Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationCN101737171 B
Type de publicationOctroi
Numéro de demandeCN 200910263531
Date de publication30 nov. 2011
Date de dépôt23 déc. 2009
Date de priorité23 déc. 2009
Autre référence de publicationCN101737171A
Numéro de publication200910263531.9, CN 101737171 B, CN 101737171B, CN 200910263531, CN-B-101737171, CN101737171 B, CN101737171B, CN200910263531, CN200910263531.9
Inventeurs徐红兵, 李凯, 邹见效, 郑宏
Déposant电子科技大学
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes:  SIPO, Espacenet
一种航机发电控制装置 One kind of aircraft power control device Langue du texte original : Chinois
CN 101737171 B
Résumé  Langue du texte original : Chinois
本发明公开了一种航机发电控制装置,高速数字输入模块用于采集航机发电机组驱动轴的转速,可以采集频率高于100KHz的脉冲信号;高精度模拟输入模块用于采集航机发电机组的发电功率和燃料调节阀的阀位位移,采集精度高于万分之一;PWM输出模块,用于利用PWM电流控制的算法来输出控制量给燃料调节阀以实现对阀门开度的控制;核心控制模块包括一自适应模糊PID控制模块对转速、功率及阀位位移进行控制。 The present invention discloses a power control system aircraft, high-speed digital input module for the acquisition of aircraft turbine shaft speed, you can capture higher frequency of 100KHz pulse signal; precision analog input module for acquiring aircraft turbines The generated power and the fuel control valve-bit shift valve, acquisition accuracy higher than ten thousandth; PWM output module for PWM current control algorithm to the output control quantity to the fuel metering valve in order to achieve the degree of opening of the control valve; core control module includes an adaptive fuzzy PID control module for speed, power and displacement control valve position. 本发明采用自适应模糊PID模块对转速、功率及阀位位移进行控制,对环境变化有较强的自适应能力,在随机环境中能对控制器进行自动校正,使得系统特性变化或扰动情况下,航机发电系统具有较好的动静态特性,满足航机发电系统的控制要求。 The invention uses an adaptive fuzzy PID module for speed, power and control valve displacement, environmental changes have a strong adaptive ability, in a random environment, the controller can be automatically corrected, so that the system characteristics change or disturbance case , aircraft power system has good dynamic and static characteristics, to meet the control requirements for aircraft power systems.
Revendications(1)  Langue du texte original : Chinois
1. 一种航机发电控制装置,包括输入模块、输出模块,核心处理模块,输入模块将采集到的航机发电机组的运行参数送入核心处理模块中,核心处理模块根据运行参数输出控制量到相应的执行机构执行相应的操作,其特征在于:输入模块包括一高速数字输入模块和一高精度模拟输入模块,其中,高速数字输入模块用于采集航机发电机组驱动轴的转速,可以采集频率高于IOOKHz的脉冲信号;高精度模拟输入模块用于采集航机发电机组的发电功率和燃料调节阀的阀位位移,采集精度高于万分之一;输出模块包括一PWM输出模块,用于利用PWM电流控制的算法来输出控制量给燃料调节阀以实现对阀门开度的控制;核心处理模块包括一自适应模糊PID控制模块;在航机发电机组运行在孤网模式时,核心处理模块根据给定转速和采集转速,计算出当前转速误差和转速误差变化,然后,核心处理模块中的自适应模糊PID控制模块根据当前转速误差和转速误差变化,依据转速模糊规则,计算得到燃料调节阀阀位给定值;其中当前转速误差为当前采集转速与给定转速的差值,转速误差变化为当前转速误差与上次转速误差的差值;在航机发电机组运行在并网模式时,核心处理模块根据给定功率和采集功率,计算出当前功率误差和功率误差变化,然后,核心处理模块中的自适应模糊PID控制模块根据当前功率误差和功率误差变化,依据功率模糊规则,计算得到燃料调节阀阀位给定值;其中当前功率误差为当前采集功率与给定功率的差值,功率误差变化为当前功率误差与上次功率误差的差值;得到阀位给定值之后,核心处理模块根据计算得到的阀位给定值和从航机发电机组采集的阀位位移反馈值,计算出当前阀位误差和阀位误差变化,然后,核心处理模块中的自适应模糊PID控制模块根据当前阀位误差和阀位误差变化,依据位移模糊规则,计算得到阀位控制量,并换算成PWM电流控制量,通过PWM输出模块输出控制航机发电系统的执行机构燃料调节阀,实现对阀门开度的控制,燃料调节阀的阀位体现为航机的燃料流量,从而控制了航机转速和机组的发电功率,其中,当前阀位误差为采集的阀位位移反馈值与阀位给定值的差值,阀位误差变化为当前阀位误差与上次阀位误差的差值;所述的高速数字输入模块、高精度模拟输入模块的硬件上设计有滤波和限幅保护电路,对转速或功率采集数据滤波和限幅处理;在核心处理模块中,还穿插了限幅滤波、中位值滤波、算术平均滤波和递推平均滤波四种滤波方式结合的算法对转速或功率采集数据进行进一步的滤波和限幅。 1. An aircraft power control device includes an input module, output module, the core processing module, input module operating parameters collected aircraft turbines into core processing module, the core processing module controls the amount of output depending on the operating parameters to the appropriate enforcement agency to perform the appropriate action, characterized by: an input module includes a high-speed digital input module and a high-precision analog input module, in which high-speed digital input module for acquiring aircraft turbine shaft speed, can be collected IOOKHz pulse signal frequencies above; precision analog input module for acquiring aircraft turbine power generation and fuel control valve position displacement valve, collecting more accurate than millionth; output module includes a PWM output module, with in PWM current control algorithm to control the amount of output to the fuel control valve in order to achieve control of the valve opening; core processing module includes an adaptive fuzzy PID control module; in aircraft turbine lone run in the network mode, the core processing Module according to a given speed and gathering speed, calculate the current speed error and speed error change, then, the core processing module adaptive fuzzy PID control module based on the current speed error and speed error changes, according to the speed of fuzzy rules, the calculated fuel adjustment valve position setpoint; where the current speed error is the difference between current acquisition speed and for a given speed, the speed difference between the error changes to the current speed error and speed error last; and in aircraft turbine runs in grid mode The core processing module for a given power and capture power, to calculate the current power error and power error change, then, the core processing module adaptive fuzzy PID control module based on the current power error and error change power, according to the power of fuzzy rules to calculate get the fuel valve position setpoint; where the current power error for the current collection of power and the difference between a given power, the power difference between the power of error changes to the current error and the last power error; get the valve position after a given value, core processing module setpoint and valve position feedback value from the acquisition of aircraft turbine is calculated based on the calculated valve position that the current valve position error and position error changes, then, the core processing module adaptive fuzzy PID control module based on the current valve position error and position error changes, depending on the displacement of fuzzy rules, the calculated valve position control volume, and converted into PWM current control volume, control valve actuator by PWM output module output control aircraft fuel power generation system to achieve on the valve opening control, fuel control valve valve position reflected in aircraft fuel flow to control the aircraft speed and power generation units, which current valve position error for the acquisition of the valve position and valve position feedback value Given the value of the difference between the valve position error is the difference between the current valve position changes of the last valve position error error; a high-speed digital input module, the hardware precision analog input module on the design of the filter and limiter protection circuit , speed or power of the filtering and data collection limiting process; in the core processing module, also interspersed limiting filtering, median filtering, arithmetic mean four kinds of filtering and recursive average filter for filtering algorithm incorporated speed or power data collection for further filtering and clipping. 所述的自适应模糊PID控制模块的转速模糊PID控制器的模糊规则表为: The fuzzy rules fuzzy adaptive PID control module speed fuzzy PID controller is:
Figure CN101737171BC00031
表中,NE、NEC分别为转速误差、转速误差变化语言模糊化后的输入变量,NB、匪、NS、Z0、 PS、PM、PB分别代表负大、负中、负小、零、正小、正中、正大,S、M、B分别表示小、中、大;所述的航机发电控制装置还包括航机动力涡轮尾端的排气温度传感器热电偶以及温度采集输入模块,温度采集输入模块通过传感器热电偶将采集的航机涡轮排气温度送入核心处理模块中,然后与根据转速,依据实验数据和机组特性确定的不同转速下的最高限温曲线和最低限温曲线,得到最高温度与最低温度进行比较,如果超过最高温度,则减小阀位给定值,从而减少航机发电机组的燃料的流量,降低航机涡轮排气温度,如果低于最低温度,则加大阀位给定值,从而增加航机发电机组的燃料的流量,提高航机涡轮排气温度。 Table, the input variables NE, NEC, respectively speed error, speed error after blur change language, NB, bandit, NS, Z0, PS, PM, PB representing big negative, negative, and negative small, zero, positive small , center, CP, S, M, B, respectively, small, medium and large; aircraft power control device further includes a power turbine aircraft tail end of the exhaust gas temperature sensor and thermocouple input module temperature acquisition, temperature acquisition input module thermocouple sensor will be collected by aircraft turbine exhaust temperature into the core processing module, and then based on the speed, according to the highest limit temperature curve and the minimum temperature curves at different speed characteristics of the experimental data and the crew determined under the highest temperature is compared with the lowest temperature, if it exceeds the maximum temperature, the reduction of the valve position a given value, thereby reducing the flow of aircraft turbine fuels, reducing aircraft turbine exhaust temperature, if the temperature is below the minimum, then increasing the valve position given value, thereby increasing the flow of aircraft turbine fuel, improve aircraft turbine exhaust temperature.
Description  Langue du texte original : Chinois

一种航机发电控制装置 One kind of aircraft power control device

技术领域 FIELD

[0001] 本发明涉及一种发电控制技术领域,具体来讲,涉及一种以航空发动机作为发电机驱动动力的发电系统的控制。 [0001] The present invention relates to controlling a power control technology, specifically, relates to an aero-engine as a generator-driven power generation system.

背景技术 BACKGROUND

[0002] 航机发电技术是近年来发展起来的,将航空发动机(简称航机)经过一系列改造后适用于地面发电的一种高效、节能、环保的发电技术。 [0002] aircraft power generation technology is developed in recent years, the aero-engine (the aircraft) after a series of transformation applied to an efficient ground power generation, energy-saving, environmentally friendly power generation technologies. 航机发电系统包括航机发电机组和航机发电控制系统,其中,航机发电控制系统是一个以航机发电机组为对象,涉及控制、计算机、通讯、动力、电力等诸多学科的综合控制系统,是航机发电的关键技术之一,其中航机发电控制装置是航机发电控制系统的主控制器。 Aircraft power systems, including aircraft and aircraft turbine power generation control system in which the aircraft is a power control system aircraft turbines as objects, involving an integrated control system, computer, communications, power, electricity, and many other disciplines It is one of the key technologies for power generation aircraft, including aircraft flight control device is a power generation control system master controller. 随着用户对电力质量的要求越来越高,安全高效、实用可靠的航机发电控制系统显得尤为重要,航机发电控制装置负责整个航机发电系统的监视和控制,是整个航机发电系统可靠、稳定、安全运行的基础。 As users increasingly demanding power quality, safe and efficient, practical and reliable aircraft power generation control system is particularly important, aircraft power control device is responsible for monitoring and control of the entire aircraft power generation system, the entire aircraft power system reliable, stable and safe operation of the foundation.

[0003] PID控制自18世纪引入控制领域以来,一直保持着它在工业过程控制中的主导地位。 [0003] PID control since the 18th century, the introduction of control in the field, has maintained its leading position in the industrial process control. PID控制器通过对比例P、积分I和微分D的线性组合构成控制量,因其结构简单,各个控制参数有着明显的物理意义,调整方便,深受工程技术人员的喜爱而广泛应用于工业控制当中。 PID controller of proportion P, linear combination of integral and differential D I control the amount of the composition, because of its simple structure, each control parameter has a clear physical meaning, easy to adjust, loved engineering and technical personnel and is widely used in industrial control them.

[0004] 在航机发电控制系统中,控制对象航空发动机本身就是一种典型的模型复杂的时变非线性系统,控制难度极高。 [0004] In the power generation control system aircraft, aero-engine control object itself is a typical model of a complex variable nonlinear systems, control extremely difficult. 由于航机发电机组常用于非常恶劣的工业环境中,时常处于变工况状态,此时,普通的PID控制方法应用于航机发电控制装置时,PID控制参数固定,在随机环境中无法对PID控制器进行自动校正,从而降低了系统的控制精度,难以满足航机的高控制精度要求。 Because aircraft turbines used in very harsh industrial environments, often in variable condition state, this time, the ordinary PID control method is applied to aircraft power control unit, PID control parameters are fixed, in a random environment can not PID The controller for automatic correction, thus reducing the control accuracy of the system, it is difficult to meet the high precision control of the aircraft.

发明内容 SUMMARY

[0005] 本发明的目的在于克服现有技术的不足,提供一种高控制精度的航机发电控制装置。 [0005] The present invention is to overcome the deficiencies of the prior art, to provide a high-precision control of aircraft power control device.

[0006] 为达到上述发明目的,本发明的航机发电控制装置,包括输入模块、输出模块,核心处理模块,输入模块将采集到的航机发电机组的运行参数送入核心处理模块中,核心处理模块根据运行参数输出控制量到相应的执行机构执行相应的操作,其特征在于: [0006] To achieve the above object, aircraft power control device of the present invention comprises an input module, output module, the core processing module, input module operating parameters collected from aircraft turbines into core processing module, the core processing module to the appropriate enforcement agency to perform the appropriate action based on the amount of output control operating parameters, wherein:

[0007] 输入模块包括一高速数字输入模块和一高精度模拟输入模块,其中,高速数字输入模块用于采集航机发电机组驱动轴的转速,可以采集频率高于IOOKHz的脉冲信号;高精度模拟输入模块用于采集航机发电机组的发电功率和燃料调节阀的阀位位移,采集精度高于万分之一; [0007] input module includes a high-speed digital input module and a high-precision analog input module, in which high-speed digital input module for acquiring aircraft turbine shaft speed, you can capture the pulse signal frequencies above IOOKHz; precision analog Input module for the acquisition of aircraft turbine power generation and fuel control valve position displacement valve accuracy better than one ten thousandth of the acquisition;

[0008] 输出模块包括一PWM输出模块,用于利用PWM电流控制的算法来输出控制量给燃料调节阀以实现对阀门开度的控制; [0008] Output module comprises a PWM output module for PWM current control algorithm to the output control quantity to the fuel metering valve in order to achieve the degree of opening of the control valve;

[0009] 核心控制模块包括一自适应模糊PID控制模块; [0009] The core control module includes an adaptive fuzzy PID control module;

[0010] 在航机发电机组运行在孤网模式时,核心处理模块根据给定转速和采集转速,计算出当前转速误差和转速误差变化,然后,核心处理模块中的自适应模糊PID控制模块根据当前转速误差和转速误差变化,依据转速模糊规则,计算得到燃料调节阀阀位给定值;其中当前转速误差为当前采集转速与给定转速的差值,转速误差变化为当前转速误差与上次转速误差的差值; [0010] In an aircraft turbine lone run in the network model, the core processing module according to the given speed and gathering speed, calculate the current speed error and speed error change, then, the core processing module based on adaptive fuzzy PID control module current speed error and speed error changes, depending on the speed of fuzzy rules, the calculated fuel valve position setpoint; where the current speed error for a given current acquisition speed and the speed difference between the speed of change of error for the current and the previous speed error the difference between the speed error;

[0011] 在航机发电机组运行在并网模式时,核心处理模块根据给定功率和采集功率,计算出当前功率误差和功率误差变化,然后,核心处理模块中的自适应模糊PID控制模块根据当前功率误差和功率误差变化,依据功率模糊规则,计算得到燃料调节阀阀位给定值;其中当前功率误差为当前采集功率与给定功率的差值,功率误差变化为当前功率误差与上次功率误差的差值; [0011] In an aircraft turbine runs in grid mode, the core processing module for a given power and capture power, to calculate the current power error and power error change, then, the core processing module based on adaptive fuzzy PID control module The current power error and error change power, according to the power of fuzzy rules, the calculated fuel valve position setpoint; where the current power error is the difference between current acquisition of power and the power of change of error given power for the current and previous power error power difference error;

[0012] 得到阀位给定值之后,核心处理模块根据计算得到的阀位给定值和从航机发电机组采集的阀位位移反馈值,计算出当前阀位误差和阀位误差变化,然后,核心处理模块中的自适应模糊PID控制模块根据当前阀位误差和阀位误差变化,依据位移模糊规则,计算得到阀位控制量,并换算成PWM电流控制量,通过PWM输出模块输出控制航机发电系统的执行机构燃料调节阀,实现对阀门开度的控制,燃料调节阀的阀位体现为航机的燃料流量,从而控制了航机转速和机组的发电功率,其中,当前阀位误差为采集的阀位位移反馈值与阀位给定值的差值,阀位误差变化为当前阀位误差与上次阀位误差的差值。 After the [0012] to get the valve position setpoint, the core processing module based on the calculated valve position setpoint and valve position feedback value from the acquisition of aircraft turbine, to calculate the current valve position error and position error changes, then The core processing module adaptive fuzzy PID control module based on the current valve position error and position error changes, according to the displacement of fuzzy rules, the calculated valve position control volume, and the amount converted into PWM current control by PWM output module output control aircraft Actuator power generating system of fuel control valve, the valve opening to achieve control, fuel control valve valve position reflected in aircraft fuel flow to control the aircraft speed and power generation units, which current valve position error displacement of the valve position feedback value and valve position setpoint acquisition difference, valve position error is the difference between the current valve position change error and the last valve position errors.

[0013] 本发明的目的是这样实现的: [0013] The object of the present invention is achieved by:

[0014] 在本发明中,阀位给定值和阀位控制量都采用自适应模糊PID控制,从而完成航机发电系统的转速和功率控制,而自适应模糊PID控制融合了模糊控制和经典PID控制。 [0014] In the present invention, the valve position setpoint and valve position are used to control the amount of adaptive fuzzy PID control, thus completing the speed and power control aircraft power systems, and adaptive fuzzy PID control and fuzzy control combines classic PID control.

[0015] 自适应模糊PID模块控制由模糊控制器和PID控制器两部分组成。 [0015] adaptive fuzzy PID control module consists of two parts of the fuzzy controller and PID controller. 其中模糊控制器采用二输入三输出的形式,以误差e和误差变化ec为输入,PID控制器的三个参数,即比例系数kp、积分系数ki、微分系数kd为输出变量。 The fuzzy controller uses two forms of input and three output to error and error change ec e as input, the three parameters of PID controller, ie the proportional coefficient kp, the integral coefficient ki, kd differential coefficient for output variables. 模糊控制器主要由模糊离散化模块、模糊规则模块和去模糊化模块三部分组成。 Fuzzy controller consists of fuzzy discrete module, fuzzy rules and defuzzification module module consists of three parts. 模糊离散化模块将采用不同的量化因子将输入变量e、ec语言化模糊化为输入变量E、EC。 Fuzzy discrete module will use different quantization factor of the input variables e, ec into the language of the fuzzy input variables E, EC. 根据E、EC,查找模糊规则表,得出KP、KI、KD三个参数。 According to E, EC, look fuzzy rule table, drawn KP, KI, KD three parameters. 去模糊化模块将KP、KI、KD三个输出模糊量转换成PID控制器kp、ki、kd三个参数的精确数值。 Defuzzification module KP, KI, KD amount converted into three output fuzzy PID controller kp, precise values ki, kd three parameters. 模糊控制器将通过模糊规则推理得到的参数kp、ki、kd输出给PID控制器。 Fuzzy controller parameters obtained by the fuzzy inference rules kp, ki, kd output to the PID controller. 在航机发电系统运行过程中,航机发电控制装置实时检测航机发电机组发电功率和航机转速的反馈值,作为自适应模糊PID控制模块的输入值,根据起动曲线设置的转速或事先设定的发电功率值,计算出误差和误差变化、得到误差和误差变化的一个综合值。 In aircraft power system operation, aircraft power control device real-time detection of aircraft turbine power generation feedback and aircraft speed, an adaptive fuzzy PID control module input value, according to the starting curve settings or pre-set speed generating predetermined power value, the error is calculated and the error variation, the error, and to obtain an integrated value of the error variation. 基于模糊规则对模糊PID控制模块中的PID参数进行调整,得到航机发电系统的执行机构燃料调节阀的阀门给定位置,实现了燃料调节阀阀位、航机转速、机组发电功率的闭环控制。 Fuzzy rules based on fuzzy PID control module PID parameters can be adjusted to give the aircraft power system fuel metering valve actuator valve given position to achieve a closed-loop control of the fuel valve position, aircraft speed, power generating units .

[0016] 本发明采用自适应模糊PID模块对转速、功率及阀位位移进行控制,对环境变化有较强的自适应能力,在随机环境中能对控制器进行自动校正,使得系统特性变化或扰动情况下,航机发电系统具有较好的动静态特性,满足航机发电系统的控制要求。 [0016] The present invention employs an adaptive fuzzy PID module for speed, power and control valve displacement, environmental changes have a strong adaptive ability, in a random environment, the controller can be automatically corrected, so that the system characteristics change or Under disturbances, aircraft power system has good dynamic and static characteristics, to meet the control requirements of aircraft power system.

附图说明 Brief Description

[0017] 图1是本发明航机发电控制装置的一种具体实施方式的结构框图; [0017] Figure 1 is a block diagram of a specific embodiment of the present invention of aircraft power control device;

[0018] 图2是图1所示的发明航机发电控制装置的控制流程图; [0018] Figure 2 is a flow chart of the invention to control the aircraft power control device shown in Figure 1;

[0019] 图3是图1所示的自适应模糊PID控制模块的原理框图;[0020] 图4是图1所示的航机发电控制装置的暖机起动限温曲线图。 [0019] FIG. 3 is shown in Figure 1 of adaptive fuzzy PID block diagram of the control module; [0020] Figure 4 is a warm-aircraft power control device shown in a start limiting temperature curve. 具体实施方式 DETAILED DESCRIPTION

[0021] 为更好地理解本发明,下面结合附图和具体实施方式对本发明进行更为详细的描述。 [0021] For a better understanding of the present invention, below in conjunction with the accompanying drawings and specific embodiments of the present invention will be described in more detail. 在以下的描述中,当已有的现有技术的详细描述也许会淡化本发明的主题内容时,这些描述在这儿将被忽略。 In the following description, when the detailed description of the existing prior art might dilute the subject matter of the present invention, the description here will be ignored.

[0022] 图1是本发明航机发电控制装置的一种具体实施方式的结构框图 [0022] Figure 1 is a block diagram of the present invention, an aircraft power control device specific embodiments

[0023] 在本实施例中,如图1所示,航机发电控制装置,包括输入模块1、输出模块2,核心处理模块3,输入模块1将采集到的航机发电机组的运行参数送入核心处理模块3中,核心处理模块3根据运行参数输出控制量到相应的执行机构执行相应的操作。 [0023] In this embodiment, as shown, a generation of aircraft control devices, including an input module, output module 2, 3 core processing module, an input module will send the collected operating parameters aircraft turbines the core processing module 3, the core processing module 3 to the appropriate enforcement agency to perform the appropriate action depending on the operating parameters of output control.

[0024] 在本实施例中,航机发电控制装置物理上采用模块化设计,将实现不同功能的电路分模块设计,互相独立,并且硬件上支持热插拔,每个模块通过电源隔离模块4与外部隔离,以此来增加航机发电控制装置的可靠性、稳定性和抗干扰性。 [0024] In this embodiment, the aircraft power control device physics modular design, the realization of the circuit sub-module design with different functions, independent of each other, and hot-swappable hardware, each module through the power isolation module 4 isolated from the outside, in order to increase the power generation control device aircraft reliability, stability and anti-jamming. 隔离电源模块4由外部市电供给,经过转换之后提供本控制装置的直流电。 Isolated power supply module 4, after the conversion of the control device provided by an external DC mains supply.

[0025] 在本实施例中,输入模块1包括数字输入模块101、模拟输入模块102、高速数字输入模块103以及高速模拟输入模块104。 [0025] In the present embodiment, the input module 1 includes a digital input module 101, the analog input module 102, high-speed digital input module 103, and high-speed analog input module 104. 数字输入模块101用于检测航机发电机组各个监测点的压力状态、油箱油位状况和各种手动/自动控制命令,它的输入是开关信号,如压力低或高,油箱油位低或高,在本实施例中,OV表示低电平信号,24V表示高电平信号。 Pressure on the state of digital input module 101 is used to detect aircraft turbines various monitoring points, oil tank conditions and various manual / automatic control command, which is a switch signal input, such as low pressure or high, low or high oil tank In the present embodiment, OV represents a low level signal, 24V indicates a high level signal. 模拟输入模块102接收4-20mA的电流信号,可用于接收来自安置在航机发电机组各个检测点变送器和传感器的温度和压力信号。 4-20mA current signal is received analog input module 102 can be used to receive the aircraft turbines placed in each detection point transmitter and sensor signals from temperature and pressure. 高速数字输入模块103用于采集航机发电机组驱动轴的转速,可以采集频率高于IOOKHz的脉冲信号。 High-speed digital input module 103 for collecting aircraft turbine shaft rotational speed, a frequency higher than can be collected IOOKHz pulse signal. 高精度模拟输入模块104用于采集航机发电机组的发电功率和燃料调节阀的阀位位移,采集精度高于万分之一。 Precision analog input module 104 for acquiring aircraft turbine power generation and fuel control valve position displacement valve, collecting more accurate than a million.

[0026] 在本实施例中,输出模块2包括数字输出模块201和一PWM输出模块202,数字输出模块201是航机发电控制装置发出命令用于控制现场的执行机构进行动作,为一开关信号,如点火命令,关闭机组命令,在本实施例中,数字输出模块201中的OV表示低电平信号, 24V表示高电平信号。 [0026] In this embodiment, the output module 2 includes a digital output module 201 and a PWM output module 202, the digital output module 201 is the aircraft power control device to issue commands to control the scene of the actuator operates as a switch signal The ignition command, the command unit is turned off, in the present embodiment, the digital output module 201 represents a low level signal OV, 24V indicates a high level signal. PWM输出模块202用于利用PWM电流控制的算法来输出控制量给燃料调节阀以实现对阀门开度的控制。 PWM module 202 is used to output PWM current control algorithm to the output control quantity to the fuel control valve in order to achieve the valve opening degree control.

[0027] 核心处理模块3中包括一自适应模糊PID控制模块301。 [0027] 3 core processing module includes an adaptive fuzzy PID control module 301.

[0028] 此外,航机发电控制装置还通讯接口模块5提供了三种通讯接口,RS232主要用于调试和在线实时监控,CAN可扩展用于现场总线控制和传输,工业以太网口用于以太网通 [0028] In addition, the aircraft power control device further communication interface module 5 provides three communication interfaces, RS232 is mainly used for debugging and on-line real-time monitoring, CAN scalable for fieldbus control and transmission, industrial Ethernet ports for Ethernet Netcom

[0029] 图2是图1所示的发明航机发电控制装置的控制流程图 [0029] Figure 2 is a flow chart of the invention to control the aircraft power control device shown in Figure 1

[0030] 在本实施例中,如图2所示,航机发电控制装置通过输入模块1实时扫描对外的I/ 0接口,I/O接口包括数字输入模块101、模拟输入模块102、高速数字输入模块103、高精度模拟量输入模块104的对外接口。 [0030] In this embodiment, as shown in Figure 2, the aircraft power control unit via a real-time scanning input module and external I / 0 interface, I / O interface module 101 includes a digital input, analog input module 102, shown in high-speed digital input module 103, high-precision analog input of external interface module 104. 各输入模块扫描到转速或功率采集数据之后,对前一次的数据对比,如有改动,则经过有效滤波保护处理和抗干扰处理之后,发送到核心处理模块1,如没有改动,则返回继续扫描。 After each input module scans to speed or power to collect data, the data compared to the previous one, and are subject to change after the effective filtering and anti-jamming protection treatment, is sent to a central processing module, such as no changes, then return to continue scanning .

[0031] 在本实施例中,由于航机发电系统处于强干扰环境下,对来自现场的信号可能叠加有各种各样的干扰,会导致参数数据采集出错,甚至存在一些幅值很大的干扰信号,可能 [0031] In the present embodiment, since the aircraft power generation system is in strong interference environments, the signal from the field may have a variety of superimposed interference will result in an error parameter data acquisition, and even some high amplitude interference signal, may

6导致参数数据采集通道的失效,因此,在输入模块1中高速数字输入模块103、高精度模拟量输入模块104的硬件上设计有滤波和限幅保护电路,对转速或功率采集数据滤波和限幅处理。 6-channel data acquisition parameters lead to failure and, therefore, in a high-speed digital input module input module 103, the hardware-precision analog input module 104 on the design of the filter and limiter protection circuit for speed or power filter and limit data collection amplitude processing. 但是只有硬件滤波和限幅是远远不够的,在核心处理模块3中,还穿插了限幅滤波、 中位值滤波、算术平均滤波和递推平均滤波四种滤波方式结合的算法对转速或功率采集数据进行进一步的滤波和限幅,这样对随机干扰和周期性干扰都有很好的抑制作用。 But only hardware filtering and limiting is not enough, the core processing module 3, also interspersed limiting filtering, median filtering, arithmetic mean filtering and recursive average filtering algorithm combines four kinds of filtering methods for speed or Power to collect data for further filtering and limiting, so that the random noise and periodic disturbances have very good inhibition. 与单一的滤波算法相比,这一硬件与软件结合的双重冗余滤波,对参数数据的平稳度和灵敏度有了很大的提高。 Compared with the single filtering algorithm, the dual redundant filtering hardware and software combination of smoothness and sensitivity parameter data has been greatly improved.

[0032] 核心处理模块3接收到有效转速或功率采集数据之后,对航机发电机组当前的工作模式进行判断: [0032] After three core processing module receives a valid speed or power to collect data on the aircraft turbine judge the current operating mode:

[0033] 如航机发电机组运行在孤网模式下,则核心处理模块3根据给定转速和采集转速,计算出当前转速误差和转速误差变化,然后,核心处理模块3中的自适应模糊PID控制模块301根据当前转速误差和转速误差变化,依据转速模糊规则,计算得到燃料调节阀阀位给定值;其中当前转速误差为当前采集转速与给定转速的差值,转速误差变化为当前转速误差与上次转速误差的差值; [0033] such as aircraft turbines running in solitary network mode, the core processing module 3 according to the given speed and gathering speed, calculate the current speed error and speed error change, then, the core processing module 3 of adaptive fuzzy PID The control module 301 according to the current speed error and speed error changes, depending on the speed of fuzzy rules, the calculated fuel valve position setpoint; where the current speed error for a given current acquisition speed and the speed difference between the speed of change of error for the current speed the difference between the error and the last speed error;

[0034] 否则,航机发电机组运行在并网模式下,核心处理模块3根据给定功率和采集功率,计算出当前功率误差和功率误差变化,然后,核心处理模块3中的自适应模糊PID控制模块301根据当前功率误差和功率误差变化,依据转速模糊规则,计算得到燃料调节阀阀位给定值;其中当前功率误差为当前采集功率与给定功率的差值,功率误差变化为当前功率误差与上次功率误差的差值; [0034] Otherwise, the aircraft turbines running in grid mode, the core processing module 3 according to the given power and capture power, to calculate the current power error and power error change, then, the core processing module 3 of adaptive fuzzy PID The control module 301 according to the current power error and error change power, according to the speed of fuzzy rules, the calculated fuel valve position setpoint; where the current power error is the difference between current acquisition power, power error given power to change the current power the difference between the error and the last power error;

[0035] 得到阀位给定值之后,核心处理模块3根据计算得到的阀位给定值和从航机发电机组采集的阀位位移反馈值,计算出当前阀位误差和阀位误差变化,然后,核心处理模块3 中的自适应模糊PID控制模块301根据当前阀位误差和阀位误差变化,依据位移模糊规则, 计算得到阀位控制量,并换算成PWM电流控制量,通过PWM输出模块输出控制航机发电系统的执行机构燃料调节阀,实现对阀门开度的控制,燃料调节阀的阀位体现为航机的燃料流量,从而控制了航机转速和机组的发电功率,其中,当前阀位误差为采集的阀位位移反馈值与阀位给定值的差值,阀位误差变化为当前阀位误差与上次阀位误差的差值。 After the [0035] to get the valve position setpoint, the core processing module 3 according to the calculated valve position setpoint and valve position feedback value from the acquisition of aircraft turbine, to calculate the current valve position error and position error variance, Then, the core processing module 3 of the adaptive fuzzy PID control module 301 according to the current valve position error and position error changes, depending on the displacement of fuzzy rules, the calculated amount of valve position control and PWM current control in terms of the amount of the PWM output module actuator output control aircraft fuel control valve power systems, to achieve the valve opening control, fuel control valve valve position reflected in aircraft fuel flow to control the aircraft speed and power generation units, which currently valve position error of the valve position and valve position feedback value acquisition value of the difference between a given position, the valve position error changes as the difference between the current valve position error of the last valve position errors.

[0036] 图3是图1所示的自适应模糊PID控制模块的原理框图 [0036] FIG. 3 is shown in Figure 1 of adaptive fuzzy PID block diagram of the control module

[0037] 在本实施例中,为方便说明,以转速的控制来对自适应模糊PID控制模块的计算控制过程进行说明。 [0037] In the present embodiment, for convenience of explanation, in order to control the rotational speed of the fuzzy PID control module calculates the control process will be described for the adaptation. 自适应模糊PID控制模块包括三个自适应模糊PID控制器,分别对转速、功率以及阀位位移进行控制。 Adaptive fuzzy PID control module includes three adaptive fuzzy PID controller, respectively, speed, power, and control valve displacement.

[0038] 如图3所示,自适应模糊PID模块控制由模糊控制器和PID控制器两部分组成。 [0038] Figure 3, the adaptive fuzzy PID control module consists of two parts of the fuzzy controller and PID controller. 其中模糊控制器采用二输入三输出的形式,以转速误差ne和转速误差变化nec为输入,自适应模糊PID控制器的三个参数转速比例参数nkp、转速积分参数nki、转速微分参数nkd 为输出变量。 The fuzzy controller uses two forms of input and three output to speed error and speed error ne nec change as input, the speed ratio of the three parameters of adaptive fuzzy PID controller parameters nkp, speed integration parameters nki, the speed differential output parameter nkd variable. 模糊离散化模块采用不同的量化因子将输入变量转速误差ne、转速误差变化nec语言模糊化为输入变量NE、NEC,其取值范围为NB、匪、NS、0、PS、PM、PB,分别代表负大、 负中、负小、零、正小、正中、正大。 Fuzzy discrete module using different quantization factor of the input variable speed error ne, speed error nec language changes into fuzzy input variables NE, NEC, which ranges from NB, bandit, NS, 0, PS, PM, PB, respectively on behalf of a large negative, negative, and negative small, zero, positive small, middle, CP.

[0039] 针对NE、NEC查找3*49 = 147条转速模糊规则表,得出NKP、NKI、NKD,其取值范围为S、M、B,分别表示小、中、大。 [0039] For NE, NEC Find 3 * 49 = 147 rpm fuzzy rules, drawn NKP, NKI, NKD, which ranges from S, M, B, respectively, small, medium and large.

[0040] 去模糊化模块将NKP、NKI、NKD三个输出模糊量转换成PID控制器转速比例参数 [0040] defuzzification module NKP, NKI, NKD amount converted into three output fuzzy PID controller speed scaling parameter

7nkp、转速积分参数nki、转速微分参数nkd三个参数的精确数值,并输出给PID控制器,再通过PID控制算法完成航机发电系统的转速控制。 7nkp, speed integration parameters nki, nkd precise speed differential parameter values of the three parameters, and output to the PID controller, and then complete the speed control aircraft power systems by PID control algorithm.

[0041] 自适应模糊PID控制器的构成和工作原理属于现有技术,在此不再赘述。 [0041] The composition and working principle of adaptive fuzzy PID controller are art, not repeat them here. 在本实施例中,转速模糊规则表为: In the present embodiment, the rotational speed of the fuzzy rule table:

[0042] [0042]

Figure CN101737171BD00081

[0043] 表1 [0043] Table 1

[0044] 表中,NB、匪、NS、0、PS、PM、PB分别代表负大、负中、负小、零、正小、正中、正大,S、 [0044] table, NB, bandit, NS, 0, PS, PM, PB representing big negative, negative, and negative small, zero, positive small, middle, CP, S,

M、B分别表示小、中、大。 M, B, respectively, small, medium and large.

[0045] 图4是图1所示的航机发电控制装置的暖机起动限温曲线图 [0045] Figure 4 is a warm-start limiting temperature graph generation aircraft control device shown in Figure 1

[0046] 航机发电系统在暖机起动过程中,T4温度,即航机涡轮排气温度控制极其重要,该参数值在点火后会突增,在此过程中若对T4温度的控制不当,会对涡轮的热部件产生严重的热冲击,对机组寿命影响很大。 [0046] aircraft power systems in warm-start the process, T4 temperature that aircraft turbine exhaust temperature control is extremely important, the parameter value will be the sudden increase in the ignition, in this process, if the improper temperature control T4, hot parts of the turbine will produce severe thermal shock, a great impact on the life of the unit. 因此,在暖机起动过程中,必须控制T4温度,防止超温的出现。 Therefore, in the warm-start the process, you must control the T4 temperature to prevent overheating occurs.

[0047] 在本实施中,在暖机起动和运行时,航机发电控制装置在原有的模糊自适应PID 控制的基础之上加入了T4限温控制。 [0047] In this embodiment, the warm-start and running, aircraft power control device in the original fuzzy adaptive PID control on the added T4 temperature limit control. [0048] 在本实施例中,航机发电控制装置还包括航机动力涡轮尾端的排气温度传感器热电偶以及温度采集输入模块,温度采集输入模块通过传感器热电偶将采集的T4温度送入核心控制模块中,然后与根据转速,依据实验数据和机组特性确定的不同转速下的最高限温曲线和最低限温曲线,得到最高温度与最低温度进行比较,如果超过最高温度,则减小阀位给定值,从而减少航机发电机组的燃料的流量,降低T4温度,如果低于最低温度,则加大阀位给定值,从而增加航机发电机组的燃料的流量,提高T4温度。 [0048] In this embodiment, the aircraft power control device further includes a trailing aircraft power turbine exhaust temperature sensor and thermocouple input module temperature acquisition, temperature acquisition thermocouple input module will be collected by the sensor into the core temperature T4 the control module, and then according to the rotational speed, based on the maximum and minimum temperature limit temperature curves different speed curves and the experimental data to determine the characteristics of the unit under the highest temperature and the lowest temperature is compared, if it exceeds the maximum temperature, the reduction of the valve position given value, thereby reducing the flow of aircraft turbine fuel, reducing T4 temperature, if below the minimum temperature, the greater the valve position given value, thereby increasing the flow of aircraft turbine fuel and improve T4 temperature.

[0049] 如图4所示,最低限温曲线在降低T4温度上升速度的基础上防止出现热悬挂,最高限温曲线则防止T4温度超温。 [0049] Figure 4, the minimum temperature curve in the lower T4 based on the rate of temperature rise to prevent hot suspension, the maximum temperature limit is to prevent the T4 temperature curve over temperature.

[0050] 本发明航机发电控制装置具有以下优点: [0050] The present invention aircraft power control device has the following advantages:

[0051] 1、该控制装置采用模块化架构,各个模块支持热插拔,具有更换方便、组装灵活、 通信便利等优点,应用性和可扩展性好。 [0051] 1, the control device uses a modular architecture, each module is hot-swappable, with easy to replace, flexible assembly, convenient communication, etc., applications and scalability.

[0052] 2、该控制装置的高精度模拟输入模块特别采用16位A/D,用于采集执行机构燃料调节阀的位移反馈量和航机发电机组的发电功率,采集精度高达万分之一;高速数字输入模块用于采集航机发电机组驱动轴的转速,可以采集频率高于IOOKHz的脉冲信号。 [0052] 2, high-precision analog input module in particular the use of the control device 16 A / D, the implementing agencies for the collection of fuel adjustment valve displacement feedback and aircraft turbine power generation, acquisition accuracy of up to one ten thousandth ; high-speed digital input module for acquiring aircraft turbine shaft rotational speed, a frequency higher than can be collected IOOKHz pulse signal.

[0053] 3、该控制装置的信号采集系统,采用了软硬件上的双重冗余滤波保护,对随机干扰和周期性干扰都有很好的抑制作用。 [0053] 3, the control signal acquisition system device, using a dual redundant protection hardware and software filtering on the random interference and periodic disturbances have very good inhibition. 与单一的滤波算法相比,这一硬件与软件结合的冗余滤波算法,对数据的平稳度和灵敏度有了很大的提高。 Compared with the single filtering algorithm, the redundant hardware and software filtering algorithm combination of smoothness and sensitivity of data has been greatly improved.

[0054] 4、该控制装置采用模糊控制和参数可调整的PID控制组成的自适应模糊PID控制策略,实现了燃料阀阀位的精确控制、发电机组运行过程中的转速/功率双闭环控制,并解决了变工况状态下机组运行稳定性差的问题。 [0054] 4, PID fuzzy control and adjustable control parameters consisting of the control device uses an adaptive fuzzy PID control strategy to achieve a precise control of the fuel valve position, the process of generating units running speed / power dual-loop control, and to address the poor state under varying operating conditions of the unit operation stability problems.

[0055] 5、该控制装置软件的设计思想,在模糊自适应PID控制算法的基础上加入T4(涡轮排气温度)限温控制策略。 [0055] 5, the control device software design, adding T4 (turbine exhaust gas temperature) limit temperature control strategy based on fuzzy adaptive PID control algorithm. 在暖机起动和发电过程当中,加入航机的Τ4限温控制算法,当出现温度高于限温曲线时,直接在现有的阀门位置上减少控制当量以保证机组的安全。 In the warm-start and power generation process, adding aircraft Τ4 limit temperature control algorithm, when there is a temperature above the limit temperature curve, reducing direct existing valve position control equivalent to ensure the safety of the unit. 这样保证了航机转速和发电功率的精确控制以及机组的安全。 This ensures the safety of the aircraft speed and precise control and power generation units.

[0056] 尽管上面对本发明说明性的具体实施方式进行了描述,但应当清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。 [0056] Although on the face of a specific illustrative embodiment of the present invention has been described, it should be clear that the scope of the present invention is not limited to specific embodiments, one of ordinary skill in the art, as long as the changes in the appended claims as defined and determined in the request from the spirit and scope of the present invention, these changes are obvious, all utilizing the inventive concept of the present invention to create the columns are in protection.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
CN1811306A22 févr. 20062 août 2006天津大学Automatic volume regulating and controlling method for gas-burning machine heat pump
CN101483077A20 janv. 200915 juil. 2009上海电力学院Operating method for condenser and deaerator water level fuzzy controller
US608864625 oct. 199611 juil. 2000The Boeing CompanyFuzzy logic antiskid control system for aircraft
Citations hors brevets
Référence
1邹见效,徐红兵,王厚军.航机电站中伺服阀控制的设计新方法.<<仪器仪表学报>>.2007,第28卷(第9期),1723-1728.
Classifications
Classification internationaleF02C9/32
Événements juridiques
DateCodeÉvénementDescription
16 juin 2010C06Publication
1 sept. 2010C10Entry into substantive examination
30 nov. 2011C14Grant of patent or utility model
10 févr. 2016EXPYTermination of patent right or utility model