CN101398670B - 对具有积分响应的系统的基于时间的控制器和控制方法 - Google Patents

对具有积分响应的系统的基于时间的控制器和控制方法 Download PDF

Info

Publication number
CN101398670B
CN101398670B CN2008101688437A CN200810168843A CN101398670B CN 101398670 B CN101398670 B CN 101398670B CN 2008101688437 A CN2008101688437 A CN 2008101688437A CN 200810168843 A CN200810168843 A CN 200810168843A CN 101398670 B CN101398670 B CN 101398670B
Authority
CN
China
Prior art keywords
time
state
based controller
equipment
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008101688437A
Other languages
English (en)
Other versions
CN101398670A (zh
Inventor
约翰·L·梅兰松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cirrus Logic Inc
Original Assignee
Cirrus Logic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cirrus Logic Inc filed Critical Cirrus Logic Inc
Publication of CN101398670A publication Critical patent/CN101398670A/zh
Application granted granted Critical
Publication of CN101398670B publication Critical patent/CN101398670B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/26Automatic controllers electric in which the output signal is a pulse-train
    • G05B11/28Automatic controllers electric in which the output signal is a pulse-train using pulse-height modulation; using pulse-width modulation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/40Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining an integral characteristic

Abstract

本发明提供了一种基于时间的控制器,其提供了对受控系统的控制,所述受控系统包括具有积分响应的设备。基于时间的控制器包括:比较器,其在控制信号处于第一状态时检测来自设备的感测信号与参考信号的比较结果中的极性变化;时间计算逻辑,所述时间计算逻辑响应于对比较结果中的变化的检测,确定对提供给设备的控制信号的状态进行改变的时刻;调制器,其在所确定的时刻将提供给设备的控制信号的状态从第一状态改变为第二状态。

Description

对具有积分响应的系统的基于时间的控制器和控制方法
技术领域
本发明总的来说涉及电路,具体来讲,本发明涉及对具有积分响应的系统的基于时间的控制。 
背景技术
图1是现有技术积分器电路100的高度概括的原理图,该电路包括开关102、积分器104以及控制逻辑106。如图所示,响应于控制逻辑106所产生的控制信号108,开关102将积分器104的输入端连接至输入端A以使积分器104充电,或者将积分器104的输入端连接至输入端B以使积分器104放电。控制逻辑106根据积分器104的输出和目标信号110来产生控制信号108,从而使积分器104的输出的平均值与目标信号110匹配。实际上,积分器104通常不是具有无限直流增益的理想积分器,而是具有有限直流增益的“有泄漏的”积分器。 
可以在各种不同的应用中实现图1的积分器电路100。例如,图1的积分器电路100的一个应用是如图2A所示的现有技术的升压模式开关稳压器200。升压模式开关稳压器200包括连接至二极管212的电感值为L的电感器204、和连接在二极管212和电压轨214之间的电容器218。在电感器204和电压轨214的输入端之间存在直流电压Vx,直流电压Vcap表征电容器218的电压。升压模式开关稳压器200还包括连接在电压轨214和电感204和二极管212的公共节点216之间的开关202。在描述的实现方式中,响应于控制逻辑206根据感测到的电流信号220(即,开关电流)和目标电流信号210所产生的控制信号208,开关202间歇地将公共节点216短接至电压轨214。虽然在描述的实现方式中感测到的电流是开关电流,但是在其它的通用实现方式中,感测到的是电感器电流或二极管电流。在其他一些可 选实现方式中,控制逻辑206可以根据感测到的电压(即,输出电压Vcap)和目标电压信号来控制开关202。 
在开关202闭合时的短路时间间隔内,假定元件(例如,二极管,电感器和开关)是理想元件,那么通过电感器204的电流以每秒Vx/L安培进行线性增大。当开关202开路时,电压反向,再次假定元件是理想元件,那么通过电感器204的电流以每秒(Vcap-Vx)/L安培的速率减小。在这种开路状态中,电感器204上的电压加上出现在电感器输入端和电压轨214之间的输入电压Vx来产生比Vx大的电压。因此,升压模式开关稳压器200以被开关202的占空比所控制的量来对输入电压Vx进行增大或“升压”。 
图1的积分器电路的第二个应用是如图2B所示的现有技术的降压模式开关稳压器250。降压模式开关稳压器250包括连接至电感值为L的电感器254的开关252、和连接在电感器254和电压轨264之间的电容器268。在开关252的输入端和电压轨264之间存在直流电压Vx,介于0V和Vx之间的直流电压Vcap表征电容器268的电压。如上所述,降压模式开关稳压器250还包括连接在电压轨264和电感器254与开关252的公共节点216之间的二极管262。响应于控制逻辑256根据感测到的电流信号260和目标电流信号262所产生的控制信号258,开关252断开和闭合。如上所述,对于图2A的升压模式开关稳压器200,在可选实现方式中,降压模式开关稳压器250的控制逻辑256可以根据电感器电流或二极管电流、或者可选地根据感测到的电压(即Vcap的输出电压)和目标电压信号来控制开关252。 
当开关252闭合时,电感器上的电压等于Vx-Vcap,假定元件是理想元件,那么通过电感器254的电流以每秒Vx/L安培进行线性增大。由于Vx反向偏置,二极管262中没有电流经过。当开关252开路时,二极管262被正向偏置,电感器254上的电压等于-Vcap(忽略二极管电压降),再次假定元件是理想元件,那么通过电感器254的电流以每秒(Vcap-Vx)/L安培的速率减小。因此,降压模式开关稳压器200以开关252的占空比所控制的量来减小或逐渐降低输入电压Vx。
诸如图2A-2B的开关稳压器200和250之类的积分电路的现有技术设计是用控制逻辑(即,控制逻辑106、206或256)来表征的,该控制逻辑根据目标信号和感测到的电流信号或电压信号的相对幅值来改变开关的占空比。 
例如,在一个传统的反馈控制方法中,积分器电路中的开关的占空比是由控制信号控制的,其中该控制信号是通过对目标电压信号的幅值和参考锯齿波信号进行比较以获得与目标电压信号和输出电压Vcap之间的差值成正比的占空比从而产生的。在一种传统的电流模式控制方法中,控制逻辑响应于恒定频率时钟脉冲而接通开关,并且在感测到的开关电流的幅值等于目标电流时关断开关。这些传统的控制方法都很容易受到(例如来自未调整的输入电压源的)输入电压瞬变的影响,并至少需要几个周期来抑制输出电压中随之产生的震荡。如果采用了电流模式控制,那么使系统稳定可能需要对所感测到的电流信号进行人为的向下倾斜的额外替换。 
对于具有恒定开关频率的应用,已经开发了一种被称为单周期控制(One Cycle Control)的第三种控制方法。在单周期控制中,控制逻辑利用恒定频率时钟脉冲来接通开关,并利用积分器来增大感测到的电压(例如,降压模式开关稳压器250的节点266的电压)。当比较器指示增大了的感测到的电压等于目标电压信号时,控制逻辑关断开关。虽然与其他的控制方法相比单周期控制提供了对输入电压瞬变的改善的响应,但是实现单周期控制所需要的控制逻辑过分复杂。 
考虑到上述内容,本发明希望积分系统的改进的控制是有用的和令人满意的。 
发明内容
在一些实施例中,基于时间的控制器提供了对受控系统的控制,所述受控系统包括具有积分响应(integration response)的设备。所述基于时间的控制器包括:比较器,所述比较器在控制信号处于第一状态时检测来自设备的感测信号和参考信号的比较结果中的极性 变化;时间计算逻辑,所述时间计算逻辑响应于对比较结果中的变化的检测,从而确定对提供给设备的控制信号的状态进行改变的时刻;以及调制器,所述调制器在所确定时刻将提供给设备的控制信号的状态从第一状态改变到第二状态。 
附图说明
通过在阅读附图的同时参照下文的一个或多个图示实施例的详细描述,本发明以及本发明的有用的优选实施方式将得到更好地理解,其中: 
图1是现有技术积分器电路的高度概括的原理图; 
图2A是现有技术的升压模式开关稳压器的原理图; 
图2B是现有技术的降压模式开关稳压器的原理图; 
图3是根据本发明的受控系统的高度概括的原理图; 
图4是根据本发明的受控系统的操作时序图; 
图5是图3中的基于时间的控制器的一种数字实现的操作的高度概括的逻辑流程图;以及 
图6是图3中的基于时间的控制器的一种模拟实现的示意图。 
具体实施方式
现在参照图3,图3图示说明了根据本发明的示例性受控系统300的高度概括的框图。如图所示,受控系统300包括至少基本上表现出积分响应的设备302。从而,设备302包括理想的或存在泄漏的积分器。设备302包括对设备302的积分响应进行控制的开关304。与上文讨论的积分器电路时所描述一样,开关304有两个状态:导通(即闭合)状态(其中,开关304使设备302进行积分充电)以及关断(或断开)状态(其中,开关304使设备302进行积分放电)。受控系统300还包括基于时间的控制器310,该控制器控制开关304,以便使得设备302的输出306(即输出电压)具有期望的平均值。由于基于时间的控制器310提供到开关304的控制总是使设备302积分充电或者积分放电,所以基于时间的控制器310被称为实施bang-bang控制。
就像它的名字所表示的那样,基于时间的控制器310实现了一种基于时间的控制方法,而不是上述传统的基于幅值的控制方法中的一种。基于时间的控制器310接收作为输入的感测信号312和参考信号314a,感测信号312表示设备302中的电流或电压,参考信号314a是诸如模拟或数字电流或模拟或数字电压之类的信号。参考信号314a可以表示感测信号312的期望(或目标)平均值,或者表示偏离目标平均值的一个已知偏移量。基于时间的控制器310可以选择性地包括转换器316(即,模拟至数字转换器(ADC)或数字至模拟转换器(DAC))来转换参考信号314a,以获得具有期望的形式的参考信号314b。在下文中将这个参考信号总的称为参考信号314,其旨在涵盖其中对参考信号进行了转换的实施例以及其中没有对参考信号314执行转换的两种实施例。 
基于时间的控制器310还包括比较器318,比较器318接收参考信号314和感测信号312,并改变比较器输出信号320,从而在正向转换或反向转换中的至少一种情况下指示感测信号312的值什么时候越过了参考信号314的值。比较器输出信号320被时间计算逻辑322接收,该时间计算逻辑322响应于接收到的比较器输出信号320,以确定开关304的状态应当被改变的时刻,从而将感测信号306的平均值保持在目标平均值。最后,基于时间的控制器310包括脉冲宽度调制器(PWM)324,该脉冲宽度调制器324在时间计算逻辑322所指示的时刻对控制信号330进行有效置位(assert)或者取消有效置位(deassert)来改变开关304的状态。 
应当理解的是,根据本发明的受控系统300可以被实现为升压模式开关稳压器、降压模式开关稳压器、或任何其他类型的具有可以对其实施bang-bang控制的积分响应的设备。 
现在参照图4,图中描绘了根据本发明的受控系统300的实施例的操作时序图。在所描绘的时序图中,感测信号312是被感测到的电流,例如在如图3所示开关304的输出端感测到的电流,目标是目标电流。当然,在可选实施例中,感测信号312和目标信号可以都是电压。
在图4中,总是不停上升或下降的感测信号312具有周期为P的重复周期,每个周期P均包括时间间隔T1和时间间隔T2,在时间间隔T1中,感测信号312是上升的,在时间间隔T2中,感测信号312是下降的。每个时间间隔T1又包括时间间隔A以及随后的时间间隔B,在时间间隔A中,感测信号312从周期初始值上升到目标电流,在时间间隔B中,感测信号312从目标电流上升到周期最大值。在时间间隔T2中,感测信号312从周期最大值下降到下一个周期的初始值。为了清楚起见,用升序数字周期索引(A(0)、A(1)等以及B(0)、B(1)等)来区分时间间隔A和B。 
根据本发明,基于时间的控制器310可以控制开关304,以实现任意数量的基于时间的控制方法。例如,基于时间的控制器310可以实现恒定周期控制以便使得周期P是恒定的(时间间隔T1和T2在不同周期中是不同的),或者可以实现恒定的导通时间控制以便使得时间间隔T1是恒定的(周期P和时间间隔T2在不同周期中是不同的),或可以实现恒定的关断时间控制以便使得时间间隔T2是恒定的(周期P和时间间隔T1在不同周期中是不同的)。例如,可以选择理想的方法来减少与周围电路的电磁干扰(EMI)。 
最简单的、也可以对目标信号进行即时锁定的控制方法是恒定导通时间或恒定关断时间方法,其中,时间间隔T1或T2之一具有恒定的持续时间,而另一个时间间隔(以及周期P)在持续时间上变化。在恒定关断时间控制方法中,基于时间的控制器310控制开关304,以便使得时间间隔T1的其间感测信号小于目标信号的时间间隔A等于时间间隔T1的其间感测信号大于目标信号的时间间隔B。根据这种恒定的关断时间控制方法,用下列等式来确定每个周期的时间间隔B的持续时间: 
B(N)=[B(N-1)+A(N)]/2, 
其中,N是周期索引。因此,例如,利用这个等式,时间间隔B(1)等于时间间隔B(0)和A(1)的平均值。当然,时间间隔T2的持续时间是固定的。 
恒定导通时间方法采用了和恒定关断时间方法相同的等式,不 同的是,在恒定导通时间方法中,时间间隔T1具有恒定的持续时间,时间间隔A是时间间隔T2中感测信号超过目标信号的部分,时间间隔B是时间间隔T2中感测信号小于目标信号的部分。基于时间的控制器310再次控制开关304,以便时间间隔A和时间间隔B具有相等的持续时间。 
如下文参照图5-6所述,基于时间的控制器310通过将开关304设置为第一状态、测量时间间隔A的持续时间、然后持续时间等于时间间隔A的持续时间的时间间隔B结束时改变开关304的状态,从而实现了恒定导通时间和恒定关断时间方法。如果感测信号超过目标信号的时间等于感测信号小于目标信号的时间,那么感测信号的平均值必须与理想的目标完全相等。 
恒定周期控制方法是略微复杂的控制方法,其实施了相同的通用的基于时间的控制方法。如果作为T1与T2之和的周期P是恒定的,那么可以将占空比D表示为: 
D=T1/P=(A+B)/P。 
如果P被定义成具有持续时间1,那么: 
D=A+B; 
Dest(N)=D(N-1)+(A(N)-A(N-1))/(1+A(N)-A(N-1))(1-D(N-1)); 
以及 
B(N)=Dest(N)-A(N)+(A(N)-1/2Dest(N))(1-Dest(N))。 
从而,可以将时间B的计算归纳为时间A的低通滤波。当时间A的测量中引入了噪声时,这个被归纳来涵盖所有情况的公式是特别有用的。以稍慢的瞬态响应为代价,可以得到更平滑、更一致的时间结果。 
参照图5,图5图示了图3中的基于时间的控制器310的一种数字实现的操作的高度概括的逻辑流程图。可以通过专用集成电路(ASIC)、执行来自有形数据存储介质的指示图示操作的程序代码的通用数字硬件或本领域已知的其它数字电路来实现图示的过程。而且,可以采用图示的过程来实现任何的基于时间的恒定周期、基于时 间的恒定关断时间、基于时间的可变周期或基于时间的可变关断时间的控制方法。 
图5所示的过程开始于框500,然后进入框502,框502描述了基于时间的控制器310对控制信号330进行有效置位(即,使控制信号330处于第一状态)来接通开关304,于是开始时间间隔A。接下来,在正向转换中,在框504,在这种情况下进行重复,直到比较器318通过发送信号通知感测信号312的值已经越过参考信号314的值这一情况来指示时间间隔A已经结束。从而,参考信号314和感测信号312的相对幅度的变化导致比较器318的输出的极性变化,这种极性变化(在这个实施例中)指示感测信号312至少和参考信号314一样大(或者在其他的实施例中,指示感测信号312等于或小于参考信号314)。响应于比较器318指示在正向转换中感测信号312已经越过了参考信号314,时间计算逻辑322基于数字计数器或计时器来记录时间间隔A的持续时间(框506)。随后,(例如)利用上文给出的公式中的一个,时间计算逻辑322计算时间间隔B的持续时间(框508)。 
如在框510和512处所示,随后,脉冲宽度调制器324(例如,利用数字计数器或计时器)检测从时间比较器318指示的时间间隔A的结束开始的时间间隔B经过的持续时间。响应于对计算出来的时间间隔B经过的持续时间的确定,脉冲宽度调制器324对控制信号330取消有效置位(即,使控制信号330处于第二状态),从而关断开关304。之后,脉冲宽度调制器324等待一个根据所选的控制方法而定的固定或可变关断时间(时间间隔T2)(框514),并再次对控制信号330进行有效置位来接通开关304,于是开始下一个操作周期的时间间隔A,如框502所示。之后,按照已经描述的步骤进行。 
现在参照图6,图6图示了图3的基于时间的控制器310中的时间计算逻辑322的一种可选实现方式,这种实现方式采用了模拟电路600。应当理解的是,示例性的模拟电路600只不过是多种不同的可行的模拟实现方式中的一种。 
在描述的模拟实施例中,模拟电路600是运算放大器积分器, 其包括运算放大器601,该运算放大器具有正相输入端、反相输入端和运算放大器输出端606。第一参考电压(例如,1V DC)耦接至运算放大器601的正相输入端,电阻器602连接至运算放大器601的反相输入端。电阻器602还连接至第一开关604,第一开关604将电阻器602连接至使运算放大器601放电的第二参考电压(例如,0V DC),或者将运算放大器601连接至使运算放大器601充电的第三参考电压(例如,2V DC),或者是开路的。耦接在运算放大器输出端606和运算放大器反相601的反相输入端之间的是电容性反馈环路,该反馈环路包括并联电容器610a和610b,其中每个电容器均具有电容值C。电容器610b与第二开关612串联。 
第一开关604是由控制信号620控制的,该控制信号620通过将开关604连接至第三参考电压(例如,2V DC)来使运算放大器601在时间间隔A期间充电,通过将开关604连接至第二参考电压(例如,0V DC)来使运算放大器601在时间间隔B期间放电,通过使开关604连接成处于开路状态来使运算放大器601在周期的剩余时间内处于不活动状态。在运算放大器601积分的时间间隔A和B期间内,运算放大器输出端606的电压由下式给出: 
V out = - 1 RC eff ∫ 0 t V in dt + V initial
其中,Vinitial是积分器在时刻t=0时的输出电压,Ceff在开关612闭合时等于2C,在开关612开路时等于C。 
为了提供对时间间隔A的持续时间的“记忆”,由控制信号622控制开关612,以使得在时间间隔A期间中开关612闭合且电容器610b处于连接状态,而在时间间隔B期间中开关612开路且电容器610b处于断开状态。结果,由运算放大器601执行的积分将时间间隔A的持续时间转换成存储在电容器610b上的电压。随后,由运算放大器601的积分将这个电压转换回时间来计算: 
B(N)=[B(N-1)+A(N)]/2, 
其中,B(N)由运算放大器输出端606的电压指示,B(N-1)是 Vinitial,A(N)由电容器610b的电压指示。 
如上所述,在本发明的一些实施例中,基于时间的bang-bang控制被施加到具有积分响应的开关受控系统。在至少一些实施例中,控制受控系统,以便感测信号(即,电压或电流信号)超过目标信号的时间间隔的持续时间等于感测信号小于目标信号的时间间隔的持续时间。由于感测信号超过目标信号的时间等于感测信号小于目标信号的时间,感测信号的平均值必须等于期望目标。 
虽然参照一个或多个优选实施例详细描述了本发明,但是本领域的技术人员可以理解的是,在不脱离本发明的精神和范围的情况下,本领域技术人员可以进行各种形式和内容上的变化。例如,虽然本发明将各种信号和值描述为“正”和“负”,但是本领域技术人员可以理解的是,至少在一些实施例中,在不改变所述控制系统的基本操作的情况下,这种指定是可以互换的。

Claims (19)

1.一种用于受控系统的基于时间的控制器,所述受控系统包括具有积分响应的设备,所述基于时间的控制器包括:
比较器,在提供给所述设备的控制信号具有第一状态时,所述比较器在第一时刻对来自所述设备的感测信号与参考信号的比较结果中的极性变化进行检测;
时间计算逻辑,其根据所述第一时刻确定对提供给所述设备的控制信号的状态进行改变的第二时刻;以及
调制器,其在所确定的第二时刻,将提供给所述设备的控制信号的状态从第一状态改变为第二状态。
2.根据权利要求1所述的基于时间的控制器,其中,所述基于时间的控制器将所述控制信号的周期固定为恒定的持续时间。
3.根据权利要求1所述的基于时间的控制器,其中,所述时间计算逻辑根据所测得的在所述第一时刻结束的第一时间间隔的持续时间、和所述控制信号的状态的改变所结束的先前的第二时间间隔的持续时间,从而确定所述第二时刻。
4.根据权利要求3所述的基于时间的控制器,其中,所述基于时间的控制器将所述第一时间间隔或所述第二时间间隔固定为恒定的持续时间。
5.根据权利要求3所述的基于时间的控制器,其中,所述时间计算逻辑通过对所述第一时间间隔和第二时间间隔的持续时间求平均值来确定所述第二时刻。
6.根据权利要求1所述的基于时间的控制器,其中,所述参考信号表示对感测信号的期望平均值。
7.根据权利要求6所述的基于时间的控制器,其中,所述基于时间的控制器控制所述感测信号,以便使得其中所述感测信号大于目标值的第一时间间隔的持续时间等于其中所述感测信号小于所述目标值的第二时间间隔的持续时间。
8.根据权利要求1所述的基于时间的控制器,其中,所述时间计算逻辑通过参照数字计数器来检测所述第二时刻的到来。
9.根据权利要求1所述的基于时间的控制器,其中,所述时间计算逻辑采用计时器来检测所述第二时刻的到来。
10.根据权利要求1所述的基于时间的控制器,其中,所述基于时间的控制器包括数字电路。
11.根据权利要求1所述的基于时间的控制器,其中,所述基于时间的控制器包括模拟电路。
12.一种受控系统,其包括:
基于时间的控制器,所述基于时间的控制器包括:
比较器,在提供给所述设备的控制信号具有第一状态时,所述比较器在第一时刻对来自所述设备的感测信号与参考信号的比较结果中的极性变化进行检测;
时间计算逻辑,其根据所述第一时刻确定对提供给所述设备的控制信号的状态进行改变的第二时刻;以及
调制器,其在所确定的第二时刻,将提供给所述设备的控制信号的状态从第一状态改变为第二状态;以及
具有积分响应的设备。
13.一种用于受控系统的基于时间的控制方法,所述受控系统包括具有积分响应的设备,所述方法包括:
当提供给所述设备的控制信号处于第一状态时,在第一时刻对来自所述设备的感测信号和参考信号的比较结果中的极性变化进行检测;
基于所述第一时刻,确定对提供给所述设备的控制信号状态进行改变的第二时刻;以及
在所确定的第二时刻,将提供给所述设备的所述控制信号的状态从第一状态改变为第二状态。
14.根据权利要求13所述的方法,还包括将所述控制信号的周期固定为恒定的持续时间。
15.根据权利要求13所述的方法,其中,确定所述第二时刻包括根据所测得的在所述第一时刻结束的第一时间间隔的持续时间和被所述控制信号的状态改变所结束的先前的第二时间间隔的持续时间来确定所述第二时刻。
16.根据权利要求15所述的方法,还包括将所述第一时间间隔或所述第二时间间隔固定为恒定的持续时间。
17.根据权利要求15所述的方法,其中,确定所述第二时刻包括对所述第一时间间隔和第二时间间隔的持续时间求平均。
18.根据权利要求13所述的方法,其中,所述参考信号表示对所述感测信号的期望平均值。
19.根据权利要求18所述的方法,其中,改变所述控制信号的状态包括周期性地改变所述控制信号的状态,以便使得其中所述感测信号大于目标值的第一时间间隔的持续时间等于其中所述感测信号小于所述目标值的第二时间间隔的持续时间。
CN2008101688437A 2007-09-28 2008-09-28 对具有积分响应的系统的基于时间的控制器和控制方法 Active CN101398670B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/864,366 2007-09-28
US11/864,366 US7647125B2 (en) 2007-09-28 2007-09-28 Time-based control of a system having integration response

Publications (2)

Publication Number Publication Date
CN101398670A CN101398670A (zh) 2009-04-01
CN101398670B true CN101398670B (zh) 2012-02-22

Family

ID=40507499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101688437A Active CN101398670B (zh) 2007-09-28 2008-09-28 对具有积分响应的系统的基于时间的控制器和控制方法

Country Status (3)

Country Link
US (1) US7647125B2 (zh)
CN (1) CN101398670B (zh)
TW (1) TWI450058B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214395A1 (en) * 2008-02-27 2009-08-27 The Dow Chemical Company Raw Material Efficiency Method and Process
US9510401B1 (en) 2010-08-24 2016-11-29 Cirrus Logic, Inc. Reduced standby power in an electronic power control system
EP2715924A1 (en) 2011-06-03 2014-04-09 Cirrus Logic, Inc. Control data determination from primary-side sensing of a secondary-side voltage in a switching power converter
CN103475210B (zh) * 2011-09-14 2016-04-27 矽力杰半导体技术(杭州)有限公司 一种开关型调节器的恒定时间控制方法、控制电路以及应用其的开关型调节器
DE102012219240B4 (de) 2012-10-22 2015-02-05 Conti Temic Microelectronic Gmbh Verfahren und Schaltungsanordnung zum Ansteuern eines Halbleiterschalters
US9244473B2 (en) * 2013-05-08 2016-01-26 Intersil Americas LLC Current ramping during multiphase current regulation
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
EP3443654B1 (en) * 2016-04-15 2022-11-16 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US10312798B2 (en) 2016-04-15 2019-06-04 Emerson Electric Co. Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189216A (zh) * 1996-03-01 1998-07-29 菲利浦电子有限公司 用于检测一个输入直流电压的电平或电平变化的电路
US5929400A (en) * 1997-12-22 1999-07-27 Otis Elevator Company Self commissioning controller for field-oriented elevator motor/drive system
US5946202A (en) * 1997-01-24 1999-08-31 Baker Hughes Incorporated Boost mode power conversion
US7158633B1 (en) * 1999-11-16 2007-01-02 Silicon Laboratories, Inc. Method and apparatus for monitoring subscriber loop interface circuitry power dissipation
US7212640B2 (en) * 1999-11-29 2007-05-01 Bizjak Karl M Variable attack and release system and method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790878A (en) * 1971-12-22 1974-02-05 Keithley Instruments Switching regulator having improved control circuiting
US3881167A (en) * 1973-07-05 1975-04-29 Pelton Company Inc Method and apparatus to maintain constant phase between reference and output signals
US4075701A (en) * 1975-02-12 1978-02-21 Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung Method and circuit arrangement for adapting the measuring range of a measuring device operating with delta modulation in a navigation system
US4476706A (en) * 1982-01-18 1984-10-16 Delphian Partners Remote calibration system
JPS6150546A (ja) * 1984-08-20 1986-03-12 富士写真光機株式会社 内視鏡
US5383109A (en) * 1993-12-10 1995-01-17 University Of Colorado High power factor boost rectifier apparatus
TW312759B (zh) * 1995-09-27 1997-08-11 Mitsubishi Electric Corp
WO2005038645A2 (en) * 2003-10-16 2005-04-28 Canon Kabushiki Kaisha Operation circuit and operation control method thereof
US7331226B2 (en) * 2005-05-20 2008-02-19 Powergrid Fitness, Inc. Force measurement system for an isometric exercise device
JP2007256308A (ja) * 2006-03-20 2007-10-04 Ricoh Co Ltd 回転装置、回転制御方法及び画像形成装置
US7289054B1 (en) * 2006-06-13 2007-10-30 Toyota Jidosha Kabushiki Kaisha Parallel oversampling algorithmic A/D converter and method of using the same
US7974109B2 (en) * 2007-05-07 2011-07-05 Iwatt Inc. Digital compensation for cable drop in a primary side control power supply controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189216A (zh) * 1996-03-01 1998-07-29 菲利浦电子有限公司 用于检测一个输入直流电压的电平或电平变化的电路
US5946202A (en) * 1997-01-24 1999-08-31 Baker Hughes Incorporated Boost mode power conversion
US5929400A (en) * 1997-12-22 1999-07-27 Otis Elevator Company Self commissioning controller for field-oriented elevator motor/drive system
US7158633B1 (en) * 1999-11-16 2007-01-02 Silicon Laboratories, Inc. Method and apparatus for monitoring subscriber loop interface circuitry power dissipation
US7212640B2 (en) * 1999-11-29 2007-05-01 Bizjak Karl M Variable attack and release system and method

Also Published As

Publication number Publication date
US7647125B2 (en) 2010-01-12
TW200921309A (en) 2009-05-16
CN101398670A (zh) 2009-04-01
US20090085625A1 (en) 2009-04-02
TWI450058B (zh) 2014-08-21

Similar Documents

Publication Publication Date Title
CN101398670B (zh) 对具有积分响应的系统的基于时间的控制器和控制方法
US10447160B2 (en) Pulse width control for switching mode power converters
AU2008279400B2 (en) Method and system for optimizing filter compensation coefficients for a digital power control system
EP3023797B1 (en) Output current monitor circuit for switching regulator
US7956778B2 (en) Analog-to-digital converter
JP5550640B2 (ja) 電力コンバータの監視および制御
US8232835B2 (en) Charge pump circuit and voltage converter using the same
US9559592B2 (en) Synchronous rectifier timer for discontinuous mode DC/DC converter
CN104849538A (zh) 具有相电流估计器的开关功率转换器电流感测
US7414553B1 (en) Microcontroller having in-situ autocalibrated integrating analog-to-digital converter (IADC)
CN102072989B (zh) 一种具有电容测量功能的测量装置
EP3503393B1 (en) System and method for generating a ripple voltage for a ripple based constant-on-time dc-dc converter
EP1745536A2 (en) Method and system for communicating filter compensation coefficients for a digital power control system
US20110043177A1 (en) Control device for an interleaving power factor corrector
US10707842B2 (en) Pulse width modulation technique with time-ratio duty cycle computation
US10938356B2 (en) Integration circuit and method for providing an output signal
US7336213B2 (en) Polarity independent precision measurement of an input voltage signal
KR20150083763A (ko) 듀얼 모드 스위칭 직류-직류 변환기 및 그 제어 방법
US20030016154A1 (en) Integration type A/D conversion method, integration type A/D converter, and battery charger utilizing such converter
US20180115244A1 (en) Reconfigurable on time circuit for current mode control of buck converter
CN202276287U (zh) 在脉宽调制控制中补偿死区时间的控制系统
CN101938278A (zh) 高性能数控转换电路及其方法
US9118343B2 (en) Delta-sigma modulator with high input impedance
CN113410989A (zh) 数字升压电路及其控制方法、电子设备
IT202200000017A1 (it) Dispositivo regolatore di tensione

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant