CN102132398A - 用于互连的自对准阻挡层 - Google Patents

用于互连的自对准阻挡层 Download PDF

Info

Publication number
CN102132398A
CN102132398A CN2009801128160A CN200980112816A CN102132398A CN 102132398 A CN102132398 A CN 102132398A CN 2009801128160 A CN2009801128160 A CN 2009801128160A CN 200980112816 A CN200980112816 A CN 200980112816A CN 102132398 A CN102132398 A CN 102132398A
Authority
CN
China
Prior art keywords
metal
deposition
copper
manganese
sublayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801128160A
Other languages
English (en)
Other versions
CN102132398B (zh
Inventor
R·G·戈登
H·金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard College
Original Assignee
Harvard College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvard College filed Critical Harvard College
Publication of CN102132398A publication Critical patent/CN102132398A/zh
Application granted granted Critical
Publication of CN102132398B publication Critical patent/CN102132398B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76858After-treatment introducing at least one additional element into the layer by diffusing alloying elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76864Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76873Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1005Formation and after-treatment of dielectrics
    • H01L2221/101Forming openings in dielectrics
    • H01L2221/1015Forming openings in dielectrics for dual damascene structures
    • H01L2221/1036Dual damascene with different via-level and trench-level dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

用于集成电路的互连结构,其包括完全包围集成电路中的铜线的硅酸锰和氮化硅锰层,并提供用于制备这种互连结构的方法。硅酸锰形成抵抗铜从布线扩散出的阻挡层,从而保护绝缘体过早断裂,保护晶体管免于被铜降解。硅酸锰和氮化硅锰还增进了铜和绝缘体之间的强有力的附着,因此在制造和使用过程中保持了器件的机械完整性。在铜-硅酸锰和氮化硅锰界面上的强有力的附着还防止器件使用过程中由铜电子迁移引起的失效。含锰包覆层(sheath)还保护铜免于被环境中的氧气或水腐蚀。

Description

用于互连的自对准阻挡层
相关申请
本专利公开要求2008年3月21日提交的美国专利申请No.61/038,657;2008年4月8日提交的美国专利申请No.61/043,236;2008年6月20日提交的美国专利申请No.61/074,467的权益,在此通过引用这些申请将其全文并入本文。
版权声明
该专利公开可能包含受版权保护的材料。当其在美国专利和商标局的专利文件或记录中出现时,版权拥有人对专利文献的任何人的传真复制或专利公开没有异议,但另外保留任何及所有版权。
通过引用而并入
在此引用的所有专利、专利申请和公开均通过引用而以全文并入本文,以便更全面地描述截止在此描述的本发明的日期之前本领域技术人员已知的现有技术。
背景技术
铜(Cu)正在取代铝作为微电子器件如微处理器和存贮器的布线所选用的材料。然而,半导体例如硅中铜的存在引起了可妨碍半导体中形成的晶体管正常工作的缺陷。铜还提高通过置于铜导线之间的绝缘体例如二氧化硅的电流泄漏。因此,铜布线的使用需要包围铜导线的有效扩散阻挡体,以保持铜限定在其合适的位置。
铜还具有沿电子在电路中流动的方向移动的倾向。如果在铜互连中形成足够大的空位,则该电子迁移过程可导致提高的电阻或甚至开路。大多数这种不希望的移动沿铜的表面发生。因此,关键是用抑制电迁移的材料包围铜互连来维持长的寿命。金属钽(Ta)在目前使用的铜互连的底部和侧部起到这种作用。铜布线的顶部(未通过过孔连接到上级的那些部分)典型地被SiC或Si3N4覆盖,尽管这些材料在阻止铜的电迁移方面不如Ta有效。SiC或Si3N4还具有缺点,它们具有比绝缘体的余部更高的介电常数,所以它们增加了电路的电容,并减少了信号可通过线路传输的速度。
阻止电迁移提高寿命已经通过含磷的钴钨合金(CoWP)或含硼的钴钨合金(CoWB)选择地无电沉积在铜导线顶部实现。期望这种选择方法避免这些导电合金在绝缘体表面上的任何沉积。因此,它应在通过CMP步骤暴露的铜的所有表面的顶部形成自对准导电扩散阻挡体。然而,这种选择性的故障(breakdown)引起Cu导线之间的绝缘体上方的一些电短路,使得该方法对大规模生产来说不可靠。该自对准方法的另一个缺点是合金阻挡体保留在随后由填充Cu的过孔接触的部分Cu上。在这些区域,CoWP或CoWB合金变成电路的一部分,并增加了其电阻值,该电阻值高于在过孔和合金层下的Cu之间没有合金层时电路将具有的较低电阻值。
铜过孔和下方的铜之间的直接、低阻值接触已经证明,通过使用溅射Cu-Mn合金籽晶层随后电镀和然后热退火以在Cu-Mn合金和绝缘体之间界面上的形成自对准MnSixOy扩散阻挡层。假定热退火从Cu-Mn层除去Mn,使得余下的较纯Cu具有低电阻。Mn扩散或者在绝缘体上形成MnSixOy层,或者Mn扩散到Cu的顶部自由表面,在那里其通过在退火气氛下与氧气反应形成MnOx层(可能x =2)。该MnOx层随后与其余过量铜一起在CMP过程中被除去。该方法的缺点是,在假定增加晶粒尺寸从而降低Cu电阻的退火过程中,Cu中存在Mn杂质。退火过程中Mn杂质的存在可限制晶粒生长,从而增加了Cu的最终电阻,高于没有Mn杂质存在时Cu可能具有的电阻。该方法的另一个缺点是,即使在退火后一些Mn杂质仍可能留在铜中,从而增加了其电阻,该电阻高于纯Cu的电阻。
还提出的是,为了形成可以作为扩散阻挡层的MnOx层,在含氧气氛中将Mn扩散到铜互连的上表面。然而,这样的MnOx层对铜附着性很弱,因此这样的结构的电迁移寿命是不希望的短的。
进一步提出的是,使用CVD或ALD以及含锰金属有机前体和含氧气体形成用于铜的氧化锰阻挡层。然而,这样的氧化锰阻挡层在绝缘体表面形成,而不是扩散到绝缘体内。因此,MnO阻挡层占用了否则可以被导电铜金属所占用的空间,因此不希望地增加了铜导线的电阻。此外,铜对这样的氧化锰阻挡体的附着性可能低于抵抗电迁移的机械稳定性和长寿命所需的值。
概述
本技术涉及在微电子学中使用的铜互连,更特别地,涉及确保铜与周围材料之间牢固附着的材料和技术,提供阻挡体以防止铜从布线扩散出来,保持氧气和水不向铜内扩散,保持铜导线不受其所承载的电流损害。
描述了一种方法,该方法用于在微电子器件中形成自对准扩散阻挡体,而没有退火期间或退火后于Cu中存在金属杂质的缺点。在一个实施方案中,在含Cu籽晶层沉积之前,使金属如Mn、Cr或V与过孔和沟槽内的绝缘体表面反应。优选地,将Mn、Cr或V通过保形化学气相沉积(CVD)方法输送到表面,该方法不涉及使用任何含氧共反应物以及Mn、Cr或V的前体。因此,通过在过孔底部形成金属氧化物,该方法不增加过孔电阻。金属反应之后,优选通过CVD沉积Cu籽晶层。籽晶层还可以以铜化合物如铜氧化物(Cu2O),铜氮化物(Cu3N)或铜氧氮化物(CuOzNw)的形式沉积,随后将铜化合物还原为铜。
在本发明另一个方面,刚好在CMP步骤后,将Mn、Cr或V沉积在部分完成的互连的平坦表面上。在表面的绝缘部分顶部,使Mn、Cr或V与绝缘体中所含的硅和氧反应,以形成绝缘金属硅酸盐层,例如MnSixOy层,其中金属是锰。在金属Mn在Cu线顶部(填充有Cu的沟槽顶部)沉积的区域,使锰溶解到Cu的顶层中以形成Cu-Mn合金。然后,在Cu-Mn和MnSixOy区域上方,形成用于下一较高级绝缘体的绝缘体的包覆沉积(blanket deposition)。在其中该绝缘体的最初沉积的部分是Si3N4的实施方案中,在沉积期间和/或随后的退火期间,Cu-Mn表面层中的Mn向上扩散以与绝缘体反应,从而在Cu和绝缘体之间形成MnSixNy扩散阻挡体。该MnSixNy层的存在还增加了铜和其上方的绝缘体之间的附着。
这些方面的结合导致强有力的粘附扩散阻挡层和在Cu所有表面包围Cu的附着层。这些MnSixOy和MnSixNy层提供用于例如生产电子元件、电路、器件和系统的高导电性、强粘附性和耐久的铜层。
在某些实施方案中,本申请描述了形成集成电路互连结构的方法。该方法包括:提供部分完成的互连的结构,该结构包括电绝缘区和导电含铜区,部分完成的互连结构具有基本上平坦的表面;将选自锰、铬和钒的金属(M)沉积在至少一部分的导电含铜区之上或之中;将绝缘膜沉积在至少一部分的沉积金属上,其中与所述至少一部分的沉积金属接触的沉积的绝缘膜区域基本上是不含氧的;和使至少一部分的沉积金属与绝缘膜反应以形成阻挡层,其中导电含铜区基本上是不含金属元素(M)的。
在其它实施方案中,该方法包括:提供具有过孔或沟槽的部分完成的互连的结构,该过孔或沟槽包括由一种或多种电绝缘材料限定的侧壁和导电含铜底部区;将选自锰、铬和钒的金属(M)沉积在部分完成的互连结构上;通过使沉积金属与所述一种或多种电绝缘材料反应形成第二绝缘侧壁区;将金属从底部区移除或扩散出去,以暴露导电含铜底部区;和用铜填充过孔或沟槽。
在其它实施方案中,锰可以由铬或钒取代。
由以下描述和附图以及由权利要求,将清楚本发明的其它的特征和优点。
附图简要说明
图1是化学机械抛光(CMP)步骤后根据本发明的部分完成的互连布线结构的示意横截面图。
图2是在金属沉积后的图1的结构。
图3是除去金属硅酸盐后的图2的结构。
图4是沉积包覆绝缘体后的图3的结构。
图5是光刻和蚀刻绝缘体中的过孔和沟槽后的图4的结构。
图6是退火后的图5的结构。
图7是另一金属沉积后的图6的结构。
图8是退火后的图7的结构。
图9是籽晶层沉积和填充铜后的图8的结构。
图10是化学机械抛光后的图9的结构。
图11是在Cu/SiO2/Si衬底上CVD Mn的结果的横截面高分辨率的透射显微照片。
图12是在500℃下退火和蚀刻掉Cu后(a)Cu/SiO2/Si和(b)Cu/MnSixOy/Si的扫描电镜照片及表面元素分析。
图13显示在400℃下退火之前和之后试样(a)Cu/SiO2/Si和(b)Cu/MnSixOy/SiO2/Si的电容-电压曲线。
图14显示在1MV/cm电场强度下在250℃下退后之前和之后,试样(a)Cu/SiO2/Si和(b)Cu/MnSixOy/SiO2/Si的电容-电压曲线。
图15显示通过CVD在低k绝缘体上形成的MnSixOy层的横截面图。
本发明的详细说明
图1显示了用于微电子器件的部分完成的多级布线结构。该结构包括基本上平坦的表面,该平坦表面包括绝缘区域10(例如氧化硅)和形成完成的较低级布线顶部的导电区域20(例如铜),这两个区域由扩散阻挡体25分隔。在一些实施方案中,该扩散阻挡体可以包括硅酸锰。典型地,在该阶段的器件已经通过CMP及随后的清洁而被处理。
接下来,将Mn金属沉积在表面上。Mn与绝缘体10的暴露区域反应以形成图2中标记为30的绝缘MnSixOy层。在表面20的暴露的Cu区,Mn扩散到Cu的上部以形成CuMn合金40。沉积之前的上表面的位置用箭头45、45′表示。典型地,将Mn沉积在加热的衬底上。如果衬底温度足够高(典型地超过150℃)且Mn的沉积足够慢,那么Mn的反应和扩散可能在沉积结束时完成。如果沉积期间与绝缘体的反应以及向Cu中的扩散未完成,那么沉积后的退火可用于完成反应和扩散。
可以通过任何常规的方法沉积Mn,包括化学和物理方法。化学方法包括化学气相沉积(CVD)和原子层沉积(ALD)。物理方法包括溅射和蒸发。因为衬底是平坦的,所以沉积方法的阶梯(step)覆盖性对该步骤来说不重要。因此具有差的阶梯覆盖性的物理方法,对该沉积步骤来说是合适的。CVD法也可用在该步骤中,不论特定的CVD法是否具有良好的阶梯覆盖性。
Mn沉积后MnSixOy层30可以任选地除去,如图3所示。在上一步骤中形成的MnSixOy层30是电绝缘体,但在一些应用中其泄漏电流可能高于预期。在这种情况下,该金属硅酸盐层30可以被除去,以便减少器件中的泄漏电流。硅酸盐层30可以通过任何方便的方法如抛光、湿蚀刻或干蚀刻除去。除去可能是非选择性的,从而与除去硅酸盐同样的速度除去铜,由此保持平的表面。或者,硅酸盐层30可以选择性地被除去而不除去铜,如图3所示。由此产生的不平表面要求保形方法来在下一步骤中沉积包覆绝缘体。
如图4所示,接着将包覆绝缘体50沉积在该结构上。注意,图4中的结构包括绝缘层10上方的硅酸盐层30。可以使用本领域中已知的任何方法制备该绝缘层,这些方法包括等离子增强CVD或旋涂。可以使用包含Si和O的绝缘体组合物。在某些实施方案中,可以使用包括Si但是基本上不含O的绝缘体组合物,例如SiN、SiC、SiCN等。在某些实施方案中,绝缘体层可以通过沉积多个绝缘材料的子层构建,每个都为整个绝缘层添加特定功能。例如,可以使用第一绝缘子层51,例如Si3N4,该层增强了与其下的锰掺杂的铜层的附着。在某些实施方案中,子层51基本上不含氧。在某些实施方案中,相比通过含氧的子层51的附着所获得的与锰掺杂铜层的附着,基本不含氧的子层51可以增强与锰掺杂的铜层的附着。接下来,止蚀(etch-stop)子层52例如碳化硅可以沉积在子层51的顶部。止蚀子层52可有助于限定用于蚀刻孔洞(过孔)的合适深度。在某些实施方案中,接下来的绝缘子层53可以是具有非常低的介电常数(典型地k小于约2.5)的多孔电介质。最终的绝缘子层54可以是具有较高介电常数(k大于约2.5)的较致密的非多孔电介质,这可有助于保护较脆弱的多孔电介质层免于机械损害,以及保持水免于进入多孔电介质的孔中。在某些实施方案中,子层53和54可以包含Si和O。子层53的另一功能可以是作为止蚀层,用于限定贯穿子层54的沟槽的底部。如本领域技术人员容易理解的,特定绝缘体层50的许多变体(例如厚度、层组合、材料组成等)都在本发明的范围内。为简化起见,对本发明中的绝缘层50的任何参照都应当理解为包括一个或多个在此描述的子层。
使用光刻和蚀刻将孔(过孔)100和沟槽110摹刻(pattern)到绝缘体层50中。最终结构的示意横截面图如图5所示。
将该结构退火以在绝缘氧化硅层50和CuMn合金层40之间的界面处形成MnSixNy层60(假设使用Si3N4作为子层51),如图6所示。MnSixNy层60充当阻挡体,抵抗Cu扩散出层20,还提供Cu 20和绝缘体50之间的强附着。MnSixNy还可以用来防止氧或水由绝缘体层50扩散到Cu层20中。退火后,将来自于Mn-Cu合金层40的大多数Mn置于MnSixNy层60中;然而,一些Mn可能在退火期间迁移到层20的上表面以形成氧化锰层(未显示)。可以通过定向溅射、或通过由气体例如甲酸或由液体酸溶液选择性地蚀刻来除去保留在Cu表面上的任何氧化锰。这由Cu层20的上表面和接邻的MnSixNy层60之间的轻微凹处65所显示。
接下来,优选通过保形方法例如CVD或ALD沉积另一Mn层。该步骤在过孔和沟槽的壁上形成层80,如果采用氧化硅作为子层54,氮化硅作为子层51,那么该层80可在顶部附近的MnSixOy和底部附近的MnSixOy之间变化。该步骤可以进一步在绝缘体层50的上表面形成MnSixOy顶层90,如图7所示。最初在层20的暴露铜表面上形成CuMn合金层70,但是Mn然后扩散形成多个的绝缘体表面例如层60。如果在沉积结束时不能完成这些层的形成,则可以采用另外的退火和可能的酸蚀刻以形成图8中所示的结构,其中铜20层基本无Mn杂质。
接下来,优选通过保形方法例如CVD、ALD或IPVD形成Cu的籽晶层。然后,通过电镀填充过孔和沟槽以形成图9中所示的结构。将该纯Cu层120退火以增加晶粒尺寸并减小电阻。
最后,通过CMP除去多余的铜以构成图10中所示的结构。本阶段与图1的结构相对应,而又完成一个阶段的布线。
在一个或多个实施方案中,使用气相沉积来沉积选自Mn、Cr和V的金属M。式[M(AMD)m]n的脒基金属(metal amidinate)化合物可以用作前体,其中AMD是脒基配位体,典型地m=2或3和m=1或2。在m=2和n=1的情况下,这些化合物可具有以下结构:
其中,R1、R2、R3、R1′、R2′和R3′是由一个或多个非金属原子构成的基团,例如氢、烃基、取代烃基和其它非金属原子基团。在一种用于沉积锰的CVD方法中,使脒基锰蒸气与加热的衬底接触。如果衬底是Cu,则形成CuMn合金。如果衬底含硅和氧,则形成MnSixOy绝缘表面层。为了形成这些层,加热表面的温度应该足够高,典型地超过150℃,或者优选超过300℃。
在一个或多个实施方案中,含Mn前体可以是具有式[Mn(AMD)m]n结构的脒基锰,其中AMD为脒基,m=2或3,n可以为1-3。m=2,n=1的这些组合物中的一些具有结构1,
Figure BPA00001234739700091
其中,R1、R2、R3、R1′、R2′和R3′是由一个或多个非金属原子构成的基团,例如氢、烃基、取代烃基和其它非金属原子基团。在一些实施方案中,R1、R2、R3、R1′、R2′和R3′可以独立地选自氢、烷基、芳基、烯基、炔基、三烷基甲硅烷基、烷基酰胺基或者氟烷基或其它非金属原子或基团。
示例性的烃基包括C1-C6烷基和C2-C6烯基和C2-C6的炔基。它们可以是分枝或不分枝的。
“烷基”是指可为直链或者支链或者环烃基的饱和烃链,包含指定的碳原子数。例如,C1-C6表示该基团可能在其中具有1-6(内含)个碳原子。烷基的实例包括但不限于乙烷基、丙烷基、异丙基、丁基和叔丁基。环烷基的实例包括但不限于环丙基、环丙基甲基、环丁基、环戊基、环己基、环己基甲基、环己基乙烷基和环庚基。
“C2-C6烯基”是指含有2-6个碳原子和至少一个双键的直链或者支链不饱和烃基。C2-C6烯基的实例包括但不限于,通过由乙烯、丙烯、1-丁烯、2-丁烯、异丁烯、仲丁烯、1-戊烯、2-戊烯、异戊烯、1-己烯、2-己烯、3-己烯和异己烯除去氢获得的基团。
“C2-C6炔基”是指含有2-6个碳原子和至少一个三键的直链或支链不饱和烃基。C2-C6炔基的实例包括但不限于,通过由乙炔、丙炔、1-丁炔、2-丁炔、异丁炔、仲丁炔、1-戊炔、2-戊炔、异戊炔、1-己炔、2-己炔和3-己炔中除去氢获得的基团。
“取代烃基”是指包含能够进一步用其它官能团(例如卤素或硼、或者含硼基团)取代的含1-6个碳原子的饱和或不饱和、直链或支链烃基。
“卤素”是指氟、氯、溴或碘的原子。卤代烃包括氟化、氯化或溴化烷基。示例性的氟化烃包括氟烷基、氟烯基和氟炔基以及它们的组合。
“非金属原子基团”包括含氮和含硅的基团。示例性的含氮R基团包括胺(NR′R″),其中R′和R″包括H、C1-C6烷基、C2-C6烯基或C2-C6炔基及它们的组合的一种或多种。
示例性的含硅R基团包括甲硅烷基(SiR′R″R″′),其中R′、R″和R″′包括H、C1-C6烷基、C2-C6烯基或C2-C6炔基以及它们组合物中的一种或者多种。
在一些实施方案中,R1、R2、R3、R1′、R2′和R3′各自独立地是烷基或氟烷基或甲硅烷基烷基或烷基酰胺基。在一些实施方案中,Rn基团含有1至4个碳原子。在其它实施方案中,Mn前体为结构1的低聚物,n=2或更大。脒基锰可以包括二(N,N′-二异丙基戊脒基)合锰(II),与通式1中取R1、R2、R1′和R2′为异丙基而取R3和R3′为正丁基相对应。
在CVD方法中,二(N,N′-二异丙基戊脒基)合锰(II)蒸气流过已经加热到100至500℃、或更优选150至400℃的表面。在暴露的铜表面上形成CuMn合金。在绝缘区上方形成MnSixOy层作为扩散阻挡体。在一些实施方案中,MnSixOy层和CuMn层中的锰含量与具有1至10nm厚度或更优选2至5nm厚度的锰金属膜相等。或者,蒸气在超过90℃的温度下与氢气(H2)混合,并用于CVD方法。
脒基锰可以通过任何传统的方法制得。参见例如WO 2004/046417,该申请通过引用以其全文并入本文。
在一个或多个实施方案中,金属前体可以包括环戊二烯基(cyclopentadienyl)和羰基配位体,对应通式(Cp)qMr(CO)s,其中Cp为被至多五个基团取代的环戊二烯基,q、r和s可以是任何正整数。这些化合物可具有以下结构:
Figure BPA00001234739700111
在一个或多个实施方案中,含Mn前体可以是具有式(Cp)Mn(CO)3的环戊二烯三羰基锰。这些化合物的一些具有结构2,
Figure BPA00001234739700112
其中R1、R2、R3、R4和R5基团由一个或多个非金属原子构成,例如氢、烃基、取代烃基和其它非金属原子,如本文以上所述。在一些实施方案中,R1、R2、R3、R4和R5可以独立地选自氢、烷基、芳基、烯基、炔基、三烷基甲硅烷基或氟烷基或其它非金属原子或基团。在一些实施例中,R1、R2、R3、R4和R5各自独立地是烷基或氟烷基或甲硅烷基烷基或烷基酰胺基。在一些实施方案中,Rn基团包含1至4个碳原子。该类型的优选化合物是可商购的三羰基甲基环戊二烯基锰,(MeCp)Mn(CO)3,其中R1为甲基,其它Rn’为氢。
在一个或者多个实施方案中,金属前体可包括两个Cp配位体,具有式M(Cp)2,其中Cp是被至多五个基团取代的环戊二烯基。该化合物可具有以下结构:
Figure BPA00001234739700121
在一个或多个实施方案中,含锰前体可为具有式Mn(Cp)2的环戊二烯基锰。这些化合物的一些具有式3,
Figure BPA00001234739700122
其中R1、R2、R3、R4、R5、R1’、R2’、R3’、R4’和R5’是一种或多种非金属原子构成的基团,例如氢、烃基、取代烃基和其它非金属原子基团,如本文以上所述。在一些实施方案中,R1、R2、R3、R4、R5、R1’、R2’、R3’、R4’和R5’可以独立地选自氢、烷基、芳基、烯基、炔基、三烷基甲硅烷基或氟烷基或其它非金属原子或基团。在一些实施例中,R1、R2、R3、R4、R5、R1’、R2’、R3’、R4’和R5’各自独立地是烷基或氟烷基或甲硅烷基烷基或烷基酰胺基。在一些实施方案中,Rn基团包含1至4个碳原子。
可以通过例如CVD或ALD的方法保形地沉积铜的籽晶层。例如,Zhengwen Li,Antti Rahtu and Roy G.Gordon在Journal of theElectrochemical Society,volume 153,pages C787-C794(2006)和Zhengwen Li and Roy G.Gordon在journal Chemical VaporDeposition,volume 12,pages 435-441(2006)描述了ALD方法。Hoon Kim,Harish B.Bhandari,Sheng Xu and Roy G.Gordon在Journal  of  the Electrochemical  Society,volume  155,issue7,pages H496-H503(2008)发表的论文中描述了CVD方法。在该文献中,使用传统的气相沉积技术首先沉积氮氧化铜或者氧化铜的平滑薄层,然后通过在室温下用氢等离子还原将沉积的层还原为平滑铜膜。将氧化铜膜还原为金属铜的另一种方法是通过与还原剂例如二甲胺硼烷或者金属硼氢化物的液体溶液反应。
一旦通过这些方法中的一种制得薄的、保形的铜籽晶层,就可以使用电化学沉积通过本领域已知技术用铜填充沟槽和过孔。电化学沉积具有可以用成本有效的方法提供无隙或缝的纯铜的优点。
在上述说明中,关于锰金属描述了本发明。然而,本发明也包括钒和铬金属,且这些金属可以与本文所述的锰金属互换。例如,上述前体可以是具有[Cr(AMD)m]n或[Cr(AMD)m]n结构的脒基铬或脒基钒,其中AMD是脒基,m=2或3,n可为1至3。
实施例1
作为用于锰的前体的化合物称为二(N,N′-二异丙基丙脒基)合锰(II)(bis(N,N′-diisopropylpropionamidinato)manganese(II)),其化学式如下显示。
Figure BPA00001234739700131
通过如下方法合成该化合物。使用惰性气氛箱或标准Schlenk技术在纯双氮气氛下进行所有的反应和操作。在进行反应前,将所有玻璃器皿在150℃的烘箱中存贮于超过12小时。将二乙醚采用革新性技术溶剂净化系统提纯,并且由净化新近使用而无任何存贮。丁基锂(1.6M在正己烷中),N,N′-二异丙基碳二亚胺、氯化锰(II)(无水珠粒(anhydrous bead))购自A ldrich,并以接受状态使用。在真空中进行体积减少(volume reduction)和蒸发步骤。
二(N,N′-二异丙基丙脒基)合锰(II)。在-30℃下,将丁基锂溶液(1.6M在正己烷中,100ml,160mmol)逐滴加入到良好搅拌的250ml二乙醚中的N,N′-二异丙基碳二亚胺(20.2g,160mmol)溶液中。在允许变暖到周围环境之前使浅黄色混合物在-30℃下保持4个小时。将氯化锰(10.0克,79.5mmol)作为固体加入到溶液中,搅拌反应混合物,直到所有粉红色的氯化锰珠粒反应(约48小时)。通过玻璃熔块(glass frit)上的Celite衬垫过滤由此产生的云状橙色混合物,以产生透明的橙褐色溶液。除去所有的挥发物,留下黄褐色固体,将该固体在120℃,20毫乇下真空蒸馏到冷凝器中,将接收瓶加热到超过60℃,产物的熔化温度。当将其冷却至室温时,浅黄色液体冷凝物在接收瓶中固化,得到27.4克、65mmol或者82%产率的纯产物。二(N,N′-二异丙基丙脒基)合锰(II)是浅黄色结晶固体,当将其暴露在空气中时迅速变成黑色。
对于CVD实验,将液态锰前体在90℃的温度下蒸发到高度净化的氮气流(水和氧气的浓度小于N2的10-9)中。在该温度下,前体的蒸气压估计约0.1毫巴。
氧化硅衬底要么为热氧化的硅要么为通过等离子增强CVD或ALD沉积的氧化硅。在管式炉中的热壁管式反应器(直径36mm)中在200-400℃的温度下于约为5乇的总压下进行CVD。N2载气的流量为60sccm。通过Rutherford背散射光谱(RBS)测量沉积的锰量。
通过横截面高分辨率透射电子显微镜(HRTEM)评价MnSixOy的形成。用四种方法测试作为铜扩散阻挡体的MnSixOy的有效性:光学外观、薄层电阻、Cu硅化物的形成以及电容器的电容-电压(CV)分析。对于铜扩散测试,在215℃下通过ALD方法在HF蚀刻的硅晶片上生长8nm厚的SiO2层,随后在350℃下CVD Mn 10分钟,其沉积的Mn金属的量等于2.3nm厚的Mn金属膜,该Mn金属膜与氧化硅表面反应以形成较厚的MnSixOy层。SiO2的对照试样省略了CVD Mn处理。然后将约200nm厚的铜层沉积在CVD MnSixOy或SiO2层的顶部。在400、450和500℃的温度下于纯氮气氛下进行退火1小时。为了CV分析,将CVD Mn沉积在300nm的热SiO2上。由通过遮光板的热蒸发形成Cu垫(500μm直径圆形)。
沉积在SiO2上的薄Mn层(相当于2.3nm厚的Mn金属层)不具有大的导电性,大概是因为Mn与绝缘体反应形成具有高电阻率的MnSixOy。因此,这个结果没有证明金属Mn的沉积。为了确认Mn金属得到最初沉积,将Mn沉积在已经蒸发到SiO2/Si衬底上的50nm厚的Cu上。通过横截面HRTEM检查产生的结构。图11显示了CVD Mn金属穿过Cu层扩散并与SiO2反应以在Cu和SiO2之间形成约2-5nm厚的无定形MnSixOy层。在铜中的晶界附近的MnSixOy层较厚,沿该晶界Mn扩散得较快。这个结果是Mn金属沉积的清楚证明。
这些层显示了Mn沉积后的强附着。在胶带附着性测试后,没有材料被除去。采用四点弯曲测试,测得这些层的附着性在数量上大于5Jm-2。这个值高到足以经受得住CMP 以及随后的微电子器件中的机械压力。在对照实验中,沉积在SiO2上的Cu(无后续Mn沉积)因其不良附着而容易被胶带拉掉。
用试样结构PVD Cu(200nm)/CVD Mn(2.3nm)/ALD SiO2(8nm)/Si评价MnSixOy作为铜阻挡体的有效性。在Cu和ALD SiO2层之间形成MnSixOy层。在400或450℃下在氮气中通过退火未改变这些试样的光泽Cu色以及薄层电阻。在500℃退火之后,无Mn的对照试样变黑,并且其薄层电阻提高到200倍,因为铜贯穿薄的ALD SiO2大量扩散到硅中。相比之下,即使在500℃,CVD Mn试样保留其光泽铜色,仅显示电阻略有增加。
为了分析铜扩散,将其余的Cu层溶解在硝酸中,然后用稀氢氟酸除去硅酸锰和氧化硅。然后通过能量色散型X射线谱仪(EDX)和扫描电镜(SEM)分析蚀刻表面。图12显示在500℃退火1小时后的SEM结果。极少的含Cu点似乎是由硅的晶向所定向的Cu硅化物微晶。对照试样显示其表面大部分被Cu硅化物所覆盖。在EDX分析中对照试样显示比硅信号强的巨大Cu信号,从而确认薄ALD SiO2允许Cu扩散。通过大面积EDAX,CVD Mn处理试样没有显示Cu。通过EDAX,极小区域的SEM图像确实显示了一些Cu,从而表明在500℃下的MnSixOy阻挡体的一些局部击穿。这些点可以由膜中的灰尘或者其它缺陷产生,其未在清洁房间的环境中进行处理。
通过将Cu摹刻到电容器电极中进行阻挡体性能的电测试。图13显示了在450℃退火1小时的试样的CV曲线。在对照试样中向负电压的巨大偏移(-4.9V)是由正的Cu离子向氧化硅绝缘体中扩散引起的。相比之下,被MnSixOy保护的氧化硅仅显示非常小的偏移(-0.1V)。对于少量的Cu扩散,这种电测试比其它测试更敏感。这些CV曲线还表明,通过CVD Mn处理,SiO2的电容并没有发生显著的变化。
在250℃下于施加的1MV/cm的电压下也进行了相似的电容器退火。偏压温度应力(BTS)测试是对于Cu扩散到SiO2中较敏感的方法。在BTS条件下(图14(a))仅2分钟之后对照试样丧失了电容行为,从而意味着大量的Cu扩散到Si中,使得Si不能作为半导体工作。然而,CVD Mn处理试样在其CV曲线(图14(b))中没有显著的变化。该BTS测试的结果证实了MnSixOy层的良好的Cu阻挡性能。
还发现MnSixOy层也是对能腐蚀铜层的氧和水的良好阻挡层。为了测试金属硅酸盐层如何好地保护铜,使来自Applied体aterials的商业低k多孔绝缘体层涂覆有上述的锰,随后是CVD铜。通过Science,volume 298,pages 402-406(2002)中所述的方法,用20nm的ALD氧化硅对铜的顶表面进行保护。将试样切割成片,以暴露低k绝缘体的边缘,使得氧或水蒸汽可以扩散到低k层。在300℃下暴露在干燥空气中24小时后,试样保持其光泽铜色。未CVD锰处理的对照试样在相同暴露下被腐蚀成暗的氧化铜。该测试表明,硅酸锰层是对氧的良好阻挡体。在潮湿气氛中(在85℃下,85%的湿度,持续24小时)进行相似测试显示硅酸锰层是对水蒸汽的良好阻挡体。
MnSixOy层的形成提高了Cu/SiO2界面的附着性,该界面在Mn的CVD之前没有通过胶带附着性测试,但在Mn的CVD之后则通过了。采用四点弯曲测试来测量附着性。通过Mn的CVD在硅晶片上的热氧化硅上制备试样。然后,在200℃下,通过铜N,N’-二仲丁基乙酰胺(N,N’-di-sec-butylacetamidinate)蒸气和氢气(H2)反应使用CVD形成铜。发现附着能是10.1±1J m-2。一般而言,5J m-2被认为是制造耐久互联的最低阈值要求。
使用横截面透射电子显微镜(TEM)使在低k绝缘体表面中的MnSixOy层成像(图15)。该图像显示MnSixOy层为暗的,无特征带,从而表明该层是无定形玻璃。通过横截面SEM和TEM的研究,证实了孔洞中CVD Mn和CuON沉积的保形性具有至多40∶1纵横比。
实施例2
用环戊二烯三羰基锰MnCp(CO)3代替二(二(N,N′-二异丙基-戊基脒基)合锰(II)重复实施例1。得到类似的结果。
实施例3
用铬代替锰重复实施例1。得到类似的结果。
实施例4
用矾代替锰重复实施例1。得到类似结果。
实施例5
获得了在Mn扩散的Cu和SiCN绝缘膜之间的改善附着性。进行Mn扩散的Cu和SiCN层之间的附着能的定量四点弯曲测试。50nm的铜蒸发到SiCN层上(BLoKTM,Applied Materials)。铜显示很差的附着性,具有低于3J m-2的附着能。接下来,在350℃下通过CVD Mn处理类似的Cu/SiCN层10分钟。因为铜中的锰杂质,该方法将薄层电阻从0.5欧姆/方提高到1欧姆/方。然后,将该结构在氮气氛中于400℃下退火1小时。然后薄层电阻返回到稍低于0.5欧姆每方,因为锰扩散到表面或界面。通过SIMS分析证实锰从Cu膜的向外扩散。在热处理之后,附着能明显增加 到大于12J m-2,因为锰扩散到界面并制得界面或反应层。该附着能大于在实施例1中得到的10.1±1J m-2
实施例6
观测到了在Mn扩散的铜和Si3N4层之间的甚至更大的附着性。如实施例1中通过CVD将20nm的铜沉积在先前通过等离子增强CVD涂覆Si3N4的硅晶片上。然后通过如实施例1中所述的CVD方法沉积2.3nm的锰。接下来,通过CVD沉积另外的20nm铜,随后通过等离子增强CVD(PECVD)沉积30nm的Si3N4。这些层的附着性很强以至于在四点弯曲测试期间不能分开。相反,高强度环氧树脂在超过80J m-2的脱粘能量密度下失效。因此观察到,使用Si3N4层而非实施例1中的氧化硅层在附着性上的至少8倍的提高。
未经CVD Mn步骤制得的对照试样在约7J m-2的显著较低的脱粘能量密度处失效。
这些结果表明,通过由CVD将Mn添加到Cu层中能够极大增强Cu与Si3N4封盖层之间的结合。Mn掺杂的Cu与封盖层的显著较强的结合能够抑制沿封盖线顶部的电迁移。因此,该封盖过程导致互连线在由电迁移使其失效之前具有显著更好的寿命。包含Mn、Si和N的界面结合层使铜金属与Si3N4结合强于含氧的界面层。
实施例7
此外,锰封盖过程能够保持铜线之间的绝缘。为了证明这种效果,使用被70nm宽的SiO2基绝缘线分开的长(~4厘米)并行的铜互联制备了梳理(comb)测试结构。通过化学-机械抛光准备上表面,使其基本上是平的。当在2伏特下测量时,线间的泄漏电流小于10-12安培。在如实施例1中持续5分钟的Mn的CVD以及20nm Si3N4的PECVD之后,泄漏电流维持在该低的基线水平。可能由于在CVD过程中铜晶粒尺寸增长,沿该线长度的电阻由其初始值略微下降。
当然,应该意识到,本领域的技术人员可以对本发明的方法作出各种修改和增加而不背离对现有技术做出的本贡献的精神和范围。因此应理解,试图由此给予的保护应被认为延伸到完全在本发明范围内的权利要求的主题及其所有等效物。

Claims (60)

1.一种用于形成集成电路互连结构的方法,所述方法包括:
a)提供部分完成的互连结构,该结构包括电绝缘区和导电含铜区,所述部分完成的互连结构具有基本上平坦的表面;
b)将选自锰、铬和钒的金属(M)沉积在至少一部分的导电含铜区之上或之中;
c)将绝缘膜沉积在至少一部分的沉积金属上,其中与所述至少一部分的沉积金属接触的沉积的绝缘膜区基本上是不含氧的;
d)使至少一部分的沉积金属与绝缘膜反应以形成阻挡层,其中导电含铜区基本上是不含金属元素(M)的。
2.权利要求1的方法,还包括进行光刻以在所述绝缘膜中形成至少一个过孔和/或沟槽。
3.权利要求2的方法,还包括沉积第二金属,该第二金属可以与沉积的金属相同或不同,并使至少一部分的沉积第二金属与绝缘膜反应以形成第二阻挡层。
4.权利要求3的方法,还包括用铜填充至少一个过孔和/或沟槽。
5.权利要求4的方法,还包括抛光铜从而获得具有基本上平坦表面的第二个部分完成的互连结构,其中所述第二个部分完成的互连结构包括电绝缘区和导电含铜区。
6.权利要求5的方法,其中将所述沉积金属、所述沉积绝缘膜、所述反应、所述进行光刻、所述填充和所述抛光中的至少一者进行重复。
7.权利要求1的方法,其中采用CVD或ALD进行沉积金属(M)。
8.权利要求1的方法,其中采用物理沉积方法进行沉积金属(M)。
9.权利要求1的方法,还包括将所述沉积金属扩散到至少一部分的导电区以形成铜金属合金。
10.权利要求9的方法,其中所述扩散包括热退火过程。
11.权利要求1的方法,还包括在所述沉积绝缘膜之前除去沉积在所述电绝缘区上或与所述电绝缘区反应的任何金属。
12.权利要求11的方法,其中所述除去采用抛光进行。
13.权利要求11的方法,其中所述除去采用化学蚀刻进行。
14.权利要求1的方法,其中所述沉积的绝缘膜包括硅和氮。
15.权利要求1的方法,其中所述反应包括热退火过程。
16.权利要求1的方法,其中金属是锰。
17.权利要求1的方法,其中使用具有式[M(AMD)m]n的脒基金属来沉积金属,其中AMD是脒基,m=2或3,n在1至3范围内。
18.权利要求17的方法,其中脒基金属具有结构
其中R1、R2、R3、R1′、R2′和R3′独立地选自氢、烷基、芳基、烯基、炔基、三烷基甲硅烷基或氟烷基或其它非金属原子或基团。
19.权利要求18的方法,其中R1、R2、R3、R1′、R2′和R3′各自独立地是烷基或氟烷基或甲硅烷基烷基或烷基酰胺基。
20.权利要求18的方法,其中脒基金属包括二(N,N′-二异丙基戊基脒基)合锰(II),其中R1、R2、R1′和R2′为异丙基,R3和R3′为正丁基。
21.权利要求1的方法,其中用具有式(Cp)qMr(CO)s的环戊二烯基羰基金属沉积金属,其中Cp为被至多五个基团取代的环戊二烯基,q、r和s是正整数。
22.权利要求21的方法,其中环戊二烯基羰基金属具有结构
Figure FPA00001234739600032
其中R1、R2、R3、R4和R5独立地选自氢、烷基、芳基、烯基、炔基、三烷基甲硅烷基或氟烷基或其它非金属原子或基团。
23.权利要求22的方法,其中R1、R2、R3、R4和R5各自独立地是烷基或氟烷基或甲硅烷基烷基或烷基酰胺基。
24.权利要求21的方法,其中环戊二烯基羰基金属包括三羰基甲基环戊二烯基锰(MeCp)Mn(CO)3
25.权利要求1的方法,其中用具有式M(Cp)2的环戊二烯基金属沉积金属,其中Cp是被至多五个基团取代的环戊二烯基。
26.权利要求25的方法,其中环戊二烯基金属具有结构
Figure FPA00001234739600041
其中R1,R2、R3、R4、R5、R1’、R2’、R3’、R4’和R5’是独立地选自氢、烷基、芳基、烯基、炔基、三烷基甲硅烷基或氟烷基或其它非金属原子或基团。
27.权利要求26的方法,其中R1,R2、R3、R4、R5、R1’、R2’、R3’、R4’和R5’各自独立地是烷基或氟烷基或甲硅烷基烷基或烷基酰胺基。
28.权利要求1的方法,其中所述绝缘膜包括至少一个绝缘子层。
29.权利要求28的方法,其中所述子层包括增强附着性的子层、止蚀子层、多孔介电子层和较致密介电子层。
30.权利要求29的方法,其中所述增强附着性的子层是氮化硅,所述止蚀子层是碳化硅,所述多孔介电子层具有低于2.5的介电常数,且所述较致密介电子层具有超过2.5的介电常数。
31.一种用于形成集成电路互连结构的方法,所述方法包括:
a)提供具有过孔或沟槽的部分完成的互连结构,所述过孔或所述沟槽包括由一种或多种电绝缘材料限定的侧壁和导电含铜底部区;
b)将选自锰、铬和钒的金属(M)沉积在部分完成的互连结构上;
c)通过沉积金属与所述一种或多种电绝缘材料反应形成第二绝缘侧壁区;和
d)将金属从底部区移除或扩散出去,以暴露所述导电含铜底部区;及
e)用铜填充所述过孔或所述沟槽。
32.权利要求31的方法,还包括:
f)将填充到所述过孔或所述沟槽内的任何过量铜除去,从而获得具有基本上平坦表面的第二个部分完成的互连结构,所述第二个部分完成的互连结构包括电绝缘区和导电含铜区。
33.权利要求32的方法,还包括:
g)将选自锰、铬和钒的第二金属(M)沉积在至少一部分的导电含铜区之上或之中;
h)将绝缘膜沉积在至少一部分的沉积第二金属上,其中与所述至少一部分的沉积第二金属接触的绝缘膜区基本上不含氧;
i)使至少一部分的沉积第二金属与绝缘膜反应以形成阻挡层,其中导电含铜区基本上不含金属元素(M)。
34.权利要求33的方法,还包括:
j)进行光刻以在所述绝缘膜中形成过孔或沟槽,以便获得具有过孔或沟槽的部分完成的互连结构。
35.权利要求34的方法,还包括:将所述沉积金属、所述形成第二绝缘侧壁、所述移除或扩散出、所述填充、所述沉积第二金属、所述沉积绝缘膜、所述反应和所述进行光刻中的至少一者进行重复。
36.权利要求31的方法,其中采用CVD或ALD进行沉积所述金属(M)。
37.权利要求31的方法,其中采用物理沉积方法进行所述沉积金属(M)。
38.权利要求33的方法,还包括将所述的沉积第二金属扩散到至少一部分的导电区,以形成铜金属合金。
39.权利要求38的方法,其中所述扩散包括热退火过程。
40.权利要求31的方法,还包括在所述沉积绝膜之前除去沉积在所述电绝缘区上或与所述电绝缘区反应的任何第二金属。
41.权利要求40的方法,其中所述除去采用抛光进行。
42.权利要求40的方法,其中所述除去采用化学蚀刻进行。
43.权利要求31的方法,其中电绝缘材料包括硅和氧。
44.权利要求31的方法,其中电绝缘材料包括硅和氮。
45.权利要求33的方法,其中所述反应包括热退火过程。
46.权利要求31的方法,其中金属是锰。
47.权利要求31的方法,其中使用具有结构[M(AMD)m]n的脒基金属来沉积金属,其中AMD是脒基,m=2或3,n在1至3范围内。
48.权利要求47的方法,其中脒基金属具有结构
Figure FPA00001234739600071
其中R1、R2、R3、R1′、R2′和R3′独立地选自氢、烷基、芳基、烯基、炔基、三烷基甲硅烷基或氟烷基或其它非金属原子或基团。
49.权利要求48的方法,其中R1、R2、R3、R1′、R2′和R3′各自独立地是烷基或氟烷基或甲硅烷基烷基或烷基酰胺基。
50.权利要求48的方法,其中脒基金属包括二(N,N′-二异丙基戊基脒基)合锰(II),其中R1、R2、R1′和R2′为异丙基,R3和R3′为正丁基。
51.权利要求31的方法,其中使用具有结构(Cp)qMr(CO)s的环戊二烯基羰基金属来沉积金属,其中Cp为被至多五个基团取代的环戊二烯基,q、r和s是正整数。
52.权利要求51的方法,其中环戊二烯基羰基金属具有结构
Figure FPA00001234739600081
其中R1、R2、R3、R4和R5基团独立的选自氢、烷基、芳基、烯基、炔基、三烷基甲硅烷基或氟烷基或其它非金属原子或基团。
53.权利要求52的方法,其中R1、R2、R3、R4和R5各自独立地是烷基或氟烷基或甲硅烷基烷基或烷基酰胺基。
54.权利要求53的方法,其中环戊二烯基羰基金属包括三羰基甲基环戊二烯基锰(MeCp)Mn(CO)3
55.权利要求31的方法,其中使用具有结构M(Cp)2的环戊二烯基金属来沉积金属,其中Cp是被至多五个基团取代的环戊二烯基。
56.权利要求55的方法,其中环戊二烯基金属具有结构
Figure FPA00001234739600082
其中R1、R2、R3、R4、R5、R1’、R2’、R3’、R4’和R5’独立地选自氢、烷基、芳基、烯基、炔基、三烷基甲硅烷基或氟烷基或其它非金属原子或基团。
57.权利要求56的方法,其中R1、R2、R3、R4、R5、R1’、R2’、R3’、R4’和R5’各自独立地是烷基或氟烷基或甲硅烷基烷基或烷基酰胺基。
58.权利要求33的方法,其中所述的绝缘膜包括至少一个绝缘子层。
59.权利要求58的方法,其中所述的子层包括增强附着性的子层、止蚀子层、多孔介电子层,以及较致密介电子层。
60.权利要求59的方法,其中所述增强附着性的子层为氮化硅,所述止蚀子层为碳化硅,所述多孔介电子层具有低于2.5的介电常数,所述较致密介电子层具有高于2.5的介电常数。
CN200980112816.0A 2008-03-21 2009-03-20 用于互连的自对准阻挡层 Expired - Fee Related CN102132398B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US3865708P 2008-03-21 2008-03-21
US61/038,657 2008-03-21
US4323608P 2008-04-08 2008-04-08
US61/043,236 2008-04-08
US7446708P 2008-06-20 2008-06-20
US61/074,467 2008-06-20
PCT/US2009/037826 WO2009117670A2 (en) 2008-03-21 2009-03-20 Self-aligned barrier layers for interconnects

Publications (2)

Publication Number Publication Date
CN102132398A true CN102132398A (zh) 2011-07-20
CN102132398B CN102132398B (zh) 2015-01-28

Family

ID=41091558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980112816.0A Expired - Fee Related CN102132398B (zh) 2008-03-21 2009-03-20 用于互连的自对准阻挡层

Country Status (6)

Country Link
US (2) US7932176B2 (zh)
JP (1) JP5820267B2 (zh)
KR (2) KR101649714B1 (zh)
CN (1) CN102132398B (zh)
HK (1) HK1159852A1 (zh)
WO (1) WO2009117670A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768988A (zh) * 2012-07-25 2012-11-07 上海华力微电子有限公司 一种有效判定铜扩散阻挡层阻挡能力的方法
CN104103575B (zh) * 2013-04-10 2017-12-29 中芯国际集成电路制造(上海)有限公司 铜互连线的形成方法
CN108047274A (zh) * 2017-12-15 2018-05-18 江南大学 一种铜互连阻挡层材料用吡啶基Mn(Ⅱ)化合物
CN110024105A (zh) * 2016-12-31 2019-07-16 英特尔公司 用于改善短路裕量的硬化插塞
CN112687617A (zh) * 2020-12-24 2021-04-20 中国电子科技集团公司第十三研究所 绝缘子针的制备方法及绝缘子针

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783561B2 (ja) * 2004-09-27 2011-09-28 株式会社アルバック 銅配線の形成方法
EP1909320A1 (en) * 2006-10-05 2008-04-09 ST Microelectronics Crolles 2 SAS Copper diffusion barrier
KR101649714B1 (ko) 2008-03-21 2016-08-30 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 상호접속부를 위한 자기정렬 배리어 층
JP5280267B2 (ja) * 2009-03-27 2013-09-04 株式会社日本総合研究所 製造方法および車両
JP5507909B2 (ja) * 2009-07-14 2014-05-28 東京エレクトロン株式会社 成膜方法
CN102859662B (zh) * 2009-10-23 2015-11-25 哈佛大学校长及研究员协会 用于互连的自对准阻挡层和封盖层
KR101802406B1 (ko) 2009-11-27 2017-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작방법
US8138084B2 (en) * 2009-12-23 2012-03-20 Intel Corporation Electroless Cu plating for enhanced self-forming barrier layers
US20110266676A1 (en) * 2010-05-03 2011-11-03 Toshiba America Electronic Components, Inc. Method for forming interconnection line and semiconductor structure
US9926639B2 (en) 2010-07-16 2018-03-27 Applied Materials, Inc. Methods for forming barrier/seed layers for copper interconnect structures
US8492289B2 (en) 2010-09-15 2013-07-23 International Business Machines Corporation Barrier layer formation for metal interconnects through enhanced impurity diffusion
KR101924656B1 (ko) 2010-11-02 2018-12-03 우베 고산 가부시키가이샤 (아미드아미노알칸) 금속 화합물, 및 당해 금속 화합물을 사용한 금속 함유 박막의 제조 방법
US8492897B2 (en) 2011-09-14 2013-07-23 International Business Machines Corporation Microstructure modification in copper interconnect structures
US9190323B2 (en) * 2012-01-19 2015-11-17 GlobalFoundries, Inc. Semiconductor devices with copper interconnects and methods for fabricating same
KR20150005533A (ko) * 2012-04-11 2015-01-14 도쿄엘렉트론가부시키가이샤 반도체 장치의 제조 방법, 반도체 장치, 반도체 제조 장치
US9076661B2 (en) 2012-04-13 2015-07-07 Applied Materials, Inc. Methods for manganese nitride integration
US9048294B2 (en) 2012-04-13 2015-06-02 Applied Materials, Inc. Methods for depositing manganese and manganese nitrides
US9054109B2 (en) * 2012-05-29 2015-06-09 International Business Machines Corporation Corrosion/etching protection in integration circuit fabrications
US8710660B2 (en) * 2012-07-20 2014-04-29 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid interconnect scheme including aluminum metal line in low-k dielectric
JP5969306B2 (ja) 2012-08-08 2016-08-17 東京エレクトロン株式会社 Cu配線の形成方法
US8765602B2 (en) 2012-08-30 2014-07-01 International Business Machines Corporation Doping of copper wiring structures in back end of line processing
JP6117588B2 (ja) 2012-12-12 2017-04-19 東京エレクトロン株式会社 Cu配線の形成方法
JP6030439B2 (ja) 2012-12-27 2016-11-24 東京エレクトロン株式会社 マンガン含有膜の形成方法、処理システム、および電子デバイスの製造方法
JP2014141739A (ja) 2012-12-27 2014-08-07 Tokyo Electron Ltd 金属マンガン膜の成膜方法、処理システム、電子デバイスの製造方法および電子デバイス
US9209134B2 (en) * 2013-03-14 2015-12-08 Intermolecular, Inc. Method to increase interconnect reliability
US9184093B2 (en) 2013-03-15 2015-11-10 Applied Materials, Inc. Integrated cluster to enable next generation interconnect
US9064937B2 (en) 2013-05-30 2015-06-23 International Business Machines Corporation Substrate bonding with diffusion barrier structures
JP6257217B2 (ja) 2013-08-22 2018-01-10 東京エレクトロン株式会社 Cu配線構造の形成方法
US9362228B2 (en) * 2013-10-22 2016-06-07 Globalfoundries Inc. Electro-migration enhancing method for self-forming barrier process in copper metalization
US9043743B2 (en) * 2013-10-22 2015-05-26 International Business Machines Corporation Automated residual material detection
US9275952B2 (en) 2014-01-24 2016-03-01 International Business Machines Corporation Ultrathin superlattice of MnO/Mn/MnN and other metal oxide/metal/metal nitride liners and caps for copper low dielectric constant interconnects
US9343357B2 (en) * 2014-02-28 2016-05-17 Qualcomm Incorporated Selective conductive barrier layer formation
FR3025396A1 (fr) 2014-09-02 2016-03-04 St Microelectronics Tours Sas Procede de fabrication d'un element de connexion electrique
US9728502B2 (en) * 2014-11-10 2017-08-08 Samsung Electronics Co., Ltd. Metal oxysilicate diffusion barriers for damascene metallization with low RC delays and methods for forming the same
JP2016167545A (ja) * 2015-03-10 2016-09-15 東京エレクトロン株式会社 ビアホール底のクリーニング方法および半導体装置の製造方法
JP2017050304A (ja) 2015-08-31 2017-03-09 東京エレクトロン株式会社 半導体装置の製造方法
US9842805B2 (en) 2015-09-24 2017-12-12 International Business Machines Corporation Drive-in Mn before copper plating
JP6559046B2 (ja) 2015-11-04 2019-08-14 東京エレクトロン株式会社 パターン形成方法
US20160083405A1 (en) * 2015-11-30 2016-03-24 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Tantalum- or vanadium-containing film forming compositions and vapor deposition of tantalum- or vanadium-containing films
JP2017135237A (ja) * 2016-01-27 2017-08-03 東京エレクトロン株式会社 Cu配線の製造方法およびCu配線製造システム
US10229851B2 (en) 2016-08-30 2019-03-12 International Business Machines Corporation Self-forming barrier for use in air gap formation
US10049974B2 (en) 2016-08-30 2018-08-14 International Business Machines Corporation Metal silicate spacers for fully aligned vias
US9786760B1 (en) 2016-09-29 2017-10-10 International Business Machines Corporation Air gap and air spacer pinch off
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US10204829B1 (en) 2018-01-12 2019-02-12 International Business Machines Corporation Low-resistivity metallic interconnect structures with self-forming diffusion barrier layers
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure
US11152294B2 (en) 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
US11133216B2 (en) 2018-06-01 2021-09-28 International Business Machines Corporation Interconnect structure
JP2022521578A (ja) 2019-02-21 2022-04-11 コーニング インコーポレイテッド 銅金属化貫通孔を有するガラスまたはガラスセラミック物品およびその製造方法
US10818589B2 (en) 2019-03-13 2020-10-27 International Business Machines Corporation Metal interconnect structures with self-forming sidewall barrier layer
JP7161767B2 (ja) * 2019-04-22 2022-10-27 気相成長株式会社 形成材料、形成方法、及び新規化合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077774A (en) * 1996-03-29 2000-06-20 Texas Instruments Incorporated Method of forming ultra-thin and conformal diffusion barriers encapsulating copper
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6413815B1 (en) * 2001-07-17 2002-07-02 Macronix International Co., Ltd. Method of forming a MIM capacitor
CN1726303A (zh) * 2002-11-15 2006-01-25 哈佛学院院长等 使用脒基金属的原子层沉积
CN1945825A (zh) * 2005-10-03 2007-04-11 恩益禧电子股份有限公司 半导体器件及其制作方法
JP2008013848A (ja) * 2006-06-08 2008-01-24 Tokyo Electron Ltd 成膜装置及び成膜方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060534A (en) 1996-07-11 2000-05-09 Scimed Life Systems, Inc. Medical devices comprising ionically and non-ionically crosslinked polymer hydrogels having improved mechanical properties
US6951682B1 (en) 1998-12-01 2005-10-04 Syntrix Biochip, Inc. Porous coatings bearing ligand arrays and use thereof
KR100383759B1 (ko) 2000-06-15 2003-05-14 주식회사 하이닉스반도체 반도체 소자의 구리 금속 배선 형성 방법
US20030134499A1 (en) * 2002-01-15 2003-07-17 International Business Machines Corporation Bilayer HDP CVD / PE CVD cap in advanced BEOL interconnect structures and method thereof
US7026714B2 (en) * 2003-03-18 2006-04-11 Cunningham James A Copper interconnect systems which use conductive, metal-based cap layers
KR100563817B1 (ko) 2003-12-30 2006-03-28 동부아남반도체 주식회사 반도체 소자의 구리 배선 형성 방법
JP4478038B2 (ja) * 2004-02-27 2010-06-09 株式会社半導体理工学研究センター 半導体装置及びその製造方法
DE102004019241A1 (de) 2004-04-16 2005-11-03 Cellmed Ag Injizierbare vernetzte und unvernetzte Alginate und ihre Verwendung in der Medizin und in der ästhetischen Chirurgie
US7879710B2 (en) 2005-05-18 2011-02-01 Intermolecular, Inc. Substrate processing including a masking layer
EP1909320A1 (en) * 2006-10-05 2008-04-09 ST Microelectronics Crolles 2 SAS Copper diffusion barrier
JP4272191B2 (ja) * 2005-08-30 2009-06-03 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
JP4236201B2 (ja) * 2005-08-30 2009-03-11 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
TW200729394A (en) 2005-12-07 2007-08-01 Nxp Bv A method of forming a layer over a surface of a first material embedded in a second material in a structure for a semiconductor device
KR101351286B1 (ko) * 2005-12-20 2014-02-17 시바 홀딩 인크 옥심 에스테르 광개시제
JP2007173511A (ja) 2005-12-22 2007-07-05 Sony Corp 半導体装置の製造方法
JP4741965B2 (ja) * 2006-03-23 2011-08-10 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2007308789A (ja) 2006-04-19 2007-11-29 Tokyo Electron Ltd 成膜装置及び成膜方法
US20080032064A1 (en) 2006-07-10 2008-02-07 President And Fellows Of Harvard College Selective sealing of porous dielectric materials
CN101490811B (zh) * 2006-07-14 2011-06-08 株式会社爱发科 半导体装置的制造方法
AU2008347088A1 (en) * 2007-04-09 2009-07-16 President And Fellows Of Harvard College Cobalt nitride layers for copper interconnects and methods for forming them
DE102007035837A1 (de) * 2007-07-31 2009-02-05 Advanced Micro Devices, Inc., Sunnyvale Halbleiterbauelement mit einer Kornorientierungsschicht
US7884475B2 (en) * 2007-10-16 2011-02-08 International Business Machines Corporation Conductor structure including manganese oxide capping layer
US20090117731A1 (en) * 2007-11-01 2009-05-07 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor interconnection structure and method for making the same
US7555191B1 (en) 2008-01-30 2009-06-30 Joshua John Edward Moore Self-locking unidirectional interposer springs for optical transceiver modules
US7651943B2 (en) * 2008-02-18 2010-01-26 Taiwan Semicondcutor Manufacturing Company, Ltd. Forming diffusion barriers by annealing copper alloy layers
KR101649714B1 (ko) * 2008-03-21 2016-08-30 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 상호접속부를 위한 자기정렬 배리어 층

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077774A (en) * 1996-03-29 2000-06-20 Texas Instruments Incorporated Method of forming ultra-thin and conformal diffusion barriers encapsulating copper
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6413815B1 (en) * 2001-07-17 2002-07-02 Macronix International Co., Ltd. Method of forming a MIM capacitor
CN1726303A (zh) * 2002-11-15 2006-01-25 哈佛学院院长等 使用脒基金属的原子层沉积
CN1945825A (zh) * 2005-10-03 2007-04-11 恩益禧电子股份有限公司 半导体器件及其制作方法
JP2008013848A (ja) * 2006-06-08 2008-01-24 Tokyo Electron Ltd 成膜装置及び成膜方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768988A (zh) * 2012-07-25 2012-11-07 上海华力微电子有限公司 一种有效判定铜扩散阻挡层阻挡能力的方法
CN102768988B (zh) * 2012-07-25 2014-10-15 上海华力微电子有限公司 一种有效判定铜扩散阻挡层阻挡能力的方法
CN104103575B (zh) * 2013-04-10 2017-12-29 中芯国际集成电路制造(上海)有限公司 铜互连线的形成方法
CN110024105A (zh) * 2016-12-31 2019-07-16 英特尔公司 用于改善短路裕量的硬化插塞
CN108047274A (zh) * 2017-12-15 2018-05-18 江南大学 一种铜互连阻挡层材料用吡啶基Mn(Ⅱ)化合物
CN108047274B (zh) * 2017-12-15 2019-08-20 江南大学 一种铜互连阻挡层材料用吡啶基Mn(Ⅱ)化合物
CN112687617A (zh) * 2020-12-24 2021-04-20 中国电子科技集团公司第十三研究所 绝缘子针的制备方法及绝缘子针
CN112687617B (zh) * 2020-12-24 2022-07-22 中国电子科技集团公司第十三研究所 绝缘子针的制备方法及绝缘子针

Also Published As

Publication number Publication date
KR20120020035A (ko) 2012-03-07
CN102132398B (zh) 2015-01-28
WO2009117670A3 (en) 2012-03-22
HK1159852A1 (zh) 2012-08-03
WO2009117670A2 (en) 2009-09-24
KR101803221B1 (ko) 2017-11-29
KR101649714B1 (ko) 2016-08-30
JP2011525697A (ja) 2011-09-22
US20110254164A1 (en) 2011-10-20
US8222134B2 (en) 2012-07-17
KR20160102570A (ko) 2016-08-30
JP5820267B2 (ja) 2015-11-24
US7932176B2 (en) 2011-04-26
US20090263965A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
CN102132398B (zh) 用于互连的自对准阻挡层
CN105304479B (zh) 用于互连的自对准阻挡层和封盖层
US6294836B1 (en) Semiconductor chip interconnect barrier material and fabrication method
CN101569003B (zh) 半导体装置及其制造方法
CN101504932B (zh) 半导体器件及其制造方法
US8058728B2 (en) Diffusion barrier and adhesion layer for an interconnect structure
US8372739B2 (en) Diffusion barrier for integrated circuits formed from a layer of reactive metal and method of fabrication
US7727883B2 (en) Method of forming a diffusion barrier and adhesion layer for an interconnect structure
CN101558476A (zh) 互连结构和制造嵌入结构的方法
KR20070045986A (ko) 낮은 K 금속간 유전체 및 에칭 스톱과의 통합을 위한무전해 Co 합금막 상에서의 산화를 환원시키고 접착력을강화시키는 방법
CN101188210A (zh) 半导体结构的形成方法
CN1539164A (zh) 用于高纵横比半导体器件的掺硼氮化钛层
US8008774B2 (en) Multi-layer metal wiring of semiconductor device preventing mutual metal diffusion between metal wirings and method for forming the same
US7498262B2 (en) Method of fabricating a thin film and metal wiring in a semiconductor device
Gordon et al. Chemical vapor deposition (CVD) of manganese self-aligned diffusion barriers for Cu interconnections in microelectronics
KR20000054970A (ko) 장벽금속막을 구비한 금속 배선 및 그 제조방법
Wang et al. Barrier capabilities of selective chemical vapor deposited W films and WSiN/WSi x/W stacked layers against Cu diffusion
US7902641B2 (en) Semiconductor device and manufacturing method therefor
US20120068343A1 (en) Semiconductor device and method for manufacturing the same
Zhou AlN capping layer inserted between Cu and SiCN dielectric barrier layer for enhancing reliability of 28 nm technological node and beyond
KR20080105347A (ko) 반도체 소자의 금속 배선 형성 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1159852

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1159852

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150128

Termination date: 20200320