CN101867339A - Motor control method of electronic mechanical braking system - Google Patents

Motor control method of electronic mechanical braking system Download PDF

Info

Publication number
CN101867339A
CN101867339A CN 201010148344 CN201010148344A CN101867339A CN 101867339 A CN101867339 A CN 101867339A CN 201010148344 CN201010148344 CN 201010148344 CN 201010148344 A CN201010148344 A CN 201010148344A CN 101867339 A CN101867339 A CN 101867339A
Authority
CN
China
Prior art keywords
fuzzy
variable
error
braking system
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010148344
Other languages
Chinese (zh)
Other versions
CN101867339B (en
Inventor
杜金枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chery Automobile Co Ltd
Original Assignee
SAIC Chery Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAIC Chery Automobile Co Ltd filed Critical SAIC Chery Automobile Co Ltd
Priority to CN 201010148344 priority Critical patent/CN101867339B/en
Publication of CN101867339A publication Critical patent/CN101867339A/en
Application granted granted Critical
Publication of CN101867339B publication Critical patent/CN101867339B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention provides a motor control method of an electronic mechanical braking system. The control method adopts a fuzzy controller and takes an error E of the practical slip rate S of wheels and the optimum expected slip rate S0 set by the system and the change rate EC of the error E as the double input of the fuzzy controller; and the variable quantity U of the current of the motor is obtained by a fuzzy control table-look-up method. The motor control method has fast response speed and small overshoot, and can improve the adaptability of the electronic mechanical braking system for all pavements.

Description

A kind of motor control method of electromechanical braking system
Technical field
Design vehicle braking technology of the present invention field is specifically related to a kind of motor control method of electromechanical braking system.
Background technology
The braking moment of electromechanical braking system is compared with traditional brake fluid system by being installed in being produced by motor-driven brake mechanism on four tires, can simplify braking system structure, be convenient to arrange, assembling and maintenance.And because the nonlinear Control of changeable and tire of vehicle condition in the braking procedure need provide a kind of response speed fast to the motor of electromechanical braking system, overshoot is little, can improve the control algolithm to the adaptive capacity on various road surfaces.
Summary of the invention
Technical problem to be solved by this invention is to provide a kind of motor control method of electromechanical braking system, and its response speed is fast, and overshoot is little, can improve the adaptive capacity of electromechanical braking system to various road surfaces.
Operation principle of the present invention such as Fig. 1 comprise the steps:
A, data acquisition: the controller collection is installed in the pulse signal of the wheel speed sensors on the wheel, obtains each wheel wheel speed angular velocity signal; By the wheel wheel speed signal, calculate vehicle velocity V, according to formula S=1-ω r/V (ω represents wheel speed angular speed, and V represents the speed of a motor vehicle), obtain the slip rate S of car load reality;
B, controller obtain error rate EC after differentiating according to the error value E of actual slip rate S and best expectation slip rate S0 and error value E, with error value E and error rate EC input variable as fuzzy controller, obtain output variable U by the fuzzy control look-up table, described U is the variable quantity of torque motor electric current in the electromechanical braking system, when error E is big more, output variable U should be fast as far as possible the minimizing error E, and when error E more hour, the control of output variable U is leading by EC, EC is big more, and U is more little in output.This fuzzy reasoning control law is to formulate according to expert of the art's manual control law, the principle that lays down a regulation is: when error is big, controlled quentity controlled variable should reduce error as quickly as possible, when error hour, except eliminating error, also the stability of necessary taking into account system is shaken to avoid unwanted hyperharmonic.
C, controller increase or reduce the electric current of motor according to output variable U, thereby increase or reduce braking moment.
The operation principle of electromechanical braking system of the present invention such as Fig. 1.
The fuzzy control that the present invention set up is achieved in that by formula y=(n-m) * [x-(b-a)/2]/(b-a) the obfuscation of input variable E and EC and output variable, [a wherein, b] be the actual range of controller input variable, [m, n] be fuzzy subset's domain, actual input variable E and EC are transformed into variable Y 1 and Y2 in fuzzy subset's domain, change into the fuzzy value of input variable E and EC again by the triangle membership function; The membership function of the output variable U of fuzzy controller also adopts the triangle membership function.Identical and the definition as required of the progression of the triangle membership function of input and output.Be normally defined 5 grades.
The present invention can carry out precision by gravity model appoach to the fuzzy subset's of fuzzy control reasoning process output reverse gelatinization and calculate, and obtains the accurate output variable U of fuzzy controller, and the reverse gelatinization computing formula of fuzzy controller is
Figure GSA00000082247500021
Wherein
Figure GSA00000082247500022
Be the membership function value of output variable U, θ jFuzzy subset's domain value for the output variable U of the fuzzy controller of correspondence.Also can pass through the gelatinization of additive method reverse.
Described motor can be selected pulsewidth regulation and control (PWM) motor for use.Carry out the motor of regulation and control and select pulsewidth regulation and control (PWM) motor for use, the output variable U of fuzzy control of the present invention is a percentage, and output variable is as the pulsewidth regulation and control duty ratio (PWM) of pulsewidth regulation and control motor.
The motor control method of a kind of electromechanical braking system that proposes according to the present invention, key is that this control method adopts fuzzy controller, expect the error E of slip rate S0 with the best of wheel actual slip rate S and default, and the rate of change EC of error E is as the dual input of fuzzy controller, by the controlled output of fuzzy control look-up table, output variable is the variable quantity U of current of electric.
Use the present invention, can utilize Fuzzy control system not need the mathematical models of controlling object, response speed is fast, and the characteristic that overshoot is little is improved the response characteristic of electromechanical braking system, improves the adaptive capacity to various road surfaces.
Description of drawings
Fig. 1 is the fundamental diagram of electromechanical braking system of the present invention;
Fig. 2 is the controlling models of fuzzy control of the present invention;
Fig. 3 is a fuzzy control input and output functional arrangement of the present invention;
Fig. 4 is the manual control law of fuzzy reasoning process of the present invention.
Embodiment
Describe embodiments of the invention below in detail.
The major control target of mechanical type brake system electric is to allow actual slip rate S follow the tracks of expectation slip rate S0 all the time in whole braking procedure, producing maximum road surface attachment systems, thereby all can obtain braking ability preferably under the situation of various different road surfaces.
The mathematical control model of the fuzzy control of present embodiment such as Fig. 2.Present embodiment is so that formula S=(ω represents wheel speed angular speed to 1-ω r/V, V represents the speed of a motor vehicle) obtain actual slip rate S by divider and adder-subtracter, subtract each other with expectation slip rate S0 by adder-subtracter and to obtain error value E, E obtains error rate EC by differential, E and EC are as two inputs of the control table (2-D) of fuzzy controller, obtain exporting U by tabling look-up, the output U of this example is the pulsewidth regulation and control duty ratio (PWM) of pulsewidth regulation and control (PWM) motor.
The operation principle of fuzzy controller is as follows:
1, the input variable of selective system, output variable;
2, the exact value with input variable becomes fuzzy quantity;
3,, press the fuzzy reasoning composition rule and calculate fuzzy control quantity according to input variable (fuzzy quantity) and fuzzy control rule;
4, calculate accurate controlled quentity controlled variable by the above-mentioned fuzzy control quantity that obtains.
The input variable of Fuzzy control system is the actual slip rate S and the error value E of expectation slip rate S0 and the rate of change EC of error value E of electromechanical braking system; Output variable U is the variable quantity of torque motor electric current in the actual electromechanical braking system.
The membership function of E, EC and output variable U as shown in Figure 3.By formula y=(n-m) * [x-(b-a)/2]/(b-a), [a wherein, b] be the actual range of fuzzy controller input variable, [m, n] be fuzzy subset's domain, actual input variable E and EC are transformed into variable Y 1 and Y2 in fuzzy subset's domain, change into the fuzzy value of input variable E and EC again by the triangle membership function; The membership function of the output variable U of fuzzification process also adopts the triangle membership function.Here the variable grade of triangle membership function is 5 grades, and the membership function of input variable E, EC and output variable U is equally distributed.
The fuzzy control rule of fuzzy controller: the fuzzy reasoning form is: IF E=Ai and EC=Bi THEN U=Ci; Wherein Ai is the error fuzzy subset, and Bi is that error changes the fuzzy subset, and Ci is the output variable fuzzy subset, according to manual control strategy, sums up 25 fuzzy control rules, as shown in Figure 4.Wherein, manually the design principle of control strategy is: when error was big, controlled quentity controlled variable should reduce error as quickly as possible, when error hour, except eliminating error, stability that also must taking into account system is to avoid unwanted hyperharmonic concussion.Be specially: when error E is big, the minimizing error that output variable U should be fast as far as possible, and when error E hour, the control of output variable U is leading by EC, EC is big more, output variable U is more little.
The fuzzy subset of the output controlled quentity controlled variable U that said process is obtained by the reverse gelatinization calculates accurate controlled quentity controlled variable.Reverse gelatinization formula is
Figure GSA00000082247500041
Wherein
Figure GSA00000082247500042
Be the output membership function value, θ jFuzzy subset's domain value for the control output variable U of correspondence.
Obtain control table by said process, place fuzzy controller, corresponding different actual slip rate error and error rate thereof can obtain the output variable U of fuzzy controller by tabling look-up, and output variable U is the percentage form, just the controlled quentity controlled variable of motor.Output variable in this example is the pulsewidth regulation and control duty ratio (PWM) of pulsewidth regulation and control motor, pulsewidth regulation and control motor is controlled the output torque of motor by the size of control motor input current, by planetary gear, belt pulley, bolt and nut, make nut produce thrust again, finally obtain braking moment.

Claims (5)

1. the motor control method of an electromechanical braking system is characterized in that comprising the steps:
A, data acquisition: the controller collection is installed in the pulse signal of the wheel speed sensors on the wheel, obtains each wheel wheel speed angular velocity signal; By the wheel wheel speed signal, calculate vehicle velocity V, according to formula S=1-ω r/V (ω represents wheel speed angular speed, and V represents the speed of a motor vehicle), obtain the slip rate S of car load reality;
B, controller obtain error rate EC after differentiating according to the error value E of actual slip rate S and target slip rate S0 and error value E, with error value E and error rate EC input variable as fuzzy controller, obtain output variable U by the fuzzy control look-up table, described U is the variable quantity of torque motor electric current in the electromechanical braking system, its control principle is as follows: when error E is big, output variable U should be fast as far as possible the minimizing error E, and when error E hour, the control of output variable U is leading by EC, EC is big more, and output variable U is more little.
C, controller increase or reduce the electric current of motor according to output variable U, thereby increase or reduce braking moment.
2. the motor control method of electromechanical braking system according to claim 1, the obfuscation that it is characterized in that described fuzzy controller is by formula y=(n-m) * [x-(b-a)/2]/(b-a), [a wherein, b] be the actual range of fuzzy controller input variable, [m, n] be fuzzy subset's domain, actual input variable E and EC are transformed into variable Y 1 and Y2 in fuzzy subset's domain, change into the fuzzy value of input variable E and EC again by the triangle membership function; The membership function of the output variable U of fuzzy controller also adopts the triangle membership function.
3. the motor control method of electromechanical braking system according to claim 1 is characterized in that the reverse gelatinization computing formula of described fuzzy controller is
Figure FSA00000082247400011
Wherein
Be the output membership function value, θ jFuzzy subset's domain value for corresponding output variable U.
4. the motor control method of electromechanical braking system according to claim 2 is characterized in that the variable grade of described triangular membership functions is 5 grades.
5. the motor control method of electromechanical braking system according to claim 1 is characterized in that described motor is pulsewidth regulation and control motors.
CN 201010148344 2010-04-09 2010-04-09 Motor control method of electronic mechanical braking system Active CN101867339B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010148344 CN101867339B (en) 2010-04-09 2010-04-09 Motor control method of electronic mechanical braking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010148344 CN101867339B (en) 2010-04-09 2010-04-09 Motor control method of electronic mechanical braking system

Publications (2)

Publication Number Publication Date
CN101867339A true CN101867339A (en) 2010-10-20
CN101867339B CN101867339B (en) 2013-03-06

Family

ID=42958928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010148344 Active CN101867339B (en) 2010-04-09 2010-04-09 Motor control method of electronic mechanical braking system

Country Status (1)

Country Link
CN (1) CN101867339B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158156A (en) * 2011-03-22 2011-08-17 北京航天控制仪器研究所 Controlled and monitored width-adjusting servo system of brushless torque motor
CN102424041A (en) * 2011-11-03 2012-04-25 湖北绿驰科技有限公司 Electronic mechanical braking method and device without clamping force sensor
CN102490706A (en) * 2011-12-15 2012-06-13 奇瑞汽车股份有限公司 Electromechanical brake control system and automobile
CN102862559A (en) * 2012-10-16 2013-01-09 奇瑞汽车股份有限公司 Line control anti-lock brake (ABS) system based on controller area network (CAN) bus and control method thereof
CN105313957A (en) * 2014-07-14 2016-02-10 重庆邮电大学 Power assisted control method for electric power steering system based on compound control
CN106043171A (en) * 2016-07-07 2016-10-26 辽宁工业大学 Distributed electric vehicle intelligent in-vehicle network terminal platform and braking control method
CN106573538A (en) * 2014-07-25 2017-04-19 西门子公司 Method and arrangement for monitoring the travel state of a vehicle, and vehicle having such an arrangement
TWI746079B (en) * 2020-07-22 2021-11-11 財團法人車輛研究測試中心 Anti-lock braking system and control method
CN114056310A (en) * 2020-08-03 2022-02-18 财团法人车辆研究测试中心 Anti-lock brake system and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272421B1 (en) * 1998-09-07 2001-08-07 Siemens Aktiengesellschaft Antilock braking system, based on a fuzzy controller, for an electromechanical vehicle braking system
CN101088818A (en) * 2006-06-14 2007-12-19 比亚迪股份有限公司 Antiskid control system and method for electromobile
CN101594106A (en) * 2009-07-10 2009-12-02 奇瑞汽车股份有限公司 A kind of electric machine control system of line control brake system and control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272421B1 (en) * 1998-09-07 2001-08-07 Siemens Aktiengesellschaft Antilock braking system, based on a fuzzy controller, for an electromechanical vehicle braking system
CN101088818A (en) * 2006-06-14 2007-12-19 比亚迪股份有限公司 Antiskid control system and method for electromobile
CN101594106A (en) * 2009-07-10 2009-12-02 奇瑞汽车股份有限公司 A kind of electric machine control system of line control brake system and control method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158156A (en) * 2011-03-22 2011-08-17 北京航天控制仪器研究所 Controlled and monitored width-adjusting servo system of brushless torque motor
CN102158156B (en) * 2011-03-22 2013-01-16 北京航天控制仪器研究所 Controlled and monitored width-adjusting servo system of brushless torque motor
CN102424041B (en) * 2011-11-03 2013-11-06 湖北绿驰科技有限公司 Electronic mechanical braking method and device without clamping force sensor
CN102424041A (en) * 2011-11-03 2012-04-25 湖北绿驰科技有限公司 Electronic mechanical braking method and device without clamping force sensor
CN102490706A (en) * 2011-12-15 2012-06-13 奇瑞汽车股份有限公司 Electromechanical brake control system and automobile
WO2014059806A1 (en) * 2012-10-16 2014-04-24 奇瑞汽车股份有限公司 Can bus-based drive-by-wire abs braking system and control method
CN102862559A (en) * 2012-10-16 2013-01-09 奇瑞汽车股份有限公司 Line control anti-lock brake (ABS) system based on controller area network (CAN) bus and control method thereof
CN102862559B (en) * 2012-10-16 2015-04-08 奇瑞汽车股份有限公司 Line control anti-lock brake (ABS) system based on controller area network (CAN) bus and control method thereof
CN105313957A (en) * 2014-07-14 2016-02-10 重庆邮电大学 Power assisted control method for electric power steering system based on compound control
CN105313957B (en) * 2014-07-14 2018-05-04 重庆邮电大学 A kind of electric boosting steering system power assist control method based on complex controll
CN106573538A (en) * 2014-07-25 2017-04-19 西门子公司 Method and arrangement for monitoring the travel state of a vehicle, and vehicle having such an arrangement
CN106573538B (en) * 2014-07-25 2019-06-14 西门子移动有限公司 Monitor the method and apparatus of the driving status of vehicle and the vehicle with this equipment
CN106043171A (en) * 2016-07-07 2016-10-26 辽宁工业大学 Distributed electric vehicle intelligent in-vehicle network terminal platform and braking control method
TWI746079B (en) * 2020-07-22 2021-11-11 財團法人車輛研究測試中心 Anti-lock braking system and control method
CN114056310A (en) * 2020-08-03 2022-02-18 财团法人车辆研究测试中心 Anti-lock brake system and control method

Also Published As

Publication number Publication date
CN101867339B (en) 2013-03-06

Similar Documents

Publication Publication Date Title
CN101867339B (en) Motor control method of electronic mechanical braking system
CN105416276B (en) Electric automobile stability direct yaw moment control method based on High-Order Sliding Mode
CN106585425B (en) A kind of hierarchical system and control method for four hub motor driven electric vehicles
CN109263716B (en) Control method for driving vehicle to steer by four-hub motor
CN102862559B (en) Line control anti-lock brake (ABS) system based on controller area network (CAN) bus and control method thereof
CN108437978B (en) Four wheel hub electricity drive vehicle running surface automatic identification and stability integrated control method
CN107117073A (en) A kind of four-wheel wheel hub method for controlling traction of electric vehicle
CN104724113B (en) A kind of Handling stability control system for multiaxis distributed dynamoelectric driving vehicle
CN203832404U (en) Electric automobile integrating drive-by-wire control technology and wheel hub motor driving technology
CN103660915B (en) A kind of hub hydraulic motor driving system controllable capacity pump displacement control
CN104908814B (en) A kind of Fractional Order PID control method of automobile steer-by-wire system
CN104995077A (en) Steering control device
CN104175902A (en) Torque distribution control method for electric-wheel automobile hub motor torque distribution system
CN104937315A (en) Grade and payload estimate-based transmission gear selection
CN106956616B (en) A kind of more wheel independent drive electric vehicle Electronic differential control methods
CN105667341B (en) A kind of TCS for multiaxis distributed dynamoelectric driving vehicle
CN106004520B (en) A kind of method for controlling driving speed, control system and electric car
CN106882080A (en) A kind of differential steering system and its adaptive neural network fault tolerant control method
CN104002699A (en) Control method of distributed driving electric vehicle
Żebrowski Traction efficiency of a wheeled tractor in construction operations
Lu et al. ABS system design based on improved fuzzy PID control
CN105059285A (en) Distributed driving automobile integrated control system and method based on multiple intelligent agents
Chiang et al. Slip-based regenerative ABS control for in-wheel-motor drive EV
CN105807221A (en) Electric vehicle traction motor power verification method
CN108725428A (en) Hybrid vehicle front and back wheel torque control method and control device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant