Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationCN101706283 B
Type de publicationOctroi
Numéro de demandeCN 200910234040
Date de publication19 oct. 2011
Date de dépôt18 nov. 2009
Date de priorité18 nov. 2009
Autre référence de publicationCN101706283A
Numéro de publication200910234040.1, CN 101706283 B, CN 101706283B, CN 200910234040, CN-B-101706283, CN101706283 B, CN101706283B, CN200910234040, CN200910234040.1
Inventeurs刘建业, 孟博, 曾庆化, 李睿佳, 李荣冰, 熊智, 郭毅, 雷廷万
Déposant南京航空航天大学
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes:  SIPO, Espacenet
Method for transonic shock wave interference adaptive suppression of altitude channel
CN 101706283 B
Résumé
The invention discloses a method for transonic shock wave interference adaptive suppression of an altitude channel, belonging to the field of inertia/atmosphere combination navigation. In the invention, an inertial navigation altitude and an atmosphere altitude are solved according to the principles of an inertia navigation system and an atmosphere data system. When transonic section static pressure fluctuation causes atmospheric pressure altitude fluctuation, an adaptive wave filter is utilized to treat a difference value of the atmospheric pressure altitude or the inertial navigation altitude and the atmospheric pressure altitude, and the wave filter outputs corresponding shock wave interference signals; the shock wave interference signals are fed back, and subtract the atmospheric pressure height so as to cancel shock wave interference, or the shock wave interference signals subtract the static pressure after unit conversion so as to cancel the shock wave interference; and an adaptive algorithm is utilized, the adaptive wave filter is regulated according to a altitude difference value of the atmospheric pressure altitude and the inertial navigation altitude, the altitude difference value revises the inertial navigation altitude through an altitude channel damping loop, and a combination altitude for suppressing the shock wave interference is obtained, thereby cancellation and suppression of altitude channel transonic shock wave interference signals are realized. The invention provides stable and reliable attitude information with high accuracy for an aircraft, enhances the navigation control accuracy of the aircraft and improves the operation performance of the aircraft.
Revendications(1)  Langue du texte original : Chinois
1. 一种高度通道的跨音速激波干扰自适应抑制方法,其特征在于包括如下步骤:1)惯性测量单元信号采集:采集惯性测量单元中加速度计的输出信号,得到惯导系统的比力信息;2)惯性导航系统惯导高度解算:惯性导航系统惯导高度h由加速度 <两次积分得到, 高度通道中有 A transonic shock wave height channel adaptive interference suppression method comprising the following steps: 1) Inertial Measurement Unit Signal Acquisition: Acquisition output signal of the accelerometer inertial measurement unit to obtain than the force INS information; 2) inertial navigation system INS height solver: INS inertial navigation system by the acceleration height h <two points obtained in height channel
Figure CN101706283BC00021
,其中.„为载体在导航系下高度方向加速度,vxn、vyn分别为载体在导航系下东向、北向速度,fzn为导航系下高度方向比力,ω 为地球自转角速度,L为载体所在处纬度,Rm、I^n分别为子午圈、卯酉圈纬度为L处的曲率半径,g为载体所在处重力加速度;3)大气数据系统气压高度解算:在标准大气条件下,气压高度Hp只是静压Ps的函数, 根据标准气压高度公式,有 Where. "As the carrier height direction of the acceleration in the navigation system, vxn, vyn respectively carrier in the navigation system east, north to speed, fzn for the next navigation system height direction than the force, ω is the Earth's rotation angular velocity, L is the vector location at the latitude, Rm, I ^ n respectively meridian, prime vertical radius of curvature of latitude at L, g is the acceleration of gravity is located at the carrier; 3) air data system pressure altitude solver: under standard atmospheric conditions, pressure altitude Hp is a function of the static pressure Ps, according to the standard pressure altitude formula, there are
Figure CN101706283BC00022
4)高度信息的自适应滤波,包括以下两种方法:a)在跨音速初期静压产生波动引起气压高度信号出现波动时,将惯导高度与波动的气压高度差值作为自适应滤波器的输入,滤波器输出高度差值的激波干扰信号;将所述激波干扰信号反馈与气压高度做差对消激波干扰,或将所述激波干扰信号进行单位转换后与静压做差对消激波干扰,解算对应的激波干扰对消后的气压高度;消除激波干扰的气压高度与惯导高度做差得到高度差值,根据高度差值并利用自适应算法,逐步调整自适应滤波器,不断调节减小高度差值;b)在跨音速初期气压高度信号出现波动时,将波动的气压高度作为自适应滤波器的输入,滤波器输出气压高度的激波干扰信号,并将激波干扰信号与气压高度做差对消激波干扰,或将激波干扰信号经单位转换与静压做差,对静压进行修正,采用修正后静压解算出对应的激波干扰对消后的气压高度;消除激波干扰的气压高度与惯导高度做差得到高度差值,根据高度差值并利用自适应算法,逐步调整自适应滤波器,不断调节减小高度差值;5)惯导高度通道阻尼算法:阻尼算法采用二阶阻尼或三阶阻尼,将上述的气压高度与惯导高度做差得到的高度差值按二阶阻尼或三阶阻尼算法处理,反馈至步骤O)的惯导高度通道,实现对高度通道的控制,此时惯导高度通道阻尼回路中的惯导高度输出即为抑制了跨音速激波干扰的组合高度信息。 4) adaptive filtering height information, including the following two methods: a) In the early transonic hydrostatic pressure altitude signal fluctuations caused by fluctuations, the height of the INS fluctuating pressure altitude difference as an adaptive filter Input, output filter height difference shock wave interfering signal; the shock wave interfering signal feedback and barometric altitude difference do interference cancellation shock, shock or disturb the signal after the Unit and make the difference between static pressure interference cancellation shock, shock solver corresponding interference cancellation after pressure altitude; eliminate interference pressure shock wave height and height make the difference between INS highly difference height difference and using an adaptive algorithm, and gradually adjusted adaptive filters, and constantly adjust the height difference is reduced; b) at transonic initial pressure altitude signal fluctuates, the fluctuation of pressure altitude as the input of the adaptive filter, the filter output signal pressure altitude of shock wave interference, and the shock wave interference signal and pressure altitude difference do interference cancellation shock, shock or disturb the signal by the Unit and make the difference between static pressure, static pressure correction, after correction hydrostatic be calculated by using the corresponding shock wave interference After cancellation of the pressure altitude; eliminate interference pressure shock wave height and height make the difference between INS highly difference, according to the height difference and the adaptive algorithm, and gradually adjust the adaptive filter, and constantly adjust the height difference is reduced; 5) INS height channel damping algorithms: damped algorithm using second-order or third-order damping damping, the above pressure altitude and height do INS height difference obtained by the difference between the second-order or third-order damping damping algorithm processing, is fed back to step O) INS height channels, to achieve a high degree of channel control, then height channel INS INS highly damping circuit output is suppressed combination transonic shock interference height information.
Description  Langue du texte original : Chinois

高度通道的跨音速激波干扰自适应抑制方法 Transonic shock wave height channel adaptive interference suppression method

技术领域 Technical Field

[0001] 本发明是一种应用于飞机跨音速飞行时高度通道激波干扰的抑制方法,属于惯性/大气组合导航领域。 [0001] The present invention is used in aircraft transonic flight a method for inhibiting the shock wave height channel interference, belonging to INS / air navigation field.

背景技术 Background

[0002] 惯性导航系统和大气数据系统是现代飞机中广泛使用的导航系统。 [0002] Inertial navigation systems and air data system is a navigation system widely used in modern aircraft. 惯性导航系统是一种高精度的自主式导航系统,完全依靠机载设备自主地完成导航任务,和外界不发生任何光、电联系,因此隐蔽性好,工作不受气象条件的限制,具有全天候和全球导航的能力, 能够提供载体的位置、速度、姿态、加速度和角速度等导航参数。 Inertial navigation system is a high-precision autonomous navigation systems rely completely on-board equipment complete navigation tasks independently, and do not occur outside any light, electrical contact, and therefore good for hiding, limiting working from weather conditions, all-weather and global navigation capability to provide support position, velocity, attitude, acceleration and angular velocity parameters navigation. 大气数据系统是一种多输入多输出的机载综合测量系统,它通过大气参数仪表测量飞机与大气间的作用力以及飞机所在位置的大气数据(如大气压、温度等),再经过大气数据计算机解算,能够得到攻角、高度、马赫数、升降速度等飞行导航信息。 Air data system is a system for measuring airborne integrated multi-input multi-output, which measures the force and position of the aircraft air data resides between the aircraft and the atmosphere (such as atmospheric pressure, temperature, etc.) by means of atmospheric parameters meter, then through the air data computer solver, able to get the angle of attack, altitude, Mach number, lifting speed flight navigation information.

[0003] 惯性导航系统单独工作时存在不足,其高度通道不稳定,高度误差是扩散的。 [0003] The presence of inertial navigation systems to work alone is insufficient, its height channel instability, high degree of error is diffused. 因此不能直接采用纯惯性的高度通道,通常引入外部高度信息(大气数据系统等)对高度通道构成阻尼回路,使两种高度信息起互补作用,这样两方面可以取长补短,得到动态品质好且误差不随时间发散的组合高度系统,通常采用二阶阻尼或三阶阻尼回路。 It is not directly employ highly pure inertia channel, usually the height of the introduction of external information (air data system, etc.) to the height of the channel constituting damping circuit, so that the information from the two highly complementary role, so both can learn from each other, get a good dynamic quality and the error is not over time combination of highly divergent systems, often using second-order or third-order damping damping circuit. 但这种方法只适用于一般飞行条件,当飞机跨音速飞行时,由于外界激波干扰,导致大气数据系统测得的静压产生波动,进而使解算后的气压高度产生波动。 However, this method is only applicable to the general flying conditions, when the aircraft transonic flight, due to external shock interference, resulting in static pressure measured air data system fluctuates, thereby enabling the pressure solver after highly fluctuate. 波动的气压高度信号进入高度通道阻尼回路,最终使组合高度产生波动,此时不仅大气高度信息不可用,也对利用大气高度信息进行惯导高度通道阻尼的效果产生不利影响。 Fluctuating pressure altitude signal on high channel damping circuit, and finally to a combination of highly fluctuate, this time not only highly atmospheric information is not available, but also on the use of atmospheric height information channel INS highly damping effect adversely affected.

发明内容 DISCLOSURE

[0004] 本发明目的是针对现有技术存在的缺陷提供一种高度通道的跨音速激波干扰自适应抑制方法,改进已有利用大气高度阻尼惯导高度通道方法中,跨音速飞行时组合高度出现波动的不足,利用机载惯性导航系统与大气数据系统的输出数据,结合高度通道阻尼算法,探索适用于跨音速的惯性/大气高度通道解算方法的新途径,为飞机提供平稳、可靠、精确的高度信息。 [0004] The object of the present invention is to provide a channel for highly drawbacks of the prior art transonic shock adaptive interference suppression method, improve the existing use of atmospheric height highly damped inertial navigation channel approach, a combination of height transonic flight fluctuations appear inadequate, the use of airborne inertial navigation systems and air data system output data, combined with a high degree of damping algorithm channel, explore new ways of inertia applied to transonic / Atmospheric height channel solution method for aircraft stable, reliable, accurate height information.

[0005] 本发明为实现上述目的,采用如下技术方案: [0005] To achieve the above object of the present invention, the use of the following technical scheme:

[0006] 本发明高度通道的跨音速激波干扰自适应抑制方法,其特征在于包括如下步骤: [0006] The present invention transonic shock wave height channel interference adaptive suppression method comprising the steps of:

[0007] 1)惯性测量单元信号采集:采集惯性测量单元中加速度计的输出信号,得到惯导系统的比力信息; [0007] 1) Inertial Measurement Unit Signal Acquisition: Acquisition output signal of the accelerometer inertial measurement unit to obtain information than the force Inertial Navigation System;

[0008] 2)惯性导航系统惯导高度解算:惯性导航系统惯导高度h由加速度、"两次积分得 [0008] 2) inertial navigation system INS height solver: inertial navigation system INS height h by the acceleration, "was integrated twice

V" Vn V "Vn

到,高度通道中有-义=/;+(2^ cosL + f-X+-^v;-g = fz"+aBe-g,其中.„为载体在导 The height of the channel there - meaning = /; + (2 ^ cosL + f-X + - ^ v; -g = fz "+ aBe-g, where." As the carrier in guide

Kn Km Vz Kn Km Vz

航系下高度方向加速度,vxn、vyn分别为载体在导航系下东向、北向速度,fzn为导航系下高度方向比力,ω 为地球自转角速度,L为载体所在处纬度,Rm、I^n分别为子午圈、卯酉圈纬度为L处的曲率半径,g为载体所在处重力加速度; By Air line height direction of the acceleration, vxn, vyn respectively carrier in the navigation system east, north to speed, fzn for the next navigation system height direction than the force, ω is the Earth's rotation angular velocity, L is a carrier where at latitude, Rm, I ^ n respectively meridian, prime vertical radius of curvature of latitude at L, g is the acceleration of gravity is located at the carrier;

[0009] 3)大气数据系统气压高度解算:在标准大气条件下,气压高度Hp只是静压Ps的函数,根据标准气压高度公式,有 [0009] 3) air data system pressure altitude solver: under standard atmospheric conditions, pressure altitude Hp static pressure Ps is a function, according to the standard pressure altitude formula, there are

[0010] [0010]

Figure CN101706283BD00041

Hp < 36089 英尺 Hp <36089 英尺

[0011] [0011]

Figure CN101706283BD00042

,36089 英尺;^ Hp < 65617 英尺; , 36,089 feet; ^ Hp <65617 英尺;

[0012] 4)高度信息的自适应滤波,包括以下两种方法:a)在跨音速初期静压产生波动引起气压高度信号出现波动时,将惯导高度与波动的气压高度差值作为自适应滤波器的输入,滤波器输出高度差值的激波干扰信号;将所述激波干扰信号反馈与气压高度做差对消激波干扰,或将所述激波干扰信号进行单位转换后与静压做差对消激波干扰,解算对应的激波干扰对消后的气压高度;消除激波干扰的气压高度与惯导高度做差得到高度差值,根据高度差值并利用自适应算法,逐步调整自适应滤波器,不断调节减小高度差值;b)在跨音速初期气压高度信号出现波动时,将波动的气压高度作为自适应滤波器的输入,滤波器输出气压高度的激波干扰信号,并将激波干扰信号与气压高度做差对消激波干扰,或将激波干扰信号经单位转换与静压做差,对静压进行修正,采用修正后静压解算出对应的激波干扰对消后的气压高度;消除激波干扰的气压高度与惯导高度做差得到高度差值,根据高度差值并利用自适应算法,逐步调整自适应滤波器,不断调节减小高度差值; [0012] 4) highly adaptive filter information, including the following two methods: a) fluctuations pressure altitude signal fluctuate in transonic initial static pressure, height and volatility of the INS pressure altitude difference as adaptive input filter, the filter output signal height difference shock wave interference; interference signal after the shock feedback and barometric altitude difference do interference cancellation shock, shock or disturb the signal unit conversion and quiet Pressure to do differential interference cancellation shock, shock solver corresponding interference cancellation after the height of the pressure; eliminate interference pressure shock wave height and height make the difference between INS highly difference, according to the height difference and the adaptive algorithm gradually adjust the adaptive filter, and constantly adjust to reduce the height difference; b) at transonic initial pressure altitude signal fluctuates, the fluctuation of pressure altitude as the adaptive filter input and filter output pressure altitude Shock interference signal and the interference signal and the pressure shock wave height difference do interference cancellation shock, or shock wave interfering signal by the Unit and make the difference between static pressure, static pressure correction, after correction hydrostatic be calculated by using the corresponding Interference on the pressure after the shock elimination of height; eliminate interference pressure shock wave height and height make the difference INS highly difference, according to the height difference and the adaptive algorithm, and gradually adjust the adaptive filter, and constantly adjust the reduced height difference;

[0013] 5)惯导高度通道阻尼算法:阻尼算法采用二阶阻尼或三阶阻尼,将上述的高度差值按二阶阻尼或三阶阻尼算法处理,反馈至步骤O)的惯导高度通道,实现对高度通道的控制,此时惯导高度通道阻尼回路中的惯导高度输出即为抑制了跨音速激波干扰的组合高度{曰息。 [0013] 5), Inertial height channel damping algorithms: damped algorithm using second-order or third-order damping damping, the above height difference by the second order or third-order damping algorithm processing, is fed back to step O) INS height channel , to achieve a high degree of channel control, then height channel INS INS highly damping circuit output is suppressed transonic shock disturbance combined height {saying interest rates.

[0014] 本发明从飞机飞行参数中高度信息的实际性能需求入手,基于惯性导航系统高度通道的本质,结合机载大气数据系统高度信息的解算原理,通过对惯导系统比力及大气静压的采集,实时解算惯导高度和气压高度,通过对气压高度或气压信号中跨音速激波干扰的自适应滤波算法,以及高度通道阻尼算法,实现对飞机跨音速高度通道激波干扰的抑制, 进而减小跨音速时高度信号的波动,为飞机提供高精度且平稳可靠的高度信息,提高飞机的导航控制精度,改善飞机的操控性能。 [0014] The present invention is highly practical performance information needs to start from the aircraft flight parameters, based on the nature of the inertial navigation system height of the channel, combined solution onboard air data system operator height information principle, by the force of the inertial navigation system and atmospheric static ratio Pressure acquisition, real-solver INS height and pressure altitude, pressure altitude or air pressure through the transonic shock interference signal adaptive filtering algorithms, as well as highly-channel damping algorithm, aircraft transonic shock wave height channel interference inhibition, thereby reducing the height fluctuations transonic signals, providing highly accurate and highly stable and reliable information for the aircraft, improve the aircraft's navigation control accuracy, improve handling performance of the aircraft.

[0015] 本发明具有很强的工程应用价值。 [0015] The present invention has a strong engineering application.

附图说明 Brief Description

[0016] 图1基于高度误差时频特性的自适应激波干扰信号对消算法原理框图。 [0016] FIG adaptive shock wave interference signals in the frequency characteristics based on a high degree of error cancellation algorithm Block Diagram.

[0017] 图2基于气压高度时频特性的自适应激波干扰信号对消算法原理框图。 [0017] FIG. 2 adaptive shock wave height interfering signal frequency characteristics of pressure cancellation algorithm based on functional block diagram.

[0018] 图3纯惯导高度通道原理框图。 [0018] FIG. 3 pure INS block diagram of height channel.

[0019] 图4自适应滤波器原理框图。 [0019] FIG. 4 block diagram of an adaptive filter.

[0020] 图5惯导高度通道二阶阻尼回路原理框图。 [0020] FIG. 5 INS height channel circuit block diagram of the second order.

[0021] 图6惯导高度通道三阶阻尼回路原理框图。 [0021] FIG. 6 INS highly damping circuit block diagram of the third-order channel.

具体实施方式[0022] 下面结合附图对发明的技术方案进行详细说明: DETAILED DESCRIPTION [0022] The following DRAWINGS The invention as described in detail below:

[0023] 一般飞行条件下,利用大气数据系统的气压高度阻尼惯导系统高度通道既可抑制纯惯导高度随时间的发散,又可得到精度较高的组合高度。 [0023] Under normal flight conditions, using pressure air data system of highly damped inertial navigation system can inhibit the height channel Inertial Navigation highly divergent over time, but also get high accuracy combined height. 但在跨音速条件下,由于激波干扰,使气压高度产生波动,进而造成组合高度的波动。 But under transonic conditions, due to the shock wave interference, pressure altitude fluctuate, which causes a combination of a high degree of volatility. 本发明在高度通道常用阻尼回路基础上进行改进,如图1、图2所示,根据惯性导航系统与大气数据系统原理解算惯导高度和大气高度,跨音速段静压波动引起气压高度波动时,利用自适应滤波器处理气压高度或惯导高度与气压高度的差值,滤波器输出对应的激波干扰信号。 The present invention is in the height of the channel used on the basis of improved damping circuit, as shown in Figure 1, Figure 2, according to the inertial navigation system and air data inertial navigation system solvers highly original and atmospheric height, cross-section of the static pressure fluctuations caused by highly volatile sonic pressure When using adaptive filter processing INS pressure altitude or pressure altitude difference between the height of the shock filter output signal corresponding to the interference. 将激波干扰信号反馈与气压高度做差对消激波干扰,或将激波干扰信号进行单位转换后与静压做差对消激波干扰。 The shock wave interfering signal feedback and barometric altitude difference do interference cancellation shock, shock or disturb the converted signal unit and make the difference between static shock interference cancellation. 利用自适应算法,根据气压高度与惯导高度的高度差值对自适应滤波器进行调整,高度差值经过高度通道阻尼回路修正惯导高度,得到抑制了激波干扰的组合高度,从而实现高度通道跨音速激波干扰信号的对消抑制。 Adaptive algorithm, based on the height difference between the pressure altitude and the INS to adjust the height of the adaptive filter, the height difference between the height of the passage through the damping correction circuit INS height, the combined height of the shock can be suppressed interference, in order to achieve a high degree of Channel transonic shock cancellation suppressing interfering signals.

[0024] 为了完成跨音速条件下高度通道激波干扰的自适应抑制,需要完成工作: [0024] In order to complete the conditions under transonic shock wave height channel adaptive interference suppression, work needs to be done:

[0025] 1惯性测量单元信号采集步骤 [0025] 1 inertial measurement unit signal acquisition step

[0026] 采集惯性测量单元中加速度计的输出信号,得到惯导系统的比力信息。 [0026] The output signal acquisition accelerometer inertial measurement unit to obtain information than the force Inertial Navigation System.

[0027] 2惯性导航系统惯导高度解算步骤 [0027] 2 INS inertial navigation system solver step height

[0028] 惯性导航系统惯导高度h由加速度、"两次积分得到,高度通道中有 [0028] The height h INS inertial navigation system by the acceleration, "obtained by integrating twice the height channels have

[0029] [0029]

Figure CN101706283BD00051

[0030]其中<为载体在导航系下高度方向加速度,vxn、vyn分别为载体在导航系下东向、北向速度,fzn为导航系下高度方向比力,ω 为地球自转角速度,L为载体所在处纬度,Rffl^Rn 分别为子午圈、卯酉圈纬度为L处的曲率半径,g为载体所在处重力加速度。 [0030] where <carrier height direction of the acceleration in the navigation system, vxn, vyn respectively carrier in the navigation system east, north to speed, fzn for the next navigation system height direction than the force, ω is the Earth's rotation angular velocity, L is the carrier located at latitude, Rffl ^ Rn were meridian, prime vertical radius of curvature of latitude at L, g is the gravitational acceleration vector is located at. 精确导航中g 不是常值而是高度h的函数,其数值随高度的增加而减少,当h << R时,有 G precise navigation is not constant but a function of the height h, its value decreases with increasing height, when h << R, there

[0031] [0031]

Figure CN101706283BD00052

[0032] 其中R为地球半径,g0为地球表面重力加速度。 [0032] where R is the radius of the Earth, g0 of the Earth's surface gravitational acceleration. 由式(1)可得出纯惯导高度通道的原理框图,如图3所示。 By the formula (1) can be drawn from highly pure inertial navigation channel block diagram, shown in Figure 3.

[0033] 3大气数据系统大气高度解算步骤 [0033] 3 atmospheric air data system solution step height

[0034] 气压高度(Hp)(即飞行高度)与大气的压力⑵和温度⑴有关。 [0034] The pressure altitude (Hp) (ie flight level) and atmospheric pressure and temperature ⑴ ⑵ related. 在标准大气情况下,气压高度与大气参数成如下函数关系: Under standard atmospheric conditions, pressure altitude and atmospheric parameters into the following function:

[0035] Hp = f(Ps,Pb, tb, xb) (3) [0035] Hp = f (Ps, Pb, tb, xb) (3)

[0036] 式中Pb——标准大气情况下,各相应大气层的压力下限值(Pa); Under the [0036] wherein Pb-- standard atmospheric conditions, limits under the respective atmospheric pressure (Pa);

[0037] tb——标准大气情况下,各相应大气层的温度下限值(°C ); By [0037] tb-- standard atmospheric conditions, the atmosphere at the respective temperature limits (° C);

[0038] τ b—标准大气情况下,各相应大气层的温度梯度(°C /km); By [0038] τ b- standard atmospheric conditions, the respective atmospheric temperature gradient (° C / km);

[0039] 对于标准大气,Pb、tb、h都是标准值。 [0039] For the standard atmosphere, Pb, tb, h are standard values. 因此,只要能测出飞机所在高度的大气静压Ps,就可以按照标准气压公式求得飞机的气压高度。 Therefore, as long as the aircraft can measure the height of the atmosphere where the static pressure Ps, you can obtain the pressure altitude of the aircraft in accordance with standard pressure formula.

[0040] 根据标准气压高度公式,有 [0040] According to the standard barometric altitude formula, there are

[0041] [0041]

Figure CN101706283BD00053

[0042] [0042]

Figure CN101706283BD00061

[0043] 在标准大气条件下,高度Hp只是静压Ps的函数。 [0043] Under standard atmospheric conditions, height Hp is a function of the static pressure Ps.

[0044] 4高度信息的自适应滤波步骤 [0044] Step 4 height adaptive filtering information

[0045] 该步骤采用两种方案实现。 [0045] This step uses two programs to achieve.

[0046] 第一种方案如图1所示,在跨音速初期静压产生波动引起气压高度信号出现波动时,将惯导高度与波动的气压高度差值作为自适应滤波器的输入,滤波器输出高度差值的激波干扰信号,并将激波干扰信号反馈,与气压高度做差,修正气压高度;或将激波干扰信号经单位转换与静压做差,修正静压,解算出对应的气压高度。 [0046] The first scenario shown in Figure 1, in the early transonic static pressure fluctuations occur when the pressure altitude signal fluctuation and volatility of the INS highly pressure altitude difference as an adaptive filter input filter height difference shock wave interference output signal and the feedback signal shock wave interference, and pressure altitude make the difference, corrected barometric altitude; or the shock wave interfering signal by the Unit and make the difference between static pressure, static correction, calculates the corresponding solution The pressure altitude. 修正后的气压高度消除了激波干扰,其与惯导高度做差得到高度差值,根据高度差值并利用自适应算法,逐步调整自适应滤波器参数(滤波器阶数和滤波步长等),使滤波器性能随高度差值的变化而做自适应调整,不断调节减小高度差值; Pressure revised shock wave height eliminates interference, which are highly INS height difference and make the difference, according to the height difference and the adaptive algorithm, and gradually adjust the adaptive filter parameters (filter order and filter step size, etc. ), the filter capacity varies with the height difference and make adaptive, constantly adjusting to reduce the height difference;

[0047] 第二种方案如图2所示,在跨音速初期气压高度信号出现波动时,将波动的气压高度作为自适应滤波器的输入,滤波器输出气压高度的激波干扰信号,并将激波干扰信号与气压高度做差得到激波干扰对消后的气压高度;或将激波干扰信号经单位转换与静压做差,对静压进行修正,修正后静压解算出对应的激波干扰对消后的气压高度。 [0047] The second scenario shown in Figure 2, in the early transonic pressure altitude signal fluctuates, the fluctuation of pressure altitude as the input of the adaptive filter, the filter output signal pressure altitude of shock wave interference, and Shock interference signal and pressure altitude difference do get pressure shock interference after the cancellation of height; or the shock wave interfering signal by the Unit and make the difference between static pressure, static pressure correction, after correction corresponding static solves for shock wave interference cancellation after pressure altitude. 消除激波干扰的气压高度与惯导高度做差得到高度差值,根据高度差值并利用自适应算法,逐步调整自适应滤波器参数(滤波器阶数和滤波步长等),使滤波器性能随高度差值的变化而做自适应调整,不断调节减小高度差值。 Shock eliminate interference pressure altitude and height make the difference INS highly difference, according to the height difference and the adaptive algorithm, and gradually adjust the adaptive filter parameters (filter order and filter step size, etc.), the filter Performance varies with the height difference and make adaptive, constantly adjusting to reduce the height difference.

[0048] 自适应滤波器通过由误差所控制的自适应算法来随时自动调整滤波器参数,最小均方(LMS,Least Mean Square)算法是现今应用最为广泛的一种线性自适应算法,它以期望响应和滤波器输出信号之间误差的均方值最小为准则,依据输入信号在迭代过程中估计梯度矢量,并更新权系数以达到最有效的自适应迭代算法。 [0048] The adaptive filter by an adaptive algorithm controlled by the error automatically adjust filter parameters at any time, least mean square (LMS, Least Mean Square) algorithm is now the most widely used of a linear adaptive algorithm, it expected error between the filter output signal response and the mean square value of the minimum criteria, according to the input signal is estimated gradient vectors in an iterative process, and updating the weights in order to achieve the most effective adaptive iterative algorithm. 它不需要有关的相关函数和矩阵求逆运算,是一种有用且简单的算法。 It does not require the relevant related functions and matrix inversion, it is a useful and simple algorithm.

[0049] LMS算法一般包括两个基本过程:一个是滤波过程,另一个是自适应过程。 [0049] LMS algorithm typically involves two basic processes: a filtering process, and the other is an adaptive process. 在滤波过程中,自适应滤波器计算其对输入的响应,并且通过与期望响应比较,得到估计的误差信号。 In the filtering process, the adaptive filter calculates its response to the input, and by comparison with the expected response to afford the estimated error signal. 在自适应过程中,系统估计误差自动调整滤波器自身的参数。 In the adaptation process, the system automatically adjusts the filter itself estimation error parameters. 这两个过程共同组成一个反馈环,如图4所示。 These two processes together form a feedback loop, as shown in Fig. 图中,自适应滤波器的误差信号为 Figure, the error signal for the adaptive filter

[0050] e(n) = d (η) -y (η) (6) [0050] e (n) = d (η) -y (η) (6)

[0051] 式中,e(n)为η时刻的误差信号,d(n)为η时刻的期望信号,y(n)为η时刻自适应滤波器的输出信号,表示为 [0051] where, e (n) is the time error signal η, d (n) is the desired signal η time, y (n) is the adaptive filter output signal timing η, expressed as

[0052] y (η) = χτ (η) w (η) = wT (η) χ (η) (7) [0052] y (η) = χτ (η) w (η) = wT (η) χ (η) (7)

[0053] 式中χ(η)为η时刻输入信号矢量,其定义为χ (η) = [χ (η) χ (n_l)…χ (n_M) ]τ (单输入结构,M为延时时间)或x(n) = [Xtl(H)X1 (η) ···%(!!) ]τ(多输入结构,M为输入信号个数),w(n)为η时刻的加权矢量。 [0053] wherein χ (η) η timing of input signal vector, which is defined as χ (η) = [χ (η) χ (n_l) ... χ (n_M)] τ (single input structure, M is the delay time ) or x (n) = [Xtl (H) X1 (η) ···% (!!)] τ (multiple input structure, M is the number of input signals), w (n) is η moment weight vector.

[0054] LMS算法进行梯度估计的方法以误差信号每一次迭代的瞬时平方值替代其均方值,并以此来估计梯度,即 Instantaneous square value [0054] LMS algorithm gradient estimation method to the error signal for each iteration alternative mean square value, and in order to estimate the gradient, namely

Figure CN101706283BD00062

[0056] 式中卢(W)为梯度估计值,⑶式若写成矢量形式,有, Qe2 (ή) [0056] where Lu (W) gradient estimates, ⑶ formula if written in vector form, there are, Qe2 (ή)

[0057] V(n) = ^- (9) [0057] V (n) = ^ - (9)

[0058] 将式(6)和式(7)代入式(9),得到 [0058] The formula (6) and (7) into equation (9) to give

[0059] V (n) = 2e(n)-^- = -2e(n)x(n) (10) [0059] V (n) = 2e (n) - ^ - = -2e (n) x (n) (10)

dw{n) dw {n)

[0060] 在最速下降法中,有 [0060] In the steepest descent method, there are

[0061] w(n +1) = - μ V {ή) (11) [0061] w (n +1) = - μ V {ή) (11)

[0062] 式中μ为控制收敛速度和稳定性的收敛因子,为梯度真值。 [0062] where μ is the convergence factor controlling the convergence speed and stability, gradient true value. 用梯度估值卢替代最速下降法中的梯度真值7(«),有 Lu alternative valuation gradient steepest descent gradient true value 7 («), there is

[0063] w(n + 1) = w{n) + μ{-ν{ή)) = w(n) + 2μβ{ή)χ{ή) (12) [0063] w (n + 1) = w {n) + μ {-ν {ή)) = w (n) + 2μβ {ή) χ {ή) (12)

[0064] 式(12)为LMS算法的滤波器权矢量迭代公式,自适应迭代下一时刻的权系数矢量可以由当前时刻的权系数矢量加上以误差函数为比例因子的输入矢量得到。 [0064] Formula (12) is the filter weight vector iteration formula LMS algorithm, the next time adaptive iterative weighting coefficient vectors may be added by the weighting coefficient vectors present time with the error function as the input vector to obtain the scale factor. 5惯导高度通道阻尼算法步骤 5 INS height channel damping algorithm steps

[0065] 惯导高度通道阻尼算法可采用已有的高度通道二阶阻尼或三阶阻尼算法(原理框图分别如图5、图6所示),或在现有二阶或三阶阻尼回路基础上加以改进,将惯导高度与气压高度的差值按一定阻尼算法处理,经阻尼回路反馈至步骤(¾惯导高度通道的加速度、速度或惯导高度处,在保证整个系统稳定性的前提下,根据控制原理的关系调整阻尼回路中的参数,实现对高度通道的控制,此时惯导高度通道阻尼回路中的惯导高度输出即为抑制了跨音速激波干扰的组合高度信息。 [0065] INS highly damped algorithm can be an existing channel height channel to the second order and third-order damping algorithm (schematic diagram shown in Figure 5, respectively, as shown in FIG. 6), or the second or third order damping circuit existing basis to improve on the INS height and pressure altitude difference by a certain damping algorithm processing, the damping loop feedback to step (¾ height channel INS acceleration, velocity or inertial navigation height, in the premise of ensuring the stability of the whole system next, adjusted according to the principles of the relationship between the control of the damping circuit parameters to achieve a high degree of channel control, then height channel INS INS highly damping circuit output is suppressed combination transonic shock interference height information.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
CN101000244A5 janv. 200718 juil. 2007北京航空航天大学High integral navigation device combined by MIMU/GPS/micromagnetic compass/barometric altimeter
US594003527 mars 199817 août 1999Innovative Solutions & Support Inc.Method for calibrating aircraft altitude sensors
Citations hors brevets
Référence
1郑谔.大气数据-惯性组合导航系统.《航空学报》.秦永元,1987,第8卷(第3期),A211-A215.
Classifications
Classification internationaleG01C21/16
Événements juridiques
DateCodeÉvénementDescription
12 mai 2010C06Publication
30 juin 2010C10Request of examination as to substance
19 oct. 2011C14Granted