Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationCN101968611 A
Type de publicationDemande
Numéro de demandeCN 201010276966
Date de publication9 févr. 2011
Date de dépôt8 sept. 2010
Date de priorité8 sept. 2010
Autre référence de publicationCN101968611B
Numéro de publication201010276966.X, CN 101968611 A, CN 101968611A, CN 201010276966, CN-A-101968611, CN101968611 A, CN101968611A, CN201010276966, CN201010276966.X
Inventeurs周绍林, 唐小萍, 徐峰, 杨勇, 胡松, 赵立新, 陈旺富, 陈明勇
Déposant中国科学院光电技术研究所
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes:  SIPO, Espacenet
Phase distribution-based single point mask silicon wafer leveling method
CN 101968611 A
Résumé
The invention discloses a phase distribution-based single point mask silicon wafer leveling method, which is characterized by comprising the following steps of: transmitting plane waves to a first group of marked grating and a second group of marked grating which are positioned on a mask, diffracting for several times, reflecting by a silicon wafer, transmitting the marked gratings again, and forming a constant interference field on the mask surface; when the silicon wafer is inclined in a cross section direction and a longitudinal section direction, changing the phase distribution causing the interference field, namely the distribution direction of equal phase lines and spacial frequency; and directly adjusting the silicon wafer according to the phase distribution condition, and timely correcting the inclination of the silicon wafer relative to the mask to directly realize local leveling of the single point mask silicon wafer. The method is intuitive, simple and easy to operate, has high practicability and has significance for developing of micro-nano processing technology.
Revendications(2)  Langue du texte original : Chinois
  1. 一种基于相位分布的单点掩模硅片调平方法,其特征在于:平面波(1)直接入射位于掩模(2)上的两组相邻标记光栅(3、5),标记光栅(3)的+1级衍射光经硅片(4)表面反射返回,再次透过掩模(2)表面与标记光栅(5)的+1级衍射光形成两组干涉条纹;当掩模(2)和硅片(4)处于平行状态时,两组干涉条纹的相位分布一致;当掩模(2)和硅片(4)之间存在倾斜时,两组干涉条纹的相位分布不一致、存在差异,所述差异体现在两组干涉条纹的频率差和两组干涉条纹的相对倾斜角;根据两组干涉条纹的频率差,通过公式(1)计算掩模(2)和硅片(4)在横截面方向的倾斜量,以消除掩模(2)和硅片(4)在横截面方向的倾斜,实现横截面方向的调平;根据两组干涉条纹的相对倾斜角,通过公式(2)计算掩模(2)和硅片(4)在横截面方向的倾斜量,以消除掩模(2)和硅片(4)在纵截面方向的倾斜,实现纵截面方向的调平; <mrow> <mi>&delta;f</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mi>&lambda;</mi> </mfrac> <mo>&CenterDot;</mo> <mi>&delta;&theta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>其中:δf表示两组干涉条纹的频率差,θf表示两组干涉条纹的相对倾斜角;δθ表示硅片(4)在横截面方向的倾斜量,λ为入射平面波波长,θ1、θ2分别为两组相邻标记光栅(3、5)的+1级衍射角;表示硅片(4)在纵截面方向的倾斜量。 A single point of the phase distribution of the mask of silicon-based leveling method, wherein: a plane wave (1) located directly incident on the mask (2) on the two adjacent grating mark (3,5), labeled the grating (3 ) + 1st-order diffracted light by the silicon wafer (4) surface reflected back again through a mask (2) surface of the grating mark (5) of the +1 order diffracted light interference fringes formed groups; when the mask (2) When the silicon wafer (4) are parallel and the two groups of the interference fringe phase distribution is consistent; when present tilt (4) between the mask (2) and silicon, two interference fringe phase distribution is inconsistent, there is a difference, The difference is reflected in the frequency difference between the two sets of interference fringes of the interference fringes and two opposing inclination angle; according to the frequency difference between two sets of interference fringes, by the equation (1) computing a mask (2) and the wafer (4) in the transverse tilt amount sectional direction in order to eliminate the mask (2) and silicon (4) is inclined in the transverse direction, to achieve the cross-sectional direction of leveling; two groups according to the relative inclination angle of the interference fringes is calculated by Equation (2) the mask (2) and silicon (4) in cross-sectional direction of the tilt amount to remove the mask (2) and silicon (4) is inclined in the direction of the longitudinal cross-section, a longitudinal section achieve leveling direction; <mrow> <mi> & delta; f </ mi> <mo> = </ mo> <mfrac> <mrow> <mn> 2 </ mn> <mrow> <mo> (</ mo> <mi> cos </ mi > <msub> <mi> & theta; </ mi> <mn> 1 </ mn> </ msub> <mo> + </ mo> <mi> cos </ mi> <msub> <mi> & theta; < / mi> <mn> 2 </ mn> </ msub> <mo>) </ mo> </ mrow> </ mrow> <mi> & lambda; </ mi> </ mfrac> <mo> & CenterDot; < / mo> <mi> & delta; & theta; </ mi> <mo> - </ mo> <mo> - </ mo> <mo> - </ mo> <mrow> <mo> (</ mo> < mn> 1 </ mn> <mo>) </ mo> </ mrow> </ mrow> where: δf interference fringes of the two groups represents a frequency difference, θf represents two sets of interference fringes relative tilt angle; δθ represents silicon (4) the amount of tilt in the transverse direction, λ is the incident plane wave length, θ1, θ2 respectively two adjacent grating mark (3,5) + 1st-order diffraction angle; represents a silicon wafer (4) in the direction of a longitudinal section tilt amount. FSA00000263303700012.tif,FSA00000263303700013.tif FSA00000263303700012.tif, FSA00000263303700013.tif
  2. 2.根据权利要求1所述的基于相位分布的单点掩模硅片调平方法,其特征在于:所述两组相邻标记光栅(3、5)分别由周期为P1与Ρ2、Ρ2与P1的两个光栅上下构成。 According to claim silicon-based single-point leveling methods mask phase distribution, characterized in that said 1: the two adjacent grating mark (3,5) respectively by a period P1 and Ρ2, Ρ2 and P1 constitute two gratings down.
Description  Langue du texte original : Chinois

一种基于相位分布的单点掩模硅片调平方法 A single point of the phase distribution of the silicon mask based on leveling

技术领域 FIELD

[0001] 本发明涉及一种纳米光刻掩模硅片调平,特别是一种基于相位分布的单点掩模硅片调平方法,属于微纳加工相关技术领域。 [0001] The present invention relates to a silicon nano-lithography mask leveling, especially the mask is a single point of silicon leveling phase distribution method based on the relevant part of the micro-nanofabrication technology.

背景技术 BACKGROUND

[0002] 随着高集成度电路与相关器件的研发,IC特征尺寸愈来愈小,以光刻为代表的高分辨力微纳加工技术得到了长足的发展。 [0002] With the development of highly integrated circuits and related devices, IC feature sizes getting smaller, with high-resolution lithography, represented by micro-nanofabrication technology has been considerable development. 接近接触式纳米加工手段以其操作简单、成本低廉等特征,成为下一代主流技术之一,如纳米压印、波带片阵列成像光刻以及X射线光刻。 Nanofabrication means close contact with its simple operation, low cost and other features, has become one of the mainstream of the next generation of technologies, such as nano-imprint, zone plate array imaging and X-ray lithography lithography. 随着光刻分辨力的提高,掩模硅片调平、间隙控制与测量成为影响器件特征尺寸精度的主要因素之一。 With the improvement of the resolution of the lithography mask silicon leveling gap control and measurement devices to become one of the feature size affects the accuracy of the main factors.

[0003] 传统的掩模硅片调平一般是通过三点或多点的间隙测量实现的,即通过不在同一直线的三点或者多点位置出的进行间隙测量控制,根据三点确定平面的原则或者其他调平算法,当三处或多处间隙趋于一致时,掩模硅片两者完全平行。 [0003] The conventional mask silicon leveling generally through the gap to achieve three-point or multi-point measurement, i.e., three-point or multi-point location is not in the same line of a measurement of the gap control, according to the plane defined by three points principles or other leveling algorithm, when three or more locations gap consistent, both silicon mask completely parallel. 而间隙测量一般采用几何成像、干涉强度与外差干涉几种方法。 The gap measure commonly used imaging geometry, strength and heterodyne interferometry interference in several ways. 在测量过程中,这几种方法均容易受到光刻胶等硅片表面工艺过程的影响,如光刻胶内的多次反射引入附加光程、标记的受到硅片工艺污染后引入的非对称性误差等,这些较为明显的系统误差导致几点处间隙测量结果不一致,最终影响到掩模硅片调平的精度。 During measurement, these methods are susceptible to the silicon surface of the photoresist and other process, such as multiple reflection within the resist introduce an additional optical path, marked by the asymmetric silicon process after the introduction of contamination of error, these obvious points lead to systematic errors in the measurement of the gap results are inconsistent, and ultimately affect the mask silicon leveling accuracy. 为了直接避免及消除传统方法中多点测量中不一致引起的位置误差,本发明立足于单点测量,直接在单个位置处测量并消除硅片相对于掩模在横、纵截面两个垂直方向上的倾斜,以达到调平的目的。 In order to eliminate the position error and direct to avoid the conventional method in multi-point measurements caused inconsistencies, the present invention is based on the single-point measurement, measuring directly in a single location and eliminate the wafer relative to the mask in the horizontal and vertical cross-section of two perpendicular directions inclined, in order to achieve leveling purposes.

发明内容 SUMMARY

[0004] 本发明需要解决的技术问题是:克服现有技术的不足,提供一种基于相位分布的单点掩模硅片调平方法,它能够在一个位置处直接实现掩模和硅片的局部调平,不易受到硅片工艺的影响,调平精度较高,且操作简单易行。 [0004] The present invention technical issues need to be addressed are: to overcome the deficiencies of the prior art, providing a single point of the silicon mask leveling method based on phase distribution, it can directly implement the mask and wafer at one location Local leveling, less susceptible to silicon technology, high precision leveling, and the operation is easy.

[0005] 本发明的技术解决方案为:一种基于相位分布的单点掩模硅片调平方法,其特点在于平面波(1)直接入射位于掩模(2)上的两组相邻标记光栅(3、5),标记光栅(3)的+1 级衍射光经硅片(4)表面反射返回,再次透过掩模(2)表面与标记光栅(5)的+1级衍射光形成两组干涉条纹;当掩模(2)和硅片(4)处于平行状态时,两组干涉条纹的相位分布一致;当掩模(2)和硅片(4)之间存在倾斜时,两组干涉条纹的相位分布不一致、存在差异,所述差异体现在两组干涉条纹的频率差和两组干涉条纹的相对倾斜角;根据两组干涉条纹的频率差,通过公式(1)计算掩模(2)和硅片(4)在横截面方向的倾斜量,以消除掩模(2)和硅片(4)在横截面方向的倾斜,实现横截面方向的调平;根据两组干涉条纹的相对倾斜角, 通过公式(2)计算掩模(2)和硅片(4)在横截面方向的倾斜量,以消除掩模(2)和硅片(4) 在纵截面方向的倾斜,实现纵截面方向的调平; [0005] The technical solution of the invention is: A single-point leveling wafer mask phase distribution based method, characterized in that two adjacent marks grating plane wave (1) located directly incident on the mask (2) on the (3,5), the grating mark (3) of the +1 order diffracted light by the silicon wafer (4) surface reflected back again through a mask (2) surface of the grating mark (5) of the 1st order diffracted light forms two interference fringe group; when the mask (2) and the wafer (4) in a parallel state, the phase distribution of the interference fringes of two identical; when there is a tilt (4) between the mask (2) and silicon groups phase distribution of interference fringes are inconsistent, there is a difference, the difference is reflected in the frequency difference between the two sets of interference fringes of the interference fringes and two opposing inclination angle; according to the frequency difference between two sets of interference fringes, by the equation (1) computing a mask ( 2) and the wafer (4) in cross-sectional direction of the tilt amount, to eliminate the mask (2) and silicon (4) is inclined in the transverse direction, to achieve the cross-sectional direction of the leveling; according to the two interference fringe relative inclination angle, by the equation (2) calculating a mask (2) and silicon (4) in cross-sectional direction of the tilt amount, to eliminate the mask (2) and the wafer (4) in a longitudinal cross-sectional direction of inclination, to achieve the longitudinal direction of the leveling section;

[0006][0007] [0006] [0007]

Figure CN101968611AD00041

(2) (2)

[0008] 其中:Sf表示两组干涉条纹的频率差,θ f表示两组干涉条纹的相对倾斜角; δ θ表示硅片(4)在横截面方向的倾斜量,λ为入射平面波波长,θ” 02分别为两组相邻标记光栅(3、5)的+1级衍射角;知表示硅片(4)在纵截面方向的倾斜量。 [0008] where: Sf represents the frequency difference between the two sets of interference fringes, θ f represents two sets of interference fringes relative tilt angle; δ θ represents a silicon wafer (4) in cross-sectional direction of the tilt amount, λ is the incident plane wave wavelength, θ "02 are two sets of adjacent marks grating (3,5) + 1st-order diffraction angle; represents known wafer (4) tilt amount in the longitudinal sectional direction.

[0009] 本发明的原理:平面波直接入射位于掩模上的两组相邻标记光栅,衍射级次经硅片反射后再次透过标记光栅组,在掩模面形成两组恒定的干涉场,其相位特征直接反映掩模硅片的倾斜程度。 [0009] The principles of the present invention: direct incident plane wave is located in two adjacent marks on the mask grating, diffraction orders again after reflected by wafer grating mark group, the mask surface is formed in two constant interference field, characterized by a mask whose phase directly reflects the degree of inclination of silicon. 从而根据干涉场的相位分布特点,直接消除掩模硅片在两个垂直方向上的倾斜,实现掩模硅片调平。 Thus the distribution of the phase characteristics of the interference field, eliminating direct silicon mask tilt in two perpendicular directions, achieving silicon mask leveling. 其中,根据两组条纹的频率差,计算并消除横截面方向的倾斜;根据两组条纹的相对倾斜角,计算并消除纵截面方向的倾斜。 Wherein, based on two sets of fringes frequency difference, calculates and eliminate cross-sectional direction of inclination; relative tilt angle of the two stripes, calculate and eliminate longitudinal sectional direction according to the inclination.

[0010] 本发明与现有技术相比的有益效果是: [0010] The present invention over the prior art and the beneficial effects are:

[0011] (1)本发明能够在一个位置处直接实现掩模和硅片的局部调平,效率高,且不易受到硅片工艺的影响,调平精度较高。 [0011] (1) The present invention can be implemented in a position directly at the local level the mask and wafer, high efficiency, and less susceptible to silicon technology, high precision leveling.

[0012] (2)本发明独立于间隙测量,根据空间相位特征直接进行掩模和硅片调平,可以避免影响光强度的光刻胶等硅片工艺因素对调平的影响。 [0012] (2) The present invention is independent of the gap measurements, carried out the mask and wafer leveling feature directly from the phase space, the light intensity of the photoresist to avoid the impact of factors such as silicon process reversed affect flat.

[0013] (3)本发明不但能避免光刻胶等硅片工艺对单点测量的影响,还能消除多点测量不一致引入的误差,对接近式微纳加工技术具有重要意义。 [0013] (3) The present invention not only can avoid the impact of photoresist and other silicon process for single-point measurement, but also to eliminate errors introduced by multi-point measurement is inconsistent with the importance of approaching the decline of nanofabrication technologies.

附图说明 Brief Description

[0014] 图1为本发明方法原理示意图; [0014] Figure 1. Schematic diagram of the method of the present invention;

[0015] 图2为本发明横、纵截面两个垂直方向上的硅片倾斜与光束偏转;(a)横截面方向硅片倾斜引起光束偏转示意图;(b)为纵截面方向硅片倾斜引起光束偏转的示意图, [0015] Figure 2 is a schematic cross, silicon inclined longitudinal sectional beam in two perpendicular directions on the deflection; (a) cross-sectional direction is inclined to cause the beam deflection schematic silicon; (b) is a longitudinal cross-sectional direction of silicon induced tilt beam deflection schematic view,

[0016] 图3为本发明掩模上两组标记光栅布局示意图; [0016] Figure 3 of the present invention on the mask layout schematic view of two grating marks;

[0017] 图4为本发明调平过程中几组干涉场强度条纹的相位分布状况,其中:(a)为横、 纵两个截面方向的倾斜分别为的相位分布;(b)为横截面方向被消除后的相位分布;(c)为纵截面方向被单独消除后的相位分布;(d)为两个方向的倾斜均被消除后的相位分布。 [0017] Figure 4 of the present invention during the leveling phase sets the field intensity distribution of the interference fringes, wherein: (a) for the horizontal and vertical directions of two inclined sectional view, respectively of the phase distribution; (b) is a cross-sectional direction by the phase distribution after elimination; (c) is a longitudinal cross-sectional direction is eliminated after the individual phase distribution; phase (d) for the two directions of inclination are eliminated distribution.

具体实施方式 DETAILED DESCRIPTION

[0018] 如图1所示,平面波1直接入射位于掩模2上的两组相邻标记光栅3和5,+1级衍射光经硅片4表面反射返回,再次透过掩模面上的标记光栅5,两组光栅对应的+1级衍射光在掩模表面形成两组相应的干涉条纹,经过反射镜6、物镜7后被CCD探测器8接收。 [0018] FIG, 1 is directly incident plane wave as shown in Figure 1 is located in two adjacent marks 2 on the mask grating 3 and 5, + 1 order diffracted light reflected back by the surface of the wafer 4, again through a mask surface mark grating 5, two grating +1 order diffracted light corresponding to the mask surface formed interference fringes corresponding to the two groups, after mirror 6, objective lens 7 after being received by the detector 8 CCD. 当掩模2和硅片4处于平行状态时,两组条纹的相位分布一致,频率相等,方向相同;当掩模2 和硅片4之间存在倾斜时,两组条纹的相位分布发生变化、不再一致,而且倾斜与两者的差异直接相关。 When the mask 2 and the wafer 4 in a parallel state, two fringe phase distribution is consistent, the same frequency, in the same direction; when there is a tilt between the mask 2 and wafer 4, two fringe phase distribution is changed, no longer the same, and tilt directly related differences.

[0019] 如图2所示,当掩模2和硅片4在横、纵截面两个方向分别存在一定的倾斜量δ θ 以及知时,经硅片反射的+1衍射光将在相应的方向上被偏转对应的角度2 δ θ及2匆;光束的偏转直接影响两束从硅片和掩模反射的+1衍射光Bw和Bm的干涉。 [0019] shown in Figure 2, when the mask 2 and wafer 4 in the transverse, vertical sectional exist separately in both directions a certain tilt amount δ θ and when known, the silicon +1 diffracted light will be reflected in the corresponding is deflected in the direction corresponding to the angle 2 δ θ and two hurried; beam deflection directly affect the two beams reflected from the silicon wafer and mask Bw and Bm +1 diffracted light interference. 其中,被反射光束Bw 在横截面方向上的偏转直接影响干涉角度的大小,从而影响干涉条纹的空间频率;被反射光束Bw在纵截面上的偏转直接使两束光的干涉平面被旋转,从而使条纹的空间分布方向发生相应的旋转。 Wherein the light beam is reflected in the cross-sectional direction Bw deflection angle directly affects the size of the interference, which affects the interference fringes of spatial frequency; Bw reflected light beam deflection in the longitudinal cross section of the direct interference of the two beams so that the plane is rotated, thereby so that the direction of the spatial distribution of stripes corresponding rotation. 简言之,横截面方向的倾斜δ θ直接改变了两组条纹的空间频率,纵截面方向的倾斜匆则直接改变了两组条纹的倾斜角度,具体由式(1)、(2)决定。 Briefly, the cross-sectional direction of inclination δ θ directly change the spatial frequency of the two stripes, vertical sectional direction inclined hurried directly change the inclination angle of two stripes, particularly (1), (2) determined by the formula.

[0020] [0020]

Figure CN101968611AD00051

[0021] [0021]

Figure CN101968611AD00052

[0022] 其中:Sf表示两组干涉条纹的频率差,θ f表示两组干涉条纹的相对倾斜角; δ θ表示硅片4在横截面方向的倾斜量,λ为入射平面波波长,知表示硅片4在纵截面方向的倾斜量JpQ2分别为周期分别为P1J2的相邻标记光栅3、5的+1级衍射角,由如下公式决定。 [0022] where: Sf represents the frequency difference between the two sets of interference fringes, θ f represents two sets of interference fringes relative tilt angle; δ θ represents wafer 4 in the transverse direction tilt amount, λ is the incident plane wave length, known represents silicon sheet 4 in a longitudinal cross-sectional direction of the tilt quantity JpQ2 periods are respectively adjacent P1J2 mark gratings 3,5 + 1st-order diffraction angle, determined by this formula. 由如下的光栅衍射方程决定 Diffraction grating is determined by the following equation

[0023] P1Sin θ j = λ (3) [0023] P1Sin θ j = λ (3)

[0024] P2Sin θ 2 = λ (4) [0024] P2Sin θ 2 = λ (4)

[0025] 其中,两相邻光栅的周期为P1 = 2·0μΐΉ、Ρ2 = 2·2μΐΉ,波长λ = 633nm。 [0025] wherein two adjacent grating period is P1 = 2 · 0μΐΉ, Ρ2 = 2 · 2μΐΉ, wavelength λ = 633nm.

[0026] 掩模2上两组标记光栅采用如图3所示的布局,左右两组标记光栅3、5分别由周期分别为P1与p2、P2与P1的两个光栅上下构成,其中本发明实施例中P1 = 2. O μ m、P2 = 2. 2 μ m。 [0026] 2 on a mask grating mark groups using the layout shown in Fig. 3, left and right groups of two gratings 3,5 grating mark P1 and p2, P2 and P1 are respectively constituted by the upper and lower cycle, wherein the present invention embodiment P1 = 2. O μ m, P2 = 2. 2 μ m. 经硅片4表面的反射,两组光栅的+1级衍射光在右边的标记光栅5面上相遇、并产生两组干涉条纹。 4 through the reflecting surface of the wafer, the +1 order diffracted light in the two grating marks the right grating surface 5 meet, and generates two sets of interference fringes. 此外,图4为根据图3所示标记仿真的两组干涉条纹,以及掩模硅片调平过程中条纹的相位分布状况。 In addition, Figure 4 is an interference fringe, and the phase distribution of the mask stripe wafer leveling process according to the simulation shown in Figure 3 labeled groups. 当硅片相对于掩模在横、纵截面方向的倾斜分别被设置成δ θ = 1.5Xl(T3rad and δ φ = 1 X 10_3rad时,其相位分布如图4 (a),这时上下两组条纹相对应倾斜,而且空间频率不一致,而且两组条纹很容易被分别;当横截面方向的倾斜被单独消除以后,条纹的疏密程度(即空间频率)几乎相同,排列相对倾斜,如图4(b)所示, 意味着纵截面方向倾斜的存在,而且条纹的相对倾斜角(即两组条纹的夹角)与纵截面方向的倾斜量直接相关,由公式(2)决定;另一方面,当纵截面方向的倾斜被单独消除以后, 条纹一致排列、均沿着χ方向,如图4(c),但频率不一致意味着横截面方向倾斜的存在,而且频率差异与横截面方向的倾斜量直接相关,由公式(1)决定;当横、纵截面方向的倾斜均被消除,两组条纹频率完全相等,排列方向完全一致,如图4 (d),这时,掩模硅片局部调平完成,并达到理想状态。 When the die is inclined with respect to the mask in the horizontal and vertical cross-sectional direction are respectively set to δ θ = 1.5Xl (T3rad and δ φ = time 1 X 10_3rad, the phase distribution shown in Figure 4 (a), then the upper and lower groups corresponding inclined stripe, and the spatial frequency inconsistent, and two sets of fringes are easily respectively; When the inclination in the transverse direction is eliminated singly-density (i.e., spatial frequency) is almost the same stripe, arranged oppositely inclined, as shown in Figure 4 (b), implies the existence of a longitudinal cross-sectional direction is inclined, and the inclination angle relative to the fringes (i.e. the angle between the two stripes) and longitudinal cross-sectional direction tilt amount directly related, (2) is determined by the formula; on the other hand Upon the oblique direction is a longitudinal sectional eliminate separate, identical stripe arrangement, all along the χ direction, as shown in Figure 4 (c), but the frequency inconsistencies mean cross-sectional direction inclined exist, and the frequency difference between the tilt direction of the cross-section directly related to the amount of, (1) is determined by the formula; when tilted transverse, vertical sectional direction are erased, two fringe frequency exactly equal, exactly the same arrangement direction, as shown in Figure 4 (d), then, a mask of silicon topical leveling is complete, and achieve the desired state.

[0027] 此外,根据图4所示的数值计算结果表明,根据单幅条纹图像的相位分布特征,该方法能够在单个位置处直接消除两个正交方向的倾斜,实现掩模硅片的局部调平,其精度优于10_3rad。 [0027] In addition, according to the numerical results shown in Figure 4 shows that, according to the phase distribution of single streak image, the method can directly eliminate the inclination of two orthogonal directions in a single location to achieve partial mask silicon leveling, its accuracy is better than 10_3rad. 结合后期的图像处理,相位分析算法,精度有望达到10_4rad以上。 Binding post-image processing, phase analysis algorithms, the accuracy is expected to reach 10_4rad above. 作为一种有效的初步调平方案,能够满足现有技术要求。 As an effective initial leveling solution that can meet the requirements of the prior art.

[0028] 本发明未详细阐述部分属于本领域公知技术。 [0028] The present invention is not discussed in detail in part, known in the art techniques.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
CN101639630A *14 août 20093 févr. 2010中国科学院光电技术研究所Coaxial alignment system in projection lithography
EP0358514A2 *7 sept. 198914 mars 1990Canon Kabushiki KaishaPosition detecting method and apparatus
JP2009069075A * Titre non disponible
US4332473 *22 janv. 19801 juin 1982Tokyo Shibaura Denki Kabushiki KaishaApparatus for detecting a mutual positional relationship of two sample members
US6117597 *8 sept. 199912 sept. 2000Advanced Micro Devices, Inc.Extreme ultraviolet lithography mask blank and manufacturing method therefor
Citations hors brevets
Référence
1 *《微纳电子技术》 20100831 李金龙等 双工件台光刻机中的调平调焦技术 494-498 第47卷, 第8期 2
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
CN102540305A *27 mars 20124 juil. 2012哈尔滨朗视科技发展有限公司Optical grating counterpoint splicing method
Classifications
Classification internationaleG01B11/26, G03F9/00
Événements juridiques
DateCodeÉvénementDescription
9 févr. 2011C06Publication
25 mai 2011C10Entry into substantive examination
18 avr. 2012C14Grant of patent or utility model
9 nov. 2016EXPYTermination of patent right or utility model