CN101411012A - 燃料电池用电极催化剂的制造方法 - Google Patents

燃料电池用电极催化剂的制造方法 Download PDF

Info

Publication number
CN101411012A
CN101411012A CNA2007800112715A CN200780011271A CN101411012A CN 101411012 A CN101411012 A CN 101411012A CN A2007800112715 A CNA2007800112715 A CN A2007800112715A CN 200780011271 A CN200780011271 A CN 200780011271A CN 101411012 A CN101411012 A CN 101411012A
Authority
CN
China
Prior art keywords
fuel cell
manufacture method
electrode catalyst
catalyst
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800112715A
Other languages
English (en)
Other versions
CN101411012B (zh
Inventor
高桥宏明
大桥聪三郎
河村哲雄
堀内洋辅
田端寿晴
寺田智明
永田贵宽
榎本晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Publication of CN101411012A publication Critical patent/CN101411012A/zh
Application granted granted Critical
Publication of CN101411012B publication Critical patent/CN101411012B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供初期电压高并且耐久特性优异,特别是由高电位附加引起的电压降低较少的燃料电池用电极催化剂的制造方法。本发明的燃料电池用电极催化剂的制造方法,其特征在于,包括:分散工序,将导电性载体分散在溶液中;担载工序,向该分散液中滴加铂盐溶液、贱金属盐溶液和铱盐溶液,在碱性条件下使各金属盐作为氢氧化物担载在导电性载体上;以及,合金化工序,将该担载金属氢氧化物的导电性载体在还原气氛下加热还原从而进行合金化。

Description

燃料电池用电极催化剂的制造方法
技术领域
本发明涉及初期电压高且耐久特性优异的燃料电池用电极催化剂的制造方法。
背景技术
在具有氢离子的选择透过性的固体高分子电解质膜上密着层叠担载有催化剂的载体而成的电极催化剂层,使该固体高分子电解质膜和该电极催化剂层介于中间而由一对气体扩散层电极夹持而成的燃料电池,在夹持固体高分子电解质膜的两个电极(阳极、阴极)上,相应于其极性进行以下反应式所示的电极反应,获得电能。
阳极(氢极):H2→2H++2e-...(1)
阴极(氧极):2H++2e-+(1/2)O2→H2O  ...(2)
被加湿的氢或含有氢的燃料气通过也作为集电体的阳极气体扩散层到达催化剂层,引起式(1)的反应。在阳极通过式(1)的反应生成的氢离子H+,随水分子从固体高分子电解质膜透过(扩散),向阴极移动。与此同时,在阴极生成的电子e-通过催化剂层、气体扩散层(集电体),通过介由外部电路在阳极与阴极之间连接的负载,移动到阴极上。
另一方面,在阴极,被加湿的含有氧的氧化剂气体通过也作为集电体的阴极气体扩散层,到达催化剂层,遇到从外部电路通过气体扩散层(集电体)和催化剂层而流过来的电子,通过式(2)的反应被还原,与从阳极通过电解质膜转移来的质子H+结合,变成水。生成的水的一部分,由于浓度梯度而进入电解质膜,向燃料极扩散转移,一部分蒸发,通过催化剂层和气体扩散层并扩散到气体通路,与未反应的氧化剂气体一起被排出。
这样,在阳极侧和阴极侧两方上,发生水的冷凝,引起液泛(flooding)现象,存在发电性能受损的问题。
另一方面,对于燃料电池系统的小型化而言,高电流密度负荷区域中的高输出是必不可少的。在下述专利文献1等中,利用铂与过渡金属元素的二元系或三元系合金催化剂,进行了高电流密度负荷区域中的性能研讨。
另外,作为燃料电池用催化剂,UTC燃料电池公司研究了铂-钴系的各种催化剂,并在学会上作了发表。根据该研究,铂-钴的二元催化剂,电池电压高于其他的铂-钴系的催化剂,尤其是在高电流密度负荷区域中这种倾向较强。
专利文献1:日本特开2003-24798号公报
专利文献2:日本专利公报第2928586号
专利文献3:日本专利公报第3353518号
专利文献4:日本特开平10-162839号公报
发明内容
然而,专利文献1等所述的二元系或三元系合金催化剂,由于高活性化导致生成水发生量增加(液泛现象),因而存在发生性能降低的问题。此外,催化剂金属的烧结引起反应面积降低,催化剂金属的溶出等引起催化剂活性降低,或者,起因于高电位的碳氧化而引起载体劣化,由此导致催化剂的耐久性降低,这些都成为问题。
本发明是为解决上述问题而完成的,其目的在于,提供一种初期电压高,并且耐久特性优异,尤其是高电位附加所引起的电压降低较少的燃料电池用电极催化剂的制造方法。
本发明的燃料电池用电极催化剂的制造方法,其特征在于,包括:分散工序,将导电性载体分散在溶液中;担载工序,向该分散液中滴加铂盐溶液、贱金属盐溶液和铱盐溶液,在碱性条件下使各金属盐作为氢氧化物担载在导电性载体上;以及,合金化工序,将该担载金属氢氧化物的导电性载体在还原气氛下加热还原从而进行合金化。该制造方法能够制造初期电压高,并且耐久特性优异,尤其是高电位附加所引起的电压降低较少的燃料电池用电极催化剂。
优选在该制造方法的担载工序与合金化工序之间实施对担载金属氢氧化物的导电性载体进行过滤、洗涤和干燥的洗涤工序。可以抑制由杂质混入所导致的催化剂的性能劣化。
作为在该制造方法中使用的导电性载体,可以使用炭黑、较高比表面积的碳等的碳。另外,作为贱金属溶液的贱金属,可以使用选自钛、锆、钒、铬、锰、铁、钴、镍、铜和锌中的一种以上的贱金属,特别优选钴。
在该制造方法中使用的铂盐溶液中的铂元素、贱金属盐溶液中的贱金属元素和铱盐溶液中的铱元素的组成比(摩尔比)优选为铂∶贱金属元素∶铱=1∶0.01~2∶0.01~2。从成为具有更优异的耐久性的催化剂方面出发,特别优选它们的组成比(摩尔比)为铂∶贱金属元素∶铱=1∶0.07~1∶0.01~3的范围。另外,构成导电性载体的碳与在该碳上所担载的还原系催化剂粒子的铂的担载量,以摩尔比率计,铂/碳优选为0.6~1.7。此外,在合金化工序中得到的还原系催化剂粒子的粒径优选为3~6nm。
另外,该制造方法的合金化工序,优选包括在惰性气氛中在700~900℃的温度下进行处理的工序。特别优选温度为800℃。另外,上述惰性气氛优选为氮气氛、氩气氛和氦气氛中的至少一种,更优选为氩气氛。
在该制造方法的合金化工序之后,优选包括将在合金化工序中得到的担载有金属催化剂的导电性载体用还原性的酸处理后,用氧化性的酸进行处理的表面处理工序。该情况下,优选在表面处理工序中还原性的酸为甲酸和草酸的至少一种,氧化性的酸为盐酸、硝酸和硫酸的至少一种,另外,更优选还原性的酸为甲酸,氧化性的酸为硝酸。
发明效果
使用了通过本发明的制造方法得到的包含铂、贱金属和铱的三元系催化剂的燃料电池,可成为初期电压高,并且耐久特性优异,尤其是高电位附加所引起的电压降低较少的燃料电池。
附图说明
图1是表示使用试验例1的催化剂制成的单元电池和使用试验例10的催化剂制成的单元电池的电流电压特性的线图。
图2是表示电池电压与钴原子摩尔比率的关系的线图。
图3是表示电池电压与铱原子摩尔比率的关系的线图。
图4是表示使用试验例1的催化剂制成的单元电池与使用试验例10的催化剂制成的单元电池的负荷波动耐久试验时间与电压的关系的线图。
图5是表示电池电压对钴原子摩尔比率的依赖性关系的线图。
图6是表示负荷波动耐久试验后的电池电压对铱原子摩尔比率的依赖性关系的线图。
图7是表示负荷波动耐久试验后的电池电压对铂/碳比率的依赖性关系的线图。
图8是表示高电位耐久试验后的电池电压对钴原子摩尔比率的依赖性关系的线图。
图9是表示高电位耐久试验后的电池电压对铱原子摩尔比率的依赖性关系的线图。
图10是表示高电位耐久试验后的电池电压对铂/碳比率的依赖性关系的图。
图11是表示试验例21~24的合金化温度与Co溶出率的关系的线图。
图12是表示试验例21~24的合金化温度与负荷波动耐久试验4000小时后的电压值@0.9A/cm2的关系的线图。
图13是表示试验例25~28的合金化温度与Ir溶出率的关系的线图。
图14是表示试验例25~28的合金化温度与负荷波动耐久试验4000小时后的电压值@0.9A/cm2的关系的线图。
图15是表示试验例25~28的Ir溶出率与负荷波动耐久试验4000小时后的电压值@0.9A/cm2的关系的线图。
具体实施方式
作为本发明的制造方法中使用的导电性载体,可以使用选自炭黑、石墨、活性炭以及碳纳米管中的一种以上的碳。另外,对使用采用本发明的制造方法得到的催化剂制造的燃料电池没有任何限制,可以使用具有以往就已知的结构、材料、功能的燃料电池。例如,作为固体高分子电解质,只要是作为固体高分子燃料电池中的电解质发挥作用的电解质就可以是任何的固体高分子电解质。特别优选全氟磺酸型聚合物,可优选举出Nafion(杜邦公司制)、Flemion(旭硝子株式会社制)、Aciplex(旭化成工业株式会社制)等,但不限于这些。该燃料电池单元电池(cell)可为具备夹着高分子电解质膜的阳极和阴极、具有向阳极供给燃料气的气体流路的阳极侧导电性隔板、以及具有向上述阴极供给氧化剂气体的气体流路的阴极侧隔板的单元电池。
实施例
以下对本发明的试验例进行说明。
试验例1
将市售的高比表面积碳粉4.71g加到纯水0.5L中使其分散。向该分散液中顺序地分别滴加含有4.71g铂的六羟基合硝酸铂液(hexahydroxoplatinum nitrate solution)、含有0.529g钴的硝酸钴水溶液、含有0.232g铱的氯化铱水溶液,充分地与碳溶合。再向其中添加0.01N氨水约5mL使pH值约为9,分别形成氢氧化物并在碳上析出,使将该分散液反复过滤洗涤而得到的粉末在100℃下真空干燥10小时。
接着,在氢气中在500℃下保持2小时进行还原处理后,在氮气中在900℃下保持2小时进行合金化。进而,将该催化剂粉末在1N盐酸0.5L中进行搅拌,酸洗除去未合金化(non-alloyed)的钴约40重量%后,用纯水反复洗涤。
所得到的在碳上担载有铂合金的催化剂粉末的铂担载密度为45.5重量%,钴担载密度为3.4重量%,铱担载密度为5.6重量%。各元素的原子摩尔比率为Pt∶Co∶Ir=1∶0.25∶0.05。此外,测定XRD的结果,只观测到Pt的峰,由39度附近的Pt(111)面的峰迁移证实了已形成不规则排列合金。此外,由Pt(111)面的峰位置和半值宽算出平均粒径,结果为5.2nm。将得到的催化剂粉末的物性值归纳于下述表1。
试验例2~9
使Pt相对于碳的摩尔比率为1.0恒定,为了调查Co的摩尔比率的影响,除了使Co的摩尔比率为如下所述以外,与试验例1同样地制备了催化剂粉末。
试验例2:(制品摩尔比率Pt∶Co∶Ir=1∶0∶0.05),加入量:铂4.88g、铱0.24g。
试验例3:(制品摩尔比率Pt∶Co∶Ir=1∶0.003∶0.05),加入量:铂4.88g、钴0.007g、铱0.24g。
试验例4:(制品摩尔比率Pt∶Co∶Ir=1∶0.01∶0.05),加入量:铂4.87g、钴0.025g、铱0.24g。
试验例5:(制品摩尔比率Pt∶Co∶Ir=1∶0.05∶0.05),加入量:铂4.84g、钴0.122g、铱0.239g。
试验例6:(制品摩尔比率Pt∶Co∶Ir=1∶0.07∶0.05),加入量:铂4.83%、钴0.17g、铱0.238g。
试验例7:(制品摩尔比率Pt∶Co∶Ir=1∶1∶0.05),加入量:铂4.25g、钴2.14g、铱0.21g。
试验例8:(制品摩尔比率Pt∶Co∶Ir=1∶2∶0.05)加入量:铂3.77%、钴3.78g、铱0.186g。
试验例9:(制品摩尔比率Pt∶Co∶Ir=1∶5∶0.05),加入量:铂2.81g、钴7.07g、铱0.138g。
所得到的试验例1~9的催化剂粉末的物性值归纳于下述表1。
试验例10~16
使Pt相对于碳的摩尔比率为1.0恒定,为了调查铱的摩尔比率的影响,除了使铱的摩尔比率为如下所述以外,与试验例1同样地制备了催化剂粉末。
试验例10:(催化剂粉末Pt∶Co∶Ir=1∶0.25∶0);加入量:铂4.82g、钴0.606g。
试验例11:(催化剂粉末Pt∶Co∶Ir=1∶0.25∶0.0025);加入量:铂4.81g、钴0.606g、铱0.012g。
试验例12:(催化剂粉末Pt∶Co∶Ir=1∶0.25∶0.0125);加入量:铂4.79g、钴0.603g、铱0.059g。
试验例13:(制品摩尔比率Pt∶Co∶Ir=1∶0.25∶0.3);加入量:铂3.89g、钴0.49g、铱1.92g。
试验例14:(催化剂粉末Pt∶Co∶Ir=1∶0.25∶1);加入量:铂3.27g、钴0.411g、铱3.219g。
试验例15:(催化剂粉末Pt∶Co∶Ir=1∶0.25∶1.5);加入量:铂3.14g、钴0.18g、铱4.58g。
试验例16:(制品摩尔比率Pt∶Co∶Ir=1∶0.25∶3);加入量:铂2.16g、钴0.12g、铱6.28g。
所得到的试验例10~16的催化剂粉末的物性值归纳于下述表1。
试验例17~20
接着,使催化剂金属的摩尔比率为恒定,为了调查Pt相对于碳的摩尔比率的影响,除了使Pt相对于碳的摩尔比率为如下所述以外,与试验例1同样地制备了催化剂粉末。
试验例17:(催化剂粉末Pt/C=0.5/1);加入量:铂3.20g、钴0.403g、铱0.158g。
试验例18:(催化剂粉末Pt/C=0.8/1);加入量:铂4.21g、钴0.53g、铱0.207g。
试验例19:(催化剂粉末Pt/C=1.5/1);加入量:铂5.58g、钴0.275g、铱0.703g。
试验例20:(催化剂粉末Pt/C=1.8/1);加入量:铂5.95g、钴0.749g、铱0.293g。
所得到的试验例17~20的催化剂粉末的物性值归纳于下述表1。
试验例21~28
接着,为了调查合金化处理的影响,改变合金化温度和酸处理的方法制备了催化剂粉末。
除了将滴加到分散液中的含有0.232g铱的氯化铱水溶液变更为含有0.232g铱的硝酸铱水溶液,并使在100℃下真空干燥10小时后的合金化方法和酸处理为如下所述以外,与试验例1同样地进行。
试验例21:在氩(Ar)气气氛中在800℃下保持2小时进行合金化后,在1N盐酸0.5L中进行搅拌,酸洗除去未合金化的钴约40重量%后,用纯水反复洗涤。
试验例22:除了在Ar气气氛中在700℃下保持2小时进行合金化以外,与试验例21同样地进行。
试验例23:除了在Ar气气氛中在900℃下保持2小时进行合金化以外,与试验例21同样地进行。
试验例24:除了将滴加到分散液中的含有0.232g铱的氯化铱水溶液变更为含有0.232g铱的硝酸铱水溶液以外,与试验例1同样地进行。
试验例25:在Ar气气氛中在800℃下保持2小时进行合金化后,在1N甲酸0.5L中进行搅拌,将过滤后的催化剂粉末在0.5N硝酸0.5L中进行搅拌,酸洗除去未合金化的钴约40重量%后,用纯水反复洗涤。
试验例26:除了在Ar气气氛中在700℃下保持2小时进行合金化以外,与试验例25同样地进行。
试验例27:除了在Ar气气氛中在900℃下保持2小时进行合金化以外,与试验例25同样地进行。
试验例28:除了不进行在1N甲酸0.5L中搅拌的工作以外,与试验例25同样地进行。
所得到的试验例21~28的催化剂粉末的物性值归纳于下述表2和表3。
另外,为了查看所得到的催化剂的耐酸性,测定了试验例21~24的Co溶出量。还测定了试验例25~28的Ir溶出量。Co溶出量是将得到的催化剂在0.5N的硫酸中搅拌7天后过滤,通过IPC测定溶出到滤液中的Co量,求出Co溶出浓度。Ir溶出量是将得到的催化剂在0.5N的硫酸中施加超声波30分钟后进行过滤,通过IPC测定溶出到滤液中的Ir量,求出Ir溶出浓度。将各个结果示于表2和表3。
燃料电池性能评价
使用得到的试验例1~28的碳上担载有铂的催化剂,按下述的那样形成了固体高分子型燃料电池用的单元电池电极。首先,使碳上担载有铂的催化剂粉末分散在有机溶剂中,将该分散液涂布在特氟隆(Teflon;商标名)上,形成催化剂层。每1cm2电极面积的Pt催化剂量为0.4mg。使这些由碳上担载有铂的催化剂粉末形成的电极分别介有高分子电解质膜而通过热压进行贴合,在其两侧设置扩散层,形成了单元电池电极。
以1L/分向使用试验例1~20的催化剂的单元电池的阴极侧的电极供给从加热到70℃的鼓泡器通过的加湿空气,以0.5L/分向阳极侧的电极供给从加热到85℃的鼓泡器通过的加湿氢,测定了电流电压特性。另外,关于钴和铱的摩尔比率的影响,是在电流电压测定后,采用电流密度0.9A/cm2下的电压值来比较。将结果归纳于下述表1。
负荷波动耐久性(催化剂金属的加速劣化试验)
使用了试验例1~20的催化剂的单元电池进行初期电压测定后,在以下所示的条件下实施耐久性试验。
将上述单元电池的温度加热到80,以理论配比3.5向阴极侧的电极供给从加热到60℃的鼓泡器通过的加湿空气,以理论配比3向阳极侧的电极供给从加热到60℃的鼓泡器通过的加湿氢,使电流值在OCV(开路电压)和0.1A/cm2之间每隔5秒进行波动,合计波动3000小时。
耐久性能是在测定电流电压后,采用在电流密度0.9A/cm2下的电压值来比较。将结果归纳于下述表1。
使用了试验例21~24的催化剂的单元电池进行初期电压测定后,在以下所示的条件下实施了耐久性试验。
将上述单元电池的温度加热到80℃,以理论配比3.5向阴极侧的电极供给从加热到60℃的鼓泡器通过的加湿空气,以理论配比3向阳极侧的电极供给从加热到60℃的鼓泡器通过的加湿氢,使电流值在OCV和0.1A/cm2之间每隔5秒进行波动,合计波动4000小时。
耐久性能是在测定电流电压后,采用在电流密度0.9A/cm2下的电压值来比较。将结果归纳于下述表2。
高电位耐久试验(载体氧化加速试验)
使用了试验例1~20的催化剂的单元电池进行初期电压测定后,在以下所示的条件下实施了耐久试验。
将上述单元电池的温度加热到80℃,以理论配比3.5向阴极侧的电极供给从加热到60℃的鼓泡器通过的加湿空气,以理论配比3向阳极侧的电极供给从加热到60℃的鼓泡器通过的加湿氢,在由外部电源施加电压达到1.5V的状态下保持10分钟后,测定电流电压,然后采用在电流密度0.9A/cm2下的电压值来比较。将结果归纳于下述表1。
另外,使用了试验例25~28的催化剂的单元电池进行初期电压测定后,在以下所示的条件下实施了耐久试验。
将上述单元电池的温度加热到80℃,以理论配比3.5向阴极侧的电极供给加热到60℃的鼓泡器的加湿空气,以理论配比3向阳极侧的电极供给从加热到60℃的鼓泡器通过的加湿氢,在由外部电源施加电压达到1.5V的状态下保持30分钟后,测定电流电压,然后采用在电流密度0.9A/cm2下的电压值来比较。将结果归纳于下述表3。
首先,对以往的二元系合金催化剂和由本申请发明的制造方法得到三元系催化剂进行比较。
图1表示使用试验例1的催化剂制成的单元电池与使用试验例10的催化剂制成的单元电池的电流电压特性。由图1可知,由本发明的制造方法制造的试验例1的催化剂,与以往的二元系合金催化剂即试验例10的催化剂相比,即使在较高的电流密度区域也可保持较高的电池电压,实现高性能化。可以认为这是因为,以往的二元系的合金催化剂,在高电流密度区域由于生成水所引起的液泛现象的发生,氧供给变得不充分,由此导致性能降低。
另外,图2表示电池电压与钴原子摩尔比率的关系,调查了单元电池电压对钴原子摩尔比率的依赖性。由图2判明,在钴原子摩尔比率相对于铂原子摩尔比率为0.01~2的场合,可以得到比以往的二元系合金催化剂高的电池电压。
此外,图3表示电池电压与铱原子摩尔比率的关系,调查了单元电池电压对铱原子摩尔比率的依赖性,由图3判明,铱原子摩尔比率相对于铂原子摩尔比率为0.01~2的场合,可以得到比以往的二元系合金催化剂高的电池电压。
接着对负荷波动耐久性进行说明。
图4表示对于使用试验例1的催化剂制成的单元电池和利用试验例10的催化剂制成的单元电池,示出改变了时间的负荷波动耐久试验时间与电压的关系。可知由试验例1的制造方法得到的催化剂,耐久性比由以往的二元系合金催化剂即由试验例10的制造方法得到的催化剂优异。
图5示出归纳了负荷电压耐久试验后的单元电池电压对钴原子摩尔比率的依赖性的曲线。图5所示的催化剂中,Pt与Ir的组成比为一定。从该结果还发现,由试验例1以及试验例3~9的制造方法得到的催化剂,耐久性比试验例2优异。另外还发现,在Co摩尔比率为0.07~1.0的范围的条件下合金化的催化剂具有较高的耐久性。
图6表示归纳了负荷波动耐久试验后的电池电压对铱原子摩尔比率的依赖性的曲线。图6所示的催化剂中,Pt与Co的组成比为一定。试验例1、试验例11~16的催化剂,耐久性比试验例10的催化剂优异。可知在铱的原子摩尔比率为0.01~0.3的范围的条件下合金化的催化剂具有较高的耐久性。
图7表示负荷波动耐久试验后的电池电压对Pt/C比率的依赖性的关系。由图7可知铂的担载量,以Pt/C质量比计优选为0.6~1.7。
根据上述结果,图8示出归纳了高电位耐久试验后的电池电压对钴原子摩尔比率的依赖性的曲线。图8所示的催化剂中,Pt与Ir的组成比为一定。发现由试验例1以及试验例3~9的制造方法得到的催化剂,耐久性比以往的二元系催化剂(试验例2)优异。还发现在Co原子摩尔比率为2以下的范围的条件下合金化的催化剂具有较高的耐久性。
图9表示归纳了高电位耐久试验后的电池电压对铱原子摩尔比率的依赖性的曲线。图9所示的催化剂中,Pt与Co的组成比为一定。
与上述同样,发现由试验例1、试验例11~16的制造方法得到的催化剂,耐久性比以往的二元系催化剂(试验例10)优异。还发现在Ir摩尔比率为0.01以上的范围的条件下合金化的催化剂具有较高的耐久性。
图10表示高电位耐久试验后的电池电压对Pt/C比率的依赖性的关系。由图10来看,Pt的担载量,以Pt/C质量比计优选为0.6~1.7。
接着,对合金化方法的条件不同的催化剂的性能进行比较。
图11表示将试验例21~24的合金化温度与Co溶出率进行比较的曲线。如图11所示可知,与在氢中进行还原处理后在氮气中进行合金化的试验例24相比,在Ar气中合金化的试验例21~23其从催化剂中溶出的Co溶出率均降低,耐酸性提高。
图12表示将试验例21~24的合金化温度与负荷波动耐久试验4000小时后的电压值@0.9A/cm2进行比较的曲线。如图12所示可知,与在氢中进行还原处理后在氮气中进行合金化的试验例24相比,在Ar气中进行合金化的试验例21~23均显示较高的电压,具有较高的耐久性。
另外,同样图13表示将试验例25~28的合金化温度与Ir溶出率进行比较的曲线图。如图13所示可知,在酸处理前用还原性的酸进行了处理的试验例25~27,与在酸处理前没有采用还原性的酸进行处理的试验例28相比,Ir溶出率均减少,耐酸性提高。
图14表示使用了试验例25~28的催化剂的单元电池的合金化温度与负荷波动耐久试验4000小时后的电压值@0.9A/cm2的关系。如图14所示可知,在酸处理前采用还原性的酸进行了处理的试验例25~27,与在酸处理前没有采用还原性的酸进行处理的试验例28相比,均显示出较高的电压,具有较高的耐久性能。
另外,图15表示使用了试验例25~28的催化剂的单元电池的Ir溶出率与负荷波动耐久试验4000小时后的电压值@0.9A/cm2的关系。由图15可推测,通过使Ir的溶出量减少,可由Ir维持耐久性能,从而具有较高的高电位耐久性能。,其中在800℃进行合金化的试验例25具有更高的耐久性能。
粒度依赖性
在本次验证中不取决于Pt粒径耐久性得到提高,但若考虑对Pt溶出的抑制,则粒径优选为3nm以上,Co吸附量优选为19~35mL/g-Pt。若考虑比表面积降低所导致的活性位点减少等,则Pt粒径优选为6nm以下。
Figure A20078001127100181
产业上的利用可能性
通过在燃料电池中使用由本申请发明的制造方法得到的含有铂、贱金属和铱的三元系催化剂,可以使初期电压较高,并且耐久特性优异,特别是可以减少由高电位附加所引起的电压降低,能够提高电池性能。另外,通过制成耐久性高的电池,可以实现燃料电池的高性能化以及通过高性能化可使装置小型化,对燃料电池的普及作出贡献。

Claims (14)

1、一种担载有三元系催化剂粒子的燃料电池用电极催化剂的制造方法,其特征在于,包括:
分散工序,将导电性载体分散在溶液中;
担载工序,向该分散液中滴加铂盐溶液、贱金属盐溶液和铱盐溶液,在碱性条件下使各金属盐作为氢氧化物担载在导电性载体上;以及,
合金化工序,将该担载金属氢氧化物的导电性载体在还原气氛下加热还原从而进行合金化。
2、根据权利要求1所述的燃料电池用电极催化剂的制造方法,其中,包括在所述担载工序与所述合金化工序之间对所述担载金属氢氧化物的导电性载体进行过滤、洗涤和干燥的洗涤工序。
3、根据权利要求1或2所述的燃料电池用电极催化剂的制造方法,所述导电性载体为碳,所述贱金属溶液的贱金属为选自钛、锆、钒、铬、锰、铁、钴、镍、铜和锌中的一种以上的贱金属。
4、根据权利要求1或2所述的燃料电池用电极催化剂的制造方法,所述导电性载体为碳,所述贱金属溶液的贱金属为钴。
5、根据权利要求1~4所述的燃料电池用电极催化剂的制造方法,所述铂盐溶液中的铂元素、所述贱金属盐溶液中的贱金属元素和所述铱盐溶液中的铱元素的组成比即摩尔比为铂∶贱金属元素∶铱=1∶0.01~2∶0.01~2。
6、根据权利要求1~4所述的燃料电池用电极催化剂的制造方法,所述铂盐溶液中的铂元素、所述贱金属盐溶液中的贱金属元素和所述铱盐溶液中的铱元素的组成比即摩尔比为铂∶贱金属元素∶铱=1∶0.07~1∶0.01~0.3。
7、根据权利要求5或6所述的燃料电池用电极催化剂的制造方法,所述碳和该碳上所担载的所述还原系催化剂粒子中的铂的担载量,以摩尔比计为铂/碳=0.6~1.7。
8、根据权利要求5~7所述的燃料电池用电极催化剂的制造方法,由所述合金化工序得到的所述还原系催化剂粒子的粒径为3~6nm。
9、根据权利要求1~8所述的燃料电池用电极催化剂的制造方法,所述合金化工序包括在惰性气氛下、在700~900℃的温度下进行处理的工序。
10、根据权利要求9所述的燃料电池用电极催化剂的制造方法,所述惰性气氛为氮气氛、氩气氛和氦气氛的至少一种。
11、根据权利要求10所述的燃料电池用电极催化剂的制造方法,所述惰性气氛为氩气氛。
12、根据权利要求9~11所述的燃料电池用电极催化剂的制造方法,其中,包括在所述合金化工序之后,将由所述合金化工序得到的担载金属催化剂的导电性载体使用还原性的酸进行处理,然后使用氧化性的酸进行处理的表面处理工序。
13、根据权利要求12所述的燃料电池用电极催化剂的制造方法,所述还原性的酸为甲酸和草酸的至少一种,所述氧化性的酸为盐酸、硝酸和硫酸的至少一种。
14、根据权利要求13所述的燃料电池用电极催化剂的制造方法,所述还原性的酸为甲酸,所述氧化性的酸为硝酸。
CN200780011271.5A 2006-03-31 2007-03-30 燃料电池用电极催化剂的制造方法 Expired - Fee Related CN101411012B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006100237 2006-03-31
JP100237/2006 2006-03-31
PCT/JP2007/057729 WO2007114525A1 (ja) 2006-03-31 2007-03-30 燃料電池用電極触媒の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410666097.XA Division CN104466198A (zh) 2006-03-31 2007-03-30 燃料电池用电极催化剂的制造方法

Publications (2)

Publication Number Publication Date
CN101411012A true CN101411012A (zh) 2009-04-15
CN101411012B CN101411012B (zh) 2016-01-20

Family

ID=38563783

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200780011271.5A Expired - Fee Related CN101411012B (zh) 2006-03-31 2007-03-30 燃料电池用电极催化剂的制造方法
CN201410666097.XA Pending CN104466198A (zh) 2006-03-31 2007-03-30 燃料电池用电极催化剂的制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410666097.XA Pending CN104466198A (zh) 2006-03-31 2007-03-30 燃料电池用电极催化剂的制造方法

Country Status (6)

Country Link
US (1) US7910512B2 (zh)
EP (1) EP2006943B1 (zh)
JP (1) JP5138584B2 (zh)
CN (2) CN101411012B (zh)
CA (1) CA2645928C (zh)
WO (1) WO2007114525A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003995A (zh) * 2010-07-15 2013-03-27 昭和电工株式会社 燃料电池用催化剂的制造方法、燃料电池用催化剂及其用途
CN103866153A (zh) * 2014-03-24 2014-06-18 吉林大学 双模式介孔铂与非过渡族金属的金属间化合物催化剂的制备方法及其应用
CN105642309A (zh) * 2014-11-13 2016-06-08 中国科学院大连化学物理研究所 一种燃料电池合金催化剂的制备方法
CN106605325A (zh) * 2014-10-24 2017-04-26 株式会社科特拉 燃料电池用电极催化剂及其制造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006943B1 (en) * 2006-03-31 2012-08-01 Cataler Corporation Production process of electrode catalyst for fuel cell
WO2010107426A1 (en) * 2009-03-18 2010-09-23 Utc Power Corporation Method of forming a ternary alloy catalyst for fuel cell
CN102428598A (zh) * 2009-04-23 2012-04-25 3M创新有限公司 使用混合无机物的催化剂性质控制
US20100304268A1 (en) * 2009-05-28 2010-12-02 Tetsuo Kawamura Ternary alloy catalysts for fuel cells
KR101220722B1 (ko) 2009-06-09 2013-01-09 숭실대학교산학협력단 산소 환원 전극촉매로서의 니켈 하이드로옥사이드 나노입자
CN102947990B (zh) 2010-04-26 2016-09-14 3M创新有限公司 铂镍催化剂合金
GB201110850D0 (en) * 2011-03-04 2011-08-10 Johnson Matthey Plc Catalyst and mehtod of preparation
WO2013012398A2 (en) * 2011-07-21 2013-01-24 Kemijski inštitut Electrocatalytic composite(s), associated composition(s), and associated process(es)
JP6517316B2 (ja) 2014-03-18 2019-05-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 炭素担持触媒を生成するための方法
JP6040954B2 (ja) * 2014-04-16 2016-12-07 トヨタ自動車株式会社 燃料電池用触媒の製造方法
JP6547696B2 (ja) * 2016-06-30 2019-07-24 トヨタ自動車株式会社 燃料電池用電極触媒及びその製造方法並びに燃料電池
CN108899558B (zh) * 2018-06-07 2022-07-12 同济大学 一种PtCo/C电催化剂及其制备方法
CN110635146A (zh) * 2019-08-23 2019-12-31 同济大学 一种高性能Pt基三合金催化剂及其制备方法
CN111129527A (zh) * 2019-12-09 2020-05-08 苏州天际创新纳米技术有限公司 燃料电池阴极催化剂及其制备方法、膜电极及燃料电池
DE102021201540A1 (de) * 2021-02-18 2022-08-18 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von Katalysatorschichten für Brennstoffzellen

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2982741A (en) * 1957-08-15 1961-05-02 David H Cleaver Catalyst manufacture
US3228892A (en) * 1960-12-29 1966-01-11 Texaco Inc Method for preparing supported catalytic structures
US3282737A (en) * 1962-08-27 1966-11-01 Electric Storage Battery Co Electrodes and electrode material
US3395049A (en) * 1963-07-15 1968-07-30 Exxon Research Engineering Co Method of making a porous electrode
NL7502968A (nl) * 1975-03-13 1976-09-15 Stamicarbon Werkwijze voor het bereiden van edelmetaal- katalysatoren.
GB1572339A (en) * 1975-07-08 1980-07-30 Johnson Matthey Co Ltd Igniters suitable for gas turbines
GB1552427A (en) * 1975-11-27 1979-09-12 Johnson Matthey Co Ltd Alloys of titanium
US4613582A (en) * 1983-01-17 1986-09-23 United Technologies Corporation Method for making ternary fuel cell catalysts containing platinum cobalt and chromium
US4447506A (en) * 1983-01-17 1984-05-08 United Technologies Corporation Ternary fuel cell catalysts containing platinum, cobalt and chromium
US4677092A (en) * 1983-01-17 1987-06-30 International Fuel Cells Corporation Ordered ternary fuel cell catalysts containing platinum and cobalt and method for making the catalysts
JPS62269751A (ja) * 1986-05-16 1987-11-24 Nippon Engeruharudo Kk 白金−銅合金電極触媒およびそれを使用した酸電解質燃料電池用電極
US5013618A (en) * 1989-09-05 1991-05-07 International Fuel Cells Corporation Ternary alloy fuel cell catalysts and phosphoric acid fuel cell containing the catalysts
JP2928586B2 (ja) 1990-05-11 1999-08-03 功二 橋本 水素―空気燃料電池用高活性触媒粉末と高活性電極
US5521020A (en) * 1994-10-14 1996-05-28 Bcs Technology, Inc. Method for catalyzing a gas diffusion electrode
JP3353518B2 (ja) 1995-01-31 2002-12-03 松下電器産業株式会社 固体高分子型燃料電池
DE19517598C1 (de) * 1995-05-13 1997-01-02 Degussa Platin-Aluminium-Legierungskatalysator und dessen Verwendung in Brennstoffzellen
JPH1092441A (ja) * 1996-09-13 1998-04-10 Asahi Glass Co Ltd 固体高分子型燃料電池
JPH10162839A (ja) 1996-11-28 1998-06-19 Toshiba Corp 燃料電池の燃料極及びその製造方法
JPH11273690A (ja) 1998-03-26 1999-10-08 Ne Chemcat Corp リン酸型燃料電池用カソード電極触媒、該触媒を用いたカソード電極および該カソード電極を備えたリン酸型燃料電池
US20050194066A1 (en) * 1999-12-09 2005-09-08 Jean-Jacques Duruz Metal-based anodes for aluminium electrowinning cells
DE10048844A1 (de) * 2000-10-02 2002-04-11 Basf Ag Verfahren zur Herstellung von Platinmetall-Katalysatoren
JP3824487B2 (ja) * 2000-12-28 2006-09-20 株式会社東芝 触媒の製造方法
JP2002248350A (ja) * 2001-02-23 2002-09-03 Mitsubishi Heavy Ind Ltd 合金触媒の調製方法及び固体高分子型燃料電池の製造方法
US6663998B2 (en) * 2001-04-05 2003-12-16 The Technical University Of Denmark (Dtu) Anode catalyst materials for use in fuel cells
EP1254711A1 (de) 2001-05-05 2002-11-06 OMG AG & Co. KG Edelmetallhaltiger Trägerkatalysator und Verfahren zu seiner Herstellung
JP5281221B2 (ja) * 2001-08-03 2013-09-04 トヨタ自動車株式会社 貴金属−卑金属合金系触媒とその評価および製造方法
JP2005030569A (ja) * 2003-07-11 2005-02-03 Nsk Ltd カムフォロア
CN1577928B (zh) * 2003-07-29 2010-04-28 中国科学院大连化学物理研究所 一种高电催化活性的燃料电池铂基贵金属催化剂及制备方法
KR100696463B1 (ko) * 2003-09-27 2007-03-19 삼성에스디아이 주식회사 고농도 탄소 담지 촉매, 그 제조방법, 상기 촉매를 이용한촉매전극 및 이를 이용한 연료전지
GB2429665B (en) * 2004-03-29 2009-07-08 Nippon Paint Co Ltd Method of forming bright coating film and bright coated article
JP4715107B2 (ja) * 2004-04-28 2011-07-06 日産自動車株式会社 燃料電池用触媒、および白金−イリジウム合金粒子の製造方法
JP3911514B2 (ja) * 2004-06-04 2007-05-09 Tdk株式会社 希土類磁石及びその製造方法
JP4625658B2 (ja) * 2004-07-21 2011-02-02 株式会社東芝 燃料電池用電極、膜電極複合体及び燃料電池
JP2006127979A (ja) * 2004-10-29 2006-05-18 Toyota Motor Corp 燃料電池用電極触媒及び燃料電池
US7704919B2 (en) * 2005-08-01 2010-04-27 Brookhaven Science Associates, Llc Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
US7318977B2 (en) * 2006-01-06 2008-01-15 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
US7704628B2 (en) * 2006-05-08 2010-04-27 Honda Motor Co., Ltd. Platinum, titanium, cobalt and palladium containing electrocatalysts
EP2006943B1 (en) * 2006-03-31 2012-08-01 Cataler Corporation Production process of electrode catalyst for fuel cell
US20070298961A1 (en) * 2006-06-22 2007-12-27 Rice Gordon L Method of producing electrodes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003995A (zh) * 2010-07-15 2013-03-27 昭和电工株式会社 燃料电池用催化剂的制造方法、燃料电池用催化剂及其用途
CN103003995B (zh) * 2010-07-15 2015-11-25 昭和电工株式会社 燃料电池用催化剂的制造方法、燃料电池用催化剂及其用途
CN103866153A (zh) * 2014-03-24 2014-06-18 吉林大学 双模式介孔铂与非过渡族金属的金属间化合物催化剂的制备方法及其应用
CN106605325A (zh) * 2014-10-24 2017-04-26 株式会社科特拉 燃料电池用电极催化剂及其制造方法
CN105642309A (zh) * 2014-11-13 2016-06-08 中国科学院大连化学物理研究所 一种燃料电池合金催化剂的制备方法

Also Published As

Publication number Publication date
EP2006943A4 (en) 2009-12-09
CN101411012B (zh) 2016-01-20
CA2645928A1 (en) 2007-10-11
JPWO2007114525A1 (ja) 2009-08-20
WO2007114525A1 (ja) 2007-10-11
CN104466198A (zh) 2015-03-25
EP2006943A1 (en) 2008-12-24
CA2645928C (en) 2012-09-25
JP5138584B2 (ja) 2013-02-06
US20090099009A1 (en) 2009-04-16
US7910512B2 (en) 2011-03-22
EP2006943B1 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
CN101411012B (zh) 燃料电池用电极催化剂的制造方法
US9368805B2 (en) Catalyst for polymer electrolyte fuel cell and method for producing the same
US5183713A (en) Carbon monoxide tolerant platinum-tantalum alloyed catalyst
CN100530785C (zh) 燃料电池用负载催化剂、制造该催化剂的方法及燃料电池
JPH05129023A (ja) 改善された触媒材料
CN101411014A (zh) 燃料电池用电极催化剂和其制造方法
US20130260282A1 (en) Extended two dimensional metal nanotubes and nanowires useful as fuel cell catalysts and fuel cells containing the same
EP2631975A1 (en) Electrocatalyst for solid polymer fuel cell
EP1773488A2 (en) Catalyst support for an electrochemical fuel cell
CN106605325A (zh) 燃料电池用电极催化剂及其制造方法
CA2332632C (en) Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same
CN101411011A (zh) 包含二元铂合金的燃料电池电极触媒与使用它的燃料电池
WO2020059504A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
WO2020059503A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
JP3850721B2 (ja) 固体高分子型燃料電池の制御方法
CN108808027A (zh) 燃料电池用电极催化剂及其制造方法
Koponen et al. Characterization of Pt-based catalyst materials by voltammetric techniques
US20100304268A1 (en) Ternary alloy catalysts for fuel cells
US20090054228A1 (en) Catalyst
WO2020059502A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
US11901565B2 (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
WO2011097286A2 (en) Electrodes for metal-air batteries and fuel cells
Yang et al. Impedance analysis of working PEMFCs in the presence of carbon monoxide
JP2006179427A (ja) 燃料電池用電極触媒及び燃料電池
CN100365855C (zh) 氧还原用电极、使用其的电化学元件、及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CI01 Publication of corrected invention patent application

Correction item: Application Date

Correct: 20070330

False: 20070402

Number: 15

Volume: 25

CI02 Correction of invention patent application

Correction item: Application Date

Correct: 20070330

False: 20070402

Number: 15

Page: The title page

Volume: 25

ERR Gazette correction

Free format text: CORRECT: APPLICATION DATE; FROM: 20070402 TO: 20070330

ASS Succession or assignment of patent right

Free format text: FORMER OWNER: KETELA K.K.

Effective date: 20141105

Owner name: KETELA K.K.

Free format text: FORMER OWNER: TOYOTA MOTOR CO., LTD.

Effective date: 20141105

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20141105

Address after: Shizuoka

Applicant after: CATALER CORP

Address before: Aichi Prefecture, Japan

Applicant before: Toyota Motor Corp.

Applicant before: CATALER CORP

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20180330

CF01 Termination of patent right due to non-payment of annual fee