个模式中,将用于保持可编程图案形成装置的图案形成装置支撑结构MT保持为基本静止状态,并且在将赋予所述辐射束的图案投影到目标部分C上的同时,对所述衬底台WT进行移动或扫描。在这种模式中,通常采用脉冲辐射源,并且在所述衬底台WT的每一次移动之后、或在扫描期间的连续辐射脉冲之间,根据需要更新所述可编程图案形成装置。这种操作模式可易于应用于利用可编程图案形成装置(例如,如上所述类型的可编程反射镜阵列)的无掩模光刻中。
也可以采用上述使用模式的组合和/或变体,或完全不同的使用模式。
在图4中示出了采用局部液体供给系统IH的浸没式光刻方案。液体由位于投影系统PL每一侧上的两个槽状入口IN供给,由设置在入口IN沿径向向外的位置上的多个分散的出口OUT去除。所述入口IN和出口OUT可以设置在板上,所述板在其中心有孔,辐射束通过该孔投影。液体由位于投影系统PL的一侧上的一个槽状入口IN供给,由位于投影系统PL的另一侧上的多个分散的出口OUT去除,这引起投影系统PL和衬底W之间的液体薄膜流。选择使用哪组入口IN和出口OUT组合可能依赖于衬底W的移动方向(另外的入口IN和出口OUT组合是不可用的)。
另一种采用已经提出的局部液体供给系统方案的浸没式光刻方案是提供具有液体限制结构(或所谓浸没罩IH)的液体供给系统,所述液体限制结构沿着位于投影系统的最终元件和衬底台之间的空隙的边界的至少一部分延伸。所述方案显示在图5中。所述液体限制结构相对于投影系统在XY平面内基本是静止的,尽管在Z方向可能有一定的相对移动(在光轴方向上)。可能在所述液体限制结构和衬底的表面之间形成密封。在实施例中,所述密封是非接触密封,例如气体密封。
参照图5,液体限制结构12在投影系统的像场周围形成与衬底的非接触密封,以使得液体被限制以填充介于衬底表面和投影系统的最终元件之间的浸没空隙或储液腔11。所述储液腔11至少部分地由定位于投影系统PL的最终元件下面和周围的液体限制结构12形成。液体被引入在投影系统下方和液体限制结构12内的空隙中。液体可以通过液体入口13被引入到空隙中和/或从所述空隙中去除。液体限制结构12可以延伸到略微高于投影系统的最终元件的位置上,且液面上升至高于最终元件,以提供液体缓冲。在实施例中,液体限制结构12在上端具有内圆周,其与投影系统或者投影系统的最终元件的形状完全一致,例如可以是圆形的。在底部,内圆周与像场的形状完全一致,例如可以是矩形,但这不是必需的。
液体被气体密封16限制在储液腔中,所述气体密封16形成于液体限制结构12的底部和衬底W的表面之间。所述气体密封由气体(例如空气或者合成空气,或者N2或其他的惰性气体)形成,所述气体通过入口15在压力作用下提供到介于液体限制结构12和衬底之间的间隙,并通过出口14提取。设置气体入口15上的过压、出口14上的真空水平以及所述间隙的几何形状,以使得形成向内的高速气流从而限制所述液体。上述入口和/或出口可以是围绕空隙11的环形槽。所述槽可以是连续的或不连续的。这样的系统已经在公开号为US2004-0207824的美国专利申请中公开了。
在欧洲专利申请公开出版物No.EP1,420,300和美国专利申请公开出版物No.US 2004-0136494(所述每个专利申请文件的内容均以引用的方式并入本文中),公开了两个台或双台浸没式光刻设备的构思。这种设备设置有两个用于支撑衬底的台。以台在没有浸没液的第一位置上进行调平测量(leveling measurement),并在存在浸没液的第二位置上进行曝光。替代地,所述设备仅仅具有一个台。
图6a和6b示出了液体去除装置20,其中图6b是图6a的局部放大图,所述液体去除装置20可以被用于浸没系统中,以去除浸没罩IH和衬底W之间的液体。液体去除装置20包括室,所述室被保持在小的负压pc下,并填充有浸没液。所述室的下表面由多孔构件21构成,所述多孔构件21例如可为具有多个小孔的穿孔板或薄板21,所述小孔的直径dhole例如在5μm到50μm的范围内。所述下表面被保持在被去除液体的表面(例如衬底W的表面)上方且与被去除液体的表面的间隙高度hgap为小于1mm的位置上,所述间隙高度hgap优选在50μm到300μm的范围内。在实施例中,多孔构件21至少是稍稍亲液的(即对于水而言是亲水的),即,对于浸没液(例如水)具有小于90°的接触角。
负压pc使得形成于多孔构件21中的孔中的弯月面22基本防止气体被抽入所述液体去除装置的所述室中。然而,当多孔构件21与表面W上的液体形成接触时,不存在用于限制流动的弯月面,且所述液体可以自由地流入所述液体去除装置中的所述室中。这种装置能够从衬底W的表面上去除大多数液体,但是液体的薄膜可以保留,如附图中所示。
为了改善或最大化液体去除,多孔构件21应当尽可能薄,且在液体中的压力pgap与所述室中的压力pc之间的压力差应当尽可能大,同时在pc和间隙中的气体压力pair之间的压力差必须足够低,以防止大量的气体被抽入液体去除装置20。可能小总是能够防止气体被抽入所述液体去除装置,但是多孔构件将防止可能导致振动的、大的不均匀的流动。通过电铸、光学蚀刻和/或激光切割制成的微滤网可以用作多孔构件21。合适的滤网可以由Stork Veco B.V.,ofEerbeek,the Netherlands生产。其它的多孔板或多孔材料的固体块也可以使用,所提供的孔的尺寸适合于在使用中将经历的压力差下保持弯月面。
这种液体去除装置能够被结合到多种类型的液体限制结构12和/或浸没罩IH中。一个示例表示在图6c中,所述示例在美国专利申请公开出版物No.US 2006-0038968中被公开。图6c是液体限制结构12的一侧的剖视图,液体限制结构12在投影系统PS(图6c中未示出)的曝光场周围至少部分地形成环(本文中所述的环可以是圆形环、矩形环或其他任何形状的环)。在该实施例中,液体去除装置20由液体限制结构12的下侧的最内边缘附近的环形室31形成。所述室31的下表面由多孔板30制成,如上所述。环形室31被连接到合适的一个泵或多个泵,以从所述室中去除液体并保持所需的负压。在使用中,室31是充满液体的,但图上为了清楚起见绘制为空的。
环形室31的外面是气体提取环32和气体供给环33。气体供给环33在其下部中具有窄缝,并以一定压力下的气体供给,例如空气、人造空气或冲洗气体,以使得逃逸出所述窄缝的气体形成气刀34。用于形成气刀的气体通过连接到气体提取环32的合适的真空泵提取,以使得所获得的气流向内驱动任何的残余液体,其中所述残余液体可能被所述液体去除装置和/或所述真空泵去除,其应当容许浸没液的蒸汽和/或小液滴。然而,由于液体的主要部分被液体去除装置20所去除,所以经由所述真空系统去除的少量液体不会造成可能导致振动的不稳定的流动。
尽管室31、气体提取环32、气体供给环33和其它环在此被描述为环形,但是它们不一定包围曝光场或者是完整形状。在实施例中,这种入口和出口可以简单地为圆形、矩形或沿着所述曝光场的至少一侧部分地延伸的其它类型的元件,例如,如图2、3和4所示的情况。
在如图6c所示的设备中,形成气刀的气体的大部分经由气体提取环32被提取,但是一些气体可能流入浸没罩周围的环境中,并潜在地干扰干涉仪位置测量系统IF。这能够通过在所述气刀外部设置附加的气体提取环来防止。
体现这种单相提取器可以如何在浸没罩或液体限制系统或液体供给系统中使用的示例,可以在例如欧洲专利申请公开出版物No.EP1,628,163和美国专利申请公开出版物No.US 2006-0158627中找到。在大多数应用中,所述多孔构件将位于所述液体供给系统的下侧上,且衬底W可以在投影系统PS下方移动的最大速度至少部分地由通过多孔构件21的液体去除效率确定。一个困难是所述孔中的一些在成像过程中可能被碎屑阻挡,例如从衬底上剥离的抗蚀剂。这可能降低在没有液体从所述液体供给系统或浸没罩泄漏的情况下衬底可能的最大移动速度。
参照图1,本发明的实施例的光刻设备包括具有由衬底台WT(或者当存在衬底W时浸没罩IH和投影系统PS)所限定的浸没空隙的浸没系统。所述浸没空隙的至少一个表面(例如浸没罩和/或衬底台WT的表面)的污染物如果不被去除,则会随时间逐渐增多。清洁液体可以被供给到浸没空隙,以便帮助防止这种污染物的逐渐增多,并去除存在于所述浸没空隙的内表面上的污染物。
根据本发明的实施例的清洁液体由、或者主要由水溶性清洁成分构成,尤其是仅仅包含或实质上仅仅(在实施例中进行氧化)包含由元素氢H和氧O构成的成分。该材料具有有效的清洁作用以去除污染物,而对所述设备造成损害的可能性降低。可以避免或减少清洁材料的沉积物。进而,在清洁后以例如水冲洗是简单和快捷的。因此,本发明的实施例的清洁系统可以提供一种简单和快捷的在线清洁工艺,所述在线清洁工艺可以在最多一小时内完成。
根据本发明的实施例的清洁液体通常是非常稀释的溶液。这种溶液可能对于去除污染物是有效的,同时减小沉积物的量,或干化在更高浓度的使用情况下出现的污点。稀释的溶液也能更安全地处理设备的表面,且对所述设备的表面造成损坏的可能性减小。可以减少在清洁后采用超纯净水冲洗的时间,从而减少了设备的停机时间。
在实施例中,所述清洁液由、或主要由含有过氧化氢和臭氧(过氧化物)的超纯净水构成。过氧化氢和臭氧的组合是反应的混合物,所述反应混合物将部分地自发地反应,以产生强氧化物OH(羟基)。该组合是有优势的,这是因为羟基可以在不使用UV辐射的情况下产生。因此,完全被浸湿的浸没空间的表面可以被清洁,且清洁不限于可以被UV辐射曝光的表面。以过氧化物进行的清洁对于多种类型的污染物是有效的,所述污染物可能采用较弱的清洁剂去除是困难的。
在清洁液体中臭氧的典型浓度是从0.1ppm到20ppm,例如至少1ppm、2ppm或至少5ppm。臭氧的最大浓度通常是15ppm或12ppm。大约10ppm是理想的。在清洁液体中的过氧化氢的典型浓度是从0.1ppm到10ppm,例如至少0.5ppm或至少1ppm。过氧化氢的最大浓度通常为8ppm或5ppm。大约2ppm是理想的。当过氧化氢与臭氧的浓度之比为0.2∶1到0.5∶1时,过氧化物的混合物可能更有效。在实施例中,所述混合物的成分的浓度是2.5ppm过氧化氢和10ppm臭氧。
在实施例中,清洁液体仅包括过氧化氢。该清洁液体在不应用UV辐射的情况下也是有效的,并因此清洁所有被浸湿的表面。以过氧化氢清洁对于源自存在于衬底上的有机处理层(例如抗蚀剂和顶面涂层)的片状物或其它颗粒尤其有效。过氧化氢也是用于处理部件表面的、相对安全和简单的材料,且与其它氧化性更强的材料相比,对于部件表面的腐蚀性更小。过氧化氢在单独使用时合适的浓度为高达10%,在实施例中从0.1%到5%。典型地,所使用的最大浓度是2%。
在实施例中,清洁液体包含臭氧。所述臭氧可以如下文所述在原地生成,或者采用外部的臭氧源。臭氧的浓度可能从1ppm到50ppm,例如高达20ppm或高达10ppm。
在实施例中,清洁液体包含氧气。在该方面,所述清洁液体应当根据需要如下文所述被UV辐射所照射。在清洁液体中的氧气的浓度可能高达10ppm,例如高达5ppm或高达2ppm。最大的氧气浓度是采用大气的最大的氧气饱和度。可以采用富含氧气的气体混合物,这获得更高的饱和度水平。采用富含氧气的气体混合物,可以获得高达50ppm的浓度。将氧气用作清洁剂从安全的角度讲是很有好处的。进而,在UV辐射的作用下,氧气可以被激活为氧化性更强的清洁物,例如原地产生的臭氧。结果,可以获得有效的清洁,包括污染物(例如部分碳化的材料)的去除,所述污染物可能采用公知的清洁剂很难去除。
清洁液体能够被供给到浸没空隙,例如通过使清洁液体奔流(flushing)穿过所述浸没空隙。于是,可以采用通过所述浸没空隙的清洁液体的连续流。在任意长度的时间里,奔流过程可以是连续的,但是构想例如高达半小时、例如15分钟、高达10分钟或甚至高达5分钟的奔流将足以提供清洁作用。清洁流体能够附加地或替代地被供给到浸没空隙,并在奔流或被抽取前被保持在所述空隙中一段时间(例如高达15分钟、10分钟或5分钟)。该过程可以被重复至少一次。
在清洁之后,所述浸没空隙通常用超纯净水冲洗。在此所述的至少一种清洁液体的优势易于通过采用超纯净水冲洗来去除清洁液体的所有痕迹。于是,可以例如在半小时内完成冲洗。
因此,整个清洁过程可以在仅仅一个小时的设备的最大停机时间内完成。因此,可以更频繁地进行清洁。频繁的清洁具有可以在所有时间里将污染物水平保持到很低的水平上的优点。如果需要,在此所述的清洁过程可以结合至少一个频繁程度较低的清洁过程进行,所述至少一个频繁程度较低的清洁过程可以离线进行,例如采用机械喷射技术或超声波清洁技术。然而,使用在此所述的清洁过程和/或清洁液体的好处是能够降低进行这种离线清洁方法的频率,或者这种离线技术可以被完全不使用。
在实施例中,在不存在衬底的情况下进行清洁。这意味着衬底台WT被暴露给清洁液体。如图1所示,在正常情况下,仅仅衬底台的一部分被暴露给浸没空隙。因此,在实施例中,所述衬底台在清洁液体处于所述浸没空隙内的同时被移动,以便衬底台的不同部分被暴露给清洁液体。这实质上使得整个衬底台都能被清洁。所述衬底台可能是污染物的源。在不存在衬底的情况下的清洁可能使得衬底台对浸没系统的其它表面进行交叉污染。因此,在实施例中,所述清洁在衬底位于衬底台上的合适的位置上的情况下完成,或者在衬底台上具有虚拟衬底的情况下完成。
清洁液体可以采用与浸没液的入口系统相同的入口系统,例如如图2、3和4所示的入口IN,或者如图5所示的入口13。因此,在该实施例中,清洁液供给系统是浸没液体供给系统的一部分。典型地,在该实施例中,清洁剂可以被添加到位于其入口下游的浸没液体供给系统的超纯净水中,进入所述浸没空隙。在实施例中,如图7所示,可以设置独立的入口,以使得清洁流体与浸没液分离地进入所述浸没空隙。在该实施例中,所述浸没液被从浸没液源ILS、经由供给管路ILL供给到浸没罩IH。清洁液体从清洁液体源CLS经由完全分离的供给管路CLL被供给。用于清洁液体的完全分离的供给管路的使用限制了在清洁后必须被冲洗的设备的数量。这帮助避免在浸没液体供给管路中出现清洁液体的沉积物的任何机会,并缩短了必需的冲洗时间。
该实施例的另一个方面如图8所示。在该方面,清洁液体被直接供给到浸没液体供给管路ILL。然而,供给管路ILL分开,经由清洁液体供给管路CLL为浸没罩设置独立的清洁液体入口。可以采用阀控制是否液体直接流到所述浸没罩(当填充浸没液或在清洁后冲洗时),或者控制是否液体流过清洁液体供给管路CLL。在该实施例中还减少冲洗,这是因为仅仅一小部分浸没液体供给管路与清洁液体形成接触。进而,该实施例能够使用被浓缩的清洁液体供给,这能够用直接来自浸没液源ILS的超纯净水进行稀释。至少一个传感器被设置在清洁液体供给管路CLL中,以便确定在清洁液体中的清洁剂(例如,H2O2,O2,O3)的浓度。
清洁液体供给系统的所有实施例可能具有至少一个传感器,用于确定清洁剂的浓度。所述传感器可以被设置在例如下列位置中的至少一处:清洁液体源CLS、浸没液体供给管路ILL和/或浸没罩IH。传感器可以替代地或附加地位于液体去除系统中,所述液体去除系统配置用于从浸没空隙中去除液体。如果存在清洁液体供给管路CLL,则除去其它部分中的传感器之外还可以将至少一个传感器设置到清洁液体供给管路CLL中,或者不在其它部分中设置传感器而将至少一个传感器设置到清洁液体供给管路CLL中。所述传感器能够被连接到控制器。所述控制器能够具有配置用于操作所述控制器的处理器。所述控制器能够操作在浸没系统中的各种阀,例如所述阀用于控制液体是否直接地流到浸没罩IH,或者流过清洁液体供给管路CLL。所述控制器可以控制液体,例如清洁液体和/或超纯净水,流过清洁液体供给系统。所述控制器能够驱动所述清洁剂释放到浸没系统的一部分中。因此,所述控制器能够用于确定清洁液体中的清洁剂的浓度。
在实施例中,被供给到浸没空隙的清洁液体由、或主要由臭氧和超纯净水构成。臭氧在光刻设备内原地生成。臭氧的原地生成能够使得臭氧根据需要产生,且避免存储。因此,这具有非常安全的优点。图9示出臭氧生成设备的实施例。含氧气的超净气体源、XCDA,被提供给臭氧发生器,如果需要的话则经由调节器和/或用于控制气流的节流口进行。所述含氧气的超净气体典型地是超净空气,所述超净空气视情况地增加氧气的百分比。可以使用含有惰性气体的氧气。氮气、氩气和氦气是合适的惰性气体的例子。
臭氧发生器自身通常结合有UV辐射源,所述UV辐射源例如提供波长为大约220nm或更小的UV辐射,尤其是波长为大约190nm或更小的UV辐射(例如193nm)。含氧气的气体的辐射使得在气流中形成臭氧,并具有优势:氢气不作为副产品产生。可以使用其它状态的现有技术的臭氧发生器,例如电化学臭氧发生器和/或电晕放电臭氧发生器。因此,所产生的臭氧然后被通到膜接触器,在所述膜接触器中,臭氧通过渗透膜溶解到超纯净水中。合适的膜的示例是PFA膜(PFA是聚(四氟乙烯-共-全氟-(烷基乙烯基醚))(例如Entegris(之前为Mykrolis)Phasor II PFA膜))。所述膜提供在臭氧气流和超纯净水之间的良好接触,并通常能够使得在水中生成浓度高达大约50ppm的臭氧。臭氧浓度可能通过改变水流通过所述膜的速度而变化。这能够通过操作控制器来实现。控制臭氧浓度的其它技术包括改变UV辐射剂量或气体中的氧气浓度。从所述膜接触器的气体出口通常通过活性炭过滤器,以去除过多的臭氧。在实施例中,所述气体出口设置用于连通UV辐射破坏灯,所述UV辐射破坏灯采用大约250nm的频率,例如254nm。
在清洁液体(例如过氧化氢)中存在不同于臭氧的其它清洁剂的情况下,所述清洁剂可能在清洁液体通过所述膜接触器之前、过程中或之后被引导到超纯净水中,优选在清洁液体通过所述膜接触器之后被引导到超纯净水中。
清洁液体通过浸没罩,以便去除浸没空隙的表面上的污染物。然后,所采用的清洁流体与例如被包含在浸没罩中的空气和气态臭氧一起被从浸没罩抽取到出口系统中。出口流体通过分离器抽取,所述分离器将液相和气相分离。气相通过气流(air bleed)释放,所述气流在气体已经通过活性炭过滤器以去除臭氧之后到达。替代地或附加地,臭氧可以随着气相在UV辐射破坏灯的照射下通过而被去除。液相被抽取到脱气器,所述脱气器去除被溶解的臭氧。可以便用合适类型的脱气器,例如基于膜的脱气器、充气脱气器或塔型脱气器。然后排放离开所述脱气器的液体,同时空气和臭氧的混合物在进入泵之前与浸没罩的出口流体混合。以这种方式,空气/臭氧可以在分离器阶段被去除。
可以通过清洁液体的UV辐射增加本发明的实施例的清洁液体的清洁能力。在清洁液体包含超纯净水和氧气的情况下,这种辐射尤其是需要的,这是因为这将在浸没空隙中原地生成臭氧。所述臭氧也可以在所述浸没空隙中被进一步活化,以提供强氧化物,例如OH基。在清洁液体含有过氧化氢和/或臭氧的实施例中,在没有辐射的情况下清洁是高效的。然而,UV辐射能够使得或增加强氧化性的OH基形成,因此提供更好的清洁效果。例如,OH基的存在将改善在浸没空隙中的被碳化或部分碳化的污染物的清洁。
所使用的UV辐射可以通过光刻设备的投影系统提供,或者通过独立的UV辐射源提供,例如低压汞灯或准分子激光器。合适的波长通常为大约250nm或更小。在清洁液体中存在臭氧的情况下,需要小于220nm的波长,这是由于大于220nm的波长将导致臭氧分解为氧气。在实施例中,可以使用193nm波长的辐射。
用于限定浸没空隙的大多数表面,例如壁,能够被采用UV辐射直接照射,例如UV辐射能够通过在衬底W的成像过程中所采用的投影系统PS被投影。而且,可以通过使衬底台在投影系统PS下方移动、且同时浸没罩12、IH将液体提供到浸没空隙中并将其密封在浸没空隙中的方式来辐射衬底台WT的大部分顶表面。然而,辐射浸没罩IH或液体供给系统12的下侧不太容易,这是因为没有从投影系统到液体供给系统的下侧的直接路径。如上所述,需要清洁下侧,例如在采用用于去除液体的多孔构件21的系统中。为了解决该问题,提出下面的方法和设备。
在本发明的一个方面,提供一种辐射液体供给系统的下侧的方法,所述液体供给系统位于浸没式光刻设备中的投影系统的末端的周围,所述方法包括步骤:将投影系统定位于反射器上,以使得通过投影系统被投影到所述反射器上的用于清洁的辐射束被反射到所述液体供给系统的下侧上。液体被设置成与所述下侧的至少一部分相接触。所述液体可能是在上文中所述的清洁液体。如果所述液体供给系统包括在下侧上的多孔构件,则被施加到多孔构件的负压可以被减小,以使得液体在整个多孔构件上延伸,以使得能够实现对整个多孔构件的清洁。
所述反射器能够以相对于照射角的不同的角度反射投影束的不同部分。例如,所述反射器可以反射投影束,以使得其仅仅被聚焦到多孔构件21上,例如或仅仅被聚焦到所述多孔构件的外边缘的沿径向向内(相对于光轴)的物体上。在实施例中,所述反射器将投影束反射离开至少两个小平面。在这种情况下,所述至少两个小平面中的第一小平面将所述投影束沿一定的方向反射,所述方向具有至少一个沿径向向外并垂直于光轴的主分量。所述至少两个小平面中的第二小平面将所述投影束沿一定的方向反射,所述方向具有至少一个沿平行于光轴朝向所述下侧的主分量。所述投影系统可以是与在成像过程中用于将图案化的辐射束聚焦到衬底上的投影系统相同的投影系统。
所述反射器可以位于面对投影系统的衬底台的表面上。通常,该表面是顶表面。该衬底台通常能够在成像过程中承载衬底。在清洁过程中,所述反射器可以被相对于投影系统移动。所述反射器在面对投影系统的衬底台的表面上的位置是与用于保持衬底的凹陷相邻的位置。替代地或附加地,所述反射器可以位于在成像过程中用于保持衬底的凹陷中。所述定位可能包括:沿着投影系统的光轴的方向、远离和/或朝向投影系统移动所述反射器。这增加和/或减少在浸没罩12、IH的下侧和反射器或衬底台之间的间隙。该移动可能出现在定位之前和/或定位过程中。这使得所使用的反射器的复杂度更低,且辐射束可能仅仅被反射离开所述反射器的一个表面,直接到达所述下侧。所述反射器可能相对于投影系统在与光轴大致垂直的平面中移动。
本发明的实施例提供光刻投影设备,所述光刻投影设备包括:投影系统,所述投影系统用于将投影辐射束投影到衬底上;衬底台,所述衬底台用于支撑衬底;液体获取系统,所述液体获取系统用于从投影系统和衬底台之间的空隙获取液体;其中所述衬底台包括反射器,所述反射器位于面对投影系统的表面上,用于将通过投影系统投影的用于清洁的辐射束投影到所述液体获取系统的下侧。所述反射器可能用在与投影系统的距离大于与衬底以图案化的辐射束被成像位置的距离的位置上。反射器也可以用于在所述下侧和所述反射器之间存在液体的情况下,优选在所述反射器和投影系统之间也存在液体。光刻投影设备可能还包括用于提供液体的液体供给系统,所述液体包括超纯净水以及(a)过氧化氢和臭氧的混合物、或(b)浓度高达10%的过氧化氢、或(c)浓度高达50ppm的臭氧、或(d)浓度高达10ppm的氧气、或(e)选自(a)-(d)的任何组合物。所述反射器可以位于面对投影系统的衬底台的表面中的凹陷中,在衬底的成像过程中,衬底位于所述凹陷中。
所述反射器可能是用于在浸没式光刻投影设备的投影系统下方定位的反射构件,所述反射构件包括:第一小平面,所述第一小平面用于反射通过光刻设备的投影系统被投影到反射构件的第二小平面的入射辐射,其中第二小平面用于将由所述第一小平面反射的辐射沿着一定的方向反射回去,所述方向具有沿着入射辐射的方向的至少一个主分量。在实施例中,所述第一小平面和第二小平面相互成大致90°。所述第二小平面可以被形成为与所述第一小平面相同的表面的一部分。所述第二小平面可能在凹表面上形成。该凹表面可能是锥形内表面的一部分(即当被材料包围时锥形将在材料中形成的表面)。所述第一小平面也可以由所述凹表面制成。所述第一小平面可以由凸表面制成。在实施例中,该凸表面成截头锥形表面的形式。在实施例中,所述凸表面是凹表面沿径向向内。在实施例中,所述小平面包括铝或铬涂层。在实施例中,所述反射构件由UV辐射透射玻璃制成。如果所述反射构件由UV辐射透射玻璃制成,则所述小平面可以是由反射材料层所限定的内表面,例如铝或铬。如果所述反射构件由UV辐射透射玻璃制成,则在实施例中,至少所述反射构件的外(顶)表面部分地被反射或吸收UV辐射的材料所覆盖。被覆盖的所述部分在实施例中仅仅为那些不在所述小平面或表面上方的部分。
本发明的实施例提供反射构件,所述反射构件的尺寸设计为适合定位在凹陷中,所述凹陷用于浸没式光刻设备的衬底台的衬底。所述反射构件具有反射表面,所述反射表面对于瞬时以90°角将辐射反射到反射构件沿径向向外的平面是有效的。在实施例中,所述反射构件具有被蚀刻的表面。在实施例中,该被蚀刻的表面涂覆有高为193nm的反射材料,例如铝或铬。在实施例中,所述反射构件以不同的角度反射开入射的辐射。在实施例中,所反射的辐射至少部分地朝向一点会聚。
图10a示出反射构件100的实施例。所述构件例如被设计成例如被定位在衬底台WT上,所定位的位置与保持衬底W的凹陷相邻。反射构件100的外(顶)表面在实施例中与衬底台WT的外(顶)表面共面。这允许反射构件100在液体供给系统12下方移动而不关闭液体的供给或液体的泄漏。以这种方式,所述浸没空隙能够在反射构件100在投影系统PS下方移动时保持充满液体的状态,从而避免投影系统的干化。于是,该反射构件100可以在线使用(即液体供给系统12或浸没罩IH不需要为清洁而从所述设备中被去除)。清洁流体被应用于浸没空隙,且清洁液体在阻挡构件12和反射构件100之间延伸到多孔构件21。如果减小施加到多孔构件21的另一侧的负压,则在液体供给系统12和反射构件100之间延伸的弯月面沿径向向外移到多孔构件21的外边缘,反射构件100限定所述液体的最外部边缘。因此,清洁流体可以被设置用于覆盖所有的多孔构件21。
然后,用于清洁的辐射束CB通过投影系统被投影(例如,所述投影系统与在衬底的成像过程中所使用的投影系统相同)。如从图10a中所见,所述用于清洁的辐射束PB可以被聚焦到反射构件100的顶表面上,所述反射构件100也将位于与衬底的外(顶)表面相同的高度上。用于清洁的辐射束CB由第一小平面112(超过束CB的焦点)沿着一定的方向大致沿径向向外反射,所述方向大致与光轴垂直并朝向第二小平面114。第二小平面114然后将用于清洁的辐射束CB沿着与用于清洁的辐射束CB的入射方向大致平行的方向向上反射。由第二小平面114反射的辐射由此被引导到多孔构件21上。
第一小平面112和第二小平面114是反射构件100内的表面。反射构件100由UV辐射透射材料(例如熔融石英)制成。反射小平面112、114是覆盖有反射材料(例如铬或铝(内部或外部))的反射构件100内的表面。涂层也至少设置在反射构件100的外(顶)表面的一部分上。所述涂层对于用于清洁的辐射束CB的波长可以吸收或反射。仅仅在两个小平面112、114上方的部分没有被覆盖,以允许用于清洁的辐射束CB穿透反射构件100。主要如图10b最清晰地所示,第一小平面112和第二小平面114是同一表面的一部分。所述表面是凹表面110。所述凹表面可以被看成环形。所述凹表面可以被看成锥形的凹表面(即已经被植入锥形的材料的表面的形状,或当被材料包围时锥形在材料中形成的表面)。以这种方式,如图10b所示,为了辐射多孔构件21的整个外周(可能是圆周),反射构件100不一定进行转动。
如图10b所示,用于清洁的辐射束CB在区域CB’上被应用到凹表面110上。然后,用于清洁的辐射束CB被反射到凹表面110的相对一侧的区域上,并反射到多孔构件21下面的区域21’上。为了辐射多孔构件21的所有区域,区域21’应当在清洁过程中覆盖多孔构件21的每个部分。这通过移动反射构件100以使得凹表面110的所有部分被辐射来实现。在图10b中,多孔构件21的宽度已经以虚线210示出。因此,通过相对于投影系统PS移动反射构件100(并因此移动多孔构件21),能够辐射多孔构件21的所有区域。
图11示出反射构件100的另一个实施例。在该实施例中,辐射构件100试图例如被置于衬底台的凹陷中。为此,反射构件100的尺寸被制成与衬底的尺寸相同,以使得其能够配合在衬底台的衬底凹陷内。所述反射构件可能是具有反射表面的衬底。所述反射构件的外(顶)表面至少部分地形成形貌130,以使得以与所述反射构件的平面成90°的方式照射到反射构件100上的入射辐射被以沿径向向外的主分量反射。
在实施例中,形貌130被蚀刻到衬底的顶表面中。然后施加诸如铝或铬的涂层以产生所述反射构件,所述涂层对用于清洁的辐射束CB进行反射。
在实施例中,形貌130使得照射辐射以依赖于所述辐射照射在哪里的不同角度被反射开。以这种方式,如果用于清洁的辐射束是平行辐射,则其能够被朝向多孔构件21或者待清洁的液体供给系统12的其它区域(例如下侧)反射和聚焦。在实施例中,反射构件100相对于投影系统而被移动。这对于以不同角度反射辐射是有效的,并因此清洁清洁液体供给系统12的下侧的不同部分。
在反射构件100和液体供给系统12的下侧之间的空隙在该实施例中很小,仅仅允许用于清洁的辐射束被反射构件100反射一次。在实施例中,这增加在液体供给系统12和反射构件100之间的高度h,增加后的高度h超过在衬底的成像过程中存在的高度h。所述反射构件和/或投影系统可以通过至少一个致动器移动。因为即使在高度h增加的情况下,在反射构件100和液体供给系统12之间仍存在较少的运动,所以液体限制结构12不可能泄漏。
另一个实施例如图12所示。在该实施例中,反射构件100也例如试图替代衬底台WT上的衬底W。该实施例也包括如图10a-b的实施例中所述的两个第一和第二小平面112、114。然而,在该实施例中,第二小平面114由与图10a-b的实施例的凹表面类似的凹表面所提供。然而,第一小平面112由截头锥形的表面(即凹表面)所提供。因此,入射的用于清洁的辐射CB由第一小平面沿着与入射的辐射的方向大致垂直的方向(和平行于反射构件100的平面)反射到第二小平面114。辐射CB被从第二小平面114朝向液体供给系统12的下侧反射(例如朝向多孔构件21)。该实施例的反射构件100的至少第一和第二小平面是反射式的,或具有反射涂层。反射构件100的其它部分可能是依赖于所实现的期望的效应来确定是反射式的或吸收式的。
在合适的条件下,在此每个实施例的特征可以与至少一个其它实施例的特征相结合。
应当理解,尽管本发明的实施例已经关于清洁液体供给系统12或浸没罩IH的多孔构件21进行具体地描述,但是在存在或不存在多孔构件21或等价构件(例如多孔构件)的情况下,相同的技术都可以被用于清洁液体供给系统12(或所谓液体限制系统或浸没罩)的下侧的其它特征。进而,这些技术可以被与针对采用本发明的实施例的清洁、用于辐射浸没系统的其它部分的其它技术结合使用。
清洁方案由在线清洁系统提供。所述清洁系统可能主要地或全部地位于单独的清洁隔间中。清洁系统可能是点源分配器。清洁系统可由控制器操作,以在需要时将清洁流体供给到浸没系统。
尽管在本文中可以做出具体的参考,将所述光刻设备用于制造IC,但应当理解这里所述的光刻设备可以有其他的应用,例如,集成光学系统、磁畴存储器的引导和检测图案、平板显示器、液晶显示器(LCDs)、薄膜磁头等的制造。本领域技术人员应该理解的是,在这种替代应用的情况中,可以将其中使用的任意术语“晶片”和“管芯”分别认为是与更上位的术语“衬底”或“目标部分”同义。这里所指的衬底可以在曝光之前或之后进行处理,例如在轨道(一种典型地将抗蚀剂层涂到衬底上,并且对已曝光的抗蚀剂进行显影的工具)、量测工具和/或检验工具中。在可应用的情况下,可以将所述公开内容应用于这种和其他衬底处理工具中。另外,所述衬底可以处理一次以上,例如为产生多层IC,使得这里使用的所述术语“衬底”也可以表示已经包含多个已处理层的衬底。
这里使用的术语“辐射”和“束”包含全部类型的电磁辐射,包括:紫外辐射(例如具有约365、248、193、157或126nm的波长)。
在上下文允许的情况下,所述术语“透镜”可以表示各种类型的光学部件中的任何一种或它们的组合,包括折射式、反射式、磁性式、电磁式和静电式的光学部件。
尽管以上已经描述了本发明的特定的实施例,但是应该理解的是本发明可以以与上述不同的形式实现。例如,本发明可以采取包含用于描述上述公开的方法的一个或更多个机器可读指令序列的计算机程序的形式,或者采取具有在其中存储的这种计算机程序的数据存储介质的形式(例如,半导体存储器、磁盘或光盘)。至少一个控制器可以设置用于控制所述设备。每个控制器可以根据体现本发明的至少一个计算机程序操作所述设备的至少一部分部件。
本发明的一个或多个实施例可以用于任何浸没式光刻设备,尤其是(但不限于),上面提到的那些类型的浸没光刻设备,而不论浸没液体是以溶池的形式还是只应用到衬底的局部表面区域上。在不受限的布置中,浸没液可以在衬底和/或衬底台的表面上流动,以使得所述衬底台和/或衬底的整个未被覆盖的表面基本上都被浸湿。在这种不受限的浸没系统中,所述液体供给系统可能不限制浸没流体或其可能对浸没液体提供一部分限制,而不是对浸没液的基本上完全的限制,即可泄漏的限制浸没系统。
其中设计的液体供给系统应当被广义地理解。在某些实施例中,其可以是为介于投影系统以及衬底和/或衬底台之间的空隙提供液体的一种机构或者结构的组合。它可以包括一个或多个结构、一个或多个液体入口、一个或多个气体入口、一个或多个气体出口和/或一个或多个液体出口的组合,用于为所述空隙提供液体。在实施例中,该空隙的表面可以是衬底和/或衬底台的一部分,或者该空隙的表面可以完全覆盖衬底和/或衬底台的表面,或者所述空隙可以包围衬底和/或衬底台。所述液体供给系统还可以进一步视情况地包括一个或多个元件,用于控制液体的位置、数量、质量、形状、流量或者其他特征。
在所述设备中使用的浸没液体可以根据期望的性能和所使用的曝光辐射波长具有不同的成分。对于193nm的曝光波长来说,可以采用超纯净水或者基于水的合成物,基于这种原因,浸没液体有时以可以使用水或与水有关的术语表示,例如水利的,厌水的,湿度等等,但是它们应当被更上位地理解。这些术语也应当延伸到可以被使用的其它高折射率液体,例如含氟的烃。
本发明提供一种浸没式光刻设备,包括:浸没系统,所述浸没系统配置用于至少部分地以浸没液填充浸没空隙;清洁液体供给系统,所述清洁液体供给系统配置用于将清洁液体提供到所述浸没空隙;以及清洁液体,所述清洁液体包含在所述浸没空隙中和/或在所述清洁液体供给系统中;其中,所述清洁液体主要由超纯净水以及(a)过氧化氢和臭氧的混合物、或(b)浓度高达10%的过氧化氢、或(c)浓度高达50ppm的臭氧、或(d)浓度高达10ppm的氧气、或(e)选自(a)-(d)的任何组合物构成。
根据一方面,清洁液体主要由包含臭氧和过氧化氢的超纯净水构成,所述臭氧的浓度选自0.1ppm到20ppm的范围内,过氧化氢的浓度选自0.1ppm到10ppm的范围内。
根据另一方面,清洁液体主要由包含臭氧和过氧化氢的超纯净水构成,所述臭氧的浓度为大约10ppm,过氧化氢的浓度为大约2ppm。
根据另一方面,清洁液体主要由包含过氧化氢的超纯净水构成,所述过氧化氢的浓度选自0.1%到5%的范围内。
根据另一方面,清洁液体主要由包含臭氧的超纯净水构成,所述臭氧的浓度为大约10ppm或更小。
根据另一方面,所述设备还包括紫外辐射源,所述紫外辐射源配置用于在清洁液体位于浸没空隙内或清洁液体供给系统内时,将紫外辐射束投影到所述清洁液体上。
根据另一方面,所述浸没空隙包括第一入口系统和第二入口系统,所述第一入口系统连接到浸没液源,以将浸没液提供到所述浸没空隙,所述第二入口系统连接到清洁液体供给系统,以将清洁液体提供到所述浸没空隙。
本发明还提供一种用于防止或减少浸没式光刻设备中的污染物的方法,所述设备包括浸没系统,所述浸没系统配置用于至少部分地用浸没液填充浸没空隙,所述方法包括将清洁液体供给到所述浸没空隙,其中所述清洁液体主要由超纯净水以及(a)过氧化氢和臭氧的混合物、或(b)浓度高达5%的过氧化氢、或(c)浓度高达50ppm的臭氧、或(d)浓度高达10ppm的氧气、或(e)选自(a)-(d)的任何组合物构成。
根据一方面,所述方法还包括步骤:以紫外辐射对所述清洁液体进行辐射。
根据另一方面,用所述清洁液体冲洗所述浸没空隙。
随后用超纯净水冲洗所述浸没空隙。
根据另一方面,所述设备还包括配置用于保持衬底的衬底台,所述衬底台被部分地暴露给所述浸没空隙,且其中所述方法还包括步骤:移动所述衬底台,以使得所述衬底台的不同部分被暴露给包含在所述浸没空隙内的所述清洁液体。
所述方法作为一种器件制造方法,还包括至少部分地用浸没液填充所述浸没空隙,并将图案化的辐射束投射通过所述浸没液到衬底上,其中能够在将所述图案化的辐射束投影之前和/或之后进行清洁液体供给。
根据另一方面,所述浸没液被经由第一入口系统供给到所述浸没空隙,且清洁液体经由第二入口系统被供给到浸没空隙。
以上的描述是说明性的,而不是限制性的。因此,本领域的技术人员应当理解,在不背离所附的权利要求的保护范围的条件下,可以对本发明进行修改。

Claims (14)

1.一种浸没式光刻设备,包括:
投影系统,所述投影系统用于将投影辐射束投影到衬底上;
衬底台,所述衬底台用于支撑衬底;
浸没系统,所述浸没系统配置用于至少部分地以浸没液填充浸没空隙;
液体供给系统,所述液体供给系统配置用于将清洁液体提供到所述浸没空隙;
清洁液体,所述清洁液体包含在所述浸没空隙中和/或在所述液体供给系统中;以及
反射器,所述反射器位于所述衬底台的面对所述投影系统的表面上,用于将通过所述投影系统投影的用于清洁的辐射束反射到所述液体供给系统的下侧;
其中,所述清洁液体主要由超纯净水以及(a)过氧化氢和臭氧的混合物、或(b)浓度高达10%的过氧化氢、或(c)浓度高达50ppm的臭氧、或(d)浓度高达10ppm的氧气、或(e)选自(a)-(d)的任何组合物构成。
2.根据权利要求1所述的设备,其中清洁液体主要由包含臭氧和过氧化氢的超纯净水构成,所述臭氧的浓度选自0.1ppm到20ppm的范围内,过氧化氢的浓度选自0.1ppm到10ppm的范围内。
3.根据权利要求1所述的设备,其中清洁液体主要由包含臭氧和过氧化氢的超纯净水构成,所述臭氧的浓度为大约10ppm,过氧化氢的浓度为大约2ppm。
4.根据权利要求1所述的设备,其中清洁液体主要由包含过氧化氢的超纯净水构成,所述过氧化氢的浓度选自0.1%到5%的范围内。
5.根据权利要求1所述的设备,其中清洁液体主要由包含臭氧的超纯净水构成,所述臭氧的浓度为大约10ppm或更小。
6.根据权利要求1至5中任一项所述的设备,还包括紫外辐射源,所述紫外辐射源配置用于在清洁液体位于浸没空隙内或清洁液体供给系统内时,将紫外辐射束投影到所述清洁液体上。
7.根据权利要求1至5中任一项所述的设备,其中所述浸没空隙包括第一入口系统和第二入口系统,所述第一入口系统连接到浸没液源,以将浸没液提供到所述浸没空隙,所述第二入口系统连接到清洁液体供给系统,以将清洁液体提供到所述浸没空隙。
8.一种用于防止或减少浸没式光刻设备中的污染物的方法,所述设备包括:浸没系统,所述浸没系统配置用于至少部分地用浸没液填充浸没空隙;投影系统,所述投影系统用于将投影辐射束投影到衬底上;衬底台,所述衬底台用于支撑衬底;以及液体供给系统,所述液体供给系统配置用于将清洁液体提供到所述浸没空隙,所述方法包括将清洁液体供给到所述浸没空隙以及使用位于所述衬底台的面对所述投影系统的表面上的反射器,将通过所述投影系统投影的用于清洁的辐射束反射到所述液体供给系统的下侧,其中所述清洁液体主要由超纯净水以及(a)过氧化氢和臭氧的混合物、或(b)浓度高达5%的过氧化氢、或(c)浓度高达50ppm的臭氧、或(d)浓度高达10ppm的氧气、或(e)选自(a)-(d)的任何组合物构成。
9.根据权利要求8所述的方法,还包括步骤:以紫外辐射对所述清洁液体进行辐射。
10.根据权利要求8所述的方法,其中用所述清洁液体冲洗所述浸没空隙。
11.根据权利要求10所述的方法,其中随后用超纯净水冲洗所述浸没空隙。
12.根据权利要求8至11中任一项所述的方法,其中所述衬底台被部分地暴露给所述浸没空隙,且其中所述方法还包括步骤:移动所述衬底台,以使得所述衬底台的不同部分被暴露给包含在所述浸没空隙内的所述清洁液体。
13.一种器件制造方法,使用权利要求8-11中任一项所述的方法,还包括至少部分地用浸没液填充所述浸没空隙,并将图案化的辐射束投射通过所述浸没液到衬底上,其中能够在将所述图案化的辐射束投影之前和/或之后进行清洁液体供给。
14.根据权利要求13所述的器件制造方法,其中所述浸没液被经由第一入口系统供给到所述浸没空隙,且清洁液体经由第二入口系统被供给到浸没空隙。
CN 200810130025 2007-07-24 2008-07-24 光刻设备和污染物去除或防止方法 Expired - Fee Related CN101354538B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US93503707P 2007-07-24 2007-07-24
US60/935,037 2007-07-24
US11/862,817 2007-09-27
US11/862,817 US7916269B2 (en) 2007-07-24 2007-09-27 Lithographic apparatus and contamination removal or prevention method

Publications (2)

Publication Number Publication Date
CN101354538A CN101354538A (zh) 2009-01-28
CN101354538B true CN101354538B (zh) 2012-07-04

Family

ID=40294178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810130025 Expired - Fee Related CN101354538B (zh) 2007-07-24 2008-07-24 光刻设备和污染物去除或防止方法

Country Status (4)

Country Link
US (2) US20090025753A1 (zh)
JP (3) JP2009033163A (zh)
CN (1) CN101354538B (zh)
NL (2) NL1035712A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG2014015135A (en) * 2003-04-11 2015-06-29 Nippon Kogaku Kk Cleanup method for optics in immersion lithography
TWI612556B (zh) * 2003-05-23 2018-01-21 Nikon Corp 曝光裝置、曝光方法及元件製造方法
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101512884B1 (ko) 2004-06-09 2015-04-16 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
EP3190605B1 (en) * 2004-06-21 2018-05-09 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US8698998B2 (en) * 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US7385670B2 (en) * 2004-10-05 2008-06-10 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
US7880860B2 (en) * 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8125610B2 (en) 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US7969548B2 (en) * 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
JP5029611B2 (ja) * 2006-09-08 2012-09-19 株式会社ニコン クリーニング用部材、クリーニング方法、露光装置、並びにデバイス製造方法
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8654305B2 (en) * 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US7866330B2 (en) * 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US9013672B2 (en) * 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US20090025753A1 (en) * 2007-07-24 2009-01-29 Asml Netherlands B.V. Lithographic Apparatus And Contamination Removal Or Prevention Method
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
SG151198A1 (en) * 2007-09-27 2009-04-30 Asml Netherlands Bv Methods relating to immersion lithography and an immersion lithographic apparatus
NL1035942A1 (nl) * 2007-09-27 2009-03-30 Asml Netherlands Bv Lithographic Apparatus and Method of Cleaning a Lithographic Apparatus.
JP5017232B2 (ja) * 2007-10-31 2012-09-05 エーエスエムエル ネザーランズ ビー.ブイ. クリーニング装置および液浸リソグラフィ装置
NL1036273A1 (nl) * 2007-12-18 2009-06-19 Asml Netherlands Bv Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus.
NL1036306A1 (nl) 2007-12-20 2009-06-23 Asml Netherlands Bv Lithographic apparatus and in-line cleaning apparatus.
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20100045949A1 (en) * 2008-08-11 2010-02-25 Nikon Corporation Exposure apparatus, maintaining method and device fabricating method
US8612339B2 (en) * 2008-08-12 2013-12-17 Branch Banking & Trust Company System and method for business online account opening
US8619231B2 (en) 2009-05-21 2013-12-31 Nikon Corporation Cleaning method, exposure method, and device manufacturing method
JP2010278299A (ja) * 2009-05-29 2010-12-09 Nikon Corp 露光装置、露光方法、及びデバイス製造方法
NL2005167A (en) * 2009-10-02 2011-04-05 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
NL2005657A (en) * 2009-12-03 2011-06-06 Asml Netherlands Bv A lithographic apparatus and a method of forming a lyophobic coating on a surface.
MX2012007581A (es) * 2009-12-28 2012-07-30 Pioneer Hi Bred Int Genotipos restauradores de la fertilidad de sorgo y metodos de seleccion asistida por marcadores.
RU2632131C2 (ru) * 2015-08-28 2017-10-02 Общество С Ограниченной Ответственностью "Яндекс" Способ и устройство для создания рекомендуемого списка содержимого

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955848A (zh) * 2005-10-24 2007-05-02 台湾积体电路制造股份有限公司 浸润式光刻装置、光刻装置及其洁净方法
CN1983034A (zh) * 2005-12-02 2007-06-20 Asml荷兰有限公司 防止或者降低浸没式投影设备及浸没式光刻设备的污染的方法

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509852A (en) 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
EP0556014B1 (en) * 1992-02-10 1998-10-21 Tadahiro Ohmi Lithography process
WO1995007152A1 (en) 1993-09-08 1995-03-16 Uvtech Systems, Inc. Surface processing
JP3119289B2 (ja) 1994-10-21 2000-12-18 信越半導体株式会社 半導体ウェーハの洗浄方法
JP4347426B2 (ja) 1996-09-26 2009-10-21 芝浦メカトロニクス株式会社 洗浄処理装置
JPH10101251A (ja) * 1996-09-27 1998-04-21 Minolta Co Ltd 原稿搬送装置
JPH10328649A (ja) 1997-05-30 1998-12-15 Shibaura Eng Works Co Ltd オゾン水処理装置および洗浄処理装置
JPH11283903A (ja) 1998-03-30 1999-10-15 Nikon Corp 投影光学系検査装置及び同装置を備えた投影露光装置
WO1999027568A1 (fr) * 1997-11-21 1999-06-03 Nikon Corporation Graveur de motifs a projection et procede de sensibilisation a projection
JPH11269686A (ja) 1998-03-18 1999-10-05 Permelec Electrode Ltd 過酸化水素の製造方法及び過酸化水素製造用電解槽
JP3993321B2 (ja) 1998-09-25 2007-10-17 芝浦メカトロニクス株式会社 オゾン水処理装置およびそれを用いた洗浄処理装置
JP2000147793A (ja) 1998-11-12 2000-05-26 Mitsubishi Electric Corp フォトレジスト膜除去方法およびそのための装置
JP2000323396A (ja) 1999-05-13 2000-11-24 Canon Inc 露光方法、露光装置、およびデイバイス製造方法
US6314974B1 (en) * 1999-06-28 2001-11-13 Fairchild Semiconductor Corporation Potted transducer array with matching network in a multiple pass configuration
US6982006B1 (en) * 1999-10-19 2006-01-03 Boyers David G Method and apparatus for treating a substrate with an ozone-solvent solution
JP2001179268A (ja) 1999-12-28 2001-07-03 Mitsubishi Electric Corp 基板処理装置
JP2001330969A (ja) 2000-05-23 2001-11-30 Sekisui Chem Co Ltd フォトレジスト除去装置
KR20020071011A (ko) 2000-01-12 2002-09-11 세키스이가가쿠 고교가부시키가이샤 오존처리장치
JP2001274136A (ja) 2000-03-27 2001-10-05 Dainippon Screen Mfg Co Ltd 基板処理装置
US7113258B2 (en) * 2001-01-15 2006-09-26 Asml Netherlands B.V. Lithographic apparatus
JP2003164861A (ja) 2001-12-03 2003-06-10 Oputeku:Kk オゾン水脱オゾンシステム
PT1344747E (pt) * 2002-03-14 2012-04-09 Repsol Quimica Sa Processo de obtenção de peróxido de hidrogénio
US7326382B2 (en) 2002-03-20 2008-02-05 Nanomist Systems, Llc Apparatus and method for fine mist sterilization or sanitation using a biocide
EP1420300B1 (en) 2002-11-12 2015-07-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2495613B1 (en) 2002-11-12 2013-07-31 ASML Netherlands B.V. Lithographic apparatus
CN100470367C (zh) 2002-11-12 2009-03-18 Asml荷兰有限公司 光刻装置和器件制造方法
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1586386A4 (en) 2002-12-03 2010-04-21 Nikon Corp METHOD AND DEVICE FOR REMOVING CONTAMINATION AND EXPOSURE METHOD AND DEVICE
JP4352874B2 (ja) * 2002-12-10 2009-10-28 株式会社ニコン 露光装置及びデバイス製造方法
SG2014015135A (en) 2003-04-11 2015-06-29 Nippon Kogaku Kk Cleanup method for optics in immersion lithography
TWI612556B (zh) 2003-05-23 2018-01-21 Nikon Corp 曝光裝置、曝光方法及元件製造方法
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005072404A (ja) 2003-08-27 2005-03-17 Sony Corp 露光装置および半導体装置の製造方法
JP4305095B2 (ja) 2003-08-29 2009-07-29 株式会社ニコン 光学部品の洗浄機構を搭載した液浸投影露光装置及び液浸光学部品洗浄方法
EP1667211B1 (en) 2003-09-26 2015-09-09 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods for a projection exposure apparatus, and method of producing a device
JP2005136374A (ja) * 2003-10-06 2005-05-26 Matsushita Electric Ind Co Ltd 半導体製造装置及びそれを用いたパターン形成方法
EP1672682A4 (en) 2003-10-08 2008-10-15 Zao Nikon Co Ltd SUBSTRATE TRANSPORT DEVICE AND METHOD, EXPOSURE DEVICE AND METHOD AND COMPONENT MANUFACTURING METHOD
JP4295712B2 (ja) * 2003-11-14 2009-07-15 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及び装置製造方法
CN100555083C (zh) * 2003-12-23 2009-10-28 皇家飞利浦电子股份有限公司 用于浸入式光刻的可除去薄膜
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7557900B2 (en) 2004-02-10 2009-07-07 Nikon Corporation Exposure apparatus, device manufacturing method, maintenance method, and exposure method
JP2005236047A (ja) 2004-02-19 2005-09-02 Canon Inc 露光装置及び方法
US7091502B2 (en) 2004-05-12 2006-08-15 Taiwan Semiconductor Manufacturing, Co., Ltd. Apparatus and method for immersion lithography
KR101512884B1 (ko) 2004-06-09 2015-04-16 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
JP4677833B2 (ja) 2004-06-21 2011-04-27 株式会社ニコン 露光装置、及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
EP3190605B1 (en) 2004-06-21 2018-05-09 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US8698998B2 (en) * 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US20060008746A1 (en) 2004-07-07 2006-01-12 Yasunobu Onishi Method for manufacturing semiconductor device
JP3964913B2 (ja) 2004-07-07 2007-08-22 株式会社東芝 パターン形成方法及び半導体装置の製造方法
DE102004033208B4 (de) 2004-07-09 2010-04-01 Vistec Semiconductor Systems Gmbh Vorrichtung zur Inspektion eines mikroskopischen Bauteils mit einem Immersionsobjektiv
US7307263B2 (en) * 2004-07-14 2007-12-11 Asml Netherlands B.V. Lithographic apparatus, radiation system, contaminant trap, device manufacturing method, and method for trapping contaminants in a contaminant trap
US7224427B2 (en) 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006073798A (ja) 2004-09-02 2006-03-16 Nikon Corp 位置決め装置及び露光装置
JP4772306B2 (ja) 2004-09-06 2011-09-14 株式会社東芝 液浸光学装置及び洗浄方法
US7385670B2 (en) * 2004-10-05 2008-06-10 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
TW200628995A (en) 2004-10-13 2006-08-16 Nikon Corp Exposure device, exposure method, and device manufacturing method
JP2006120674A (ja) * 2004-10-19 2006-05-11 Canon Inc 露光装置及び方法、デバイス製造方法
JP2006134999A (ja) 2004-11-04 2006-05-25 Sony Corp 液浸型露光装置、及び、液浸型露光装置における保持台の洗浄方法
JP2006133661A (ja) * 2004-11-09 2006-05-25 Minebea Co Ltd カラーホイールおよびその製造方法と製造用治具
US7362412B2 (en) 2004-11-18 2008-04-22 International Business Machines Corporation Method and apparatus for cleaning a semiconductor substrate in an immersion lithography system
KR101339887B1 (ko) 2004-12-06 2013-12-10 가부시키가이샤 니콘 메인터넌스 방법, 메인터넌스 기기, 노광 장치, 및디바이스 제조 방법
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG124359A1 (en) * 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2006202929A (ja) 2005-01-20 2006-08-03 Canon Inc 光学素子、当該光学素子を有する露光装置及びデバイス製造方法
JP2006210782A (ja) 2005-01-31 2006-08-10 Jsr Corp 液浸露光用液体および液浸露光方法
JP2006222186A (ja) 2005-02-09 2006-08-24 Jsr Corp 液浸露光用液体およびその製造方法
JP2006223995A (ja) 2005-02-17 2006-08-31 Sony Corp 洗浄方法及び洗浄装置
JP2006310706A (ja) 2005-05-02 2006-11-09 Nikon Corp 光学部品の洗浄方法、液浸投影露光装置および露光方法
US20060250588A1 (en) 2005-05-03 2006-11-09 Stefan Brandl Immersion exposure tool cleaning system and method
US7315033B1 (en) * 2005-05-04 2008-01-01 Advanced Micro Devices, Inc. Method and apparatus for reducing biological contamination in an immersion lithography system
WO2006122578A1 (en) 2005-05-17 2006-11-23 Freescale Semiconductor, Inc. Contaminant removal apparatus and method therefor
US20070085989A1 (en) 2005-06-21 2007-04-19 Nikon Corporation Exposure apparatus and exposure method, maintenance method, and device manufacturing method
WO2006137410A1 (ja) 2005-06-21 2006-12-28 Nikon Corporation 露光装置及び露光方法、メンテナンス方法、並びにデバイス製造方法
KR20080026082A (ko) 2005-06-30 2008-03-24 가부시키가이샤 니콘 노광장치 및 방법, 노광장치의 메인터넌스 방법 및디바이스 제조방법
US20070004182A1 (en) * 2005-06-30 2007-01-04 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and system for inhibiting immersion lithography defect formation
US20070002296A1 (en) 2005-06-30 2007-01-04 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography defect reduction
US7262422B2 (en) 2005-07-01 2007-08-28 Spansion Llc Use of supercritical fluid to dry wafer and clean lens in immersion lithography
DE102005031792A1 (de) 2005-07-07 2007-01-11 Carl Zeiss Smt Ag Verfahren zur Entfernung von Kontamination von optischen Elementen, insbesondere von Oberflächen optischer Elemente sowie ein optisches System oder Teilsystem hierfür
KR20180067714A (ko) 2005-07-08 2018-06-20 가부시키가이샤 니콘 면 위치 검출 장치, 노광 장치 및 노광 방법
JP2007027631A (ja) 2005-07-21 2007-02-01 Nikon Corp 露光方法及び露光装置、並びにデバイス製造方法
JP2007029973A (ja) 2005-07-25 2007-02-08 Sony Corp レーザ加工装置とその加工方法及びデブリ回収装置とその回収方法
JP2007088328A (ja) 2005-09-26 2007-04-05 Toshiba Corp 液浸型露光装置の洗浄方法
JP2007103658A (ja) 2005-10-04 2007-04-19 Canon Inc 露光方法および装置ならびにデバイス製造方法
JP4735186B2 (ja) 2005-10-21 2011-07-27 株式会社ニコン 液浸顕微鏡装置
US7986395B2 (en) 2005-10-24 2011-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography apparatus and methods
CN1963673A (zh) 2005-11-11 2007-05-16 台湾积体电路制造股份有限公司 浸润式微影曝光设备及方法
JP5622068B2 (ja) 2005-11-15 2014-11-12 株式会社ニコン 面位置検出装置、露光装置、およびデバイスの製造方法
JP2007142217A (ja) 2005-11-18 2007-06-07 Taiwan Semiconductor Manufacturing Co Ltd イマージョン式リソグラフィ露光装置およびその方法
JP2007150102A (ja) 2005-11-29 2007-06-14 Fujitsu Ltd 露光装置及び光学素子の洗浄方法
US7462850B2 (en) 2005-12-08 2008-12-09 Asml Netherlands B.V. Radical cleaning arrangement for a lithographic apparatus
US7405417B2 (en) 2005-12-20 2008-07-29 Asml Netherlands B.V. Lithographic apparatus having a monitoring device for detecting contamination
US7522263B2 (en) 2005-12-27 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and method
US20070146658A1 (en) * 2005-12-27 2007-06-28 Asml Netherlands B.V. Lithographic apparatus and method
JP4704221B2 (ja) * 2006-01-26 2011-06-15 株式会社Sokudo 基板処理装置および基板処理方法
JP2007227543A (ja) 2006-02-22 2007-09-06 Toshiba Corp 液浸光学装置、洗浄方法及び液浸露光方法
JP2007227580A (ja) 2006-02-23 2007-09-06 Sony Corp 液浸型露光装置および液浸型露光方法
JP2007266074A (ja) 2006-03-27 2007-10-11 Toshiba Corp 半導体装置の製造方法及び液浸リソグラフィーシステム
JP2007294817A (ja) * 2006-04-27 2007-11-08 Sokudo:Kk 基板処理方法、基板処理システムおよび基板処理装置
US7628865B2 (en) 2006-04-28 2009-12-08 Asml Netherlands B.V. Methods to clean a surface, a device manufacturing method, a cleaning assembly, cleaning apparatus, and lithographic apparatus
CN101410948B (zh) 2006-05-18 2011-10-26 株式会社尼康 曝光方法及装置、维护方法、以及组件制造方法
US7969548B2 (en) * 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
EP2034515A4 (en) 2006-05-23 2012-01-18 Nikon Corp MAINTENANCE METHOD, EXPOSURE METHOD AND DEVICE AND COMPONENT MANUFACTURING METHOD
JP2007317987A (ja) 2006-05-29 2007-12-06 Sokudo:Kk 基板処理装置および基板処理方法
JP5245825B2 (ja) 2006-06-30 2013-07-24 株式会社ニコン メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
JP2008263091A (ja) 2007-04-12 2008-10-30 Nikon Corp 光洗浄部材、メンテナンス方法、洗浄方法、露光方法及び露光装置、並びにデバイス製造方法
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) * 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US20090025753A1 (en) 2007-07-24 2009-01-29 Asml Netherlands B.V. Lithographic Apparatus And Contamination Removal Or Prevention Method
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
NL1035942A1 (nl) * 2007-09-27 2009-03-30 Asml Netherlands Bv Lithographic Apparatus and Method of Cleaning a Lithographic Apparatus.
SG151198A1 (en) * 2007-09-27 2009-04-30 Asml Netherlands Bv Methods relating to immersion lithography and an immersion lithographic apparatus
JP5017232B2 (ja) 2007-10-31 2012-09-05 エーエスエムエル ネザーランズ ビー.ブイ. クリーニング装置および液浸リソグラフィ装置
NL1036273A1 (nl) 2007-12-18 2009-06-19 Asml Netherlands Bv Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus.
NL1036306A1 (nl) 2007-12-20 2009-06-23 Asml Netherlands Bv Lithographic apparatus and in-line cleaning apparatus.
US8339572B2 (en) * 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955848A (zh) * 2005-10-24 2007-05-02 台湾积体电路制造股份有限公司 浸润式光刻装置、光刻装置及其洁净方法
CN1983034A (zh) * 2005-12-02 2007-06-20 Asml荷兰有限公司 防止或者降低浸没式投影设备及浸没式光刻设备的污染的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
同上.

Also Published As

Publication number Publication date
NL1035712A1 (nl) 2009-01-27
JP5027749B2 (ja) 2012-09-19
US20090027636A1 (en) 2009-01-29
CN101354538A (zh) 2009-01-28
JP5395114B2 (ja) 2014-01-22
JP2011193017A (ja) 2011-09-29
JP2009033163A (ja) 2009-02-12
US20090025753A1 (en) 2009-01-29
NL1035725A1 (nl) 2009-01-27
US9019466B2 (en) 2015-04-28
JP2009033162A (ja) 2009-02-12

Similar Documents

Publication Publication Date Title
CN101354538B (zh) 光刻设备和污染物去除或防止方法
US9599908B2 (en) Lithographic apparatus and contamination removal or prevention method
CN101078887B (zh) 光刻设备和光刻设备清洗方法
CN101950130B (zh) 光刻设备和光刻投影设备
EP1720073B1 (en) Device manufacturing method
US10495980B2 (en) Lithographic apparatus and device manufacturing method
CN102096329B (zh) 光刻设备和表面清洁方法
US20090190106A1 (en) Immersion lithography apparatus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20150724

EXPY Termination of patent right or utility model