CN102037528A - 屏蔽三端子平通emi/消能滤波器 - Google Patents

屏蔽三端子平通emi/消能滤波器 Download PDF

Info

Publication number
CN102037528A
CN102037528A CN2009801189056A CN200980118905A CN102037528A CN 102037528 A CN102037528 A CN 102037528A CN 2009801189056 A CN2009801189056 A CN 2009801189056A CN 200980118905 A CN200980118905 A CN 200980118905A CN 102037528 A CN102037528 A CN 102037528A
Authority
CN
China
Prior art keywords
emi
shielding
terminals
energy dissipating
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801189056A
Other languages
English (en)
Inventor
R·A·史蒂文森
B·E·特鲁艾斯
R·L·布兰德尔
C·A·弗赖兹
W·S·达布尼
H·侯赛因
J·L·L·阿达梅
R·S·约翰逊
S·布雷纳德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Greatbatch Ltd
Original Assignee
Greatbatch Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Greatbatch Ltd filed Critical Greatbatch Ltd
Publication of CN102037528A publication Critical patent/CN102037528A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3752Details of casing-lead connections
    • A61N1/3754Feedthroughs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3718Monitoring of or protection against external electromagnetic fields or currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/35Feed-through capacitors or anti-noise capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/719Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters
    • H01R13/7195Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters with planar filters with openings for contacts
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/0007Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • A61N1/086Magnetic resonance imaging [MRI] compatible leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0042Wound, ring or feed-through type capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0091Housing specially adapted for small components
    • H05K5/0095Housing specially adapted for small components hermetically-sealed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K999/00PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS dummy group
    • H05K999/99PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS dummy group dummy group

Abstract

屏蔽三端子平通EMI/消能滤波器包括在第一端子和第二端子之间有电路电流流过的有源电极板,位于有源电极板的第一侧的第一屏蔽板,以及位于有源电极板的第二侧的与第一屏蔽板相对的第二屏蔽板。第一和第二屏蔽板导电地耦合到接地第三端子。在优选实施例中,有源电极板和屏蔽板被至少部分地安置在混合型平通衬底内,该衬底可包括柔性电缆部分、刚性电缆部分,或两者。

Description

屏蔽三端子平通EMI/消能滤波器
背景技术
本发明一般涉及馈通滤波器电容器EMI滤波器。更具体而言,本发明涉及混合型EMI滤波器衬底和/或柔性电缆组件,该组件包含嵌入的屏蔽平通(flat-through)/馈通滤波器和/或消能电路元件。本发明适用于范围广泛的在引线进入/离开电子模块或屏蔽外壳时支持引线的连接器、端子和/或气密封。具体而言,本发明适用于各种有源植入型医疗装置(AIMD)。
图1-40提供了用于更好地理解本发明的显著性和新颖性的背景。
图1示出了当前使用的各种有源植入型和外部医疗装置100。图1是示出多个植入型医疗装置的一般人体的线图。100A表示一系列助听器,可包括耳蜗植入装置、压电声桥换能器等等群集。100B表示各种神经刺激器和大脑刺激器。神经刺激器被用来刺激例如迷走神经,以治疗癫痫症、肥胖症和抑郁症。
大脑刺激器是类似于起搏器的装置并包括深植到大脑中的电极,用于感应癫痫发作,并对脑组织提供电刺激,以防止癫痫实际发作。常常使用实时MRI成像,放置与深度大脑刺激器相关联的引线。最常见的此类引线是在实时MRI过程中放置的。100C示出了本领域公知的心脏起搏器。100D包括一系列左心室辅助装置(LVAD)以及人造心脏,包括最近引入的被称为Abiocor(阿比尔考)的人造心脏。100E包括整个系列的药物泵,可用于给予胰岛素、化疗药物、止痛药物等等。胰岛素泵由无源装置演变为具有传感器和闭环系统。即,可实时监控血糖水平。这些装置趋向于比没有感应电路或外部植入引线的无源泵对EMI更加敏感。100F包括各种骨生长刺激器,用于快速治愈骨折。100G包括尿失禁装置。100H包括一系列疼痛缓解脊髓刺激器和防颤刺激器。100H还包括用于止痛的整个系列的其他类神经刺激器。100I包括一系列植入型心脏复律除颤器(ICD)装置,还包括一系列充血性心力衰竭装置(CHF)。这在本领域中也被称为心再同步治疗装置,或者称为CRT装置。100J示出了外部佩带的包。此包可以是外部胰岛素泵、外部药物泵、外部神经刺激器,或者甚至心室辅助装置。100K示出了外部探针或导管的插入。可将这些探针插入到例如股动脉中,或人体中的任何其他若干个位置。100L示出了可被置于各种位置的各种EKG/ECG(心电图)外部皮肤电极之一。100M是放置在头上的外部EEG(脑电图)电极。
图2是现有技术的单极盘状馈通电容器,其具有有源内部电极板集102和接地电极板集104。内径端面106电连接到有源电极板集102。外径端面108可软焊并导电,它连接到电极板集104的外径。
图3是图2的盘状馈通电容器的截面,被示为安装到有源植入型医疗装置AIMD)的气密封112。在现有技术的盘状馈通电容器装置中,引线114是连续的。气密封112通常被附连到例如心脏起搏器的钛外壳116。诸如氧化铝陶瓷或玻璃之类的绝缘体118被置于套圈120内,并形成针对体液的气密封。端子引脚或引线114穿过气密封112延伸,穿过对齐的通道通过绝缘体118和电容器110。金铜焊材料122在端子引脚114和绝缘体118之间形成气密封结点。另一金铜焊材料124在氧化铝绝缘体118和钛套圈120之间形成气密封结点。激光焊126在套圈120和外壳116之间提供气密封结点。根据美国专利No.5,333,095,馈通电容器110被示为表面安装,并在其内径金属镀层106(因此有源电极板集102)和引线114之间具有电连接128。还有外径电连接130,用于将电容器的外径金属镀层108(因此接地电极104)连接到套圈120。馈通电容器是具有最小串联电感的非常有效的高频器件。这允许它们在非常宽的频率范围内作为EMI滤波器来操作。再次参考图3,可以看出,描述现有技术的盘状馈通电容器110的另一方式是作为三端子电容器。三端子装置一般充当传输线路。参考图3,可以看出,有进入引线114的电流“i”。对于现有技术的AIMD,在体液一侧一般有植入的导线,该导线会不合需要地充当可以从环境辐射源拾取能量的天线。此能量被称为电磁干扰(EMI)。蜂窝电话、微波炉等等都可能导致对有源植入型医疗装置产生干扰。如果此干扰在点X进入引线114(图3),则通过馈通电容器110沿其长度被衰减。在退出之后,不希望有的高频EMI被从正常的低频电路电流(诸如起搏器起搏脉冲或生物频率传感器)清除掉,以便高频EMI被大大地衰减。讨论这个的另一方式是当高频能量从端子1传递到端子2(图3和4)时,它通过馈通电容器110转移到地线端子,该地线端子也称为第三端子或端子3。馈通电容器110还执行两个其他重要功能:a)其内部接地电极102和104充当电子装置或模块的整个电磁屏蔽外壳的连续部分,该部分在物理上阻止高频RF能量直接进入气密封112或以别的方式完全屏蔽的外壳中的引线入口和出口的等效通孔(这样的RF能量,如果它确实穿透屏蔽外壳则可以耦合到敏感的电子线路并干扰该电子线路),以及;b)馈通电容器110非常有效地将不希望有的高频EMI信号从引线分流到整个屏蔽外壳,在那里这样的能量在涡电流中被耗散,从而导致非常小的温度上升。
图4是示出了前面结合图2和3所描述的盘状馈通电容器110的示意图。可以看出,它是与图3中所示出的端子1、2和3一致的三端子装置。
图5是四极现有技术馈通电容器132,其在结构上类似于前面在图2中所描述的馈通电容器,只是它具有四个通孔。
在整个本描述中,功能上等效的元件将被给予相同的附图标记,而不管所示出的是哪个实施例。
图6是示出图5的电容器132的内部电极102、104的截面。
图7是示出包括图5和6的四极馈通电容器132的四个分立的馈通电容器的示意图。
图8是示出图2和3的单极馈通电容器110的内径和外径电极的分解电极视图。可以看到有源电极板集102和接地电极板集104。在顶部和底部放置了覆盖层134,以便增加电气安装和机械强度。
图9是前面在图5中示出的现有技术的四极馈通电容器132的内部电极的分解图。如图9所示,有源电极板集被示为102,接地电极板被示为104。覆盖层134与如前面结合图8所述具有相同用途。
图10示出安装在密封绝缘体118顶部的现有技术的四极馈通电容器132,其中如图所示丝焊衬底136被附连到顶部。为方便连接到AIMD的内部电路,示出了丝焊焊盘138、138′、138″、138″′和140。在美国专利No.7,038,900和7,310,216的图75和76中对此进行了详尽的描述,这些专利申请的全部内容以引用的方式纳入本文中。
图11是一般从图10的剖面11-11取得的截面。在图11中,示出了至丝焊焊盘138-138″′的内部电路迹线T1到T4。再参考图10,在丝焊衬底136的左边示出了额外的丝焊焊盘140。这也在图11中示出。这是至气密封套圈120的外径的接地连接,并为在AIMD的里面需要地线连接点的电子电路等等提供方便的连接点。
图12是图10的现有技术的丝焊焊盘四极密封馈通132的示意图。
图13是现有技术的单片陶瓷电容器(MLCC)142。每天生产出亿万个这样的电容器,以满足消费者电子产品及其他市场。几乎所有的蜂窝电话及其他类型的电子装置都具有许多这些电容器。在图13中,可以看出,MLCC 142具有一般由诸如钛酸钡之类的高介电常数陶瓷构成的主体144。它在任意一端也具有可软焊端面146和148。这些端面146和148提供连接到MLCC电容器142的内部电极板的方便方式。图13还可以呈现若干种其他类型的电容器技术的形状和特性,包括矩形、圆柱形、圆形、钽、电解铝、层叠薄膜或任何其他类型的电容器技术。
图14是从图13中的剖面14-14取得的截面图。左边的电极板集被示为150,而右边的电极板集被示为152。可以看出,左边的电极板150电连接到外部金属镀层表面146。相对的电极板集(或右边的板集)152被示为连接到外部金属镀层表面148。可以看出,现有技术MLCC和等效的片形电容器也称为两端子电容器。即,电能可以连接到电容器主体的方式只有两种。在图13和14中,第一端子“1”位于左边,而第二端子“2”位于右边。
图15是图13的现有技术的MLCC电容器142的理想示意图。
图16是更加逼真的示意图,示出如图13所示的MLCC 142结构具有串联电感L这一事实。此电感属性源自它是二端子装置以及不充当传输线路的事实。即,其引线以及相关联的内部电极都趋向于向电容器添加串联电感。电气工程师知道,MLCC电容器将以特定频率自共振。图17给出了此共振频率的公式。总有这样的一点:在该点上如图16所示的电容电抗与感抗大小相等,方向相反。正是在该点,这两个虚部互相抵消。如果不是电阻损失,则在共振频率如图16所示的146,1和148,2之间的阻抗将变为零。然而,电感器L的电阻损失和电容器C的等效串联电阻防止这个发生。通过参考图18可以对其作更好的理解。
在图18中示出了三条曲线。示出了理想电容器曲线,该曲线非常类似于诸如图3中所示的馈通电容器的响应。可以看出,衰减随着频率十分线性地上升,直到极高的频率,甚至高于10,000MHz。MLCC曲线针对图13的电容器。在低频(在此情况下低于100MHz)时,MLCC曲线很接近地跟踪理想或馈通电容器。然而,随着MLCC接近其自谐振频率(SRF),其衰减趋向于显著地上升。这是因为,当再参考图16时,电感和电容电抗元件趋向于互相抵消。如上文所提及的,如果不是其在共振频率(SRF)时的电阻损失,MLCC芯片看起来将像短路,在该理想情况下其衰减将无穷大。这意味着,如果不是这些电阻损失,我们将在SRF上有无穷大的衰减。相反,我们所拥有的是大致60dB的峰值,如图所示。在高于共振频率时,MLCC电容器变得越来越电感性,且衰减显著地下降。这是不希望有的效果,这是为什么馈通电容器一般是用于EMI宽带滤波器中的优选选择。
图19示出围绕单极馈通引脚或引线114的三个不同大小的MLCC电容器C1-C3。自共振频率取决于电容器的内电感。结合图16对此进行说明和描述。通过使用在物理上较小的MLCC电容器,可以减小电感量。例如,参考图19,可以具有在本领域中被称为尺寸0402、0603和0805MLCC电容器的电容器。这是EIA表示方法,其中例如0805将是0.080英寸长、0.050英寸宽。因此,这三个MLCC电容器C1-C3将具有三个不同共振频率。在美国专利No.5,973,907和美国专利No.5,959,336中对其进行了详尽的描述,这些专利申请的全部内容以引用的方式纳入本文中。图20是图19的三个MLCC电容器的示意图。
图21示出图19中的三个片形电容器单极密封端子的衰减响应。这三个电容器C1-C3如图20的示意图所示并联地起作用。参考图21,可以看出,现在有三个共振峰值,表示这些单个MLCC电容器中的每一个的自共振频率并联地一起起作用。示出前面如图18所示的理想电容器响应曲线以供参考。也示出了C1、C2和C3的SRF。物理上最大的电容器C1将具有最低的自共振频率,而物理上较小的电容器(C3)将具有最高的自共振频率。这是因为,一般而言,MLCC电容器越小,其内电感就越低。确定MLCC电容器的不合需要的等效串联电感(ESL)的值的辅助因素包括内部电极的数量和间隔、几何形状、形状因子和电路板安装技术。
再次参考图19,在AIMD市场从来没有普遍地实施此方法的原因在于这是复杂的设计,并且也昂贵。由于空间限制和可靠性问题,将这么多组件包装到这么小位置是不切实际的。
图22示出了安装MLCC电容器(例如,前面图19所示的那些电容器)的不同方法。在业界,这被称为“墓碑安装位置”,当电容器将被用作EMI滤波器或RF去耦合器时这是极不合需要的(不好的安装和不好的形状因子)。这是因为,电容器的感应线圈面积L1趋向于增大。增大的感应线圈面积(线圈下所包围面积的积分)具有直接提高如前结合图16所述的电感L的效果。这是不合需要的原因是,此特定电容器将趋向于以低得多的频率自共振(因此,变成不那么有效的高频器件或EMI滤波器)。
图23示出安装图22的MLCC电容器142的更合乎需要的方式。这是常规的平面安装技术,具有如图所示低得多的感应线圈面积L2(线圈下所包围的面积)。因此,尽管两个电容器在大小和电容值方面相同,但是,如图23所示的MLCC电容器142将在它开始不合需要地变为电感性之前以高得多的频率共振。
图24是现有技术中作为反向几何形状MLCC电容器142′已知的。为进行比较,图24中所示出的MLCC电容器的物理尺寸与前面图22和23所示的MLCC电容器142具有完全相同的尺寸。重要的是端面146′和148′的位置。图24中的MLCC电容器142′沿着其长边端接。因此,其感应线圈面积或线圈下所包围的面积L3是所有环形配置中的最小的。由此,与图22和23所示的MLCC电容器142相比,图24的电容器142′将以高得多的频率自共振。在标题为“A CAPACITOR′S INDUCTANCE”的技术论文(在1999年10月19-22,在葡萄牙里斯本召开的电容器和电阻器技术讨论会中发表)中可找到对此的好的处理方案。此论文是由航空航天公司(Aerospace Corporation)的Robert Stevenson和Gary Ewell博士合著的。还提供了标题为“A CAPACITOR′S INDUCTANCE:CRITICAL PROPERTY FOR CERTAIN APPLICATIONS”的相关论文,并由相同作者在由电子和电气工程师协会1999年6月1-4日在美国加利福尼亚州圣迭戈举行的第49届电子和组件技术会议中提交。
图25是与前面在图16中所示相同的电气示意图,但是另外示出了MLCC的等效电路模型。添加了电阻器IR和ESR。IR是电容器C的绝缘电阻。由于电子电路分析原因,此IR电阻器一般可以忽略。理由是,IR的值超过10千兆欧姆(10,000,000,000欧姆)是典型的。与电容器电路模型的其他组件的值相比,此数值如此之高以至于可以安全地将其忽略。还向如图25所示的完整图解模型中添加了电容器串联电阻(ESR)。这是包括陶瓷材料本身的介质损耗角正切以及电容器本身内部和外部的所有欧姆损耗及其他电连接的总ESR。如前所述,电阻ESR的存在是为什么在自共振频率时插入损耗不会变为无穷大的原因。
图26是诸如TransorbTM等等之类的现有技术的芯片瞬变抑制二极管154。
图27是示出在有源医疗装置引线114和电路地线之间连接的图26的二极管片154的示意图。如图27所示的虚线示出了AIMD的屏蔽外壳。二极管片154(或多个二极管阵列)的理由是帮助保护AIMD的敏感电子电路免受外部高电压的伤害。这些可以是静电放电或向患者施加自动(高压)外部去颤(AED)。AED现在常常用于政府大楼、机场、飞机上等等。在施加AED外部去颤事件过程中,起搏器不烧毁是非常重要的。如图26和27所示的二极管片154通常是雪崩型二极管,在本领域中也被称为齐纳二极管。换言之,它们不会正向偏压或短路,直到达到某一电压阈值。这些在本领域中也被称为TransorbsTM,还具有其他市场名称。这样的二极管可以是背对背的并被并联地放置,以便抑制双相高压AED去颤脉冲。
图28是现有技术的电感器芯片156。有许多此类产品的制造商。这些可以具有铁氧体元件或者是非铁磁。它们有各种大小的电感值和额定电压。
图29是图28的电感器芯片156的示意图。
参考图30,可以看出,在现有技术的MLCC电容器142的顶部印刷或沉积了电感器电路迹线158,以形成MLCC-T160。这里的优点是,可以使用由于大量商用电容器操作生产的低成本MLCC,并且作为补充操作,可以印刷电感器迹线158。这形成并联电感器(L)-电容器(C)共振L-C电路,该电路在其共振频率时产生非常高的阻抗。这对于抑制单一RF频率(MRI)(诸如磁共振成像(MRI)设备等等产生的)非常有效。在美国专利申请公开No.US 2007-0112398 A1中对其进行了更为全面的描述,该专利申请的全部内容以引用的方式纳入本文中。
图31示出了将电感器形状158沉积到单独的衬底162上以形成并联L-C谐振电路的再一种方式。例如,衬底162可以是氧化铝陶瓷或其他合适的电路板材料。这可以利用薄的粘合层164接合到现有技术的MLCC电容器142。在图34的电气示意图中示出了复合的MLCC-T结构160′,包括位于相对两端的对应金属镀层表面146和148,其中很明显该结构形成了并联的L和C“槽”或带阻电路。
图32是根据前面引用的美国专利申请S/N.11/558,349的形成带阻或槽滤波器166的新颖的复合单片陶瓷电容器-并联谐振槽(MLCC-T)160″的立体图。从外部查看,可以看出,在本发明的MLCC-T160″和如图13所示的现有技术的MLCC电容器142之间没有差别。然而,新颖的MLCC-T160″具有嵌入的电感器162,该电感器162在其相对端面146和148之间跨电容器并联地连接。
图33示出如图32所示的新颖的MLCC-T槽滤波器160″的各个层的分解图。新颖的MLCC槽(MLCC-T)160″包括嵌入的电感器162。在低频时,嵌入的电感器162使电容器从一端到另一端短路。然而,在高频时这形成并联槽路166,该电路166可以通过参考图34中的示意图更好地理解。再次参考图33,可以看出,随着电容器从顶部起层叠,可具有空白覆盖层板168接下来是一个或多个嵌入的电感器层162的区域。这些电感器迹线可以具有各种形状,如在美国专利申请公开No.US 2007-0112398 A1的图83进一步示出的。对于本领域的技术人员显而易见的是,也可以使用各种可任选的形状。在到达电容器电极板集150和152之前有多个其他空白中间层170。可以看到连接到左端面146的电容器电极板集150,还可以看到连接到右端面148的电容器电极板集152。在图33中,只将单电极示为150、152。然而,对于本领域的技术人员显而易见的是,任意数量的板“n”可以层叠,以形成所需电容值。然后,添加底部空白覆盖层板168,以向整个槽滤波器MLCC-T160″提供绝缘和机械强度。
在高温下烧结组合结构之后,再参考图32,最后一个步骤是施加可软焊端面146和148。这些端面可以是诸如钯银合金、玻璃熔料、镀金等等之类的厚膜浆料,并以本领域已知的许多工艺来施加。再一次,图32中所示出的整个MLCC-T160″看起来与如图13所示的现有技术的MLCC 142相同。然而,在它内部嵌入了新颖的并联电感器结构162,从而产生了图34的示意图所示出的并联槽或带阻滤波器166。
参考图34的示意图,可以看出,电感器L与电容器C并联地放置,而电容器C整个方便地位于如图32所示的整体结构MLCC-T160″内部。
在图35中,只示出了四极馈通电容器132的一个极,通过参考如图36所示的其示意图可以对其进行更好的理解。可以看出,在图36中有馈通电容器110,也称为宽带EMI滤波器,示为C1、C2、C3和C4。和这些电路中的每一个成一直线是并联谐振带阻滤波器MLCC-T160,以阻止MRI脉冲RF频率或来自类似的强大辐射源的频率。通过参考美国专利No.7,363,090中的完整的描述,可以更好地理解这些带阻滤波器的功能,该专利申请的全部内容以引用的方式并入本文中。
再次参考图35,可以看出,有通过金铜焊材料124被附连到密封绝缘体118的金属套圈120。还有两条引线114和114′,如图所示。引线114通过金铜焊材料材料122以机械方式并密封地附连到绝缘体118。带阻滤波器或槽滤波器MLCC-T 160利用绝缘分离板172固定就位。馈通电容器132被安装在顶部,如图所示。引线114′被附连到槽滤波器MLCC-T 160的另一端。电容器外径金属镀层108连接到电容器的内部接地电极104。在电容器的外径金属镀层108与套圈120的金属和金铜焊材料124之间进行电连接130。
图37是被嵌入到特定配置中的不同类型的现有技术MLCC馈通电容器142。在本领域中也被称为平通电容器(也具有其他商品名称)。此处将被称为平通电容器174。在低频时,平通电容器174相对频率表现出理想的电容性状。即,其衰减曲线相对频率几乎是理想的。这是因为它确实是三端子装置,其以类似于现有技术的盘状馈通电容器110的方式充当传输线路。通过参考如图38所示的其内部电极板几何形状,可对其进行更好的理解。所示是夹在两个接地电极板178之间的直通或有源电极板176。直通或有源电极板175通过端面180和182在两端连接。当电容器如图37所示的那样安装在电路迹线连接盘184和186之间时,这在点184和186之间将电路迹线连接在一起。参考图38中的有源电路迹线175,可以看出有电流i1进入。如果这是高频EMI电流,则它将沿着其长度被平通电容器的电容衰减,并在端子2表现为幅值非常小的EMI信号,标示为i1′。类似于盘状馈通电容器,平通电容器174也是如图37所示的三端子电容器。电流输入i1的点是端子1,电路电流流出i1′的点被称为端子2,而地线被称为端子3。换言之,沿着电路迹线流动的任何RF电流都必须通过电容器174的电极175。这意味着,对于接地电极178之间的电极板175的全长以及在它们之间形成的电容,任何RF信号都是暴露的。这具有为三端子馈通电容器制造了非常新颖的形状的效果。这种电容器174的一个缺点是,它无法方便地安装为整个屏蔽的整体组成部分。总会有一个频率会导致发生跨该器件的不合需要的RF耦合188。这通常直到100MHz或以上才不会发生。在非常高的频率,诸如高于1GHz,此问题变得十分严重。与现有技术的盘状馈通电容器110相比(其中,电路电流通过馈通孔中的稳健导线),另一缺点是,平通电容器电路电流必须流过平通电容器本身的电极(在现有技术的盘状/馈通电容器中,只有在电极中流动的电流是高频EMI电流)。有关电极厚度和导电性的单片陶瓷制造限制意味着,现有技术的平通电容器174具有比较高的串联电阻,且只能定额到几百毫安或充其量几个安培(然而,植入型除颤器必须提供高于20安培的高电压脉冲)。现有技术的MLCC和平通电极必须保持相对较薄,以促进通过电极的陶瓷晶粒生长,以便在制造过程中,或更糟的是在会导致潜在故障的后续机械或热震荡过程中防止电容器层被剥离。
图39是如图37所示的现有技术平通电容器174的示意图。注意,其示意图与如图2和3所示的馈通电容器110的示意图相同。差别是,馈通电容器固有地被配置成安装为整个屏蔽的整体组成部分,这防止RF耦合的问题(参见图5-7)。
图40示出了衰减与频率响应关系曲线,一般是针对图37的平通电容器示出的。如果不是RF能量的交叉耦合,它将充当理想的或几乎完美的电容器。然而,由于此交叉耦合,总会有某一频率导致衰减开始寄生地减弱,如图所示。这种减弱在有源植入型医疗装置(AIMD)应用中是非常不合需要的,因为针对诸如蜂窝电话等等之类的高频EMI辐射源的保护将较少。由于交叉耦合而导致衰减中的这种寄生减弱在其中高达10GHz或者甚至18GHz的EMI滤波器衰减要求重要的军事和空间应用中甚至是更糟的问题(由于在高于3GHz的频率时人的皮肤对RF能量的有效反射和吸收,植入型医学应用一般不需要比3GHz高得多的滤波)。空间和军用电路必须在存在极高频辐射源(诸如GHz雷达等等)的情况下操作。因此,需要消除由于跨电容器(或电容器外部)RF交叉耦合而导致的与这种寄生衰减下降相关联的问题的平通型电容器。另外,还需要可以通过它们的“直通”电极处理高得多的电路的平通电容器。本发明实现这些需求并提供其他相关的优点。
发明内容
本发明的主要目标是提供新颖的屏蔽三端子平通EMI/消能滤波器,该滤波器包括一个或多个平通电容器,这些电容器的内部电极是屏蔽了高频的、厚得多(与现有技术的MLCC平通厚膜电极技术相比)、在截面面积和表面积两方面更大(稳健,并能够携带高得多的直通电路电流),其电极可以配置有整体的共面电感器元件,并可以可任选地被配置成接受各种表面安装电子组件(如附加的分立或嵌入式电容器、电感器、二极管、RFID芯片等等)。本发明新颖的屏蔽三端子平通EMI/消能滤波器的更大表面积最大化了平通电容的值。本发明在于屏蔽三端子平通EMI/消能滤波器,该滤波器包括在第一端子和第二端子之间有电路电流流过的有源电极板,以及基本上包封了有源电极板的多个屏蔽板,其中屏蔽板导电地耦合到接地的第三端子。优选地,多个屏蔽板包括位于有源电极板的第侧的第一屏蔽板,以及位于有源电极板的第二侧的与第一屏蔽板相对的第二屏蔽板。有源电极板通过介电材料与屏蔽板绝缘,以使有源电极板和屏蔽板协同形成平通电容器。引线通常成非导电关系地穿过至少一个屏蔽板延伸。引线导电地耦合到有源电极板,以形成第一端子。可以提供屏蔽夹具,引线成非导电关系地穿过该夹具延伸。该夹具可包括用于例如有源植入型医疗装置(AIMD)的气密封。有源电极板的表面积被最大化,以增大寄生电容并最小化对电流的阻抗。
在某些实施例中,提供了多个有源电极板,每一个有源电极板都在其第一侧具有第一屏蔽板,在其第二侧具有与第一屏蔽板相对的第二屏蔽板。每一个有源电极板都通过介电材料与其相邻的屏蔽板绝缘,以使每一个有源电极板和其相邻的屏蔽板协同形成平通电容器。屏蔽板导电地耦合到公共地线。提供了多条引线,每一条引线都成非导电关系地穿过至少一个屏蔽板延伸。每一条引线都导电地耦合到相应的有源电极板,以形成所述有源电极板的第一端子。
屏蔽三端子平通EMI/消能滤波器还可以包括相邻的馈通电容器,在导电地耦合到有源电极板以形成第一端子之前引线穿过该馈通电容器延伸。
导电焊盘可导电地耦合到有源电极板,以形成第二端子。导电焊盘可以包括被置于介电材料主体的外表面上的丝焊焊盘,有源电极板穿过该丝焊焊盘延伸。
屏蔽三端子平通EMI/消能滤波器可包括通过介电材料与屏蔽板绝缘的多个共面有源电极板,以使每一个有源电极板和屏蔽板协同形成平通电容器。此外,至少一个共面有源电极板可以包括电感器。在若干个所示出的实施例中,共面第三屏蔽板在共面有源电极板之间延伸。
在各实施例中,引线或引脚成非导电关系地穿过至少一个屏蔽板延伸,其中引线或引脚导电地耦合到有源电极板以形成第二端子。单片芯片电容器(MLCC)可在有源电极板和至少一个接地屏蔽板之间导电地耦合。此外,第三屏蔽板一般可与有源电极板共面地安置,其中第三屏蔽板导电地耦合到接地第三端子。第三屏蔽板基本上包围有源电极板,并被安置在第一和第二屏蔽板之间。
屏蔽三端子平通EMI/消能滤波器还可进一步被修改,以使有源电极板的至少一部分包括电感器。电感器可包括螺旋电路迹线。
在EMI/消能滤波器的各个实施例中,提供了用于将屏蔽板彼此导电地耦合的至少一个通孔。通孔可安置在有源电极板周边的周围,以增强其屏蔽特性。
在各个实施例中,有源电极板可被配置成形成″L″、″π″、″T″、″LL″、″5″元件或″n″元件无源电子低通滤波器的至少一个组件。此外,有源电极板可以被配置成形成带阻滤波器、二极管阵列或RFID芯片的至少一个组件。当与有源植入型医疗装置结合使用时,屏蔽三端子平通EMI/消能滤波器利用被优化以便在MRI频率使用的无源电子装置组件。
在某些实施例中,有源电极板以及第一和第二屏蔽板被安置为一般垂直于导电地耦合到有源电极板的引线,以形成第一端子。在另一实施例中,有源电极板以及第一和第二屏蔽板被安置为一般平行于导电地耦合到有源电极板的引线,以形成第一端子。
有源电极板和屏蔽板通常至少部分地安置在混合型平通衬底内。此混合型平通衬底可包括形成第三端子的表面金属镀层。在许多所示出的实施例中,混合型平通衬底被安置在植入型医疗装置的气密封附近,以使表面金属镀层通过气密封的导电套圈导电地耦合到植入型医疗装置的外壳。
混合型平通衬底可包括柔性电缆部分、刚性部分或两种类型的复合部分。柔性电缆部分可包括聚酰亚胺、开普顿(Kapton)或丙烯酸材料。刚性部分可包括高介电常数陶瓷、氧化铝、玻璃纤维或FR4材料。
混合型衬底的刚性部分可包括导电地耦合到有源电极板的至少一个无源电子元件。无源电子元件可以包括RFID芯片、电容器、电感器、带阻滤波器、L-C陷波滤波器、二极管或二极管阵列。电容器通常包括单片片形电容器,而电感器通常包括单片片形电感器或环形电感器。
有源电极板的第二端子可导电地耦合到电子装置的电路板,诸如AIMD的内部电路板。
在另一实施例中,混合型平通衬底包括其中嵌入有源电极板的介电材料。有源电极板通过衬底导电地耦合到至少一个通孔的表面金属镀层。屏蔽板包括施加于混合型平通衬底的外表面的表面金属镀层。可提供导电封盖,该导电封盖被配置成捕捉混合型平通衬底并将屏蔽板导电地耦合到地线。这样的结构可以与气密封一起用于植入型医疗装置。气密封通常包括导电封盖被导电地附加到其上的导电套圈,至少一条引线成非导电关系地穿过套圈延伸并导电地耦合到通孔的表面金属镀层。
屏蔽三端子平通EMI/消能滤波器可被构造成使其所有外部组件都包括为直接体液暴露设计的生物相容材料。此外,如前所述的RFID芯片可包括用于初始化AIMD RF遥测电路的叫醒功能。
如前所述的屏蔽三端子平通EMI/消能滤波器可被结合到有源植入型医疗装置(AIMD)的植入型导线的无源元件网络。该无源元件网络包括:具有在近端和位于远端的组织刺激或生物感应电极之间延伸的长度的至少一条引线,被置于远离电极的一点的患者的组织附近或血液或淋巴流内的消能表面,以及与引线相关联的转移电路,用于有选择地将高频能量从电极转移到所述消能表面,以供将所述高频能量作为热来消散。无源元件网络可包括与转移电路相关联的用于提高引线的高频阻抗的阻碍电路。该阻碍电路通常被安置在所述转移电路和所述至少一条引线的远端之间,并通常包括电感器或带阻滤波器。
至少一条引线可包括探针或导管的一部分。此外,消能表面可以包括护套、绝缘体、或导热元件。此外,至少一条引线可包括至少一对引线,每一条引线都具有在近端和位于远端的组织刺激或生物感应电极之间延伸的长度。转移电路将所述引线中的每一条都耦合到所述消能表面。转移电路还可以进一步耦合在一对引线之间。
在优选实施例中,高频能量通常包括磁共振扫描器的RF后频率。高频能量还可以进一步包括一范围的选定射频脉冲频率。
转移电路可以包括低通滤波器,其包括C滤波器、以及L滤波器、T滤波器、PI(π)滤波器、LL滤波器、5元件滤波器或“n”元件滤波器中的至少一个。转移电路还可以进一步包括至少一个串联共振L-C陷波滤波器。此外,阻碍电路还可包括非线性电路元件。在此情况下,非线性电路元件可以包括二极管或瞬变电压抑制器。在各个实施例中,转移电路可以包括至少一个串联共振L-C陷波滤波器,并且其中,阻碍电路包括电感器或带阻滤波器。
可以理解,三端子平通EMI/消能滤波器的新颖性的基本点是,它包括在第一端子和第二端子之间有电路电流流过的有源电极板,位于有源电极板的第一侧的第一屏蔽板,以及位于有源电极板的第二侧的与第一屏蔽板相对的第二屏蔽板,其中第一和第二屏蔽板导电地耦合到接地的第三端子。有源电极板以及其周围的接地屏蔽板的有效电容面积或重叠表面积已经被相对最大化,以便实现三端子平通电容器的更高电容值。有源电极板和周围接地屏蔽板之间的绝缘层的介电常数也已经被大大地提高,以便实现三端子平通电容器的更高电容值。分隔有源电极板和周围的接地屏蔽板的介电厚度被相对最小化,以便实现更高的电容值。提供了有源电极板和周围接地屏蔽板的多个冗余的平行层,以便增大三端子平通电容器的总电容值。
通过下文结合作为示例示出了本发明的原理的各个附图进行的比较详细的描述,本发明的其他特征和优点将变得显而易见。
附图简述
各个附图示出了本发明。在这样的图形中:
图1是示出了若干个植入的医疗装置的一般人体的线图。
图2是现有技术的单极盘状馈通电容器的分解透视图。
图3是图2的馈通电容器的截面图,该馈通电容器被示为安装到有源植入型医疗装置(AIMD)的气密封。
图4是示出了如图2和3所示的馈通电容器的示意图。
图5是四极馈通电容器的透视图。
图6是沿着图5的线6-6截取的截面图。
图7是图5和6的四极馈通电容器的电气示意图。
图8是示出了图2和3的单极馈通电容器的内径和外径电极的分解电极视图。
图9是如图5所示的四极馈通电容器的内部电极的分解图。
图10是安装在气密封的顶部的四极馈通电容器的透视图。
图11是一般沿着图10的线11-11截取的截面图。
图12是如图10所示的四极密封馈通端子的电气示意图。
图13是单片陶瓷电容器(MLCC)的透视图。
图14是一般沿着图13的线14-14截取的截面图。
图15是如图13所示的理想MLCC电容器的电气示意图。
图16是图13的MLCC结构的更加逼真的电气示意图。
图17是给出了谐振频率的公式的图表。
图18是示出了滤波器衰减与频率的关系曲线图。
图19是具有连接到馈通引脚的三个不同大小的MLCC电容器的单极端子的透视图。
图20是如图19所示的结构的电气示意图。
图21是示出了如图19所示的三个片形电容器单极密封端子的衰减响应的曲线图。
图22示出了安装MLCC电容器(诸如图19所示的那些)的不同方法。
图23示出了安装图22的电容器的更合乎需要的方式。
图24示出了安装图22和23的MLCC电容器的再一种方式。
图25是示出了MLCC片形电容器的等效电路模型的电气示意图。
图26是现有技术的MLCC瞬时抑制二极管的透视图和示意图。
图27是图26的二极管的电气示意图。
图28是现有技术的芯片电感器的透视图和示意图。
图29是图28的电感器芯片的电气示意图。
图30是在其上沉积了电感器电路迹线的MLCC电容器的透视图。
图31是类似于图30的结构的分解透视图,示出了将电感器形状沉积到单独的衬底上的另一方式。
图32是复合单片陶瓷电容器-并联谐振槽(MLCC-T)或带阻滤波器的透视图。
图33是图32的MLCC-T槽滤波器的各个层的分解透视图。
图34是图32和33的MLCC-T槽或带阻滤波器的电气示意图。
图35是包括MLCC-T滤波器的四极馈通电容器的一个极的截面图。
图36是部分地如图35所示的四极装置的电气示意图。
图37是现有技术平通电容器的透视图。
图38是示出图37的平通电容器的内部电极阵列的示图。
图39是图37和38的现有技术平通电容器的电气示意图。
图40示出了图37和38的典型平通电容器的衰减与频率响应关系曲线。
图41是类似于图10中所示的四极EMI滤波器气密封的透视图,但是包含本发明的屏蔽三端子平通EMI/消能滤波器。
图42是一般沿着图41的线42-42截取的截面图。
图43是一般沿着图41的线43-43截取的截面图。
图44是一般沿着图41的线44-44截取的截面图。
图45是一般沿着图41的线45-45截取的截面图。
图46是一般沿着图41的线46-46截取的截面图。
图47是形成图41-46的平通EMI/消能滤波器的板的分解透视图。
图48是一般沿着图41的线48-48截取的截面图。
图49是图41的平通EMI/消能滤波器的电气示意图。
图50是类似于图43和44的截面图,示出将层叠层L1和L2合并到单个共面层。
图51是类似于图42-46的截面图,示出用于连接到通孔的有源电极板的变体。
图52是示出了延伸到图51的通孔之一的引线的分解透视图。
图53是类似于图52的视图,示出了代替电线的备选焊盘。
图54是类似于图3中所示的单极气密封的透视图,不同之处在于它用被替换为本发明的屏蔽三端子平通EMI/消能滤波器的馈通电容器反转。
图55是由图54中的线55-55所指出的区域的分解视图,示出了附连引线的备选方式。
图56是一般沿着图54的线56-56截取的截面图。
图57是示出备选连接方法的分解截面图,其中通孔被填充然后附连到焊接凸点。
图58是形成图54和56的结构的各组件的分解透视图。
图59是图54、56和58的结构的电气示意图。
图60是示出图58所示的有源电极板层的变体的透视图。
图61是类似于图60的视图,其中通过添加螺旋电感器元件修改有源电极板。
图62是由图61的衬底形成的电感器-电容器滤波器的电气示意图。
图63是根据本发明的包括屏蔽三端子平通EMI/消能滤波器的四极滤波器组件的分解透视图。
图64是示出图63的接地屏蔽板的变体的俯视图。
图65是接地屏蔽板的类似于图64的视图,示出了附加变体。
图66类似于图64和65,示出了接地屏蔽板的备选配置。
图67是图63的有源电极板衬底的备选方案的透视图。
图68是示出了衰减与频率的关系曲线图,其对图63的屏蔽三端子平通EMI/消能滤波器的性能与其他技术作了比较。
图69是类似于图63的分解立体图,其中有源电极被修改以包括电感器。
图70是与图63和69非常类似的分解图,不同之处是放置了边缘屏蔽和可任选的分隔屏蔽,以防止来自有源电极板的或可任选地共面电极板之间的EMI辐射。
图71是类似于图63的屏蔽三端子平通EMI/消能滤波器的替代形式的分解透视图。
图72是形成图69中的有源电极板的一部分的圆形惠勒(Wheeler)螺旋的放大图。
图73类似于图72,示出了诸如形成图69、70和71中的有源电极板的多个部分的那些的正方形Wheeler螺旋。
图74示出了多种典型的电感器曲流形状。
图75示出了各种低通滤波器的衰减曲线。
图76是类似于图68中所示的一系列滤波器衰减曲线。
图77是根据本发明的包含屏蔽三端子平通EMI/消能滤波器的双极气密封滤波器的透视图。
图78是图77的屏蔽三端子平通EMI/消能滤波器的内层的分解透视图。
图79是包含本发明的屏蔽三端子平通EMI/消能滤波器的替换实施例的分解透视图。
图80是沿着图79的线80-80截取的图79组装部分的部分分解视图。
图81是图79和80所示的四极屏蔽三端子平通EMI/消能滤波器的电气示意图,
图82是包含本发明的屏蔽三端子平通EMI/消能滤波器的内联混合型衬底的分解透视图。
图83是图82所示的结构的电气示意图。
图84是体现了本发明的屏蔽三端子平通EMI/消能滤波器的另一形式的分解透视图。
图85类似于图84,只是二极管阵列被替换为RFID芯片。
图86类似于图84,其中使用环形电感器替换一系列表面安装芯片电感器。
图87是类似于图84的视图,示出了混合型衬底的一部分的灵活性。
图88是图84的新颖的混合型衬底的内部图示。
图89是图84的新颖的混合型衬底的电气示意图。
图90与图89的有源电路之一相同,其中“T”电路滤波器被替换为π电路滤波器。
图91类似于图84,添加了现有技术的四极馈通电容器。
图92是图84和88的混合型衬底的柔性部分的背面的平面图。
图93是一般沿着图92的线93-93截取的截面图。
图94-97是一般沿着图93中的线94、95、96和97所指示的区域截取的分解截面图,示出了进行电连接的替代方法。
图98是类似于图92的平面图,示出带有四个通孔的柔性电缆组件的修改版本。
图99是由图93中的线99-99所指示的区域的截面图,示出了衬底在利用焊接环或铜焊环的端子引脚上的附连的再一个实施例。
图100是类似于图99的视图,示出了附连的再一种方法。
图101是用来将屏蔽三端子平通EMI/消能滤波器连接到各种气密或非气密密封的新颖附连帽的等轴截面图。
图102是包含来自图101的新颖封盖的现有技术气密封的截面图。
图103是示出使电路迹线或电极板的一部分避开通孔方法的示意图。
图104是图84的替换实施例的示意图。
图105类似于图104,只是它示出了将混合型衬底的柔性电缆部分分段为柔性分段的方法。
图106是体现了本发明的带有屏蔽三端子平通EMI/消能滤波器混合型平通衬底的联线八极气密端子的分解透视图。
图107是示出制造生产过程的流程图。
图108是体现了本发明的利用新颖混合型屏蔽三端子平通EMI/消能滤波器的典型的十六线气密封的分解透视图。
图109是图108的结构的电气示意图。
图110是5引脚端子的透视图。
图111是图110的其中安装了本发明的屏蔽三端子平通EMI/消能滤波器的5引脚端子的透视图。
图112是类似于图111的透视图,示出了其中使用反向几何形状MLCC来提供高频衰减的替换实施例。
图113是示出本发明的电子组件的示例性制造过程的流程图。
图114是示例性AIMD的图示,示出了可变阻抗元件结合AIMD的外壳内的引线的使用。
图115是如图114所示的结构的示意图,示出了可变阻抗元件在进入和退出AIMD的导线上的使用。
图116是示出了可变阻抗元件可以是电容器元件的示意图。
图117是类似于图116的示意图,示出了可变阻抗元件可以是馈通电容器元件。
图118是类似于图116和117的示意图,示出了可变阻抗元件可以是L-C陷波滤波器。
图119是类似于图118的示意图,示出了电容器元件与L-C陷波滤波器并联使用。
图120类似于图115,强调了串联可变阻抗元件。
图121示出可变阻抗元件可以是电感器。
图122示出可变阻抗元件可以是L-C带阻滤波器。
图123是示出了各种滤波器的阻抗特性的衰减与频率关系图。
图124是在业界常常被称为L-C陷波滤波器的串联电感器-电容器滤波器的示意图。
图125是给出L-C串联陷波滤波器的共振频率公式的图表。
图126示出图124的串联共振L-C陷波滤波器的以欧姆表示的阻抗Z与频率的关系曲线。
图127类似于图126的图表,示出了以欧姆表示的阻抗对两个分离的串联共振L-C陷波滤波器的频率。
图128是示出被植入人的心脏的带有心内引线的心脏起搏器的总体轮廓图。
图129是示出深度大脑刺激器电极的人的头部的截面图。
图130是AIMD的单极导线系统的示意图。
图131是类似于图130的例示,包括L-C陷波滤波器。
图132是类似于图130的另一例示,其中频率可选组件包括电容性元件。
图133是类似于图130和132的另一例示,其中电容值C被选择成使电容电抗将与所植入导线的感抗大小相等、方向相反。
图134示出通常用于军事、航天、医学、电信及其他行业的现有技术的气密和非气密连接器。
图135和136示出现有技术的子D型连接器。
图137和138示出现有技术的气密连接器。
图139示出现有技术的多引脚连接器和屏蔽三端子平通EMI滤波器的分解图。
图140类似于图139,只是附连了本发明的屏蔽三端子平通EMI滤波器。
图141是一般从图139的部分141-141截取的分解图,示出了表面安装的MLCC电容器。
具体实施方式
为了说明,如附图所示,本发明涉及可包含在衬底或柔性电缆组件中的屏蔽三端子平通EMI/消能滤波器190。新颖的概念在于设计嵌入式平通电容器,其中在提供互连电路的同时可以附连可任选的表面安装的无源或有源组件。新颖的屏蔽三端子平通EMI/消能滤波器190包含具有与现有技术的馈通EMI滤波器电容器相似的特性的平通电容器。本发明的平通EMI/消能滤波器190提供三端子电容滤波,同时提供对电路和通过平通电容器的稳健的高电流容量电极的信号的屏蔽。本发明的平通EMI/消能滤波器190以与现有技术的馈通电容器非常等效的方式运转,因为:a)其内部接地板充当电子装置或模块的整个电磁屏蔽外壳的连续部分,该部分在物理上阻止高频RF能量直接进入气密封或以别的方式完全屏蔽的外壳中的引线入口和出口的等效通孔(此类RF能量,如果它确实穿透屏蔽外壳,则可以耦合到敏感的电子线路并干扰该电子线路);以及,b)类似于现有技术的馈通电容器,本发明的平通EMI/消能滤波器190非常有效地将不合需要的高频EMI信号从引线(电极)分流到整个屏蔽外壳,在那里此类能量在涡电流中被耗散,导致非常小的温度上升。当然,与现有技术的盘状/馈通电容器不同,在本发明中电路电流(例如,起搏器起搏脉冲或ICD HV去颤高电流电击)必须通过嵌入式平通电容器的内部电极。通过将平通技术集成到现有技术的电路板、衬底或柔性电缆中,可以制造带有厚得多的电极的平通电极(如铜片),其大大地提高它们安全地携带相对更高的直通电路电流(如外部或内部心脏去颤脉冲)的能力。
图41与图10中所示出的四极EMI滤波气密封非常类似。在图41中,根据本发明,馈通电容器元件被完全消除,由此大大地降低制造成本。在图10中所描述的馈通电容器132以及其相关联的丝焊衬底136被替换为新颖的屏蔽三端子平通EMI/消能滤波器190。在图41中,丝焊焊盘138、138′、138″、138″′和140与图10中所示出的丝焊焊盘非常类似。它们被附连到相对较高K的陶瓷或合适的混合型衬底192。本发明的新颖的寄生平通电容器被集成到衬底192中。通过参考图42到46,可对其进行更好的理解。
图42示出了接地屏蔽板194。在此情况下,中心引脚196被接地。即,在衬底192的下面有腹板(未示出),其中接地引脚196被电耦合到气密封112的金属套圈120。重要的是,这是低电感RF地线。换言之,腹板将是带有只用于让引线114、114′、114″和114″′穿过的隙孔的大面积板。此RF接地腹板可以例如将其外径激光焊接到气密端子的套圈120,并将其内径孔焊接到接地引线或引脚196。将中心引脚196接地的备选方法被示为利用如图48所示的气密封内的嵌入式接地板。参考图48,可以看出,有引线与金属套圈120成非导电关系地穿过的气密绝缘体118。示出嵌入气密封112的绝缘部分118的接地板198,它们通过金铜焊材料被附连到中心接地引脚196。在美国专利No.7,199,995中描述了使用嵌入气密封112的绝缘体118的板来将此中心引脚196接地,该专利申请的全部内容以引用的方式纳入本文中。在美国专利No.5,905,627和6,529,103中进一步描述了将引脚196接地的其他方法,这些专利申请的内容也以引用的方式纳入本文中。
图43到46示出内部有源电极板布局176、176′、176″和176″′。这些有源电极板各自的或者称为有效电容区域(ECA)的重叠区被最大化,以便最大化平通电容。最大化有源电极板176-176″′的厚度和面积还具有一个优点:它们的总电阻被降低(而其电流额定值大大地增大)。这是重要的,因为新颖的屏蔽三端子平通EMI/消能滤波器190的电路电流必须通过相应的电极板176-176″′,以便实现新颖的屏蔽平通电容器特性。
如上文所提及的,诸如图37所示的现有技术的平通电容器174的一个严重缺点是,它无法方便地安装从而成为整个电磁屏蔽的整体组成部分。总会有一个频率会导致发生跨器件的不合需要的RF耦合188。这通常直到100MHz或以上才不会发生。在非常高的频率,诸如高于1GHz,此问题变得相当严重。与现有技术的盘状馈通电容器110和132相比(其中,电路电流通过馈通孔中的稳健导线),第二个缺点是平通电路电流必须流过平通电容器174本身的电极。对电极厚度和导电性的限制意味着,现有技术的平通电容器174具有相对较高的串联电阻,且只能定额到几个毫安或充其量几个安培。然而,接受外部(AED)去颤的患者的起搏器导线或植入型除颤器必须提供高于20安培的高电压脉冲。通过在包围至少顶部和底部的接地屏蔽板194中包括新颖的大表面积和相对较厚的平通有源电极板176(最高30安培或更大的电路电流可以通过),本发明的新颖的屏蔽三端子平通EMI/消能滤波器190克服了与现有技术的平通电容器相关联的前述两个缺点。从后面的附图可以看出,屏蔽三端子平通EMI/消能滤波器190的新颖的大表面积电极176可以可任选地包括电感器部分,这些电感器部分不仅合乎需要地给滤波器添加串联电感,而且还通过增大有效电容面积(ECA)来增大平通电容。
通过参考如图47所示的分解图,可以最佳地理解新颖的混合型衬底192的总体内部结构。可以看出,平通有源电极176到176″′中的每一个都夹在多个接地屏蔽板194、194′、194″、194″′、194″′和194″″之间,如图所示。所得的大ECA具有产生用于EMI滤波的极高平通电容值的效果(通常为几十个或几百个微微法)。相比之下,美国专利No.5,683,435和6,473,314讲述的窄(小表面积)电路迹线型平通设计不是有效的电容器电极。这导致几乎为零的平通电容(只有本身不提供有效EMI滤波器衰减的杂散微微法)。另外,通过在重叠接地屏蔽板194之间产生平通电容,消除了前面结合图37的现有技术结构所描述的问题。在图37中,示出了对于典型的现有技术平通电容器,有将会发生耦合188的频率。此时,RF信号可以通过杂散电容、天线动作或互感避免通过电极板175,相反直接跨电路迹线耦合,或耦合到相邻的电路迹线。如前面在图40中所描述的,这最好理解为由于交叉耦合而导致的下降和衰减。通过利用两侧(以及可任选地,共面侧)的接地屏蔽板194屏蔽本发明新颖的屏蔽三端子平通EMI/消能滤波器190的大表面积电极176,此杂散耦合问题以及相关联的高频衰减下降被完全消除。再参考图37,可以看出,确实没有来自现有技术平通电容器174的端对端屏蔽屏障。在某些频率,例如约100MHz到1GHz,EMI或RF将不合需要地跨现有技术平通电容器174交叉耦合,或潜在地,更糟的是,耦合到相邻的电路。
再参考如图41到48所示的新颖结构,平通电容被很好地屏蔽。在此情况下,平通电容将充当理想电容器,并无谐振和寄生RF耦合下降。在图48中,可以看出连接到内部接地屏蔽电极板194的可选外部金属镀层108。这有助于防止可以耦合到电子装置的总体屏蔽外壳内的敏感电子电路的高频RF能量的边缘再辐射。在优选实施例中,外部金属镀层108将直接电连接到金铜焊材料124(在此情况下,套圈120的直径将需要放大)。因此,在屏蔽三端子平通EMI/消能滤波器190的套圈120和外金属镀层108之间将降低RF接地和阻抗。在此情况下,显然,可消除中心接地引脚196,并且还可以消除气密绝缘体118内的内部接地电极198。换言之,可以通过如图48所示的中心引脚196实现屏蔽电极板194的接地,或者,利用外部金属镀层108以及(例如)金铜焊材料124之间的附连在外周或周边执行。添加金属镀层108意味着,嵌入式有源平通电极板176被顶部和底板194RF屏蔽,并在它们共面边缘被护罩108屏蔽。这意味着,有源电极板176被完全屏蔽,以使不会发生RF再辐射或交叉耦合。
再次参考图48,有安置在屏蔽三端子平通EMI/消能滤波器190和气密绝缘体118之间的绝缘垫圈200。这将确保电连接材料128不会移动到混合型衬底192下面并导致相邻引脚之间的短路。例如,如果导电材料128将在引脚114″和114″′之间移动,则这会使心脏起搏器的输出短路。在优选实施例中,绝缘层200也是粘接剂。这在制造过程中是合乎需要的,以使屏蔽三端子平通EMI/消能滤波器190被稳固地固定到气密封112。这使得通过焊接、使导热聚酰胺或环氧树脂等等离心的后续电气附连操作更方便。
再次参考图48,在气密绝缘体118的底部示出了体液一侧。AIMD的电子电路在气密和电磁屏蔽外壳内部是典型的。然而,本发明不仅限于只将屏蔽三端子平通EMI/消能滤波器190放置在AIMD的外壳内。如果用完全生物相容的材料制造屏蔽三端子平通EMI/消能滤波器190,则没有理由它不能被安置在体液一侧。参考美国专利No.7,113,387,该专利描述了为直接体液暴露设计的EMI滤波器电容器,该专利申请的全部内容以引用的方式纳入本文中。例如,有源平通电极和它们的对应电极屏蔽板可完全安置在包含高介电材料的非导线内,连接以及电极和屏蔽板由诸如纯铂、金、铌、钽、钛等等之类的生物相容材料制成。换言之,图48的结构可制造成使它适于直接体液暴露。
图49是图41的新颖的屏蔽三端子平通EMI/消能滤波器190的示意图。屏蔽板194到194″″示出了这一事实:大表面积有源电极板176至少在顶部和底部被接地屏蔽电极板194包围,这些接地屏蔽电极板194形成平通有效电容重叠区,同时防止跨平通电容滤波器的不合需要的RF耦合。由各个有源电极176与在顶部和底部包围有源电极的对应屏蔽板194之间的重叠区(ECA)形成馈通电容C1、C2、C3和C4。例如,再参考图47,可以看出,有源电极板176-176″′在顶部和底部被接地屏蔽板194-194″″包围。接地屏蔽板194″可以通过金属电镀、厚膜沉积(丝网印刷)、分立金属片或类似工艺沉积到具有特定介电厚度d的介电层上。如电容器设计师所众所周知的,总平通电容的公式由公式C=kA(n-1)/d给出。在此公式中,k是绝缘介电材料本身的介电常数;A是由接地屏蔽板194和194′与例如有源电极176的重叠确定的平方英寸(in2)或平方毫米(mm2)为单位的有效电容面积(ECA);n是总电极区域的数量;而d是介电厚度。参考图47,可以添加绝缘介电覆盖层板(未示出),它们可以是在每一个电极层上形成介电层的相同或不同绝缘和/或介电材料(这将添加额外的电气和机械保护)。对设计电容器的本领域技术人员显而易见的是,空白覆盖层板(按需需要那么多的)还可被插入有源电极层176和相关联的或包围的接地屏蔽板层194之间。这将导致介电厚度d变得更大,会具有两个效果。第一效果将是增大介电厚度,因此会增大平通电容器的额定电压。薄的介电层趋向于在相对较低的电压下被击穿。因此,对于高电压应用,诸如植入型心脏复律除颤器(ICD),将希望相对大于例如低电压起搏器的介电厚度。当检查电容公式时,介电厚度d出现在分母中。因此,当增大介电厚度时,总的平通电容将下降。因此,设计师作出的第一判断是对于该应用的额定电压所需的介电厚度,然后调整ECA以便实现所需的平通电容。在某些情况下,将实现不足的平通电容,以适当地过滤所有频率。如下文结合后面附图所描述的,示出了如何通过表面安装或嵌入或厚膜沉积添加商用的分立的电容器、电感器、二极管及其他组件,从而增强本发明的其总体性能,具体而言,增强新颖的屏蔽三端子平通EMI/消能滤波器190的低频性能。
图50示出用较少的层和相应较小的总衬底厚度产生图41的新颖的混合型EMI滤波器衬底192的方式。这可通过将两个(或更多)有源电极176和176′结合到单一共面层上来完成。将多个有源电极板置于共面层上,可以具有使屏蔽三端子平通EMI/消能滤波器190更薄、更容易制造并且成本更低廉的所需效果。然而,这也具有缩小每一个有源电极板176的有效电容面积(ECA)的不合需要的效果。然而,当使用高K材料时,有效电容区域大到不足以产生损害。此外,后面附图还示出添加共面电感器-电极以增强滤波器衰减的方法。对于本领域的技术人员显而易见的是,也可以按类似的方式将有源电极176″和176″′包括到单一组合层中。新颖的屏蔽三端子平通EMI/消能滤波器190,具体而言其混合型衬底192,可以由现有技术的柔性电路技术(如聚酰亚胺柔性电路)、多层刚性衬底(如氧化铝或FR4板)、衬底或载体上的厚膜沉积等等构建。对于这些制造技术中的每一种技术,对于可以形成的层数有实际限制。此限制与固有的制造工艺的限制有关。例如,当形成足够的层数(多于8到10)时,柔性电路开始变得十分刚硬。事实上,在柔性电缆设计中,柔性电缆的一部分被形成并变为被称为“刚柔”的部分是常见的。本发明允许屏蔽三端子平通EMI/消能滤波器技术用于完全柔性衬底中、具有柔性和刚性层的混合型衬底设计中、或完全刚性的板中。
再参考图41,可以看出,有如图所示的丝焊焊盘138到140。添加丝焊焊盘也会增大电路连接方便性以及额外开销。比较起来,图51示出例如可以修改如图43所示的有源电极板176,以使它连接到通孔202。此通孔202可便于方便地连接如图52所示的引线204,或如图53所示的圆形(或矩形、正方形或者其他未示出的)丝焊焊盘206。
图54是类似于图3中所示的单极起搏器气密封112的等轴图,只是馈通电容器被替换为本发明的屏蔽三端子平通EMI/消能滤波器190,其被示为安装在绝缘体118和金铜焊材料124的顶部。可利用前面所描述的任意数量的技术制造屏蔽三端子平通EMI/消能滤波器190的混合型衬底192。混合型衬底192的主体可以是常规衬底,由高介电常数陶瓷、氧化铝、玻璃纤维、FR4或任何其他刚性型的多层板技术构成。另外,它可由若干个柔性电缆变体构成。这些可包括基于聚酰亚胺、Kapton和丙烯酸结构层叠在一起的柔性电缆。另一实施例将是带有在高温下层叠在一起的所有聚酰亚胺连接的聚酰亚胺柔性电缆。所有这些类型的板和/或衬底和/或柔性电缆在本领域中是已知的。此处所描述的是将那些板和衬底非常新颖地修改为平通滤波器技术。下面,包括各种形式的新颖屏蔽平通EMI滤波器技术的新颖衬底将被称为混合型衬底192。
在图54中,可以看出,在混合型衬底192上有金属化区域208。此环绕式金属化区域208与嵌入在混合型衬底192内的内部接地屏蔽板194和194′建立连接,如图56所示。在图54中可以看出如图所示的多个电连接210、210′和210″′(位于衬底192对面一侧的等效的电连接210″和210″″未示出)。这些电连接被连接到金铜焊材料124,该金铜焊材料124是气密封的一部分,并提供“无氧化物”RF接地多点连接。通过参考从图54的部分56-56截取的图56,可以对其进行更好的理解。通过参考美国专利No.6,765,779和6,765,780,可以更全面地理解连接到金铜焊材料而不直接连接到钛套圈120的重要性,这些专利申请的全部内容以引用的方式并入本文中。从图56可以看出,有现有技术的气密封112,其中包括通常由钛等等制成的金属套圈120。示出了凸缘区域212,该区域便于激光焊接到诸如心脏起搏器等等之类的AIMD的钛外壳。存在气密绝缘体118,其可以由氧化铝、陶瓷材料、玻璃或等效物制成。在此特定实施例中,有金铜焊材料124,该区域在绝缘体118和套圈120之间形成机械气密封。金铜焊材料122在引线114和绝缘体118之间形成类似的机械气密封。在此示例中,体液一侧将朝着图56的截面图的底部的方向。在引线114和金属化通孔202(是新颖的混合型衬底192的一部分)之间进行电连接。通孔202与内部有源电极(或者称为平通电极)板176进行电连接,如图所示,而内部有源电极板176又连接到通孔202′。接地电极屏蔽板194和194′连接到混合型衬底192的外部金属镀层表面208。此金属镀层208又经由材料210电连接到气密封112的金铜焊材料124。如前所述,与金的此直接连接构成可靠的无氧化物低阻抗连接,在美国专利No.6,765,779和6,765,780中详尽地描述了其重要性。还可以看出,通过在混合型衬底192的侧面周围包裹金属镀层表面208,可以防止在有源电极176上传导的EMI可以辐射或交叉耦合到AIMD的内部的任何机会。通过使接地屏蔽板194和194′之间的EMI保持“抑制”,形成几乎完整的法拉第筒屏蔽,这是理想的解决方案。由于薄的几何形状,RF能量的衬底边缘再辐射是非常小的问题,如果层176和194、194′之间的介电厚度变大,则该问题可以通过结合图60描述的共面边缘屏蔽来解决。这种新颖的屏蔽包容方法适用于此处所描述的任何一个实施例。
再次参考图54,可以看出,现有技术的单片陶磁芯片电容器(MLCC)142已经电连接到连接盘,而连接盘连接到通孔202′和202″。通过参考如图58所示的图54的分解图,可对其进行更好的理解。可以看出,通孔202′连接到有源电路电极176。MLCC电容器142的另一侧通过通孔202″连接到接地屏蔽电极板194和194′中的两者。对MLCC电容器142的两侧进行非常低的阻抗连接是重要的。在此实施例中,可以使用任何类型的片形电容器,即,单片陶瓷、层叠薄膜、钽、电解质等等。对于本领域技术人员显而易见的是,MLCC电容器142的地线(左)不必通过如图所示的通孔202″连接到RF地线。相反,位于MLCC 142的左边的放大连接盘可以直接RF接地到外部环绕式金属镀层表面208。
在图54中,可以看出,有固定到混合型衬底192的丝焊焊盘138。这构成附连引线204的方便的安装垫片。引线204将被路由到一般电子装置或AIMD的内部电路。引线204可通过热或超声波焊接、锡焊等等固定到丝焊焊盘138。图55示出已经消除了丝焊焊盘(通常将由铁镍钴合金构成)的备选方案。在图55中,有不同电镀类型的金属沉积丝焊焊盘139。在此情况下,不需要铁镍钴合金块138的单独附连,如图54所示。在此情况下,在图55中,丝焊焊盘139可以是外部电路迹线的整体组成部分,并通过电镀、厚膜沉积技术等等来沉积。
再次参考图56,有源电极板176夹在两个接地电极屏蔽板194和194′之间。现有技术的MLCC电容器142连接在通孔202′(其也连接到有源电路板176)和通孔202″(其与接地屏蔽板194和194′两者成导电关系)之间。从电学角度来讲,这意味着MLCC电容器142从有源电路板176连接到地线。因此,它充当电气旁路低通滤波器元件以提供额外的EMI滤波,从而补充如前所述的平通电容。
再次参考图56,可以看出,有被安置在引线114和通孔202之间的电连接材料214。这可以是热定型导电聚合物,诸如导电环氧树脂或导电聚酰亚胺等等。材料214也可以是在本领域中作为焊料隆起焊盘结构或者甚至球栅阵列(BGA)已知的焊锡或焊铜。它被示为处于重熔状态,因此作为圆球开始是不明显的。为了在此材料214和金铜焊材料124之间提供电绝缘,在气密封112和混合型衬底192之间安置了一个或多个粘接剂涂底的绝缘垫圈200。通常,此垫圈200将是粘接剂涂底的聚酰亚胺等等,以确保诸如214之类的导电材料停留在原位置,并且不能短路和/或迁移到不需要它们的区域(如短路到地线)。如美国专利No.7,327,553中所述,在垫圈200之间可以提供片状的渗漏检测路径,以便于对气密封进行氦检漏,该专利申请的内容以引用的方式纳入本文中。
有类似的电连接材料210被安置在金属镀层表面208和金铜焊材料124之间。材料210通常也是热定型导电粘接剂、焊锡、低温焊铜、激光焊等等。丝焊焊盘138被示为连接到有源电极板176。此时,从体液一侧进入引线114的任何电噪声(EMI)被在图56中示为CP和CP′的平通电容和MLCC 142一起协作的滤波作用解耦。平通电容的值相对来说比MLCC 142低一些;然而,这对于衰减高频非常有效。较低的频率通过电容值较大的MLCC电容器142来衰减。丝焊焊盘138便于一条或更多条引线204连接到一般电子屏蔽模块或AIMD内的内部电路组件。
在图56中,可以看出,通孔202通过导电材料214连接到引线114,该导电材料214可以是焊锡、低温焊铜、热定型导电粘接剂等等。在图57中示出了备选方法,其中通孔202被填充,然后将其附连到焊料隆起焊盘216,如图所示。焊料隆起焊盘216与通孔202的金属镀层106进行接触。通过将整个组件提高到某一高温,焊料隆起焊盘216熔化到钉头导线218,形成可靠的电气和机械连接。
图58是图54的分解图。与接地屏蔽板194和194′的低阻抗RF电连接非常重要。因此,可以看出,有多个电气附连210到210″″。当然,这可以是全部都在地线金属镀层208到金铜焊材料124周围的一长的连续连接。然而,需要不阻塞氦渗漏通道。这些气密端子的完整性对于排除体液进入AIMD是关键的。
再次参考图56,可以看出,如果在气密端子绝缘体118或在对应的金铜焊材料122中有裂缝220或其他的缺陷,那么体液(水分)能够进入封闭的电子外壳中,或者更糟进入诸如心脏起搏器之类的AIMD的气密外壳。使用氦渗漏检测介质来测试这些端子是本领域非常常见的。然而,问题是,安装诸如本发明的混合型衬底192之类的附属组件,会临时阻塞氦的流动。通常,在几秒钟内执行氦检漏。因此,诸如导电热定型粘接剂210等等的连续覆盖之类的任何附属密封剂,可以减慢氦经过这样的覆盖物的流动。因此,在本发明的优选实施例中,需要在电气附连区域之间保留如图54和58所示的开放间隔。以此方式,如果在气密端子绝缘体118或其相关联的金铜焊材料122和124中有任何缺陷220,氦将能够自由穿过,并被检漏设备检测到。如美国专利No.6,566,978(该专利申请的全部内容以引用的方式纳入本文中)所讲述的,对于本领域的技术人员显而易见的是,可以提供策略地安置的穿过混合型衬底192的开放通孔,以便在气密封测试过程中使氦通过。
再次参考图58,本发明的新颖方面是,在电路有源电极板176和周围的接地屏蔽电极板194和194′之间形成平通电容。此电容被示为CP和CP′。此平通电容的电容值取决于由C=kA(η-1)/d给出的典型电容公式。其中k是材料的介电常数。如上文所提及的,如图56所示的新颖的混合型衬底192可以由各种不同的材料构成。例如,聚酰亚胺材料的介电常数将在3和4之间,而氧化铝陶瓷材料可以高达9到11。钛酸锶钡介电体可以具有超过5000的介电常数。在公式中,A代表面积,该面积是有效电容面积(ECA)。这是通过在电路有源电极板176与对应的接地电极屏蔽板194和194′的面积之间的夹层状重叠来计算。忽略边缘效应,计算此面积的简化方式只是计算有源电极板176的包围在夹层状的接地屏蔽板194和194′之间的面积。在该公式中,η是重复的电极板的总数。在此情况下,有包括194、176和194′的三个板。这给出了产生两个寄生平通电容CP和CP′的η-1。介电厚度d只是分隔194和176以及176和194′的介电材料的厚度,如图所示。平通电容CP和CP′的存在对本发明的整体宽带EMI滤波性能来说是极为重要的。通过参考图59的示意图,可对其进行更好的理解。除平通电容CP、CP′...CPn之外,还有沿着有源电极板176的长度形成的寄生电感。这被示为LP、LP′和LPn。对于本领域技术人员显而易见的是,在有源电极板176与相邻接地屏蔽板194和194′之间重叠的有效电容面积的量越大,寄生电容CP将越大。在此情况下,寄生电感非常小,且对于滤波确实不会有帮助。对于本领域技术人员还显而易见的是,有源电极176的寄生电感将与其长度和其宽度两者成比例。换言之,有源电极176越长,其电感LP就越大。串联电感的存在非常重要,因为这将提高屏蔽三端子平通EMI/消能滤波器190的总体高频性能。如下文所描述的,有使此微小串联寄生电感大得多的方式。
再参考示意图59,可以看出,在多个位置有屏蔽符号194-194″′(有时示为″Sh″)。这是这样的指示:由平通电容CP和由MLCC电容器142所贡献的电容C构成的整个组件一般而言将其有源电极都包含在屏蔽板194内(夹在屏蔽板194之间)。如上文所提及的,这是非常重要的,以使高频的不合需要的电磁干扰不会绕过或从体液一侧跳过并由此进入电子装置或AIMD外壳从而可能干扰敏感的电子电路。在美国专利No.4,424,551、5,333,095和5,905,627中描述了对于诸如心脏起搏器之类的AIMD的滤波的重要性,这些专利申请的全部内容以引用的方式纳入本文中。关于这一点,本发明的屏蔽三端子平通EMI/消能滤波器190以与现有技术的馈通电容器等效的方式起作用,因为屏蔽三端子平通EMI/消能滤波器190不仅是有效的滤波器和消能元件,其接地电极板194还充当AIMD或其他等效的屏蔽电子电路的整体电磁屏蔽外壳的有效部分。
再参考图58,可以看出,在本配置中,由于有源电极板176的相对较长的长度和它相对来说比较细这一事实,电感(虽然十分小)相对来说被最大化。还将注意到,平通(寄生)电容是CP和CP′的并联组合的总和,并且由于有源电极176的大面积和由其与接地屏蔽板194和194′重叠实现的大ECA而相对来说被最大化。进一步增大平通(寄生)电容的总量的一种方式将是增大图58中的层数。在单片结构中,重复若干个冗余层将使电容增大电容公式的η-1项。增大平通电容的量的其它方式将是进一步增大有效电容重叠区ECA、增大介电常数或减小介电厚度(d)。
现有技术的馈通电容器,如图2和5所示并在图10中的组件中示出,有助于极低电感宽带低通滤波器。这是为什么它们一般是在AIMD及其他装置的引线入口和出口的点的优选EMI滤波器。然而,馈通电容器在业界一般被少量生产。因此,当与量大得多的MLCC电容器相比时,它们价格相对来说比较高。单个馈通电容器要花几美元是平常的,而MLCC电容器只有几美分。另外,现有技术的馈通电容器电容值趋向于十分低(主要在400到4000微微法的范围内)。这意味着,现有技术的馈通电容器产生高于25MHz的非常有效的高频滤波器,但是在低频时(低于5MHz)衰减很小。馈通电容器一般而言会比等效值的MLCC电容器贵几百倍。然而,再参考图13,对于MLCC电容器以及其高频性能曲线,如图18所示,这不会产生宽带低通滤波器。一般而言,MLCC是边缘的或者不足以衰减AIMD患者会暴露其中的高频辐射源。这包括蜂窝电话、RF标识(RFID)、机场雷达、微波炉等等。如结合图37所描述的,一个可能的解决方案将是使用平通电容器技术。然而,如图40所示的由于交叉耦合造成的衰减的寄生下降是一个严重问题。与图37的现有技术的平通电容器相关联的另一问题是它相对来说比较贵。这不仅仅因为它的生产量相对来说比较低。有如图37所示的附加平通端接222和222′所需的额外成本。这些添加的端接难以自动化,并添加了大量的手工作业和附加费用。通过包括作为夹在接地屏蔽板194和194′之间的分布式寄生元件的平通电容器电极板176,如图58所示,实现若干个合乎需要的目标。首先,消除了跨平通电容器的交叉耦合的问题。这是因为它包含在或夹在完全屏蔽的结构内。因此,高频EMI没有办法跨本发明的新颖屏蔽三端子平通EMI/消能滤波器190耦合。另外,电路板的柔性电缆常常用于现有技术的包括AIMD的电子装置中。换言之,通过不添加任何额外的结构,可以嵌入平通电容,然后将它与MLCC电容器142(或额外的组件)组合起来,如图58所示。MLCC电容器142对于低频衰减是有效的,而寄生平通电容CP用来衰减高频。寄生电容或平通电容与分立的MLCC电容器142的电容并联工作,这会导致非常有效的宽带低通滤波器,从千赫兹频率一直到10千兆赫或更大。这在如图59所示的示意图中全部进行了概述。屏蔽板194-194n是说明性的,以表明整个平通滤波器被以这样的方式夹在RF屏蔽板之间,从而高频EMI信号不会从有源电极板176再辐射出。这是非常重要的概念。直到不合需要的EMI能量被解耦到地线,它才能在电子装置或AIMD的整体电磁屏蔽的外壳内保持未屏蔽。如果保持未屏蔽,则这样的高频噪声可交叉耦合到敏感的AIMD感测电路。例如,如果心脏起搏器将这样的高频噪声感测为心跳,则起搏器可以抑制那些可能危及依赖起搏器的患者生命的现象。
图60示出前面在图58中描述为176的有源电极层的备选有源电极层。参考图60,必须想象移除图58中的分解有源电极视图层176,并将它替换为有源电极176′。有源电极板176′本身与前面在图58中示出的并无很大不同(其表面积略小一些)。所不同的是,在同一共面表面上的有源电极176′周围沉积接地或第三屏蔽迹线224。与有源电极176′在同一平面上的周围接地屏蔽迹线224的用途是进一步帮助有源电极板176′的同轴屏蔽。当假设有源电极176′已被夹在接地屏蔽板194和194′之间时,这意味着,它在顶部、底部以及两侧都被屏蔽。添加可任选的边缘屏蔽板224防止来自屏蔽三端子平通EMI/消能滤波器190的高频的边缘辐射。
可通过额外的低通电路元件来进一步提高平通电容器的滤波性能。参考图61,可以看出,已通过添加Wheeler螺旋电感器元件158修改了有源电极板176″。Wheeler螺旋电感器在现有技术中是众所周知的,可用于各种其他应用。Wheeler螺旋设计方程也是现成的。螺旋电感器电路迹线158向有源电极板176″添加了相当大的串联电感,还增大了平通电容重叠面积(ECA)。在图61中,通过也具有宽有源电极板区域176″,也可最大化如前所述的寄生平通电容。换言之,因电感器电路迹线158和有源电极板176″被夹在两个接地屏蔽板194和194′之间而增大的它们两者之间的总有效重叠面积(ECA)大大地增大了平通电容CP和CP′。在EMI滤波器设计技术中,当将与电路串联的电感器与电容一起接地时,这被称为L形低通滤波器。在图62中示出了图61的L形滤波器的示意图。
参考图62,可以看出,Wheeler电感器螺旋158与有源电极176″串联,而有源电极176″具有与地线并联的平通寄生电容CP以及MLCC电容器142,以形成L形滤波器。在图62中未示出寄生电容CP确实是分布式元件,并应该在整个电路中示出。因此,图62应该被视为相对低频的模型,其中高频模型将由分布式传输线路构成。
图63示出了根据本发明的四极滤波馈通组件。它在结构上非常类似于如前针对图54、56和58的单极器件所描述的。在图63中,可以看出,有多个接地电极屏蔽板194、194′和194″。相关联的通孔对于本领域的技术人员是显而易见的。夹在这些接地电极屏蔽板之间的是有源电路电极层226和228。平通电极电路176和176′被包含在电极电路迹线层226。如前所述,由于两侧的ECA重叠面积,形成了寄生电容或平通电容。接地屏蔽板194和194′的间隔十分重要,因为它们不应该被间隔太远,或者由于电磁干扰信号再从平通电极板176和176′辐射出并穿过外缘,可能发生高频RF泄漏。通过在周围包裹金属镀层表面208,在图54的单极设计中防止此RF泄漏。这也可以通过缝合如图64所示的若干个导电被填充通孔230来完成。图64是图63的接地屏蔽板194-194″的变体。可以看出,在周边的周围甚至在内部有多个这些缝合通道230或接地通道。这些缝合通道230的用途是以多点低电感配置电连接三(或η)个接地屏蔽层194-194″。这些缝合通道的另一非常重要的用途是,当看此层叠的夹层结构的侧视图时它们减小了有效长度。在波导工程中,波导的截频取决于其几何形状是常理。对于矩形波导,长宽比非常重要。通过缩短长度,大大地增大了波导器可开始通过它传递电磁信号的频率。因此,通过包括许多缝合通道230,可保证夹层结构关于边缘再辐射完整性将RF屏蔽保持到5-10GHz区域。这比AIMD所需的有效滤波频率高得多。AIMD的上限频率由本领域专家定义为3GHz。AIMD EMI滤波器不需要3GHz以上衰减的原因与极短波长时身体组织的反射和吸收有关。因此,电磁滤波器需要在高达3GHz(但不超出)之前非常有效是植入型医疗装置EMC群体普遍接受的。为此请参考已公布的ANSI/AAMI标准PC69。
再次参考图63,对于本领域技术人员显而易见的是,多个层n可以层叠起来。这样做的理由是双重的。即,为了增大在有源电极板176n和周围的接地屏蔽板194n之间形成的平通电容的有效电容面积(ECA),以及为了通过并联地放置附加冗余电极,增大有源电路电极板的电流处理能力。这将趋向于降低所述有源电路电极的串联电阻值,同时增大它们的电流和功率处理能力。
再次参考图64,多个通孔230的另一用途是增大柔性混合型衬底192的机械完整性。通过将多个通孔230缝合,所述结构可以分层的可能性小得多。在图65中示出了通过使用槽形232来实现这一点的另一方式。
在图65中,有如图所示的多个槽232。这些槽可以被设置在若干个区域。槽232一般不以填充通孔的相同方式来填充。然而,确实允许粘接剂层通过被喷涂金属的电极屏蔽进行接触。例如,在典型的聚酰亚胺柔性电缆布局中,利用丙烯酸粘合剂叠合多层聚酰亚胺。以此方式,通过提供槽232,丙烯酸粘合剂可以接触底层的衬底材料234。
再参考图65,在本发明中,优选在有源电极电路电流的方向对齐槽232从而不会对电流产生弯曲路径。这也趋向于维护接地板的电感完整性。作为示例,如果在心脏起搏器的引线入口点使用了本发明的屏蔽三端子平通EMI/消能滤波器190,则有源电极必须是低损耗的,以便于传导起搏器起搏脉冲以及传导生物感测信号。换言之,现代的心脏起搏器积极地检测并监视心脏的电活动。低损耗有源电极的一个用途是作为AIMD电池节省用途。某些患者不是依赖于起搏器的,意味着他们只需在他们的心率下降得太低时在某些临界时间被起搏。因此,起搏器电子电路不断地监视心脏。当需要起搏脉冲时,起搏器激活并通过植入的导线向适当的心脏组织提供起搏脉冲。然后,刺激脉冲将心脏还原到其自然的窦性心律。因此,诸如图63的层226和228所示出的那些有源电极相对来说损耗较低非常重要。即,有源电极的电阻率不应该高到使起搏脉冲或感测信号大大地衰减。
图66示出在喷涂了金属的电极屏蔽中设置多个孔236的方法。这些多个孔236与前面在图65中所描述的槽232的用途相同。
图67示出了前面如图63所示的有源电极层226的备选方案。在图67中,可以想象此层226′可以替换图63中的层226。
图68是示出了衰减与频率的关系曲线图,对图63的屏蔽三端子平通EMI/消能滤波器190的性能与现有技术的馈通电容器和现有技术的MLCC作了比较。在常规馈通电容器与MLCC电容器和本发明的屏蔽三端子平通EMI/消能滤波器的馈通电容器的比较中,可以看出重大的区别。在图68中,馈通电容器和MLCC具有相等的电容值。屏蔽三端子平通EMI/消能滤波器的电容值小得多。馈通电容器表现了被示为SRF1的小自共振倾角。馈通电容器是唯一的,因为在它们经过这种传输线路自共振之后继续充当非常有效的宽带滤波器。现有技术的MLCC电容器则相反。MLCC电容器在其共振频率SRF上实际优于其他电容器技术,然而在大于其自共振频率SRF的频率它非常迅速地变为电感性,在该点衰减相相对频率降低。这是很不合需要的,因为诸如蜂窝电话之类的高频辐射源将不会被正常衰减。本发明中的平通电容是寄生电容,它趋向于具有相对较低的电容值。这意味着,其有效的3dB点(或它开始变为有效滤波器的点)在频率方面相对来说比较高。在此情况下,3dB点大致是1000MHz。根据图63的设计,当将MLCC电容器响应曲线与平通寄生曲线组合起来时(将这两个电容并联地相加)时,图68示出了复合的或相加的响应衰减曲线(对于有源电极176,是将图59中所示出的并联的所有电容性元件相加)(寄生电感LP的值这样小,以至于可以将它们忽略)。当将此实的复合曲线与现有技术的馈通电容器的曲线进行比较时,可以看出,现有技术的馈通电容器在高于1000MHz的频率优于复合曲线。对于本领域的技术人员显而易见的是,关于此的一种方式将是增大平通寄生电容器的电容值,以使它可开始以较低频率执行。增大寄生电容器的电容值的一种有效方式是增大周围介电材料的介电常数。再参考图63的介电衬底层226和228,这意味着例如使用诸如钛酸钡或钛酸锶之类的高介电常数(k)电介体来作为绝缘衬底材料234。这会将介电常数(k)提高到2000以上的区域。因此,平通电容的值将上升得如此之高,以至于甚至不会需要包括MLCC电容。实现相同的东西并使用成本较低的材料的另一方式将是使用诸如如前所述的聚酰亚胺或Kapton之类的柔性电缆技术。这方面的问题是这些材料的介电常数相对较低(通常低于10)。然而,对此进行补偿的一种方式将是增大有源电极板176以及它们周围的夹入接地屏蔽板194和194′的重叠区中的有效电容面积(和/或减小介电厚度d)。
图69是本发明的类似于前面如图63所示的四极混合型EMI滤波器的分解图。在图69中,修改图63的电路层226和228以添加电感器迹线158-158″′。这些电感器迹线被包括为有源电极176-176″′的一部分,并与它们串联。对于本领域技术人员显而易见的是,最有可能选定一个电感器模式并保持。例如,在电极板176中,有矩形Wheeler螺旋电感器158。在电极板176′中,我们以电感器曲流158′作为示例,这可以是许多模式中的一个,包括图74中所示出的那些。在电极板176″和176″′,我们具有如图所示的圆形Wheeler螺旋电感器158″和158″′。嵌入与有源电极串联的共面电感器几乎是无成本追加。这方面的理由与通常用于生产柔性电缆或者甚至固体衬底的制造方法有关。即,通过电镀或其他金属沉积工艺,在整个表面上覆盖固体金属层,然后,通过丝网印刷或类似的过程敷设电阻材料。然后,使用化学蚀刻来去除所有金属,所希望的电极图案除外。因此,一旦进行了设置,添加如图69所示的电感器元件158-158″′变得非常便宜,并轻而易举。添加如图69所示的电感器的优点包括将低通EMI滤波器从单个元件制造为所谓的对偶元件L形低通滤波器。对偶元件滤波器具有更陡峭的衰减斜率,因此,更加有效。添加如图69所示的电感器形状有另一个优点。通过这样做,增大ECA,因此也同时增大寄生平通电容。因此,结果产生非常有效的分布式滤波器,包括与有源电极串联的电感和与地线并联的寄生电容。
图70非常类似于图69,只是通过添加可任选的周围的共面接地屏蔽板224,修改了有源电极迹线层226″和228″。前面参考图60描述了用于防止衬底边缘再辐射的此周围接地屏蔽概念。然而,图70中的区别是,在层226″和228″上,在每一条有源电极迹线176和176′以及176″和176″′之间也安置了可任选的共面接地屏蔽板224′。例如,参考图70的层226″,可以看到被安置在电路迹线176和176′之间的共面接地屏蔽板224′。这将用于防止相邻的电路迹线176和176′之间的串话很重要的情况。例如,在耳蜗植入装置中使刺激听神经的每一个数字或模拟语音信道无来自相邻信道的扭曲噪声可能是重要的。当在其上面沉积电路电极176和176′的介电层226″是高k介电材料时,这变得特别重要。使用高k介电材料增大将在电路电极层176和176′之间产生的寄生电容。共面接地屏蔽迹线224′的存在防止相邻的电路迹线之间的串话。如图70所示,此串扰屏蔽板224′可以与周围边缘屏蔽板224一起使用,或不与周围边缘屏蔽板224一起使用(未示出)。串扰屏蔽板224′也不必在特定屏蔽三端子平通EMI/消能滤波器190中的所有有源电极层上使用,而是只在那些其中串扰在相邻电路之间成问题的层中使用。换言之,串扰屏蔽板224′可以在层226″使用,但不必在层228″上使用。对于本领域技术人员显而易见的是,在特定衬底层上,若干个电路有源电极(以及可选的串扰屏蔽板)不仅限于两个(诸如如图70所示的176和176′),而是可以是任何数量n。
图71是如前参考图70所述的四极屏蔽三端子平通EMI/消能滤波器190的再一个替换方案。图70和图71之间的区别是添加了馈通电容器132,该馈通电容器132通过绝缘粘接剂垫圈200粘接到气密端子112。馈通电容器132在现有技术中是已知的,并提供非常有效的高频滤波。图71示出了这些现有技术的馈通电容器可与本发明的新颖的屏蔽三端子平通EMI/消能滤波器技术组合地使用。在优选实施例中,如图71所示的结构将允许去除如图所示的MLCC电容器142-142″′(或者它们可以被替换为较高值的MLCC、薄膜芯片电容器、钽技术等等)。换言之,将会有来自馈通电容器132的足够的电容与混合型衬底电极的平通电容相结合,以使高频(高于100MHz)衰减将需要额外滤波是不太可能的。然而,如果将需要特低频的滤波,则可将如图71所示的单片陶瓷馈通电容器与屏蔽三端子平通EMI/消能滤波器技术和表面安装的有非常大电容值的钽电容器一起使用。这将产生将自从千赫兹频率范围一直向上直到10GHz都有效的滤波器。对于AIMD应用,这对于针对诸如从电子防盗检测(EAS)门或低频RFID读取器产生的那些辐射源之类的低频辐射源(在125到132KHz或13.56MHz范围)的滤波非常重要。这些EAS门是包括起搏器患者在内的人在离开零售商店时通常遇到的基座。它们检测商品上的标记,以便防盗。一个常见的系统由Sensormatic制造,以58kHz运转。很多出版物都表明,这些EAS门会干扰起搏器和ICD。如图71所示的本发明将对衰减58kHz一直向上直到GHz范围内的蜂窝电话频率的信号有效。
图72是图69的圆形Wheeler螺旋158″和158″′的放大视图。
图73是正方形Wheeler螺旋,其非常类似于前面如图69所示的矩形Wheeler螺旋158。
图74示出了某些典型的电感器曲流形状158′。对于本领域技术人员显而易见的是,可以轻松地在同一个共面衬底层上串联地沉积任意数量的不同电感器形状,并作为本发明的屏蔽三端子平通EMI/消能滤波器190技术的有源电极板176的整体组成部分。
图75鲜明地示出了向低通滤波器添加额外元件的优点,示出了各种低通滤波器的衰减曲线。作为参考,示出了典型的MLCC电容器曲线。可以看出,MLCC不合需要地穿过自谐振频率SRF,在自谐振频率之后其衰减相对频率下降(MLCC不合乎需要地变得越来越电感性)。然而,对于本发明的屏蔽三端子平通EMI/消能滤波器,实现了直到高达10GHz并包括10GHz的宽带滤波器性能。可以看出,单个元件或C形滤波器具有20dB每十倍频的衰减斜率。当向此添加串联电感器时,如L形滤波器所示,衰减斜率增大到40dB每十倍频。添加第三元件,这使得滤波器成为π或者T形,将衰减斜率增大到60dB每十倍频。再深入一步,可以具有两L,被示为LL1或LL2,意味着,电感器可以指向体液一侧或者指向装置一侧,具有80dB每十倍频的衰减斜率。可以以此方式添加任意数量的元件。例如,5元件滤波器将具有100dB每十倍频的衰减斜率。对于本领域技术人员显而易见的是,可以使用任意数量的元件。
再次参考图69,所示出的结构具有如在图62被示为L形电路的示意电路图。此L形部分的电容由在包括由电感器158构成的ECA的有源电极板176以及相对的接地屏蔽194和194′之间形成的寄生平通电容CP的总和构成。图62中的MLCC电容器142表示表面安装到混合型衬底192上的电容器142-142″′。MLCC电容器一直到其共振频率都是有效的;然而,在那里平通电容占优势,对于L形滤波器产生如图75所示的相对平滑的曲线。对于本领域技术人员显而易见的是,可以颠倒L形部分。换言之,电感器螺旋可以被设计并放在电容器的与体液一侧相对的另一侧,如图61和62所示。另外,对于本领域技术人员显而易见的是,可以将多个电感器置于新颖的混合型衬底192的内部,以便形成″π″、″T″、″LL″或者甚至″5″或″n″元件装置。因此,本发明包括构造在本领域已经公知的现有技术的低通EMI滤波器电路的新方法。换言之,馈通电容器L、π、T和LL滤波器是已经众所周知的。然而,就发明人所知,这是第一次平通电容被嵌入在接地屏蔽194和194′内。
图76是与前面图68中所示相似的一系列滤波器衰减曲线。在图74中,可以看出,3dB截止点、或屏蔽三端子平通EMI/消能滤波器的平通(CP)曲线开始起作用的点,在频率上显著地向下移动(向左)。在此情况下,其3dB点大致是40MHz。另外,由于它现在是L形滤波器的一部分,因此其衰减斜率已经从20增大到40dB每十倍频。在图76中,所引用的馈通电容器曲线以及MLCC曲线不变(这些只是分立的组件比较曲线)。然而,复合曲线现在被显著地改善,该复合曲线是将MLCC曲线(该MLCC被表面安装到屏蔽三端子平通EMI/消能滤波器衬底)与屏蔽三端子平通EMI/消能滤波器有源电极平通曲线相加的结果。在各方面,屏蔽三端子平通EMI/消能滤波器与表面安装的MLCC的复合曲线优于引用的现有技术的馈通电容器(比引用的现有技术的馈通电容器具有更大的衰减)。在很多情况下,改善的程度相当大。例如,在MRI频率(对于1.5特斯拉机器为64MHz,对于3特斯拉机器为128MHz),从10到20dB上方的任何位置都有改善。这对于防止有源植入型医疗装置在MRI扫描过程中被干扰非常有意义且非常重要。
图77示出了本发明的双极气密封混合型衬底滤波器190。
图78是沿着图77中的线78-78截取的内层的分解图。可以看出,在有源电极板176和176′中,正方形Wheeler螺旋158和158′已经被大大地放大。为了使接地屏蔽板194-194″被适当地EMI屏蔽和RF接地,经由电连接材料210-210″它们被适当地接地到如图77所示的气密封112的套圈120的金铜焊环124是必不可少的。对于AIMD,套圈120通常由钛、不锈钢或合适的不锈材料构成。令人遗憾的是,在制造过程中或随着时间的推移,钛会聚集不合需要的氧化物。这些氧化物可以充当电绝缘体或者甚至半导体。电组件附连到此氧化物会导致不合需要的电路行为。在低通EMI滤波器的情况下,这会导致EMI滤波器性能下降。因此,与不氧化的表面进行连接是必不可少的。幸运的是,如图77所示,金铜焊材料124的存在构成用于这样的附连的方便的不氧化表面。在美国专利No.7,038,900和7,310,216中描述了此金铜焊材料的附连,这些专利申请的全部内容以引用的方式纳入本文中。
在图77中,可以看出,有连接在金属镀层带222和金铜焊材料124之间的电连接材料210″。在相对的一侧,有在金属镀层带222′和相同金铜焊材料之间进行的类似的电连接210。在混合型衬底192的左边,也从金属镀层带208和相同金铜焊材料124连接电连接材料210′。通过查看接地屏蔽层194-194″的电连接210-210″,也可以在图78的分解图中看到这一点。在此情况下,这被称为构成本发明的适当的(但不理想)RF地线的三点接地系统。在这些电附连210-210″之间接触越大,越好。这是因为,随着增大与接地屏蔽板194-194″的接触面积将减小电阻抗,因此会改善它们的屏蔽效率,特别是在高频时。
图79是示出了被设计成部分地插入到如分解图所示的气密封组件112的套圈120的本发明混合型衬底192的替换实施例。有如图所示的方便的丝焊或电连接焊盘139-139″″。在此情况下,139″″将是地线焊盘,而焊盘139-139″′将是电路连接。如前所述,MLCC电容器142-142″′将通过通孔从屏蔽三端子平通EMI/消能滤波器的有源电极板(未示出)内部地连接到内部接地屏蔽板(也未示出)。如前所述,如果在混合型衬底192内可生成足够的平通寄生电容,则将不需要MLCC电容器142-142″′。还示出了可任选的嵌入式Wheeler螺旋电感器158。如前所述,这些电感器之一将与MLCC电容器142-142″′中的每一个串联。屏蔽环242被设置成使它通过激光焊接、铜焊、锡焊等等连接到套圈120。这是重要的,从而电磁干扰不会直接穿透绝缘体118并再辐射到电子装置的内部(气密绝缘体构成心脏起搏器的钛电磁屏蔽外壳中的孔)。屏蔽环242经由锡焊到通孔连接到屏蔽三端子平通EMI/消能滤波器结构的内部接地屏蔽板。连接焊盘240到240″′被设计成电连接到引线114到114″′。
图80是从图79截取的部分分解视图。在此情况下,导线114″和114″′通常被焊接、铜焊或锡焊244和244′到如图所示的引线夹持块240″和240″′。也可以看出,在气密封112的法兰120内部有可任选的电连接246和246′。此电连接与混合型衬底192的内部接地屏蔽板(未示出)进行接触。可以看出,电连接材料246和246′不仅与钛法兰120进行接触,而且还与金铜焊材料124进行密切接触,从而有无氧化物的电连接,以便于保证高频性能。在图80中,可以看出,外屏蔽环242被除去并替换为金属镀层247。金属镀层区域247在非导电绝缘体118上构成环形环,从而防止EMI通过气密封112的再辐射。
图81是图79和80的四极混合型EMI滤波器的电气示意图。图81示出L形低通滤波器。
图82示出本发明的内联混合型衬底192。在此情况下,有已经被很好地描述的内部接地屏蔽板(未示出)。有由210-210″″构成的到金铜焊材料124的多个电连接。在此情况下,并联地包含了背靠背MLCC电容器142和电压抑制二极管248(也称为齐纳二极管)。通过参考如图83所示的结构的电气示意图,可对其进行最佳的理解。从AIMD的体液一侧的电子模块的外部(在左边)开始,可以看出,随着EMI进入,它首先遇到根据本发明的屏蔽三端子平通EMI/消能滤波器的新颖贯穿电极的平通电容CP。然后,随着移到图83的右侧,EMI遇到通常来自包含在混合型衬底192的有源电极板内的嵌入式共面Wheeler螺旋电感器(未示出)的电感L1。然后,它遇到MLCC电容器142和高压抑制二极管248的并联组合。然后,在到达如图所示的电连接焊盘A到F之前,可有将嵌入在混合型衬底192内的另一电感器(可任选)L2,以及额外的平通电容CP′。
再次参考图82和83,电感器(例如电感器L1a和L2a)可以由正方形、矩形或圆形Wheeler螺旋或前面所描述的其他曲流形状中的任何一个构成。图83示出了非常有效的5元件低通滤波器。
图84示出了本发明的新颖混合型衬底192的另一形式。屏蔽三端子平通EMI/消能滤波器190包括被分成两个部分(192′和192″)的混合型衬底192。部分192′是柔性电缆的相对较薄区域,因此非常柔性。部分192″可以由与部分192′类似或相同的材料构成(或者它可以是软性部分192′所连接的刚性板或衬底),但是,其厚度被增大,直到它构成本领域中所谓的“刚性”电缆部分。此刚性部分192″可以具有聚酰亚胺、Kapton或其他典型的柔性电缆结构。对于本领域的技术人员显而易见的是,这也可以是一块刚性多层衬底或电路板,包括陶瓷或FR4板等等中的任何一种。柔性电缆部分192′被设计成滑落到AIMD或诸如那些通常用于电信、消费电子产品、军事或者甚至空间应用中的任何其他电子装置(气密或非气密)的气密封112的引脚114-114″′上。气密封112可以是任何类型的端子,包括非气密端子或者甚至塑料端子。本发明适用于任何电子组件或任何引线引入和引出电子组件、子组件或外壳的点。将结合后面附图来描述附连到气密封112的端子引脚114-114″′和接地引脚196的方法。
现在参考刚性部分192″,可以看出,可以安装若干个无源或有源表面安装的电子组件(它们也可以被嵌入,这在多层衬底设计的现有技术中也是公知的)。在此特定的情况下,图84的混合型衬底192被设计成具有方便的引线204-204″′和196,用于方便地连接到电路板250的连接盘,或许与有源植入型医疗装置内的集成电路或微芯片252连接。电路板250不是本发明的一部分,但是其重要性在于本发明能够与之相连接并与之通过接口相连。
图85非常类似于图84,只是二极管阵列D1被替换为无源或者有源RFID芯片(RFID)。在优选实施例中,这将是低频无源RFID芯片,意味着它将以可以容易地穿透典型的AIMD或其他EMI屏蔽电子装置的钛电磁屏蔽的频率运转。在优选实施例中,RFID芯片将在125到135kHz的国际标准化组织频带中操作。RFID芯片可以用于若干个不同的用途,包括AIMD的型号、序列号的标识、重要患者或植入医生信息等等。参见美国专利申请公开No.US 2006-0212096 A1,该专利申请的全部内容以引用的方式纳入本文中。
如图85所示的RFID芯片可以简单地安装,但不电连接到屏蔽三端子平通EMI/消能滤波器的有源电极。无源RFID芯片不需要电连接。换言之,当使用外部询问器/读取器时,强大的电磁场将激活RFID芯片内的天线,并且它将自动地使用接收到的功率打开其微芯片,并发射回波脉冲。然而,在另一实施例中,如图85所示的RFID芯片可以电连接到嵌入在屏蔽三端子平通EMI/消能滤波器内的电源电路,以使得它从AIMD的内部电池接收电能。在此情况下,它将被称为有源RFID芯片。利用有源(通电的)RFID芯片,它可以体现敏感得多的接收电路,也发射强大得多的回波脉冲。在另一实施例中,如图85所示的RFID芯片可以用作AIMD RF遥测电路的叫醒功能。
过去,起搏器和ICD和神经刺激器遥测是通过紧密耦合的电磁线圈来执行的。在此较旧的技术中,AIMD在AIMD的钛外壳内将具有多匝导线天线是典型的。甚至有使用这一类型的外部环形天线的AIMD。为查询或重新编程AIMD,内科医师或其他开业医生将引入其中嵌入了类似天线的棒,其非常接近于AIMD。例如,对于典型的起搏器应用,遥测棒将被直接置于植入装置上方,并有连接至外部编程器的电线。开业医生将四处移动该棒,直到定位到“最有效击球点”(sweet-spot)。此时,外部编程器将变为有源的,且将显示电描记图及其他重要信息。通常,棒将正对着患者的皮肤表面,或相差至多几个厘米。近几年,距离RF遥测正变得越来越常见。在此情况下,例如对于心脏起搏器,将会有将嵌入在AIMD的塑料端板块内(在EMI屏蔽钛外壳的外部)的高频天线。这将与外部RF接收器-发射器编程器进行通信。此类通信的典型频带将在402到405MHz(被称为MICS频带)中。其他装置为距离RF遥测使用更高的频率。此类距离遥测电路的问题是必须始终处于打开状态的接收器电路的能耗。有一种在本领域中称为Zarlink(扎连)芯片的方法。Zarlink芯片使用更高的频率(在GHz范围)来唤醒较低频率的RF遥测电路。更高的频率更有效;然而,装置或芯片仍消耗一定量的来自AIMD电池的空转能量,以便被警告以完成其叫醒呼叫。这种做法的一替代方案在于本发明,其使用无源RFID芯片作为叫醒功能部件。可将此RFID集成到本发明的混合型衬底192中(或安装在AIMD的外壳的内部或外部的任何其它地方)。在优选实施例中,外部RF编程器可包括低频RFID读取器,该读取器将发射将穿透AIMD的钛外壳并激活嵌入的无源RFID芯片的信号。RFID芯片的电路将连接到AIMD内包含的遥测电路。例如,在起搏器的情况下,外部编程器将发送RFID信号作为叫醒呼叫,以打开遥测接收电路,以使起搏器可以与外部编程器进行通信。
图86非常类似于图84。在此情况下,使用环形电感器L3-L3″′来替换表面安装芯片电感器。芯片电感器的电感值以及电流额定值都低。可以以两种主要形式获取芯片电感器:a)有铁氧体磁心,以及;b)没有铁氧体磁心。对于暴露在磁共振成像应用中,通常希望除去铁氧体材料,因为由于MR扫描器的主要静态场它将饱和。参见美国专利申请公开No.US 2007-0112398 A1和美国专利No.7,363,090,这些专利申请的全部内容以引用的方式纳入本文中。在图86中,可以看出,环形电感器L3′确实具有铁氧体磁心TC,其周围卷绕着许多匝电线W。这会产生非常大的电感器值。然而,如上文所提及的,在MRI环境中,由于铁氧体元件TC本身的饱和电感将下降到非常低的值。本发明的一个特征是,铁氧体元件将被选择成使它将不会表现出永久性的残量。即,一旦从磁共振(MR)扫描器中取出装置,磁偶极子将返回到它们的散射状态,且电感器将继续如以前计划地来操作。环形电感器L3-L3″′的用途将是为低通滤波器提供非常大的电感值,以使其3dB截止频率的频率非常低(例如,对于EAS门,低于1MHz或者甚至降至58kHz)。事实上,对本领域技术人员显而易见的是,电感器芯片也可以是带有铁粉或铁氧体环形磁心的大值缠绕电感器。在MR扫描器中,电磁场环境十分恶劣,而且也是公知的。例如,对于1.5特斯拉扫描器,脉冲RF场处于64MHz。因此,屏蔽三端子平通EMI/消能滤波器可被设计成其寄生平通电容与MLCC电容器C2一起将在64MHz提供足够的衰减,以使AIMD可以免于EMI并在MR扫描器中安全地操作。因此,环形电感器156的磁心饱和并且在MR扫描过程中低频滤波不可用也没有关系。显然,MR扫描器中的人不太可能遇到通常在离开零售商店时发现的EAS门或RFID读取器。重要的是,在患者离开MR扫描器之后,环形电感器(或带有铁氧体磁心或层的芯片电感器)不表现出永久性的残留,并返回到它们的原始状态,从而它们将继续针对患者在他们的日常环境中可能发现的辐射源提供有效的低频滤波。
图87示出了部分192′的柔性。可以看出,将整个柔性部分192′弯曲成直角非常容易。这是重要的,从而整个组件可以轻松地装配在包括心脏起搏器等等的有源植入型医疗装置的典型空间内并匹配它们的几何形状。
图88是从图84的混合型衬底192取得的内部截面图示。在图88中,可以看出,在左边示出了气密封112的金铜焊材料124。在至屏蔽板194和194′的内部接地通道V和金铜焊材料124之间进行电连接BGA。根据本发明所示,这些电极/RF屏蔽板194和194′在整个柔性部分192′和刚性部分192″中全宽延伸。使用其他环形通孔V(未示出)来提供接地屏蔽板194和194′之间的附加点到气密封的金铜焊材料124的低阻抗附连,如图所示。还有通过通孔V2连接到可任选/附加的RF屏蔽板194″-194″″的附加接地屏蔽,如图所示。如上文所提及的,非常重要的是,与金铜焊材料124的电连接BGA是多点连接,以便实现非常低的阻抗,从而接地屏蔽可以适当地充当高频率的法拉第筒屏蔽。
从图88的左侧开始并移动到右侧,就沿着平通电容器有源电极板176而行。在左侧,有源电极板176通过通孔和孔眼V1从气密端子电连接到引线114。为简明起见,将只跟踪四极电路176之一,虽然对于本领域的技术人员显而易见的是,其他三个也是采用与此处所描述的类似的或相同的平通电容器构造技术。由于沿着夹在相对接地屏蔽板194和194′之间的有源电极板176的长度形成的ECA,形成寄生平通电容CP。通孔V2、V3、V4、V5、V6和V13(及其他未示出的)是多点接地系统的一部分,从而接地板194和194′被保持在相同的低阻抗屏蔽电势。
进一步向右,遇到通孔Vx和Vy,它们将MLCC 142与电感器芯片156并联连接,从而形成新颖的谐振槽滤波器,用于衰减MRI RF信号等等,如前面在美国专利No.7,363,090以及美国专利申请公开No.US 2007-0288058 A1、US 2008-0071313 A1、US 2008-0049376 A1、US 2008-0161886 A1、US 2008-0132987 A1和US 2008-0116997 A1中所述,这些专利申请的全部内容以引用的方式纳入本文中。可以看出,根据引用的共同待审的专利序列,电感器芯片156和片形电容器142的此并联组合形成与有源电极板176电串联的并联组合。使MLCC 142和电感器芯片156置于混合型衬底192的相对两侧(顶部和底部)只是形成并联谐振组合的一种方式。例如,如果参考美国专利申请公开No.US 2007-0112398A1的图80、85或87,可以使用这些新颖的集成L-C芯片中的任何一个作为将替换MLCC 142和电感器156两者的混合型衬底192的顶部(或底部)的单个元件。对于本领域的技术人员显而易见的是,可以将由C1和L1形成的并联的带阻滤波器置于屏蔽三端子平通EMI/消能滤波器的有源电极电路中的任何地方。换言之,可以将它进一步向右移,例如在L2之后或者甚至在L3之后。对于本领域的技术人员还显而易见的是,电路元件的任何组合都是可能的,包括将电路元件142和156作为电感器-电容器(L-C)陷波滤波器串联地放置在有源电极176和地线194,194′之间的任何地方。
再次参考图88,有源电极板176被引向通孔V7到电感器L2,然后回落到通孔V8,再回到有源电极板176。然后,有源电极板176电连续到另一通孔V9,该通孔V9连接到MLCC电容器C2的右端面。电容器C2的其他端接末端通过通孔V4连接到接地屏蔽衬底194-194″′。这导致电容器C2的极低阻抗RF接地连接。然后,有源电极板176延伸至通孔V10,并向右到电感器L3,电感器L3的另一端接通过通孔V11回流到与有源电极板176串联的L3。如前所述,电感器L2和L3可以是片形电感器,包括铁氧体片形电感器,或者它们可以是环形缠绕的电感器或其他类型的电感器。然后,有源电极板176通过通孔V12连接到高压抑制二极管阵列D1的右侧。二极管阵列D1的左侧通过通孔V13连接,以使它与接地屏蔽板194-194″′连接。然后,有源电极板176从通孔V12退出到通孔V14,然后一直到丝焊焊盘138,这非常便于连接引线204,如图所示。在混合型衬底192的顶部提供了接地焊盘GP,其通过通孔V6连接到嵌入的接地屏蔽板194-194″′。
现在再参考图84,可以看出,连接到接合焊盘区域GB的接地线196。这不是所有AIMD所需的,但是它是将集成电路衬底250接地电路迹线经由导线196连接到AIMD的外壳,然后连接到混合型柔性屏蔽三端子平通EMI/消能滤波器的接地屏蔽板194,194′的非常方便的点。如前所述,接地屏蔽板连接到气密封112的金铜焊材料124,金铜焊材料124通常被激光焊到AIMD的整体钛外壳(在图114中示为300)。外壳可以充当EMI屏蔽、电极或消能表面。在任何情况下,需要低阻抗RF地线,这通过本发明的屏蔽三端子平通EMI/消能滤波器190的接地屏蔽板来完成。再参考图88,可以看出,有若干个寄生平通电容CP,这些电容CP是根据本发明在顶部和底部包围有源电极板176的屏蔽板194和194′之间形成的,如图所示。
图89是图84的新颖混合型衬底192的示意图。例如,跟踪其中一个四极电路到例如标记为176的电路,点“a”朝向从如图84所示的气密封112连接的引线114的体液一侧。通常,这将通过连接器插头块或直接连接到导线系统,在此电极将接触到身体组织(在单极起搏或感应模式,AIMD外壳将充当反回电极)。在气密端子的相对一侧,具有相同引线114,然后该引线114连接到柔性混合型衬底192′的通孔V1。有源电极板176进入包括并联电感器L1和MLCC电容器C1的带阻滤波器BSF,可以看出,现在已经进入衬底的屏蔽部分,意味着整个有源电极板176都包含在接地屏蔽板194和194′内。在退出带阻滤波器BSF,142,156之后,我们经过电感器L2,然后MLCC电容器C2连接到地线194、194′。然后,MLCC C2与电感器L3相连接。在有源电极176退出电感器L3之后,它仍被屏蔽/夹在混合型衬底192的接地板194、194′内。然后,遇到瞬时电压抑制二极管阵列DA。在此情况下,二极管阵列被示为接地,并充当高电压抑制装置。这一类型的二极管阵列DA常常用于AIMD中。这方面的理由ICD或者自动外部除颤器(AED)有关。AED现在常常用于政府大楼、宾馆、飞机上以及许多其他公共场所。这些救生装置非常重要。如果某一人已经不省人事,则将AED电极置于此人的胸部。然后,AED自动地检测危险的室性心律失常(如心室纤维性颤动),然后向电极施加自动化的高电压双相电击。如果此人具有植入型起搏器(常常有这种情况),那么植入的导线拾取被用来对心脏组织进行心脏复律的此高电压电击。由于植入型起搏器是低电压装置,则此高电压电击会损坏心脏起搏器的敏感的内部电路。因此,常常使用二极管阵列,包括背对背二极管、齐纳二极管、TransorbsTM等等来将高电压峰值在它会损坏敏感的有源电子电路(如集成电路、混合型芯片等等)之前短路到地线。由于通常使用的二极管阵列在电路板上占用很大的空间,本发明的一个特征是,可以通过将它置于互连电路上来轻松地将它集成到本发明的屏蔽三端子平通EMI/消能滤波器190中,以节省空间。然后,在点“a′”退出本发明的新颖混合型衬底192,并与IC丝焊焊盘139进行电连接,如图所示。考虑如图89所示的示意图的另一种方式是,所拥有的是与高电压抑制二极管串联的带阻滤波器,其用于抑制如前结合图73所述的三元件T形滤波器所串联的MRI或其他强大的单频率辐射源。对于本领域技术人员显而易见的是,带阻滤波器可以定位在C、L、π、T或η元件滤波器的右边。它也可以与L-C陷波滤波器组合地放置以接地。因此,可以看出,多个组件被组装为一个方便的封装。
再参考图84,存在需要指出的新颖混合型柔性衬底192的若干个其他特征。通过再参考图84来最好地描述其中一个特征,其中通孔具有放大的矩形部分A、B、C和D,用于合适的电气探测或电试验。此部分允许机器人或单高跷弹簧连接器被置于上焊盘上,以便于电试验、加速寿命试验、老化、绝缘试验、电介质耐电压测试或根据需要进行其他合适的电气试验。常常在高温下执行的这些试验,对确保本发明的新颖的屏蔽三端子平通EMI/消能滤波器的长期可靠性是必不可少的。在衬底192″的刚性部件的相对(右边)一端,提供了类似的放大焊盘区域139,用于与如前所述的测试仪表进行类似电接触。为便于制造,整个混合型柔性衬底192如所示的那样平放也是方便的。平放特别适合于被置于现代机器人的设备中。这些机器人通常通过装有所有电子组件的皮带和卷轴组件或托盘来馈送。通过使基本混合型衬底192平放,所有组件都可以通过机器人快速地放置。由于表面安装的组件的小尺寸,手工组装是不切实际的。例如,MLCC芯片可以是0201或更小一些,这是胡椒颗粒的大小(0.020英寸X 0.010英寸)。与所有组件进行电气和机械连接是现有技术的超声波焊接或等效技术的事情。通过自动化光学检测、电气试验,甚至在需要时用X射线来增援。
再次参考图84,为了给敏感的AIMD电子器件和感应电路提供适当的电磁干扰保护,电感器L2优选地是非铁氧体磁心,电容器C2的值将足以与平通电容CP一起协作,以使那些组件将在MRI脉冲频率上独自提供充分的保护。例如,对于1.5特斯拉MR(磁共振)扫描器,射频脉冲频率是64MHz。希望组件CP、L2和C2在64MHz上具有超过40dB衰减以向装置电子元件提供充分保护。利用极大值的电感器L3,如图86所示,可以提供针对低频辐射源(如通常用于零售商店的58kHz电子防盗检测器(安全性)门)的非常高度的(衰减)抗扰性。另外,可以提供针对低频(LF)RFID读取器的大量抗扰性。这些通常用于汽车无钥匙进入系统等等。由于在MR扫描房间既没有RFID读取器,也没有商店安全门存在,因此即使L3′确实在MR环境中饱和也不要紧。因此,在混合型衬底192中提供了使某些滤波器组件在MR扫描过程中不饱和,而其他的组件却饱和的新颖方法。对于本领域技术人员显而易见的是,电容器元件C2可以是单片陶瓷电容器(MLCC)或非常大值的电解铝或钽电容器。换言之,对于极低频滤波,几微法拉的电容器可以与几百微亨的环形缠绕电感器一起使用。这将提供直到非常低的频率的衰减。
在图89中,可以看出,与C2和L3组合地起作用的L2构成本领域已知的低通“T”滤波器。有源或无源电路元件的任何组合都可以轻松地适用于本发明的屏蔽三端子平通EMI/消能滤波器。这包括如图75所示的低通滤波器电路中的任何一个,以及L-C陷波和/或带阻滤波器(BSF)的任何组合。本发明的一个特征是,通过在周围的接地板之间夹入大表面积的贯穿电极而获得的三个端子平通电容,导致适合于现有技术的(并且成本非常低的)MLCC的补偿自共振特性的平通电容(参见图18),并允许它们与本发明的屏蔽三端子平通EMI/消能滤波器相结合使用,以实现非常宽带并且有效的EMI滤波器和大度有效的消能器。
图90是图86的一个电路A的电气示意图。在此情况下,T电路低通滤波器被替换为包括C2、L2和C3的π电路低通滤波器。在图90中,并联地起作用的包括组件L1和C1的带阻滤波器BSF被替换为包括被串联地接入地线194、194′的L1和C1的L-C陷波滤波器。众所周知,当L-C串联组件共振时,它们在共振频率上理想地构成短路。在美国专利No.6,424,234中对其进行了详尽的描述,该专利申请的全部内容以引用的方式纳入本文中。再次参考图90,当设计陷波电路时,必须对CP和C2的并联作用非常小心。必须非常仔细地模型化电路,以确保陷波滤波器在存在这些寄生电容的情况下正常地运转。在本领域中将L-C陷波滤波器与串联带阻滤波器隔离常常是合乎需要的,并且是公知的,以便它将不会与其他寄生电容相互作用。对于本领域技术人员显而易见的是,可以在陷波滤波器的一侧或两侧或在多个陷波滤波器之间插入带阻滤波器,以提高其或它们的效能。
再次参考图90,如果AIMD将暴露于磁共振成像环境中,则使用陷波滤波器将特别有利。例如,如果系统被设计成用于1.5特斯拉扫描器中,则陷波滤波器可以被设计成在64MHz共振。这将使64MHz信号短路到地线(AIMD的钛外壳)。这将不仅对装置电子元件提供大量的抗扰性和保护,也将如愿地将MR能量短路到AIMD的金属外壳,以使它不会反射并导致远端电极头与组织的接口过热。在美国临时专利申请No.61/144,102描述了使用外壳来耗散能量的技术,该专利申请的全部内容以引用的方式纳入本文中。
再次参考图90,π电路可以包括在高频上非常有效的MLCC电容器C2。L2可以是如前面图86中作为L3′所描述的带有铁氧体磁心的环形缠绕电感器。C3可以是高位值钽电容器。如果当AIMD在MR扫描器中操作时π电路有效,也没有关系。这是因为,L-C陷波将由不在磁场环境中饱和的组件构成。换言之,电感器L1将是非铁磁的,而电容器C1一般将是MLCC结构的。因此,对于MR环境的EMI滤波抗扰性将完全由与本发明的新颖混合型衬底192的寄生电容(平通电容)组合地操作的陷波滤波器的操作构成。因此,当患者在MR环境之外时,π形滤波器对于衰减低频信号和整个频率范围内的信号非常有效。换言之,当超出MR环境的范围时,如图90所示的结构将执行从大致30kHz一直到10GHz的有效滤波。当在MR环境中时,它将在如图所示的一个或更多个陷波滤波器的选定频率执行有效的滤波。只示出了一个陷波滤波器,但是,对于本领域技术人员显而易见的是,可以并联地放置任意数量的陷波滤波器,以便使多个RF频率短路。例如,如果希望AIMD与1.5和3特斯拉扫描器两者兼容,则将需要两个陷波滤波器;一个在64MHz共振,另一个在128MHz共振。同样,如前所述,L-C陷波滤波器可以各自通过包括与电感器并联的电容器的串联带阻滤波器来分隔,以使每一个单个陷波滤波器的组件彼此不相互作用。
参考美国临时专利申请S/N.61/144,102,该专利申请描述了可以用来在MRI扫描过程中平衡能量的若干个其他频率选择电路。目标是从植入的引线系统转移非常多的能量,并将它分流到AIMD的导电外壳,该外壳变为其自己的消能表面。对于本领域技术人员显而易见的是,在美国临时专利申请S/N.61/144,102中所公开的任何图表都可以在本发明的新颖混合型衬底192中体现。
图91非常类似于图84、85和图86。区别是,现有技术的馈通电容器132与本发明的混合型衬底192一起使用。馈通电容器在现有技术是已知的,包括美国专利No.4,424,551;5,333,095;5,905,627;以及6,765,779,所有这些专利申请的全部内容以引用的方式纳入本文中。再次参考图91,馈通电容器132将提供一般在100-10,000MHz的频率范围内的高频滤波。如对于图86所描述的,其他板装组件都可以涉及极大电容的钽或铝电解电容器,或使用高渗透率铁氧体磁心的环形电感器。例如,馈通电容器132将会在MRI扫描过程中提供足够的抗扰性,以使其他组件都可以饱和。这将提供一般在从10kHz一直到10MHz的频率范围内运转的非常有效的宽带滤波器。
图92示出来自图84的混合型衬底的柔性部分192′的背面。可以看出,机器人分发导电热定型粘接剂254的圆形部分。这被设计成准确地与图84的气密端子112的金铜焊材料124对齐。因此,整个衬底可以被置于气密端子组件112上方,然后,热定型导电材料254可以在烤箱、炉子中或其他等效过程中硫化。这与暴露的接地屏蔽电极板194′进行合适的电气和机械连接。再参考图92,将看出,在环形的热定型导电聚合物254中保留了间隙。该间隙在如前所述的精细渗漏检测过程中允许氦自由流动。还有通孔V1、V2、V3和V4,它们被用来连接到其他内部接地屏蔽板,包括板194。
图93是沿着图84和92的线93-93截取的截面图。可以看出,例如,由通孔V3和金铜焊材料124之间的热定型导电粘接剂254形成的电连接。图94到97示出了执行与本发明的屏蔽三端子平通EMI/消能滤波器的接地屏蔽板194、194′的这一低阻抗RF接地连接的替代方法。
图94示出将电阻焊电极焊盘256推到柔性电缆铆钉孔眼258上由此产生电流的方法,该电流产生足以将低温度铜焊260焊料等等重熔到金铜焊材料124的高温。
图95示出被激光焊到套圈120的外引脚262。引脚的最小数量是一个,但是最佳数量是四到六个,以提供到本发明的内部接地屏蔽板194和194′的合适RF连接。
在图96中示出了替代方法,其中在法兰120的顶部提供了一系列锥口孔264,从而可以与金铜焊环266一起放置多条引线196。使用高温钎焊炉来重熔金铜焊环266,并将引脚/导线196电机械地附连到套圈120。以此方式,若干个接地引脚196将竖起,以使本发明混合型衬底192的柔性部分192′的开放通孔可以被敷设,并电附连到接地屏蔽板194、194′。
在图97中示出了另一RF接地方法,其中套圈120是通过压粉冶金工艺制造的。在此情况下,作为粉末冶金工艺的一部分,形成基座引脚268(4到6或更多个是基座的理想数量)。在此情况下,所有材料通常都是钛,该材料对于此用途是理想的。由于二氧化钛形成存在问题,在端子基座268上施行金溅射270、电镀或铜焊,从而可以与本发明的混合型衬底192进行适当的无氧化物电连接。
图98示出图84的柔性电缆组件的柔性部分192′的修改版本,其带有适于安置于图95到97中所描述的任何一个实施例中的四个(或更多)通孔VH,用于电连接到其接地屏蔽板194和194′。
图99示出来自图93的再一个实施例的截面99-99,示出了连同某种焊接环或或铜焊环,衬底192′的有源电极附连到端子引脚114上。示出了与焊接材料274的电连接。
图100示出了其中前面如图84所示的引线114可以弯曲,然后在新颖的混合型柔性衬底192的放大孔眼276形成低温铜焊260的另一方法。
图101示出了带有切口部分280的新颖激光焊封盖278。形成或切割切口区域280,从而金属帽278可在屏蔽三端子平通EMI/消能滤波器的柔性部分的狭窄区域192′上方滑落。激光焊封盖278可以是冲压的钛、机加工的钛、注塑钛或多种其他金属。
图102是一般从图101的部分102-102截取的以及从图84的部分102-102截取的组合截面。然而,混合型衬底192已被修改以接纳如图101所示的新颖的激光焊封盖278。在图102中,激光焊封盖278被滑落,以使它与气密端子12的法兰120紧密接触。如图所示,形成了连续的或不连续的激光焊或铜焊材料284。这使固体冶金和低阻抗地线与气密法兰120和激光焊封盖278进行接触。然后,与屏蔽三端子平通EMI/消能滤波器190的地线金属镀层194进行电连接282,从而提供极低阻抗RF地线。可以看出,在图102中,为便于说明接地屏蔽板194和194′X′是外部的;然而,如前面所说明的,它们也可以是内部板。
图103适用于本发明的许多例示实施例,并简单地示出使电路迹线T1或T2避开通孔V以使它维护大表面积(以最大化ECA)并仍保持电绝缘的方法。可以看出,在视图上部,电路迹线T1可以在通孔周围以圆形方式路由,或者它可简单地在通孔周围路由。为了最大化平通电容ECA,上迹线是优选实施例。
图104示出图82的替换实施例,它是八极设计代替四极设计。同样,代替具有用于过渡到集成电路板的引线,它具有丝焊焊盘286,用于将跳线方便地连接到其他电路。
图105非常类似于图104,只是它示出了将混合型衬底192的柔性电缆部分192′分离为多个单独臂/迹线以便直接电连接到其他位置,例如电连接到一般电子模块或AIMD内的IC板的方法。
图106示出联线八极气密或非气密端子112,其中本发明的混合型衬底192与它分开,但是,被设计为安装到它上面。可以看出,有若干个与嵌入的电感器曲流158串联的MLCC电容器142。在末端提供了丝焊焊盘139,用于将跳线方便地连接到AIMD或其他电子装置电路。
图107是示出了制造本发明的成本非常低并且非常可靠的方式的制造生产流程图。作为说明,我们将参考前面如图84所示的特定混合型衬底192。如上文所提及的,在组装过程中将此衬底192平放是极为合乎需要的。然后,可以将它弯成如图87所示的任何所需形状。第一步骤是使用机器人来分发导电环氧树脂,以实现如前面结合图92所述的热定型导电粘接剂254的环。然后,将此组装为气密封112,并在从150到300摄氏度的温度硫化。然后,从输送带和卷轴或者从输送托盘,利用机器人装载电气芯片组件。芯片组件可以包括MLCC电容器142、片形电感器156、二极管154、带阻滤波器、L-C陷波滤波器、RFID芯片或任何其他电子组件的任何组合。然后,这些组件经过自动化锡焊操作和清洗操作,其中它们还经过自动化光学外观检查。电气检查也是自动化的。然后,自动地执行诸如老化、寿命试验等等之类的高可靠性筛选。然后,部件已准备好封装和装运。
图108示出了通常将在耳蜗植入装置中发现的典型的16导线玻璃气密封112。还示出了包括刚性部分192″和薄的软性部分192′的本发明的新颖混合型衬底192。在此情况下,薄的软性部分192′被弯曲90度,以便方便地连接到气密封组件112。示出了安装的若干个MLCC电容器142。未示出本发明的内部接地屏蔽板。在此应用中,MLCC 142可以支持两种用途。一些MLCC 142与平通电容器有源电极串联地使用,这在本领域中也被称为DC阻塞电容器。这是为了防止身体组织被过多地电刺激。还示出了另一行MLCC电容器142,它们一般接地以执行根据本发明的EMI滤波。通过参考图109中的示意图,可对其进行更好的理解。
参考图109的体液一侧,从顶部示意图开始,随着进入屏蔽区域Sh,首先遇到本发明中的在嵌入接地屏蔽(未示出)和特定的电路电极之间形成的平通寄生电容CP。然后,遇到MLCCA,该MLCCA根据本发明提供附加低频EMI滤波。然后,进入串联的MLCCD,该MLCCD是与电路迹线串联地放置的DC阻塞电容器。注意,由于它们两者都被屏蔽,MLCCA和MLCCD的顺序可以颠倒,而不会损失EMI衰减或身体组织保护。串联的DC阻塞电容器MLCCD的用途是防止DC偏压到达身体组织并可能导致损坏或坏疽。事实上,这些DC阻塞电容器在本领域中是已知的,一般由诸如联邦食品与药物管理局(FDA)之类的管理机构所必需。
图110示出包括四个四极引线114-114″′的本发明的5端子引脚气密封112,这些四极引线114-114″′被设计成连接到带有接触身体组织的电极的导线。还示出了被称为RF天线引脚288的第五引脚。RF距离遥测对于AIMD正在变得非常受欢迎。在较旧的装置中,通过AIMD内的嵌入线圈执行遥测是典型的。使也称为遥测棒的紧耦合线圈接近植入装置上的皮肤。通过此紧耦合的遥测场发送信号,以便查询植入的医疗装置、执行重新编程等等。此类遥测的问题是,为了通过皮肤有效地耦合RF能量,它的频率必须非常低(一般低于200kHz)。由于低频,数据传输速率十分慢。由于现代的植入型医疗装置常常具有超过4000个编程功能,也存储诸如ECG波形之类的大量数据,因此慢传输速率对于医务人员来说令人恼怒并且费时。另外,由于相对来说耦合效率低,必须将棒放置在植入装置附近。常常要花少量的时间发现“最有效击球点”,从而将能够适当地与AIMD进行通信。由天线288构成的高频RF遥测变得非常普遍,一般在402MHz(MICS频带)或在更高频率实现。由于高频,能量传递是非常有效的。医生现在可能坐在他的办公桌查询坐在椅子上的起搏器患者。还由于高频,数据传输速率高得多。换言之,此系统具有大得多的带宽。然而,这方面的特定问题是,现在具有进入AIMD的内部的引线288,AIMD根据定义不能是EMI滤波的。宽带EMI滤波的存在将趋向于剥去合乎需要的高频遥测信号。因此,以此类方式屏蔽并路由此未经滤波的天线导线288,以使EMI不能进入有源植入型医疗装置并交叉耦合到敏感的电路是重要的。
参考图111,可以看出,在包围所有端子引脚114-114″′的椭圆(可以是任何封闭的形状)中形成了外金属屏蔽组件290。这还提供了用于安装本发明的混合型衬底192的方便位置。所示是连接在电路迹线和地线金属镀层292之间连接的MLCC电容器142。还示出了新颖的盖子组件294,该组件294是金属的,并被用来提供完全封闭RF遥测引脚天线288的屏蔽室。示出了方便的进入孔296,该进入孔296将适于连接同轴电缆。同轴电缆的外端或屏蔽将与地线屏蔽板290进行电气和机械连接。同轴电缆的内部引脚将进入由盖子组件294形成的空腔内并在点288与RF遥测引脚进行电连接。在此装配工作之后,盖子294将通过激光焊接、锡焊、铜焊、导电粘接剂等等被附连到外壳290。图111的另一替换方案将是在盖子294的下面制造足够大的空腔,以放置所需的电子RF模块,从而将由天线288拾取的高频RF遥测信号转换为数字信号。然后,这些数字信号将是无EMI噪声的,并可以被通过连接器引脚或者通过缝隙296路由。
图112是图111的结构的替换实施例,其中使用反向几何形状MLCC 142来提供高频衰减。另外,还使用可选铁氧体轮缘298来进一步改善高频衰减。
图113是描述了制造本发明的电子组件中的任何一个的替代方法的制造流程图。单片陶瓷电容器制造已为大家所熟知。然而,这样做的一种更加有效的并且经济合算的方式将是使用厚膜技术并将屏蔽三端子平通EMI/消能滤波器190的组件一次全部铺放在一个混合型衬底192上。参考图113,首先调节衬底,以便粘接各种介电和电极材料。然后,通过多个印刷操作,印刷电容器介电或二极管材料。在多个印刷操作中的每一个操作之间通常有干燥操作。这可以根据需要执行若干次(结束次数),直到达到所电容值、电感值等等。通常在从850到950℃的温度在氮气中烧制厚膜组件。然后,将此层叠到衬底结构中。印刷并蚀刻多个层,以形成电容器电极和端接,并将此层叠到衬底或多层板中,并使用现有技术的涂敷工艺来层叠。然后,使用常规通道或微通道进行互连,以完成使用全部现有技术的过程的制造。
本发明的屏蔽三端子平通EMI/消能滤波器190的新颖的混合型衬底192也可被用来安装要和外部或基于导线的传感器一起使用的各种传感电路。例如,对于心脏起搏器应用,可以在新颖的衬底上安装若干个生理传感器,包括呼吸率传感器、血液pH值传感器、心室梯度传感器、心排血量传感器、预/后心脏负载传感器、收缩力传感器、血流动力学和压力监测传感器。此类组件也可以与血液气体或氧传感器结合使用。
图114是诸如心脏起搏器之类的AIMD的轮廓图。所示是金属(通常是钛)外壳300。它用如图所示的激光焊302来气密封。它具有也被激光焊接到钛外壳300的气密封112。外壳也通过激光焊302被气密封。气密封112具有在现有技术中已知的绝缘体118,引线114-114″′与导电外壳300成非导电关系地穿过该绝缘体118。示出了典型的起搏器连接器插头块304。这可以根据诸如IS-1、DF-1、IS-4等等之类的各种国际标准化组织(ISO)规范。凹形连接器插头块304允许将导线与凸形近端插头方便地连接,该连接可以被路由到要感应或刺激的适当身体组织。引线114到114″′一般被路由到有源植入型医疗装置外壳300内的电路板、混合型或集成电路或衬底250。这些可包括心脏感测电路、起搏电路等等。在引线114″′上还有如图所示的可变阻抗元件306和308。应该注意,这些可变阻抗电路元件将出现在所有引线114-114″′上。为简化图形,它们只在引线114″′上示出。一个新颖的特征是使用AIMD的金属外壳作为大表面积消能表面(EDS)。在美国临时专利申请No.61/144,102和61/149,833也对此进行了描述,这些专利申请的全部内容以引用的方式纳入本文中。本发明的屏蔽三端子平通EMI/消能滤波器190是减少实施和安装如美国临时专利申请No.61/144,102和61/149,833所描述的所有各种线路组件的理想方式。通常,AIMD被安装在胸肌囊、腹部囊中或不与身体器官密切接触的某些其他位置。因此,如果外壳300将过热,则将被几乎不象例如心脏组织或脑组织那样对热损伤敏感的脂肪和肌肉组织所包围。还是再参考图114,可以看出,对于AIMD,与位于植入导线的末端的电极头相比,外壳300的相对表面积相当大。换言之,它体现了用于耗散MRI RF能量的大量表面积。因此,与能量被集中在电极头中的小区域中(热胀升高可以超出30或者甚至60摄氏度);相反,热胀升高非常低(只有几度)。因此,本发明的一个特征是,AIMD的外壳被用作可任选地并理想地与安装在远端电极与组织的接口上或附近的带阻滤波器组合地起作用的消能表面。在图114中,此消能通过标记为EDS的箭头来表示。事实上,能量正在从金属外壳300周围的各个点耗散到包围的体液和组织。
图115是来自图114的位于AIMD的外壳300内的可变阻抗元件306和308的近视图。如上文所提及的,可变阻抗元件306和308将安装在引入和引出AIMD的所有导线上。示出了地线符号g,以表明可变阻抗元件306通过本发明的三端子平通EMI/消能滤波器的屏蔽地线板连接到AIMD的金属外壳300。引线长度不是特别的问题,因为它们嵌入在本发明的新颖屏蔽三端子平通EMI/消能滤波器技术内。这是非常重要的,因为本发明的每一个电路电极都被屏蔽,以使来自MRI的幅值非常大的电磁能量不会再辐射或交叉耦合到敏感的AIMD电路(诸如起搏器感应电路)。引线S1和S2部分地被限制在屏蔽三端子平通EMI/消能滤波器的屏蔽板194和194′之内,以使来自MRI的高频能量将不会再辐射到敏感的AIMD电路。理想地,电路元件306将是粘接在引线入口和出口的点的MLCC芯片142。
图116示出图115的可变阻抗元件306可以是任何类型的电容器(C)元件,包括MLCC片形电容器142等等。图117示出可变阻抗元件306也可以是馈通电容器C 132,如在现有技术中指出并在图91中所示出的。
图118指出可变频率可选择的元件306也可以是与电容器(C)串联的电感器(L),也称为L-C陷波滤波器。
图119示出了图118的陷波滤波器可以与如前面在图116中所示出的片形电容器CX或等效电容器或者如图117所示的馈通电容器组合地使用。对于起搏器或ICD,这将是最常见的实施例。串联谐振陷波的典型电容值将是270毫微亨利的电感和22微微法的电容。这将使串联陷波滤波器在64MHz串联共振。同样重要的是,设计师认识到,在某一频率,陷波滤波器306和EMI滤波器CX的组合在某个点将变为并联谐振带阻滤波器。这会在陷波滤波器变为电感性的频率上发生。换言之,在共振时,感抗抵消电容电抗,除其真正或电阻损失外串联陷波的阻抗基本上是零。然而,在高于共振的频率,感抗项趋向于增大,并支配电容电抗项。换言之,在高于共振的频率上,串联LC陷波将趋向于看起来像电感器,然后该电感器可以导致与馈通电容器CX并联的次级共振。这意味着,在对电磁干扰的总衰减中将会有轻度减弱。此谐振点不应该出现在新的和强大的辐射源的频率。因此,应该避免在这些辐射源频率的共振。
图120基本上与图115相同,只是焦点现在在串联可变阻抗元件308上。串联阻抗元件308的使用是可任选的,但是对于具有感应电路的AIMD是高度合乎需要的。
图121指出可变阻抗元件308可以是如图所示的电感器L。这形成了本领域中所谓的单元件低通滤波器。电感器元件L将自由地通过诸如生物频率之类的低频率,但是将提供对诸如MRI射频脉冲频率、蜂窝电话等等高频率的更高阻抗。
图122示出可变阻抗元件308可以是包括如图所示的并联谐振L-C组件的带阻滤波器(BSF)。在美国专利申请公开No.US 2007/0112398 A1中描述了带阻滤波器的操作,该专利申请的全部内容以引用的方式纳入本文中。
图123示出可选串联阻抗元件308可以是一系列低通滤波器中的任一个。如前面结合图121所述,这可以是包括单个电感器元件L,26或单个电容器元件C,20 306的单元件低通滤波器。这也可以是包括电感器元件308,26,以及第二电容器304,20的L滤波器。可变电抗频率可选择的元件308也可以是T滤波器或n元件滤波器,包括π、LL、5元件等等类型的低通滤波器。从图123可以看出,衰减对频率斜率随着电路元件的数量增大而增大。其他合乎需要的效果是通过具有连接到AIMD的外壳300的附加电容器,产生附加电路路径,用于将能量耗散到消能表面EDS。因此,在优选实施例中,将具有一个或多个并联的可选择频率元件306与如图115和120所示的一个或多个串联频率电抗元件308协作。
对于现有技术的馈通电容器的描述,一个被称为美国专利No.4,424,551或5,333,095或6,765,779,其中,具有非常低电感的馈通电容器被安装在到有源植入型医疗装置的引线入口点。对于图117中所示出的L-C陷波滤波器的进一步描述,一个涉及美国专利No.6,424,234,该专利示出在AIMD的引线入口或出口点或屏蔽三端子平通EMI/消能滤波器中的任何位置安装陷波滤波器的极低电感(无引线)方法。
图124示出了在业界常常被称为L-C陷波滤波器的串联电感器L-电容器C滤波器的示意图。前面在图118中描述了陷波滤波器。再次参考图124,当电容电抗变成与感抗大小相等方向相反时,对于陷波滤波器有特定频率。在此单个频率,电容电抗和感抗互相抵消为零。此时,所保留的是寄生电阻R。如果选定大品质因数(Q)组件,意味着,它们的电阻非常低,那么图124的陷波滤波器理想地趋向于在点A和B之间以其共振频率fr看起来像短路,点A和B可包括分别到连接到屏蔽三端子平通EMI/消能滤波器190的有源电极的引线114-114″′。
图125给出共振频率公式,其中在此情况下fr以赫兹为度量单位。再次参考图124,电阻R的大小受控制是非常重要的。通过参考图126,可以对其进行更好的理解。
图126是示出以欧姆表示的阻抗Z与图124的串联共振L-C陷波滤波器的频率的关系曲线图。可以看出,在达到共振频率fr以前阻抗十分大。在共振频率fr时,串联L-C陷波的阻抗变得非常低(几乎为零欧姆)。对于高于或低于共振频率fr的频率,取决于对分量值以及它们的品质因数(Q)的选择,阻抗可以高达100到1000,或者甚至10,000欧姆或更大。在共振时,阻抗试图变为零,并只受寄生电阻R(图124)的大小的限制,寄生电阻R一般由来自电感器L的电阻以及主要来自电容器C的电极板的等效串联电阻组成。对控制所谓的3dB带宽的组件的适当选择有折衷。如果电阻非常小,那么3dB带宽将更窄。然而,这使得陷波滤波器更加难以制造。因此,优选地选定3dB带宽和电阻元件R从而便于制造滤波器,并将它调谐到例如64MHz,同时在共振频率时提供非常低的阻抗R。对于理想的L-C串联谐振陷波滤波器,其中理想表示电阻R将是零,那么在共振时阻抗将为零欧姆。然而,在此情况下,3dB带宽将窄到以至于将几乎不可能制造它。因此,电阻R的某个值事实上是合乎需要的。
图127是阻抗对频率的关系曲线,其中安装了被设计成在两个在不同的频率共振的两个陷波滤波器。在此情况下,包括电容器元件C和电感器元件L的第一陷波滤波器被设计成在1.5特斯拉MRI系统的射频脉冲频率(64MHz)自共振。并联安装了第二陷波滤波器,包括电容器元件C′和电感器元件L′,且分量值被设计为自共振,或者被设计为使陷波滤波器在128MHz(3 Tesla MRI系统的操作频率)自共振。再次参考图127,可以看出包括电感器LX和电容器CX的并联配置的可选带阻滤波器BSF。带阻滤波器的用途是隔离两个陷波滤波器,以使它们可以独立地工作。由于电容器C和C′要并联出现以及电感器L和L′要并联出现的趋势,带阻滤波器的存在防止次级共振发生。换言之,当以所感兴趣的频率使用带阻滤波器来将L-C陷波电隔离为单独的组件时,获得更加平稳的翻倍的陷波响应。
图128是示出被植入如图所示人的心脏的带有心内引线的心脏起搏器310的总体轮廓图。每一条导线都是双极的,意味着它包含两条引线。可以看出,导线312被路由到右心房,而引线312′被路由到右心室心尖部(RVA)。在末梢316和环形电极318示出了心房导线的远端电极。在右心室,远端电极头316′被示为在远端环形电极318′的附近。如上文所提及的,根据美国专利No.7,363,090的带阻滤波器将根据需要被置于远端电极316、316′、318、318′上或附近。参考AIMD外壳310,可以看出,有与每一条引线相关联的可变阻抗元件306和308,它们可被包括到屏蔽三端子平通EMI/消能滤波器190内。
图129是示出深度大脑刺激器电极320的人的头部的截面图。引线312和312′通常路由到颈部的背面,并路由到胸肌区,并连接到AIMD(大脑神经调质)。图129只是示出本发明的性质不仅限于心脏起搏器,而且对如前面参考图1所述的宽泛范围的AIMD具有很广泛的适用性。可以将图128中所描述的频率可选择组件集成到本发明的屏蔽三端子平通EMI/消能滤波器中,该本发明的屏蔽三端子平通EMI/消能滤波器置于外壳320中的也支持深大脑电极的锥颅钻孔中,或置于如图114所示的AIMD外壳中。
图130示出有源植入型医疗装置的单极导线系统312。为简明起见,示出了单极导线系统。对于本领域技术人员显而易见的是,可以使用任意数量的引线312。在图130中,将看出,此系统涉及附连到连接到人的心脏314的单极引线312的AIMD和外壳300。在引线312的远端是位于刺激/感应电极上或其附近的可任选带阻滤波器BSF。在美国专利No.7,363,090中对位于远端电极附近的可选带阻滤波器BSF进行了详尽的描述,该专利申请的全部内容以引用的方式纳入本文中。植入的导线312沿着其长度具有电感L和电阻R属性。由如图130所示的公式+jωL给出以欧姆表示的导线312的总感抗。如上文所提及的,带阻滤波器BSF可以存在,也可以不存在。再次参考图130,可以看出,在AIMD的一般金属外壳300的内部,有频率可选择组件306和308。这些频率可选择元件可以包括电容器、电感器和电阻器,或者甚至短路,如在图131到133中更加全面地描述的。
图131示出图130的导线系统,其中L-C陷波滤波器306被置于本发明的屏蔽三端子平通EMI/消能滤波器组件中的外壳300内部。在此情况下,LS和CS被设计为L-C陷波滤波器,以在MRI设备的脉冲RF频率共振。因此,这形成短路到AIMD外壳300的RF,外壳300变为美国临时专利申请No.61/144,102以及61/149,833中所公开的本发明的消能表面EDS。理想的是,AIMD外壳300的表面积相对比较大,以便随着MRIRF能量正在耗散到表面300上发生极少的温度上升。
图132是图130的单极导线系统的另一例示。在此情况下,元件306以其电容电抗由公式-j/ωC给出的电容性元件C为特色。在优选实施例中,将首先计算(建模)或测量植入导线的以欧姆为单位的感抗。因此,电容的值可选择成使电容电抗-j/ωC将与导线的以欧姆为单位的感抗+jω.L大小相等,方向相反。在此情况下,阻抗互相抵消,从而获得到消能表面300,EDS的最大能量转移。
图133类似于前面在图130和132中所描述的单极导线系统。在此情况下,关于图132,电容值C被选择成使电容电抗将与植入导线的感抗大小相等,方向相反。然而,在此情况下,电阻也是平衡的。换言之,植入导线的电阻R的值等于被置于AIMD的外壳300内部或外部的分立电阻器RX。理想地,电阻器RX将被包括到本发明的屏蔽三端子平通EMI/消能滤波器中。在此情况下,最大功率传输或能量将通过此分立的电阻器RX作为热被耗散。在优选实施例中,将导热但是电绝缘的材料放置到电阻器RX上方的屏蔽三端子平通EMI/消能滤波器以及AIMD外壳300之上,从而进行从电阻RX的最大能量转移。事实上,在优选实施例中,电阻器RX应该具有装有肋片的大表面积外壳,从而有到包围密封剂的最大传热面积。再次参考图133,可以看出,从被示为EDS的分立电阻元件RX辐射并传导能量。正在耗散的此能量变成热能量。希望在外壳300内具有相对较大的蓄热物质。然后,AIMD外壳300变为辅助热耗散表面(HDS)。此热能将在相对较大的表面积300上方耗散到包围AIMD的体液和组织中。例如,在心脏起搏器应用中,外壳300将处于胸大肌囊袋中。
再参考图132和133,没有必要让阻抗完全抵消,或者在图133的情况下,让电阻完全相等不是特别重要。事实上,在对输入电容的EMI滤波和+jωL组件导线系统的完全抵消之间有折衷。结果,通过实际试验,阻抗一般在导线系统中被抵消确实重要,以使来自MRI射频脉冲场的过剩能量的至少大部分将被耗散到AIMD的外壳300。例如,如果计算出75微微法电容器将完全抵消导线系统的感抗,则可相反选择使用屏蔽三端子平通EMI/消能滤波器的1000微微法电容。1000微微法总电容(CP+C)仍从导线系统将大量的MRI RF能量吸入到外壳300中。这样做的原因是,1000微微法电容器将不仅向射频脉冲频率(64MHz或1.4特斯拉MR系统),而且对于在起搏环境中常常发现的蜂窝电话及其他辐射源,提供有效得多的EMI滤波。
图134示出通常用于军事、航天、医学、电信及其他行业的滤波连接器322a-322h。在诸如通常用于航天、军事、电信和医学应用的那些EMI滤波连接器中,很难在不会对陶瓷电容器导致过大机械应力的情况下,将馈通电容器类型的平面阵列安装到连接器外壳或背面外壳。在现有技术中描述了若干个独特安装方案,它们是以机械方式隔离馈通电容器同时提供适当的低阻抗接地连接和RF屏蔽特性的设计。由于在滤波连接器中引起的机械应力,因此这是重要的。由于包围材料的热膨胀系数不匹配,以及在连接器匹配过程中发生的显著轴向和径向应力,在滤波连接器中安装相对脆弱的陶瓷馈通电容器是有问题的。
根据定义,连接器有在电缆连接过程中要匹配的凹形和凸形版本。EMI滤波通常在凹形或者凸形部分执行,但是通常不在两个部分同时进行。在插入或匹配连接器两半的过程中,施加相当大的机械力,这些机械力可以传输到馈通电容器。概括地说,现有技术的滤波连接器中的馈通电容器或分立电容器涉及非常昂贵的安装技术。如图134所示,每一个滤波连接器要花费几百或者甚至几千美元不是罕见的。本发明使用屏蔽三端子平通EMI/消能滤波器技术,与滤波连接器平面阵列馈通电容器相比,提供相等或者甚至更高的性能,但是具有成本和尺寸大大地降低的优点。
参考图135和136,示出了现有技术的利用平面阵馈通电容器(未示出)的子D型过滤连接器324。
图137和138示出了其他类型的非常常见的连接器。在此情况下,图137和138所示出的现有技术连接器326不被滤波。具体而言,在图137中,可以看到暴露的连接器引脚P。这些引脚与连接器的安装一起凸出到屏蔽外壳是非常常见的。可以看出,这些引脚P可容易地连接到本发明的屏蔽三端子平通EMI/消能滤波器。
图139示出典型连接器组件330,且带有本发明的屏蔽三端子平通EMI/消能滤波器190的分解图。屏蔽三端子平通EMI/消能滤波器190可以呈现为本发明中所描述形式中的任何一种。例如,图141是一般从图139的部分141-141截取的。可以看出,屏蔽三端子平通EMI/消能滤波器体现MLCC电容器C,306。图140示出了连接器组件330,其可以是气密的或非气密的,其被附连到本发明的屏蔽三端子平通EMI/消能滤波器190。
从前面的描述中可以看出,可以理解,本发明的屏蔽三端子平通EMI/消能滤波器190具有广泛的应用,当引线引入/引出电子模块或屏蔽外壳时,可以与宽泛范围的支持引线的连接器、端子和/或气密封一起使用。本发明的平通EMI/消能滤波器190提供三端子电容滤波,同时提供对通过平通电容器的稳健的大电流能力电极的电路和信号的屏蔽。构成本发明的消能滤波器190的混合型衬底192以与现有技术的馈通电容器非常等效的方式运转,因为:其内部接地板充当电子装置或模块的整个电磁屏蔽外壳的连续部分,以在物理上阻止高频RF能量直接进入气密封或引线入口和出口的等效通孔;以及平通EMI/消能滤波器有效地将不合需要的高频EMI信号从引线(电极)分流到整个屏蔽外壳,在那里此类能量在涡电流中被耗散,从而导致非常小的温度上升。
在其最基本的形式中,屏蔽三端子平通EMI/消能滤波器包括在第一端子和第二端子之间有电路电流流过的有源电极板),以及基本上包围了有源电极板的多个屏蔽板,其中屏蔽板共同地耦合到接地的第三端子。更具体而言,该多个屏蔽板包括位于有源电极板的第一侧的第一屏蔽板,以及位于有源电极板的第二侧的与第一屏蔽板相对的第二屏蔽板。
虽然为了进行说明详细描述了本发明的多个实施例,但是,可以在不偏离本发明的范围和精神的情况下进行各种修改。相应地,本发明不受限制,只受所附的权利要求书的限制。

Claims (67)

1.一种屏蔽三端子平通EMI/消能滤波器,包括:
有电路电流在第一端子和第二端子之间通过的有源电极板;
位于所述有源电极板的第一侧的第一屏蔽板;以及
位于所述有源电极板的第二侧的与所述第一屏蔽板相对的第二屏蔽板;
其中,所述第一和第二屏蔽板导电地耦合到接地第三端子。
2.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板通过介电材料与所述屏蔽板绝缘,以使所述有源电极板和所述屏蔽板协同形成平通电容器。
3.如权利要求2所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括成非导电关系地穿过所述屏蔽板的至少之一延伸的引线,所述引线导电地耦合到所述有源电极板以形成所述第一端子。
4.如权利要求3所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括多个有源电极板,每一个有源电极板都在其第一侧具有第一屏蔽板,在其第二侧具有与所述第一屏蔽板相对的第二屏蔽板,其中每一个有源电极板都通过介电材料与其相邻的屏蔽板绝缘,以使每一个有源电极板与其相邻的屏蔽板协同形成平通电容器。
5.如权利要求3所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述屏蔽板导电地耦合到一公共地线。
6.如权利要求3所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括多条引线,每一条引线都成非导电关系地穿过至少一个所述屏蔽板延伸,其中每一条引线都导电地耦合到相应的有源电极板,以形成所述有源电极板的所述第一端子。
7.如权利要求3所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括屏蔽夹具,所述引线成非导电关系地穿过所述屏蔽夹具延伸。
8.如权利要求7所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述夹具包括气密封。
9.如权利要求3所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括相邻的馈通电容器,在导电地耦合到所述有源电极板以形成第一端子之前所述引线穿过所述馈通电容器延伸。
10.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括导电地耦合到所述有源电极板并形成所述第二端子的导电焊盘。
11.如权利要求10所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述导电焊盘包括被置于介电材料的主体的外表面上的丝焊焊盘,所述有源电极板穿过所述丝焊焊盘延伸。
12.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括通过介电材料与所述屏蔽板绝缘的多个共面有源电极板,以使每一个有源电极板和所述屏蔽板协同形成平通电容器。
13.如权利要求12所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述共面有源电极板的至少之一包括电感器。
14.如权利要求12所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括在所述共面有源电极板之间延伸的共面第三屏蔽板。
15.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括成非导电关系地穿过所述屏蔽板的至少之一延伸的引线或引脚,所述引线或引脚导电地耦合到所述有源电极板以形成所述第二端子。
16.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括在所述有源电极板和所述接地屏蔽板的至少之一之间导电地耦合的单片片形电容器(MLCC)。
17.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括一般与所述有源电极板共面地安置的第三屏蔽板,其中所述第三屏蔽板导电地耦合到所述接地第三端子。
18.如权利要求17所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述第三屏蔽板基本上包围所述有源电极板,并被安置在所述第一和第二屏蔽板之间。
19.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板的至少一部分包括电感器。
20.如权利要求19所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述电感器包括螺旋电路迹线。
21.如权利要求2所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括用于将所述屏蔽板彼此导电地耦合的至少一个通孔。
22.如权利要求21所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述通孔被安置在所述有源电极板的周边的周围。
23.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板的表面积被最大化,以增大寄生电容并最小化对电流的阻抗。
24.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板被配置成形成″L″、″π″、″T″、″LL″,″5元件″、″n″元件无源电子低通滤波器中的至少一个组件。
25.如权利要求24所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板被配置成形成带阻滤波器、二极管阵列或RFID芯片中的至少一个组件。
26.如权利要求24所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述无源电子设备被优化以在MRI频率使用。
27.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板以及所述第一和第二屏蔽板被安置为大致垂直于导电地耦合到所述有源电极板的引线,以形成所述第一端子。
28.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板以及所述第一和第二屏蔽板被安置为大致平行于导电地耦合到所述有源电极板的引线,以形成所述第一端子。
29.如权利要求2所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板和所述屏蔽板被至少部分地安置在混合型平通衬底内。
30.如权利要求29所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述混合型平通衬底包括形成所述第三端子的表面金属镀层。
31.如权利要求30所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述混合型平通衬底被安置在植入型医疗装置的气密封附近,以使所述表面金属镀层导电地耦合到所述植入型医疗装置的外壳。
32.如权利要求29所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述混合型平通衬底包括柔性电缆部分。
33.如权利要求32所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述柔性电缆部分包括聚酰亚胺、开普顿(Kapton)或丙烯酸材料。
34.如权利要求29所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述混合型平通衬底包括刚性部分。
35.如权利要求34所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述刚性部分包括高介电常数陶瓷、氧化铝、玻璃纤维或FR4材料。
36.如权利要求34所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述刚性部分包括导电地耦合到所述有源电极板的至少一个无源电子元件。
37.如权利要求36所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述无源电子元件包括RFID芯片、电容器、电感器、带阻滤波器、L-C陷波滤波器、二极管或二极管阵列。
38.如权利要求37所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述电容器包括单片片形电容器。
39.如权利要求37所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述电感器包括单片片形电感器或环形电感器。
40.如权利要求32所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述柔性电缆部分包括多个柔性部分。
41.如权利要求34所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板的所述第二端子导电地耦合到一电路板。
42.如权利要求29所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述混合型平通衬底包括其中嵌入所述有源电极板的介电材料,所述有源电极板通过所述衬底导电地耦合到至少一个通孔的表面金属镀层,并且其中所述屏蔽板包括施加于所述混合型平通衬底的外表面的表面金属镀层。
43.如权利要求42所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括被配置成捕捉所述混合型平通衬底并将所述屏蔽板导电地耦合到地线的导电封盖。
44.如权利要求43所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括植入型医疗装置的气密封,所述气密封包括所述导电封盖被导电地附加到其上的导电套圈,至少一条引线成非导电关系地穿过所述套圈延伸并导电地耦合到所述通孔的所述表面金属镀层。
45.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,其所有外部组件都包括为直接体液暴露设计的生物相容材料。
46.如权利要求37所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述RFID芯片包括用于初始化AIMD RF遥测电路的叫醒功能。
47.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,被包括到有源植入型医疗装置(AIMD)的植入型导线的无源元件网络中,包括:
具有在近端和位于远端的组织刺激或生物感应电极之间延伸的长度的至少一条引线;
被置于远离所述电极的一点的患者的组织附近或血液或淋巴流内的消能表面;以及
与所述引线相关联的转移电路,用于有选择地将高频能量从所述电极转移到所述消能表面,以便将所述高频能量作为热消散。
48.如权利要求47所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述无源元件网络包括与所述转移电路相关联的阻碍电路,用于提高所述引线的所述高频阻抗,所述阻碍电路被安置在所述转移电路和所述至少一条引线的远端之间。
49.如权利要求48所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述阻碍电路包括电感器或带阻滤波器。
50.如权利要求47所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述至少一条引线包括探针或导管的一部分。
51.如权利要求47所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述消能表面包括护套、绝缘体、或导热元件。
52.如权利要求47所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述至少一条引线包括至少一对引线,每一条引线都具有在近端和位于远端的组织刺激或生物感应电极之间延伸的长度
53.如权利要求52所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述转移电路将所述引线中的每一条都耦合到所述消能表面
54.如权利要求53所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述转移电路耦合在所述那对引线之间。
55.如权利要求47所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述高频能量包括磁共振扫描机的一射频脉冲频率。
56.如权利要求55所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述高频能量包括一范围的选定射频脉冲频率。
57.如权利要求47所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述转移电路包括低通滤波器。
58.如权利要求57所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述低通滤波器包括C滤波器、L滤波器、T滤波器、π滤波器、LL滤波器、5元件滤波器或“n”元件滤波器中的至少一个。
59.如权利要求47所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述转移电路包括至少一个串联共振L-C陷波滤波器。
60.如权利要求48所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述阻碍电路包括非线性电路元件。
61.如权利要求60所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述非线性电路元件包括二极管或瞬变电压抑制器。
62.如权利要求61所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述转移电路包括至少一个串联共振L-C陷波滤波器。
63.如权利要求61所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述阻碍电路包括电感器或带阻滤波器。
64.如权利要求1所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板以及其周围的接地屏蔽板的有效电容面积已被相对最大化,以便实现它们之间形成的三端子平通电容器的更高电容值。
65.如权利要求64所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,所述有源电极板和所述接地屏蔽板之间的绝缘层的所述介电常数也已被显著提高,以便实现所述三端子平通电容器的更高的电容值。
66.如权利要求64所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,分隔所述有源电极板和所述接地屏蔽板的介电材料的厚度被相对最小化,以便实现所述三端子平通电容器的更高电容值。
67.如权利要求64所述的屏蔽三端子平通EMI/消能滤波器,其特征在于,包括所述有源电极板和周围接地屏蔽板的若干个冗余的平行层,以便增大所述三端子平通电容器的总电容值。
CN2009801189056A 2008-03-20 2009-03-19 屏蔽三端子平通emi/消能滤波器 Pending CN102037528A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US3838208P 2008-03-20 2008-03-20
US61/038,382 2008-03-20
US11609408P 2008-11-19 2008-11-19
US61/116,094 2008-11-19
US14410209P 2009-01-12 2009-01-12
US61/144,102 2009-01-12
US15006109P 2009-02-05 2009-02-05
US61/150,061 2009-02-05
PCT/US2009/037700 WO2009117599A2 (en) 2008-03-20 2009-03-19 Shielded three-terminal flat-through emi/energy dissipating filter

Publications (1)

Publication Number Publication Date
CN102037528A true CN102037528A (zh) 2011-04-27

Family

ID=41091542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801189056A Pending CN102037528A (zh) 2008-03-20 2009-03-19 屏蔽三端子平通emi/消能滤波器

Country Status (5)

Country Link
US (15) US8195295B2 (zh)
EP (1) EP2269200B1 (zh)
JP (1) JP2011517970A (zh)
CN (1) CN102037528A (zh)
WO (1) WO2009117599A2 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105592674A (zh) * 2014-10-21 2016-05-18 深圳振华富电子有限公司 电磁干扰滤波器
CN105705196A (zh) * 2013-11-08 2016-06-22 波士顿科学神经调制公司 用于植入式医疗设备的电路板、及其制造和测试方法
CN106856654A (zh) * 2017-03-13 2017-06-16 深圳市金石医疗科技有限公司 自屏蔽式磁共振装置
CN108290045A (zh) * 2015-11-29 2018-07-17 波士顿科学神经调制公司 颅骨安装的深部脑刺激器
CN110214357A (zh) * 2016-09-27 2019-09-06 珀金埃尔默健康科学加拿大股份有限公司 电容器和射频发生器以及使用它们的其他装置
CN110431559A (zh) * 2016-09-09 2019-11-08 香港物流及供应链管理应用技术研发中心 射频通信设备及其使用方法
CN112214131A (zh) * 2014-10-31 2021-01-12 商升特公司 降低移动设备中的接近和触摸检测的射频干扰的方法和设备
CN112449677A (zh) * 2018-11-20 2021-03-05 Abb瑞士股份有限公司 用于监测连接至气体绝缘开关设备的电缆的电缆接头的温度和电压的装置以及相关联的制造方法
CN113366923A (zh) * 2018-12-13 2021-09-07 高通股份有限公司 包括用于屏蔽的至少一个图案化接地平面的基板
CN115053421A (zh) * 2020-02-04 2022-09-13 烙克赛克有限公司 过渡件

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8244370B2 (en) 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US8457760B2 (en) 2001-04-13 2013-06-04 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US20070088416A1 (en) * 2001-04-13 2007-04-19 Surgi-Vision, Inc. Mri compatible medical leads
US8977355B2 (en) 2001-04-13 2015-03-10 Greatbatch Ltd. EMI filter employing a capacitor and an inductor tank circuit having optimum component values
US8509913B2 (en) 2001-04-13 2013-08-13 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
CA2482202C (en) 2001-04-13 2012-07-03 Surgi-Vision, Inc. Systems and methods for magnetic-resonance-guided interventional procedures
US9295828B2 (en) 2001-04-13 2016-03-29 Greatbatch Ltd. Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices
US8989870B2 (en) 2001-04-13 2015-03-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide EMI protection of implanted leads in a high power electromagnetic field environment
US8712544B2 (en) 2001-04-13 2014-04-29 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
US8219208B2 (en) 2001-04-13 2012-07-10 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US8437865B2 (en) * 2001-04-13 2013-05-07 Greatbatch Ltd. Shielded network for an active medical device implantable lead
US8903505B2 (en) 2006-06-08 2014-12-02 Greatbatch Ltd. Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
EP2047732B1 (en) * 2006-07-25 2010-12-29 Koninklijke Philips Electronics N.V. Moulded cable traps
US9468750B2 (en) 2006-11-09 2016-10-18 Greatbatch Ltd. Multilayer planar spiral inductor filter for medical therapeutic or diagnostic applications
US9031670B2 (en) 2006-11-09 2015-05-12 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
US20090002952A1 (en) * 2007-06-28 2009-01-01 Ralph Mesmer Interference mitigation
US8073503B2 (en) * 2007-11-06 2011-12-06 Qualcomm Incorporated Personal health modules supported by portable communication devices
US8483840B2 (en) * 2008-03-20 2013-07-09 Greatbatch Ltd. Dual function tuned L-C input trap passive EMI filter component network for an active implantable medical device
WO2009117599A2 (en) 2008-03-20 2009-09-24 Greatbatch Ltd. Shielded three-terminal flat-through emi/energy dissipating filter
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
US11147977B2 (en) 2008-03-20 2021-10-19 Greatbatch Ltd. MLCC filter on an aimd circuit board conductively connected to a ground pin attached to a hermetic feedthrough ferrule
US9108066B2 (en) 2008-03-20 2015-08-18 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9463329B2 (en) 2008-03-20 2016-10-11 Greatbatch Ltd. Shielded three-terminal flat-through EMI/energy dissipating filter with co-fired hermetically sealed feedthrough
EP2349453A4 (en) * 2008-10-30 2015-07-01 Greatbatch Ltd PHYSICALLY DISPOSABLE CAPACITOR AND INDUCTOR ELEMENTS WITH LOCALIZED PARAMETERS CONNECTED ELECTRICALLY INTO PARALLEL TO FORM A BAND REMOVAL FILTER
US8447414B2 (en) 2008-12-17 2013-05-21 Greatbatch Ltd. Switched safety protection circuit for an AIMD system during exposure to high power electromagnetic fields
CA2754045C (en) 2009-03-04 2021-04-06 Imricor Medical Systems, Inc. Mri compatible electrode circuit
US8805540B2 (en) 2009-03-04 2014-08-12 Imricor Medical Systems, Inc. MRI compatible cable
US8855788B2 (en) 2009-03-04 2014-10-07 Imricor Medical Systems, Inc. MRI compatible electrode circuit
US8843213B2 (en) 2009-03-04 2014-09-23 Imricor Medical Systems, Inc. MRI compatible co-radially wound lead assembly
US8831743B2 (en) 2009-03-04 2014-09-09 Imricor Medical Systems, Inc. MRI compatible electrode circuit
US8761899B2 (en) 2009-03-04 2014-06-24 Imricor Medical Systems, Inc. MRI compatible conductive wires
US20110094768A1 (en) * 2009-10-28 2011-04-28 Pacesetter, Inc. Implantable medical device having feedthru with an integrated interconnect/filter substrate
US8373075B2 (en) * 2009-10-29 2013-02-12 Medtronic, Inc. Implantable co-fired electrical feedthroughs
US8886319B2 (en) * 2009-11-12 2014-11-11 Pacesetter, Inc. MRI signal filtering for implantable medical device
US8422195B2 (en) * 2009-12-22 2013-04-16 Greatbatch Ltd. Feedthrough flat-through capacitor
ES2587958T3 (es) * 2009-12-31 2016-10-27 Cardiac Pacemakers, Inc. Dispositivo implantable que incluye un condensador reductor de la corriente de Foucault
US8527065B2 (en) * 2010-02-11 2013-09-03 Biotronik Se & Co. Kg Electrode device for active medical implant
US8675338B2 (en) * 2010-03-29 2014-03-18 Biotronik Se & Co. Kg Electrical feedthrough of a capacitor for medical implants and method for the production and use thereof
CN105641809A (zh) 2010-11-23 2016-06-08 心脏起搏器公司 用于可植入医疗装置的折叠天线
WO2012082863A1 (en) * 2010-12-15 2012-06-21 Advanced Bionics Ag Protection for implanted gold surfaces
US8611755B2 (en) * 2011-01-27 2013-12-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical transmitter with hybridly integrated driver
US8612021B2 (en) 2011-02-10 2013-12-17 Medtronic, Inc. Magnetic resonance imaging compatible medical electrical lead and method of making the same
EP4218917A1 (en) 2011-02-24 2023-08-02 Boston Scientific Neuromodulation Corporation Implantable neurostimulator with a circuit board and a connector
US11406817B2 (en) * 2011-03-01 2022-08-09 Greatbatch Ltd. Low equivalent series resistance RF filter circuit board for an active implantable medical device
US10596369B2 (en) 2011-03-01 2020-03-24 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US10272252B2 (en) 2016-11-08 2019-04-30 Greatbatch Ltd. Hermetic terminal for an AIMD having a composite brazed conductive lead
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing
US10272253B2 (en) 2016-11-10 2019-04-30 Greatbatch Ltd. Hermetic terminal for an active implantable medical device with composite co-fired filled via and body fluid side brazed leadwire
US9427596B2 (en) 2013-01-16 2016-08-30 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US8694102B2 (en) * 2011-03-09 2014-04-08 Greatbatch Ltd. Ionizing radiation-protected active implantable medical device
US8369951B2 (en) 2011-03-29 2013-02-05 Greatbatch Ltd. Feed-through connector assembly for implantable pulse generator and method of use
US9931513B2 (en) 2011-03-29 2018-04-03 Nuvectra Corporation Feed-through connector assembly for implantable pulse generator and method of use
US8738141B2 (en) 2011-04-07 2014-05-27 Greatbatch, Ltd. Contact assembly for implantable pulse generator and method of use
US8644002B2 (en) 2011-05-31 2014-02-04 Medtronic, Inc. Capacitor including registration feature for aligning an insulator layer
US11211741B2 (en) 2011-06-03 2021-12-28 Greatbatch Ltd. Removable terminal pin connector for an active electronics circuit board for use in an implantable medical device
US8849404B2 (en) 2011-09-01 2014-09-30 Medtronic, Inc. Feedthrough assembly including a lead frame assembly
US20130099956A1 (en) * 2011-10-24 2013-04-25 Lsi Corporation Apparatus to reduce specific absorption rate
US20130131769A1 (en) * 2011-11-23 2013-05-23 Alexander K. Smith Printed circuit board connection to feedthrough
DE102011056515B4 (de) * 2011-12-16 2023-12-07 Tdk Electronics Ag Elektrisches Bauelement und Verfahren zur Herstellung eines elektrischen Bauelements
US8644936B2 (en) 2012-01-09 2014-02-04 Medtronic, Inc. Feedthrough assembly including electrical ground through feedthrough substrate
US10881867B2 (en) 2012-01-16 2021-01-05 Greatbatch Ltd. Method for providing a hermetically sealed feedthrough with co-fired filled via for an active implantable medical device
US9889306B2 (en) 2012-01-16 2018-02-13 Greatbatch Ltd. Hermetically sealed feedthrough with co-fired filled via and conductive insert for an active implantable medical device
US10420949B2 (en) 2012-01-16 2019-09-24 Greatbatch Ltd. Method of manufacturing a feedthrough insulator for an active implantable medical device incorporating a post conductive paste filled pressing step
US10046166B2 (en) 2012-01-16 2018-08-14 Greatbatch Ltd. EMI filtered co-connected hermetic feedthrough, feedthrough capacitor and leadwire assembly for an active implantable medical device
EP2636427B1 (en) 2012-01-16 2019-02-27 Greatbatch Ltd. Elevated hermetic feedthrough insulator adapted for side attachment of electrical conductors on the body fluid side of an active implantable medical device
US9138586B2 (en) 2012-01-27 2015-09-22 Greatbatch Ltd. Contact block using spherical electrical contacts for electrically contacting implantable leads
EP2814567B1 (en) 2012-02-15 2019-11-06 Cardiac Pacemakers, Inc. Ferrule for implantable medical device
US20130226266A1 (en) * 2012-02-24 2013-08-29 Boston Scientific Neuromodulation Corporation Systems and methods for modifying impedance along electrical paths of electrical stimulation systems
WO2013162701A1 (en) 2012-04-27 2013-10-31 Medtronic, Inc. Filling implantable medical devices for leak checking
US9095056B2 (en) 2012-05-02 2015-07-28 General Electric Company Module for use with a monitoring system and method of assembling same
US9250281B2 (en) * 2012-06-06 2016-02-02 Pison Inc. Method and system for reducing self-interference in a handheld communication device
US9224664B2 (en) * 2012-06-06 2015-12-29 The Charles Stark Draper Laboratory, Inc. Bio-implantable hermetic integrated ultra high density device
US9093974B2 (en) 2012-09-05 2015-07-28 Avx Corporation Electromagnetic interference filter for implanted electronics
US9480141B1 (en) * 2012-09-20 2016-10-25 Junis Hamadeh Heat sink device or heat sink assembly
US8956176B1 (en) * 2012-09-27 2015-02-17 Cleveland Medical Devices Inc. Lead wire connector for measuring electrophysiological signals
WO2014049089A1 (en) * 2012-09-28 2014-04-03 Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement Implantable devices
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
JP5838978B2 (ja) * 2013-01-24 2016-01-06 株式会社村田製作所 セラミック積層部品
US9535475B2 (en) 2013-02-04 2017-01-03 Crystal Group, Inc. System and method for creating high powered EMC compliant power supply for industrial and military applications
US8679189B1 (en) * 2013-02-11 2014-03-25 Amendia Inc. Bone growth enhancing implant
US10838406B2 (en) 2013-02-11 2020-11-17 The Aerospace Corporation Systems and methods for the patterning of material substrates
CN105246545B (zh) * 2013-03-12 2018-01-19 心脏起搏器股份公司 可植入医疗器件及其装配件
CN105164920B (zh) 2013-03-15 2018-02-06 艾尔弗雷德·E·曼科学研究基金会 具有快速开启时间的电流感测多输出电流刺激器
US9398683B2 (en) * 2013-03-26 2016-07-19 Apple Inc. Packaged capacitor component with multiple self-resonance frequencies
US10029105B2 (en) * 2013-06-07 2018-07-24 Cardiac Pacemakers, Inc. Antennas for implantable medical devices
US9539422B2 (en) * 2013-07-02 2017-01-10 Greatbatch Ltd. Neurostimulator interconnection apparatus, system, and method
CA3075310C (en) 2013-07-29 2022-04-05 Alfred E. Mann Foundation For Scientific Research Microprocessor controlled class e driver
EP2835148A1 (en) * 2013-08-04 2015-02-11 Greatbatch Ltd. Multilayer planar spiral inductor filter for medical, therapeutic or diagnostic applications
KR102189784B1 (ko) * 2013-08-30 2020-12-11 삼성전자주식회사 휘어지는 전자 장치
FR3012965B1 (fr) * 2013-11-14 2016-01-08 Commissariat Energie Atomique Dispositif de traversee notamment pour systeme d'implant medical et procede de realisation.
US9713717B2 (en) * 2013-12-09 2017-07-25 Boston Scientific Neuromodulation Corporation Implantable stimulator device having components embedded in a circuit board
CN106029168B (zh) * 2014-02-21 2019-06-04 心脏起搏器股份公司 用于可植入医疗装置的经滤波的馈通组件
US20150245548A1 (en) * 2014-02-26 2015-08-27 Sparton Corporation Control of electric field effects in a printed circuit board assembly using embedded nickel-metal composite materials
US10070547B2 (en) * 2014-02-26 2018-09-04 Sparton Corporation Control of electric field effects in a printed circuit board assembly using embedded nickel-metal composite materials
EP3180073B1 (en) 2014-08-15 2020-03-11 Axonics Modulation Technologies, Inc. System for neurostimulation electrode configurations based on neural localization
WO2016025910A1 (en) 2014-08-15 2016-02-18 Axonics Modulation Technologies, Inc. Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indications
JP6779860B2 (ja) 2014-08-15 2020-11-04 アクソニクス モジュレーション テクノロジーズ インコーポレイテッド 埋込可能神経刺激装置と共に用いるための統合型筋電図臨床医用プログラム装置
EP3180071B1 (en) 2014-08-15 2021-09-22 Axonics, Inc. External pulse generator device and associated system for trial nerve stimulation
CA2958199C (en) 2014-08-15 2023-03-07 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
EP3025756B1 (de) * 2014-11-27 2019-01-09 BIOTRONIK SE & Co. KG Im aktiven implantat integrierte elektrodenverlängerung
US9659850B2 (en) * 2014-12-08 2017-05-23 Qualcomm Incorporated Package substrate comprising capacitor, redistribution layer and discrete coaxial connection
CN107427683B (zh) 2015-01-09 2019-06-21 艾克索尼克斯调制技术股份有限公司 用于可植入神经刺激器的改进天线和使用方法
JP6805153B2 (ja) 2015-01-09 2020-12-23 アクソニクス モジュレーション テクノロジーズ インコーポレイテッド 患者遠隔装置および関連付けられた神経刺激システムとの使用の方法
EP3242721B1 (en) 2015-01-09 2019-09-18 Axonics Modulation Technologies, Inc. Attachment devices and associated methods of use with a nerve stimulation charging device
WO2016121629A1 (ja) * 2015-01-27 2016-08-04 株式会社村田製作所 高周波モジュール
EP3069753A1 (en) * 2015-03-17 2016-09-21 BIOTRONIK SE & Co. KG Implantable medical device and manufacturing method therefor
US10363425B2 (en) 2015-06-01 2019-07-30 Avx Corporation Discrete cofired feedthrough filter for medical implanted devices
JP6946261B2 (ja) 2015-07-10 2021-10-06 アクソニクス インコーポレイテッド Asicを用いない内部電子機器を有する埋め込み可能神経刺激装置および方法
JP6610072B2 (ja) * 2015-08-07 2019-11-27 株式会社村田製作所 積層コンデンサ、及び、配線基板
US10607958B2 (en) 2015-08-28 2020-03-31 Texas Instruments Incorporated Flip chip backside die grounding techniques
US9899757B2 (en) * 2015-09-03 2018-02-20 Apple Inc. Surface connector with silicone spring member
US9876307B2 (en) 2015-09-03 2018-01-23 Apple Inc. Surface connector with silicone spring member
EP3407965B1 (en) 2016-01-29 2021-03-03 Axonics Modulation Technologies, Inc. Systems for frequency adjustment to optimize charging of implantable neurostimulator
JP7072510B2 (ja) 2016-02-12 2022-05-20 アクソニクス インコーポレイテッド 外部パルス発生器デバイスおよび試験的神経刺激のための関連方法
US11538633B2 (en) * 2016-07-02 2022-12-27 Intel Corporation Combination stiffener and capacitor
US10299681B2 (en) * 2016-07-20 2019-05-28 Biotronik Se & Co. Kg Implantable medical device system with lead conductor antenna and filter
US10366859B2 (en) * 2016-08-24 2019-07-30 Varian Medical Systems, Inc. Electromagnetic interference containment for accelerator systems
US10429423B2 (en) * 2016-09-27 2019-10-01 PIM Solutions LLC Passive intermodulation (PIM) probe
US10449375B2 (en) 2016-12-22 2019-10-22 Greatbatch Ltd. Hermetic terminal for an AIMD having a pin joint in a feedthrough capacitor or circuit board
EP3560553A1 (en) 2017-01-06 2019-10-30 Greatbatch Ltd. Method for manufacturing a feedthrough for an active implantable medical device
US10249415B2 (en) 2017-01-06 2019-04-02 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
US10857368B2 (en) * 2017-03-27 2020-12-08 Greatbatch Ltd. Flexible hermetic membranes with electrically conducting vias
CN110740781B (zh) * 2017-06-09 2023-10-17 美敦力公司 包括带有渐缩延伸部的套圈的馈通组件
EP3449973B1 (en) 2017-08-30 2022-12-21 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
US10874456B2 (en) 2017-10-25 2020-12-29 Biosense Webster (Israel) Ltd. Integrated LC filters in catheter distal end
WO2019082032A1 (en) 2017-10-25 2019-05-02 Cochlear Limited ELECTRIC SHIELD IN IMPLANTABLE MEDICAL DEVICES
WO2019090298A1 (en) 2017-11-06 2019-05-09 Avx Corporation Emi feedthrough filter terminal assembly containing a laminated insulative seal
DE102017221426A1 (de) * 2017-11-29 2019-05-29 Schott Ag Durchführung mit Flachleiter
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
WO2019133997A1 (en) 2017-12-31 2019-07-04 Neuroenhancement Lab, LLC System and method for neuroenhancement to enhance emotional response
EP3755418B1 (en) 2018-02-22 2023-06-21 Axonics, Inc. Neurostimulation leads for trial nerve stimulation
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
JP7103835B2 (ja) * 2018-04-24 2022-07-20 太陽誘電株式会社 積層セラミック電子部品及びその製造方法、並びに回路基板
US10625084B2 (en) 2018-05-18 2020-04-21 Greatbatch Ltd. AIMD RF switch to connect an ICD defibrillation electrode conductor either to a filter capacitor or to an RF source configured to detect a defective lead conductor
EP3849410A4 (en) 2018-09-14 2022-11-02 Neuroenhancement Lab, LLC SLEEP ENHANCEMENT SYSTEM AND METHOD
EP3911224A4 (en) * 2019-01-16 2022-09-28 Rhythmlink International, LLC NEUROLOGICAL MONITORING CABLE FOR MAGNETIC RESONANCE ENVIRONMENTS
US11211184B2 (en) 2019-01-23 2021-12-28 Pratt & Whitney Canada Corp. System of harness and engine case for aircraft engine
WO2020185902A1 (en) 2019-03-11 2020-09-17 Axonics Modulation Technologies, Inc. Charging device with off-center coil
US10595394B1 (en) * 2019-05-09 2020-03-17 Cray Inc. PCB with minimized crosstalk
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
US11324944B1 (en) 2019-07-23 2022-05-10 Verily Life Sciences Llc Flexible cable assembly for medical implantation
HUP1900290A1 (hu) * 2019-08-14 2021-03-01 Sandor Levai Eljárás és készülék környezeti rádiófrekvenciás elektromágneses terek mértékének csökkentésére, eljárás nedves fal szárítására, valamint a készülék alkalmazása nedves fal szárítására
CN110441721A (zh) * 2019-09-06 2019-11-12 上海联影医疗科技有限公司 应用于磁共振系统的馈通滤波器和磁共振系统
CN110665115B (zh) * 2019-09-10 2023-02-28 武汉佐盈森科技发展有限公司 用于短波治疗仪的多容值输出电容电极及其制备方法
JP2021044331A (ja) * 2019-09-10 2021-03-18 CIG Photonics Japan株式会社 光サブアッセンブリ及び光モジュール
US11344221B2 (en) 2019-09-16 2022-05-31 Biosense Webster (Israel) Ltd. Flexible shielded position sensor
EP3900780B1 (en) 2020-04-21 2023-02-22 Greatbatch Ltd. Aimd rf switch to connect an icd defibrillator electrode conductor either to a filter capacitor or to an rf source configured to detect a defective implanted lead
US20210348253A1 (en) * 2020-05-08 2021-11-11 Greatbatch Ltd. Electrically Conductive Coating Applied To An Oxidizable Surface Of An AIMD Ferrule Or Housing To Provide An Oxide-Resistant Connection To An EMI Filter Capacitor, An EMI Filter Circuit Or AIMD Electronic Circuits And Components
CN113747775A (zh) * 2020-05-29 2021-12-03 同方威视技术股份有限公司 防止安检通道之间的电磁干扰的射频识别装置和屏蔽板的制造方法
CN113923920B (zh) * 2020-07-09 2023-05-09 比亚迪股份有限公司 滤波模块和具有其的电子设备
US11650704B2 (en) 2021-08-02 2023-05-16 Tpk Advanced Solutions Inc. Bonding structure and electronic device
CN114883111A (zh) * 2022-05-26 2022-08-09 中国第一汽车股份有限公司 一种集成滤波器及放电电阻的模块化母线电容
EP4349397A1 (en) 2022-10-07 2024-04-10 Greatbatch Ltd. High-voltage electrical insulation for use in active implantable medical devices circuit board connectors
CN116190969B (zh) * 2023-04-23 2023-06-23 成都宏科电子科技有限公司 一种馈通滤波器及其电容芯片封装方法
CN116171034B (zh) * 2023-04-25 2023-07-07 中国人民解放军国防科技大学 一种Ku频段的微纳混合集成能量选择表面
CN116344187B (zh) * 2023-05-16 2024-03-19 淮安市文盛电子有限公司 一种电感盖片设备及其使用方法

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2030360C3 (de) 1970-06-19 1982-10-28 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur Entstörung mehrphasiger Netzzuleitungen von Hochfrequenz erzeugenden Geräten
US3745430A (en) 1971-12-21 1973-07-10 Motorola Inc Thick film feed-through capacitor
US3968802A (en) * 1975-01-24 1976-07-13 Medtronic, Inc. Cautery protection circuit for a heart pacemaker
US3961294A (en) * 1975-04-21 1976-06-01 Amp Incorporated Connector having filter adaptor
US4424551B1 (en) 1982-01-25 1991-06-11 Highly-reliable feed through/filter capacitor and method for making same
KR910004957B1 (ko) 1987-10-29 1991-07-18 가부시끼가이샤 도시바 고주파 회로장치
US5039965A (en) 1990-08-24 1991-08-13 Motorola, Inc. Radio frequency filter feedthrough structure for multilayer circuit boards
US5493259A (en) 1992-10-13 1996-02-20 The Whitaker Corporation High voltage, low pass filtering connector with multiple ground planes
JP3233302B2 (ja) 1992-12-10 2001-11-26 ティーディーケイ株式会社 貫通形積層セラミックコンデンサ
US5331505A (en) 1993-01-08 1994-07-19 Honeywell Inc. Multi-coplanar capacitor for electrical connector
US5268810A (en) 1993-01-08 1993-12-07 Honeywell Inc. Electrical connector incorporating EMI filter
US5333095A (en) 1993-05-03 1994-07-26 Maxwell Laboratories, Inc., Sierra Capacitor Filter Division Feedthrough filter capacitor assembly for human implant
JPH07272975A (ja) 1994-03-29 1995-10-20 Tdk Corp 複合コンデンサ
US5491300A (en) 1994-04-28 1996-02-13 Cray Computer Corporation Penetrator and flexible circuit assembly for sealed environment
US5782891A (en) 1994-06-16 1998-07-21 Medtronic, Inc. Implantable ceramic enclosure for pacing, neurological, and other medical applications in the human body
US5450090A (en) 1994-07-20 1995-09-12 The Charles Stark Draper Laboratory, Inc. Multilayer miniaturized microstrip antenna
GB9502905D0 (en) 1995-02-15 1995-04-05 Dunlop Ltd Ice protection device
JPH0935998A (ja) 1995-07-21 1997-02-07 Matsushita Electric Ind Co Ltd 積層貫通コンデンサー
US5757252A (en) 1995-08-31 1998-05-26 Itt Industries, Inc. Wide frequency band transition between via RF transmission lines and planar transmission lines
US5650759A (en) 1995-11-09 1997-07-22 Hittman Materials & Medical Components, Inc. Filtered feedthrough assembly having a mounted chip capacitor for medical implantable devices and method of manufacture therefor
US5620476A (en) 1995-11-13 1997-04-15 Pacesetter, Inc. Implantable medical device having shielded and filtered feedthrough assembly and methods for making such assembly
US5959336A (en) 1996-08-26 1999-09-28 Advanced Micro Devices, Inc. Decoder circuit with short channel depletion transistors
US6146743A (en) 1997-02-21 2000-11-14 Medtronic, Inc. Barrier metallization in ceramic substrate for implantable medical devices
US7274549B2 (en) 2000-12-15 2007-09-25 X2Y Attenuators, Llc Energy pathway arrangements for energy conditioning
US6373673B1 (en) 1997-04-08 2002-04-16 X2Y Attenuators, Llc Multi-functional energy conditioner
US7321485B2 (en) 1997-04-08 2008-01-22 X2Y Attenuators, Llc Arrangement for energy conditioning
US7301748B2 (en) 1997-04-08 2007-11-27 Anthony Anthony A Universal energy conditioning interposer with circuit architecture
US7110227B2 (en) 1997-04-08 2006-09-19 X2Y Attenuators, Llc Universial energy conditioning interposer with circuit architecture
US6603646B2 (en) 1997-04-08 2003-08-05 X2Y Attenuators, Llc Multi-functional energy conditioner
US6636406B1 (en) * 1997-04-08 2003-10-21 X2Y Attenuators, Llc Universal multi-functional common conductive shield structure for electrical circuitry and energy conditioning
US5870272A (en) 1997-05-06 1999-02-09 Medtronic Inc. Capacitive filter feedthrough for implantable medical device
US5973907A (en) 1997-09-05 1999-10-26 Kemet Electronics Corp. Multiple element capacitor
US5905627A (en) 1997-09-10 1999-05-18 Maxwell Energy Products, Inc. Internally grounded feedthrough filter capacitor
US5929729A (en) 1997-10-24 1999-07-27 Com Dev Limited Printed lumped element stripline circuit ground-signal-ground structure
US6008980A (en) * 1997-11-13 1999-12-28 Maxwell Energy Products, Inc. Hermetically sealed EMI feedthrough filter capacitor for human implant and other applications
DE59902752D1 (de) 1998-03-05 2002-10-24 Hsp Hochspannungsgeraete Porz Durchführung für eine hohe elektrische spannung
US5973906A (en) 1998-03-17 1999-10-26 Maxwell Energy Products, Inc. Chip capacitors and chip capacitor electromagnetic interference filters
US5994975A (en) 1998-04-28 1999-11-30 Trw Inc. Millimeter wave ceramic-metal feedthroughs
US6424234B1 (en) 1998-09-18 2002-07-23 Greatbatch-Sierra, Inc. Electromagnetic interference (emi) filter and process for providing electromagnetic compatibility of an electronic device while in the presence of an electromagnetic emitter operating at the same frequency
US9061139B2 (en) * 1998-11-04 2015-06-23 Greatbatch Ltd. Implantable lead with a band stop filter having a capacitor in parallel with an inductor embedded in a dielectric body
US8244370B2 (en) 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US6157528A (en) 1999-01-28 2000-12-05 X2Y Attenuators, L.L.C. Polymer fuse and filter apparatus
JP2001068958A (ja) 1999-08-31 2001-03-16 Kyocera Corp ローパスフィルタおよび回路基板
US6137161A (en) 1999-09-14 2000-10-24 International Business Machines Corporation Interposer array module for capacitive decoupling and filtering
US6974437B2 (en) * 2000-01-21 2005-12-13 Medtronic Minimed, Inc. Microprocessor controlled ambulatory medical apparatus with hand held communication device
WO2001052935A1 (en) * 2000-01-21 2001-07-26 Medical Research Group, Inc. Ambulatory medical apparatus and method having telemetry modifiable control software
US6414835B1 (en) 2000-03-01 2002-07-02 Medtronic, Inc. Capacitive filtered feedthrough array for an implantable medical device
US6459935B1 (en) 2000-07-13 2002-10-01 Avx Corporation Integrated filter feed-thru
US6473314B1 (en) 2000-08-03 2002-10-29 Powerwave Technologies, Inc. RF power amplifier assembly employing multi-layer RF blocking filter
US6529103B1 (en) 2000-09-07 2003-03-04 Greatbatch-Sierra, Inc. Internally grounded feedthrough filter capacitor with improved ground plane design for human implant and other applications
JP2004522295A (ja) 2000-10-17 2004-07-22 エックストゥーワイ アテニュエイターズ,エル.エル.シー. 共通基準節点を有する単一または複数の回路のための遮蔽および被遮蔽エネルギー経路ならびに他の要素から成るアマルガム
US7853325B2 (en) 2001-04-13 2010-12-14 Greatbatch Ltd. Cylindrical bandstop filters for medical lead systems
US8219208B2 (en) * 2001-04-13 2012-07-10 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US7899551B2 (en) 2001-04-13 2011-03-01 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US7916013B2 (en) 2005-03-21 2011-03-29 Greatbatch Ltd. RFID detection and identification system for implantable medical devices
US6456481B1 (en) 2001-05-31 2002-09-24 Greatbatch-Sierra, Inc. Integrated EMI filter-DC blocking capacitor
US6512666B1 (en) 2001-08-21 2003-01-28 Delware Capital Formation, Inc. High current filter feed-through capacitor
US6721602B2 (en) * 2001-08-21 2004-04-13 Medtronic, Inc. Implantable medical device assembly and manufacturing method
US7439449B1 (en) 2002-02-14 2008-10-21 Finisar Corporation Flexible circuit for establishing electrical connectivity with optical subassembly
US6985347B2 (en) 2002-02-28 2006-01-10 Greatbatch-Sierra, Inc. EMI filter capacitors designed for direct body fluid exposure
CA2446476A1 (en) * 2002-02-28 2003-09-04 Greatbatch-Sierra, Inc. Emi feedthrough filter terminal assembly utilizing hermetic seal for electrical attachment between lead wires and capacitor
US7917219B2 (en) * 2002-02-28 2011-03-29 Greatbatch Ltd. Passive electronic network components designed for direct body fluid exposure
JP3833145B2 (ja) 2002-06-11 2006-10-11 Tdk株式会社 積層貫通型コンデンサ
US6765680B2 (en) * 2002-06-21 2004-07-20 Agere Systems Inc. Methods of testing and manufacturing micro-electrical mechanical mirrors
JP4412970B2 (ja) * 2002-12-02 2010-02-10 株式会社ニデック 生体組織刺激電極の製造方法
JP4000072B2 (ja) 2002-12-26 2007-10-31 京セラ株式会社 ローパスフィルタ内蔵配線基板
JP4400853B2 (ja) 2003-01-29 2010-01-20 京セラ株式会社 ローパスフィルタ内蔵配線基板
US7623335B2 (en) * 2003-02-27 2009-11-24 Greatbatch-Sierra, Inc Hermetic feedthrough terminal assembly with wire bond pads for human implant applications
US7038900B2 (en) * 2003-02-27 2006-05-02 Greatbatch-Sierra, Inc. EMI filter terminal assembly with wire bond pads for human implant applications
US6999818B2 (en) 2003-05-23 2006-02-14 Greatbatch-Sierra, Inc. Inductor capacitor EMI filter for human implant applications
US7719854B2 (en) 2003-07-31 2010-05-18 Cardiac Pacemakers, Inc. Integrated electromagnetic interference filters and feedthroughs
JP3850398B2 (ja) * 2003-08-21 2006-11-29 Tdk株式会社 積層コンデンサ
KR100541089B1 (ko) 2003-10-08 2006-01-11 삼성전기주식회사 적층형 저역 통과 필터
US6903268B2 (en) * 2003-10-29 2005-06-07 Medtronic, Inc. Implantable device feedthrough assembly
US7236834B2 (en) 2003-12-19 2007-06-26 Medtronic, Inc. Electrical lead body including an in-line hermetic electronic package and implantable medical device using the same
US7675729B2 (en) 2003-12-22 2010-03-09 X2Y Attenuators, Llc Internally shielded energy conditioner
US7765005B2 (en) * 2004-02-12 2010-07-27 Greatbatch Ltd. Apparatus and process for reducing the susceptability of active implantable medical devices to medical procedures such as magnetic resonance imaging
US7035076B1 (en) 2005-08-15 2006-04-25 Greatbatch-Sierra, Inc. Feedthrough filter capacitor assembly with internally grounded hermetic insulator
US7489495B2 (en) * 2004-04-15 2009-02-10 Greatbatch-Sierra, Inc. Apparatus and process for reducing the susceptibility of active implantable medical devices to medical procedures such as magnetic resonance imaging
US7035077B2 (en) * 2004-05-10 2006-04-25 Greatbatch-Sierra, Inc. Device to protect an active implantable medical device feedthrough capacitor from stray laser weld strikes, and related manufacturing process
US7629537B2 (en) 2004-07-09 2009-12-08 Finisar Corporation Single layer flex circuit
US7327553B2 (en) 2004-07-27 2008-02-05 Brendel Richard L Feedthrough capacitor filter assemblies with laminar flow delaminations for helium leak detection
US7305760B2 (en) 2004-08-24 2007-12-11 Dell Products L.P. System and method for capacitive coupled via structures in information handling system circuit boards
US7262951B2 (en) 2004-09-27 2007-08-28 Taiwan Semiconductor Manufacturing Co., Ltd. De-coupling capacitors produced by utilizing dummy conductive structures integrated circuits
JP4583122B2 (ja) 2004-09-28 2010-11-17 三菱電機株式会社 半導体装置及びその製造方法
US7046499B1 (en) 2004-10-04 2006-05-16 Pacesetter, Inc. Internally grounded filtering feedthrough
US7322832B2 (en) 2004-10-26 2008-01-29 Medtronic, Inc. Radio frequency antenna flexible circuit interconnect with unique micro connectors
KR100691146B1 (ko) * 2004-12-24 2007-03-09 삼성전기주식회사 적층형 캐패시터 및 적층형 캐패시터가 내장된 인쇄회로기판
US7586728B2 (en) 2005-03-14 2009-09-08 X2Y Attenuators, Llc Conditioner with coplanar conductors
US7493167B2 (en) * 2005-03-22 2009-02-17 Greatbatch-Sierra, Inc. Magnetically shielded AIMD housing with window for magnetically actuated switch
US7544220B2 (en) 2005-03-31 2009-06-09 Medtronic, Inc. Welding methods and apparatus for batteries
US7428136B2 (en) 2005-08-06 2008-09-23 Geomat Insights, Llc Integral charge storage basement and wideband embedded decoupling structure for integrated circuit
JP2007129565A (ja) 2005-11-04 2007-05-24 Alps Electric Co Ltd ローパスフィルタ
WO2007102893A2 (en) * 2005-11-11 2007-09-13 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance mri compatibility
WO2007117302A2 (en) 2005-11-11 2007-10-18 Greatbatch Ltd. Low loss band pass filter for rf distance telemetry pin antennas of active implantable medical devices
US7853324B2 (en) 2005-11-11 2010-12-14 Greatbatch Ltd. Tank filters utilizing very low K materials, in series with lead wires or circuits of active medical devices to enhance MRI compatibility
US8160707B2 (en) * 2006-01-30 2012-04-17 Medtronic, Inc. Method and apparatus for minimizing EMI coupling in a feedthrough array having at least one unfiltered feedthrough
US20070203530A1 (en) * 2006-02-28 2007-08-30 Hubing Roger L Filtered multipolar feedthrough assembly
US20070203529A1 (en) 2006-02-28 2007-08-30 Iyer Rajesh V Filtered feedthrough assembly
US9042999B2 (en) 2006-06-08 2015-05-26 Greatbatch Ltd. Low loss band pass filter for RF distance telemetry pin antennas of active implantable medical devices
US7702387B2 (en) 2006-06-08 2010-04-20 Greatbatch Ltd. Tank filters adaptable for placement with a guide wire, in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US8134084B2 (en) 2006-06-30 2012-03-13 Shin-Etsu Polymer Co., Ltd. Noise-suppressing wiring-member and printed wiring board
JP4283834B2 (ja) 2006-09-06 2009-06-24 Tdk株式会社 積層コンデンサ
US7450396B2 (en) 2006-09-28 2008-11-11 Intel Corporation Skew compensation by changing ground parasitic for traces
WO2008044376A1 (fr) 2006-10-06 2008-04-17 Sanyo Electric Co., Ltd. Dispositif électrique
JP4404089B2 (ja) 2006-12-13 2010-01-27 Tdk株式会社 貫通コンデンサアレイ
US7742276B2 (en) 2007-03-30 2010-06-22 Industrial Technology Research Institute Wiring structure of laminated capacitors
EP1977786B1 (en) 2007-04-03 2012-11-28 Biotronik CRM Patent AG A filtering assembly and a feedthrough assembly
US7911802B2 (en) 2007-04-06 2011-03-22 Ibiden Co., Ltd. Interposer, a method for manufacturing the same and an electronic circuit package
US8160708B2 (en) 2007-04-11 2012-04-17 Pacesetter, Inc. Capacitor-integrated feedthrough assembly with improved grounding for an implantable medical device
KR100851065B1 (ko) 2007-04-30 2008-08-12 삼성전기주식회사 전자기 밴드갭 구조물 및 인쇄회로기판
US7679926B2 (en) 2007-08-22 2010-03-16 Taiwan Semiconductor Manfacturing Company, Ltd. Capacitors with insulating layer having embedded dielectric rods
KR100920026B1 (ko) 2007-10-16 2009-10-05 주식회사 쎄라텍 자성체 및 유전체 복합 전자 부품
TWI341152B (en) 2007-10-26 2011-04-21 Ind Tech Res Inst Conductive connection structure of printed circuit board (pcb)
US8115113B2 (en) 2007-11-30 2012-02-14 Ibiden Co., Ltd. Multilayer printed wiring board with a built-in capacitor
DE112009000012B4 (de) 2008-03-13 2014-11-13 Murata Manufacturing Co., Ltd. Glaskeramikzusammensetzung, Glaskeramik-Sinterkörper und keramisches Mehrschicht-Elektronikbauteil
US8164006B2 (en) 2008-03-19 2012-04-24 Samsung Electro-Mechanics Co., Ltd. Electromagnetic bandgap structure and printed circuit board
WO2009117599A2 (en) * 2008-03-20 2009-09-24 Greatbatch Ltd. Shielded three-terminal flat-through emi/energy dissipating filter
US20100109966A1 (en) 2008-10-31 2010-05-06 Mateychuk Duane N Multi-Layer Miniature Antenna For Implantable Medical Devices and Method for Forming the Same
US8497804B2 (en) 2008-10-31 2013-07-30 Medtronic, Inc. High dielectric substrate antenna for implantable miniaturized wireless communications and method for forming the same
US20100151113A1 (en) 2008-12-12 2010-06-17 Microchips, Inc. Manufacture of a radiating structure for a medical implant
US8285387B2 (en) 2008-12-12 2012-10-09 Microchips, Inc. Wireless communication with a medical implant
US8331077B2 (en) 2009-01-12 2012-12-11 Medtronic, Inc. Capacitor for filtered feedthrough with annular member
US8725263B2 (en) * 2009-07-31 2014-05-13 Medtronic, Inc. Co-fired electrical feedthroughs for implantable medical devices having a shielded RF conductive path and impedance matching
DE102012102661B4 (de) 2012-03-28 2024-01-18 Aixtron Se Verfahren zum Reinigen der Wände einer Prozesskammer eines CVD-Reaktors
US9093974B2 (en) 2012-09-05 2015-07-28 Avx Corporation Electromagnetic interference filter for implanted electronics

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705196A (zh) * 2013-11-08 2016-06-22 波士顿科学神经调制公司 用于植入式医疗设备的电路板、及其制造和测试方法
CN105705196B (zh) * 2013-11-08 2017-08-01 波士顿科学神经调制公司 用于植入式医疗设备的电路板、及其制造和测试方法
CN105592674A (zh) * 2014-10-21 2016-05-18 深圳振华富电子有限公司 电磁干扰滤波器
CN105592674B (zh) * 2014-10-21 2018-08-28 深圳振华富电子有限公司 电磁干扰滤波器
CN112214131A (zh) * 2014-10-31 2021-01-12 商升特公司 降低移动设备中的接近和触摸检测的射频干扰的方法和设备
CN112214131B (zh) * 2014-10-31 2023-12-08 商升特公司 降低移动设备中的接近和触摸检测的射频干扰的方法和设备
CN108290045B (zh) * 2015-11-29 2021-06-08 波士顿科学神经调制公司 颅骨安装的深部脑刺激器
CN108290045A (zh) * 2015-11-29 2018-07-17 波士顿科学神经调制公司 颅骨安装的深部脑刺激器
CN110431559A (zh) * 2016-09-09 2019-11-08 香港物流及供应链管理应用技术研发中心 射频通信设备及其使用方法
CN110431559B (zh) * 2016-09-09 2023-09-19 香港物流及供应链管理应用技术研发中心 射频通信设备及其使用方法
CN110214357A (zh) * 2016-09-27 2019-09-06 珀金埃尔默健康科学加拿大股份有限公司 电容器和射频发生器以及使用它们的其他装置
CN110214357B (zh) * 2016-09-27 2021-12-10 珀金埃尔默健康科学加拿大股份有限公司 电容器和射频发生器以及使用它们的其他装置
CN106856654B (zh) * 2017-03-13 2019-08-02 深圳市金石医疗科技有限公司 自屏蔽式磁共振装置
WO2018166387A1 (zh) * 2017-03-13 2018-09-20 深圳市金石医疗科技有限公司 自屏蔽式磁共振装置
CN106856654A (zh) * 2017-03-13 2017-06-16 深圳市金石医疗科技有限公司 自屏蔽式磁共振装置
CN112449677A (zh) * 2018-11-20 2021-03-05 Abb瑞士股份有限公司 用于监测连接至气体绝缘开关设备的电缆的电缆接头的温度和电压的装置以及相关联的制造方法
CN113366923A (zh) * 2018-12-13 2021-09-07 高通股份有限公司 包括用于屏蔽的至少一个图案化接地平面的基板
CN115053421A (zh) * 2020-02-04 2022-09-13 烙克赛克有限公司 过渡件

Also Published As

Publication number Publication date
US20110004283A1 (en) 2011-01-06
US20180326206A1 (en) 2018-11-15
US10099051B2 (en) 2018-10-16
US10722706B2 (en) 2020-07-28
JP2011517970A (ja) 2011-06-23
US11013928B2 (en) 2021-05-25
US20190217086A1 (en) 2019-07-18
EP2269200A2 (en) 2011-01-05
EP2269200A4 (en) 2011-07-13
US20170333703A1 (en) 2017-11-23
US11241581B2 (en) 2022-02-08
US10016595B2 (en) 2018-07-10
US20190240482A1 (en) 2019-08-08
US20170117866A1 (en) 2017-04-27
US20170087355A1 (en) 2017-03-30
US10857369B2 (en) 2020-12-08
US10874866B2 (en) 2020-12-29
US10124164B2 (en) 2018-11-13
US20090243756A1 (en) 2009-10-01
US8195295B2 (en) 2012-06-05
US9895534B2 (en) 2018-02-20
US10016596B2 (en) 2018-07-10
US20150066124A1 (en) 2015-03-05
US7957806B2 (en) 2011-06-07
US20170087354A1 (en) 2017-03-30
WO2009117599A2 (en) 2009-09-24
US20130235550A1 (en) 2013-09-12
US20190009079A1 (en) 2019-01-10
US20190308013A1 (en) 2019-10-10
US20120262250A1 (en) 2012-10-18
US8433410B2 (en) 2013-04-30
EP2269200B1 (en) 2014-09-24
US8868189B2 (en) 2014-10-21
WO2009117599A3 (en) 2010-01-07
US20170087356A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
US11241581B2 (en) Feedthrough terminal assembly with an electrically conductive pad conductively connected to a terminal pin
US9463329B2 (en) Shielded three-terminal flat-through EMI/energy dissipating filter with co-fired hermetically sealed feedthrough
US10080889B2 (en) Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
US9042999B2 (en) Low loss band pass filter for RF distance telemetry pin antennas of active implantable medical devices
AU2015218722B2 (en) Filtered feedthrough assembly for implantable medical electronic devices
US8422195B2 (en) Feedthrough flat-through capacitor
US9251960B2 (en) Dual stage EMI filter and offset highly efficient multi-polar active capacitor electrodes for an active implantable medical device
US11648409B2 (en) Ground electrical path from an MLCC filter capacitor on an AIMD circuit board to the ferrule of a hermetic feedthrough

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20110427

C20 Patent right or utility model deemed to be abandoned or is abandoned