CN102603002A - 部分还原铌金属氧化物的方法和脱氧的铌氧化物 - Google Patents

部分还原铌金属氧化物的方法和脱氧的铌氧化物 Download PDF

Info

Publication number
CN102603002A
CN102603002A CN2012100630011A CN201210063001A CN102603002A CN 102603002 A CN102603002 A CN 102603002A CN 2012100630011 A CN2012100630011 A CN 2012100630011A CN 201210063001 A CN201210063001 A CN 201210063001A CN 102603002 A CN102603002 A CN 102603002A
Authority
CN
China
Prior art keywords
niobium oxide
niobium
getter material
deoxidation
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100630011A
Other languages
English (en)
Inventor
詹姆斯.A.法伊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26851462&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102603002(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/154,452 external-priority patent/US6391275B1/en
Application filed by Cabot Corp filed Critical Cabot Corp
Publication of CN102603002A publication Critical patent/CN102603002A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3253Substoichiometric niobium or tantalum oxides, e.g. NbO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1089Alloys containing non-metals by partial reduction or decomposition of a solid metal compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12819Group VB metal-base component

Abstract

本发明所描述的是至少部分地还原铌氧化物的方法,其中该方法包括在消气材料(getter material)存在下对铌氧化物进行热处理,该热处理是在允许氧原子从起始的铌氧化物转移至消气材料的气氛中进行的,并且在足够的温度下进行足够的时间,以形成脱氧的铌氧化物。本发明也描述了铌的氧化物和/或低价氧化物,还描述了包含由该铌氧化物和低价氧化物制成的阳极的电容器。

Description

部分还原铌金属氧化物的方法和脱氧的铌氧化物
本申请是中国发明申请(发明名称:部分还原铌金属氧化物的方法和脱氧的铌氧化物,申请日:1999年9月15日;申请号:99811568.1)的分案申请。
发明背景
本发明涉及铌及其氧化物,更具体地涉及铌氧化物和至少部分还原铌氧化物的方法,并且进一步涉及脱氧的铌。
发明概述
依据本发明的目的,如这里所概括和描述的那样,本发明涉及至少部分还原铌氧化物的方法,该方法包括在消气材料的存在下,于允许氧原子从铌氧化物转移至消气材料(getter material)的气氛中,对铌氧化物进行足够温度与时间的热处理,以形成脱氧的铌氧化物。
本发明还涉及脱氧的铌氧化物,该脱氧的铌氧化物优选具有有益的特性,尤其是在形成电解电容器阳极时。例如,由本发明的脱氧铌氧化物制成的电容器,可以具有相当于约200000CV/g或更高的电容量。另外,由本发明的脱氧铌氧化物制成的电解电容器阳极具有低的直流(DC)漏电。例如,这种电容器可以具有从约0.5nA/CV至约5.0nA/CV的直流漏电。
因此,本发明还涉及增加电容量和降低由铌氧化物制成的电容器中直流漏电的方法,该方法包括部分地还原铌氧化物,所述的还原是通过在消气材料的存在下,于允许氧原子从铌氧化物转移至消气材料的气氛中,热处理铌氧化物而进行的,并且在足够的温度下进行足够的时间,以形成脱氧的铌氧化物,该脱氧的铌氧化物在形成电容器阳极时,降低直流漏电和/或增加电容量。
应当理解,无论是前面的概述还是下面的详述都仅仅是示范性和说明性的,其目的是进一步解释本发明。
附图简述
图1-11是本发明的铌氧化物于各种放大倍数下的扫描电子显微图。
发明详述
在本发明的一个实施方案中,涉及至少部分还原铌氧化物的方法。一般地,该方法包括在消气材料存在下,于允许氧原子从铌氧化物转移至消气材料的气氛中,对铌氧化物原料进行足够时间与温度的热处理,以形成脱氧的铌氧化物的步骤。
为了本发明的目的,铌氧化物可以是至少一种铌金属和/或其合金的氧化物。铌氧化物原料的具体实例是Nb2O5
本发明所使用的铌氧化物可以是任何形状或任何尺寸的。优选地,该铌氧化物为粉末状或各种颗粒状。可以使用的粉末类型包括,但不限于,片状的、角状的、球状的、以及它们的混合物或变种。该铌氧化物优选为更有效地产生脱氧铌氧化物的粉末状。
这种优选铌氧化物粉末的实例,包括那些网目尺寸从约60/100至约100/325目和从约60/100至约200/325目的铌氧化物粉末。另一尺寸范围是从-40目至约-325目。换言之,优选的铌氧化物粉末具有约150/250至约45/150微米和约150/250至约45/75微米的粒度,另一优选的尺寸范围是约355微米至约45微米。
用于本发明的消气材料,是任何能够将特定铌氧化物原料还原为脱氧铌氧化物的材料。优选的消气材料包括钽、铌、或二者都包括。其他实例包括,但不限于,镁等。可以使用任何对氧的亲和力大于铌氧化物的消气材料。更优选的消气材料是铌。本发明的铌消气材料,是含有可以至少部分地消除或还原铌氧化物中的氧的任何材料。这样,铌消气材料可以是合金,也可以是包含铌金属与其他成分的混合物的材料。优选的铌消气材料,如果不是专门地,主要地为铌金属。铌消气材料的纯度不是重要的,但还是优选包含高纯铌的消气材料,以避免在热处理期间引入其他杂质。因此,铌消气材料中的铌金属优选具有至少约98%的纯度,更优选具有至少约99%的纯度。铌消气材料中的氧含量是任意的。优选如铁、镍、铬和碳等影响直流漏电的杂质低于约100ppm。更优选的消气材料是铌金属片,其优选具有大于约75000CV/g的高电容量,更优选具有约100000CV/g或更高如200000CV/g的电容量。所述的消气材料还优选具有高表面积,如BET为约5至约30m2/g,更优选为约20至约30m2/g。所述的消气材料包含氢化钽颗粒,并可以是14/40目的氢化钽颗粒。
消气材料可以是任何形状或尺寸。例如,可以是浅盘状,其中包含要还原的铌氧化物,也可以是颗粒或粉末尺寸的。消气材料优选为粉末状,以便具有还原铌氧化物最有效的表面积。这样,消气材料可以是片状的、角状的、球状的、以及它们的混合物或变种,例如粗糙的碎片,如通过筛
分可容易从粉末产品中分离出来的14/40目碎片。
类似地,消气材料也可以是碳等,并且可以具有与上述铌消气材料相同的优选参数和/或性能。其他消气材料可以单独使用,也可以与钽或铌消气材料组合起来使用。此外,消气材料可以部分地包含其他的材料。
消气材料使用之后可以除去,也可以保留下来。优选地,如果消气材料与脱氧的铌氧化物保留下来,那么该消气材料优选为铌,且优选具有与铌氧化物原料相似的形状和尺寸。而且,优选使用高纯度、高表面积和/或高多孔性消气材料(如电容器级材料),因为这样的材料会得到与脱氧的铌氧化物相同或相似的氧化状态,从而使本方法取得100%的脱氧铌氧化物产量。因此,消气材料可以作为消气材料,也可以保留下来而成为脱氧的铌氧化物的一部分。
一般地,存在足够量的消气材料,以至少部分地还原热处理中的铌氧化物。进一步讲,消气材料的量取决于所需要的对铌氧化物的还原量。例如,如果需要轻度地还原铌氧化物,那么消气材料将按化学计量量加入。类似地,如果铌氧化物需要就其所存在的氧充分地还原,那么消气材料应按2至5倍的化学计量量加入。通常,消气材料的加入量(如按钽消气材料计,为100%的钽),按消气材料与存在的铌氧化物的量的比例,可以从约2∶1至约10∶1。消气材料优选在允许氧原子从铌氧化物转移至消气材料的气氛(如氢气气氛)中,与铌氧化物原料共混或混合在一起,并且优选在约1100至1500℃的温度下混合。
而且,消气材料的量也可以依据要还原的铌氧化物的类型而定。例如,当要还原的铌氧化物为Nb2O5时,消气材料的量优选为5∶1。另外,由Nb2O5开始时,使用化学计量量的消气材料,优选铌金属片,以产生优选为0.89份金属对1份氧化物的氧化物。
铌氧化物原料所要经受的热处理,可以在如铌和钽等金属的热处理中常用的任何热处理设备或炉子中进行。在消气材料存在的情况下,铌氧化物的热处理,是在足够的温度下进行足够的时间,以形成脱氧的铌氧化物。热处理的温度和时间,可以依据多种因素如铌氧化物的还原量、消气材料量、消气材料的类型以及铌氧化物原料的类型而定。一般地,铌氧化物的热处理温度为约800℃或更低至约1900℃,更优选为约1000℃至约1400℃,最优选约1100℃至约1250℃。更具体地,所述的热处理温度为约1000℃至约1300℃,优选所述热处理在约1000℃至约1500℃的温度下进行约10至约90分钟,更优选约1100℃至约1250℃进行约5分钟至约100分钟,更优选进行约30分钟至约60分钟。鉴于本申请,常规的试验允许本领域技术人员容易地控制热处理的时间和温度,以便使铌氧化物适宜地或合乎需要地还原。
热处理在允许氧原子从铌氧化物转移至消气材料的气氛中进行。该热处理优选在含氢的气氛中进行,所述的含氢气氛最好就是氢气。其他气体如惰性气体也可以与氢一起加入,只要该其他气体不与氢反应。热处理过程中存在的氢气气氛的压力,优选为约10托至约2000托,更优选为约100托至约1000托,最优选为100托至约930托。也可以使用H2与惰性气体如Ar的混合物。此外,还可以使用N2中的H2,以实现对铌氧化物的N2含量的控制。其中所述的消气材料先于或在热处理步骤的过程中与铌氧化物均质化。
在热处理过程中,可以使用恒定的热处理温度于整个热处理过程,也可以使用变化的温度或温度阶梯。例如,氢气可以1000℃初始导入,然后用30分钟升温至1250℃,然后再降温至1000℃并保持至移除H2气体。移除H2或其他气氛之后,可以降低炉子的温度了。可以用这些阶梯的变化去适合工业上的任何优选项。随后,脱氧的铌氧化物可以通过如粉碎减小尺寸。脱氧的铌氧化物可以以处理电子管金属的任何其他方法,凝聚和粉碎或处理。
脱氧的铌氧化物也可以包含不同量的氮,如从约100ppm至约30000ppm的N2
脱氧的铌氧化物是其中的氧含量低于铌氧化物原料的任何铌氧化物。有代表性的脱氧铌氧化物包括NbO、NbO0.7、NbO1.1、NbO2及其与或不与存在的其他氧化物的任意组合。通常,本发明的脱氧铌氧化物所具有的铌对氧的原子比为约1∶小于2.5,优选为1∶2,更优选为1∶1.1、1∶1或1∶0.7。按另一种方式,所述脱氧的铌氧化物优选具有NbxOy式,其中Nb为铌,x为2或更小,y小于2.5x。更优选x为1而y小于2如1.1、1.0、0.7等。
铌氧化物原料可以通过在1000℃煅烧直至除去任何挥发性组分来制备。该氧化物可以通过筛子来分级。可以用铌氧化物的预热处理来建立氧化物颗粒的受控孔隙度。
本发明的脱氧的铌氧化物还优选具有微孔性的表面,并且优选具有象海绵一样的结构,其中的初级颗粒优选为约1微米或更低。扫描电子显微图进一步描述本发明优选的脱氧铌氧化物的类型。从这些显微图可以看出,本发明的脱氧铌氧化物具有高的比表面积和孔隙度约50%的多孔结构。所述的铌氧化物具有约0.1至约10微米小孔的多孔结构。另外,本发明的脱氧铌氧化物可以用比表面积来表征,优选的比表面积为约0.5至约10.0m2/g,更优选为约0.5至约2.0m2/g,最优选为约1.0至约1.5m2/g。铌氧化物粉末的表观密度优选为低于约2.0g/cc,更优选为低于约1.5g/cc,最优选为低于约0.5至1.5g/cc。此外,所述的铌氧化物粉末可以具有约5g/in3至约35g/in3的Scott密度。
本发明使用较少的铌于产品中却能够获得类似于,如果不优于,铌的性能,这是因为形成并利用了脱氧的铌氧化物。因此,本发明扩大了如电容器阳极等产品中铌的数量,因为用相同数量的铌可以制造更多的阳极或其他产品。
本发明的各种脱氧铌氧化物还可以用电性能来表征,所述的电性能产生于本发明的脱氧铌氧化物所形成的电容器阳极。一般地,可以测试本发明的脱氧铌氧化物的电性能,办法是将脱氧的铌氧化物粉末压制成阳极,并在适宜的温度下烧结所压制的粉末,然后做阳极氧化处理,以制备电解电容器的阳极,随后就可以测试该阳极的电性能。
因此,本发明的另一实施方案涉及由本发明的脱氧铌氧化物制成的电容器阳极。可以按类似于制造金属阳极的方法,用粉末状的脱氧氧化物制备阳极,即压制嵌入了导线或其他连接器的多孔球团,然后进行任选的烧结和阳极氧化处理。导线连接器可以在阳极氧化之前的任何时候嵌入或贴附。用本发明的某些脱氧铌氧化物制成的阳极,可以具有约1000CV/g或更低至约300000CV/g或更高的电容量,其他范围的电容量可以从约20000CV/g至约300000CV/g,或从约62000CV/g至约200000CV/g,并优选为约60000至约150000CV/g。形成本发明的电容器阳极时,可以使用允许形成具有所需特性的电容器阳极的烧结温度。烧结温度取决于所用脱氧铌氧化物。当使用脱氧的铌氧化物时,烧结温度优选为约1200℃至约1750℃,更优选为约1200℃至约1400℃,最优选为约1250℃至约1350℃。
由本发明的铌氧化物形成的阳极,优选在35伏的电压下赋能,更优选在约6伏至约70伏的电压下赋能。当使用脱氧的铌氧化物时,赋能电压优选为约6伏至约50伏,更优选为约10伏至约40伏。也可以使用其他较高的赋能电压。脱氧的铌氧化物阳极可以按如下办法制备,即制造带有导线
的Nb2O5球团,然后于氢气气氛或其他适宜的气氛中,在如粉化氧化物的消气材料附近进行烧结。在该实施方案中,所制备的阳极产品可以直接制备,例如,同时形成脱氧的电子管金属氧化物和阳极。此外,由本发明的脱氧铌氧化物所形成的阳极,优选具有低于约5.0nA/CV的直流漏电。在本发明的一个实施方案中,由本发明的一些脱氧铌氧化物所形成的阳极,具有约5.0nA/CV至约0.50nA/CV的直流漏电。
本发明还涉及一种根据本发明的电容器,该电容器表面具有铌氧化物薄膜。所述的薄膜优选为铌的五氧化物薄膜。将金属粉末制成电容器阳极的方法对本领域的技术人员是已知的,而且这些方法,如美国专利US 4805074、5412533、5211741和5245514,以及欧洲专利申请0634762A1和0634761A1中所阐述的方法,全部整体性地引入本文作为参考。
本发明的电容器可以用于各种终端用途,如汽车用电子设备,移动电话,计算机的监视器、母板等,消费电子产品包括电视和显示器、打印机/复印机、电源、调制解调器、笔记本计算机、磁盘驱动器等。
通过下面的实施例,本发明将得到进一步的阐明,所述的实施例是用来解释本发明的。
试验方法
阳极的制造
尺寸-0.197″直径
3.5Dp
粉末重量=341mg
阳极的烧结
1300℃    10′
1450℃    10′
1600℃    10′
1750℃    10′
30V Ef阳极氧化
30V Ef60℃/0.1%H3PO4电解质
20mA/g恒定电流
直流漏电/电容量-ESR测试:
直流漏电测试---
70%Ef(21V直流电)试验电压
60秒充电时间
10%H3PO421℃
电容量-DF测试:
18%H2SO421℃
120Hz
50V Ef再赋能阳极氧化(Reform Anodization):
50V Ef60℃/0.1%H3PO4电解质
20mA/g恒定电流
直流漏电/电容量-ESR测试:
直流漏电测试---
70%Ef(35V直流电)试验电压
60秒充电时间
10%H3PO421℃
电容量-DF测试:
18%H2SO421℃
120Hz
75V Ef再赋能阳极氧化:
75V Ef60℃/0.1%H3PO4电解质
20mA/g恒定电流
直流漏电/电容量-ESR测试:
直流漏电测试---
70%Ef(52.5V直流电)试验电压
60秒充电时间
10%H3PO421℃
电容量-DF测试:
18%H2SO421℃
120Hz
根据美国专利US 5011742、4960471和4964906中阐述的方法,进行Scott密度、氧分析、磷分析和BET分析的测定,所有文献均整体引入本文作为参考。
实施例
实施例1
伴有约50ppm氧的+10目氢化钽碎片(99.2克)与22克Nb2O5混合,并置于钽盘中。将所述的钽盘置于真空热处理炉中并加热至1000℃。将氢气引入炉中至+3psi的压力。将温度进一步均匀地升高至1240℃并保持30分钟。在6分钟内降温至1050℃,直至全部氢气从炉中清扫干净。仍保持1050℃的同时,从炉中排除氩气至压力为5×10-4托。在该点,再次导入700mm的氩气至炉膛,并将炉子冷却至60℃。
在从炉子移出之前,令材料循环地暴露于分压逐渐升高的氧气若干次以使之钝化如下:炉子回填氩气至700mm,然后充入空气至1个大气压。4分钟后,排空炉膛至10-2托。炉膛回填氩气至600mm,然后充入空气至1个大气压并保持4分钟。排空炉膛至10-2托,然后回填氩气至400mm,再充入空气至1个大气压。4分钟后,排空炉膛至10-2托。炉膛回填氩气至200mm,然后充入空气至1个大气压并保持4分钟。排空炉膛至10-2托。用空气回填炉膛至1个大气压并保持4分钟。排空炉膛至10-2托。用氩气回填炉膛至1个大气压,并打开炉子取出样品。
通过40目的筛子筛分,将粉末产物从钽碎片消气剂中分离出来。产品的测试结果如下。
1300℃烧结10分钟并于35V下赋能的球团的CV/g=81297
nA/CV(直流漏电)=5.0
球团的烧结密度=2.7g/cc
Scott密度=0.9g/cc
化学分析(ppm)
C=70
H2=56
Ti=25    Fe=25
Mn=10    Si=25
Sn=5     Ni=5
Cr=10    Al=5
Mo=25    Mg=5
Cu=50    B=2
Pb=2     其他元素<检出限
实施例2
样品1至20是使用如表中所指出的粉末化Nb2O5,并遵循类似于上述步骤的实例。对于多数实例,原料的网目尺寸列于表中,如60/100,意思是比60目小但比100目大。类似地,给出了某些钽消气材料的筛子尺寸为14/40。标记为“氢化钽碎片”的消气材料为+40目,没有颗粒尺寸的上限。
样品18用铌作消气材料(商业上可从CPM得到N200的片状铌粉末)。样品18的消气材料是不与最终产品分离的细粒状的铌粉末。X-射线衍射表明一些消气材料仍然是铌,但大多数通过与铌氧化物原料Nb2O5一样的处理而转化成NbO1.1和NbO。
样品15是Nb2O5球团,压缩至接近固体密度,并与H2在钽消气材料附近反应。热处理使固体氧化物球团转化成多孔的NbO低价氧化物块。将该块烧结成铌金属条,以建立阳极的引线,并用类似于粉末块球团的电赋能方法,阳极氧化至35伏。该样品证实了该方法的独特能力,即以一简单的步骤从Nb2O5原料迅速地对块阳极氧化。
表中示出,由本发明的压制和烧结粉末/球团可以制备高电容量和低直流漏电的阳极。给出了各种样品的显微照片(SEM)。这些照片示出了本发明的脱氧铌氧化物的多孔结构。具体地,图1是球团外表面的5000倍照片(样品15)。图2是同样球团的内部的5000倍照片。图3和图4是相同球团的外表面的1000倍照片。图5是样品11的2000倍照片,图6和图7是样品4的5000倍照片。图8是样品3的2000倍照片,图9是样品6的3000倍照片。最后,图10是样品6的3000倍照片,图11是样品9的2000倍照片。
Figure BDA0000142486760000101
根据本发明所公开的说明书和实践,本发明的其他实施方案对本领域的技术人员将是显而易见的。说明书和实施例的目的仅是对本发明的解释,本发明的真正精神和范围见下面的权利要求书。

Claims (40)

1.一种至少部分还原铌氧化物的方法,包括在消气材料存在下,于允许氧原子从铌氧化物转移至消气材料的气氛中,对铌氧化物进行足够时间与温度的热处理,以形成脱氧的铌氧化物;其中所述铌氧化物为五氧化二铌。
2.权利要求1的方法,其中所述脱氧的铌氧化物为铌的低价氧化物。
3.权利要求1的方法,其中所述脱氧的铌氧化物所具有的铌对氧的原子比例为1∶小于2.5。
4.权利要求1的方法,其中所述脱氧的铌氧化物所具有的氧含量低于完全氧化的铌的化学计量。
5.权利要求1的方法,其中所述脱氧的铌氧化物具有微孔结构。
6.权利要求1的方法,其中所述脱氧的铌氧化物具有50%的孔隙体积。
7.权利要求1的方法,其中所述的气氛是以10托至2000托的量存在的氢气。
8.权利要求1的方法,其中所述的消气材料是形成阳极时电容量至少为75000CV/g的铌消气材料。
9.权利要求1的方法,其中所述的气氛为氢气气氛。
10.权利要求1的方法,其中所述的消气材料为形成阳极时电容量为100000CV/g至200000CV/g的铌消气材料。
11.权利要求1的方法,其中所述的热处理是在1000℃至1500℃的温度下进行10至90分钟。
12.权利要求1的方法,其中所述的消气材料先于或在热处理步骤的过程中与铌氧化物均质化。
13.权利要求1的方法,其中所述的消气材料是片状的铌消气材料。
14.权利要求1的方法,其中所述的消气材料为铌消气材料,并在热处理之后形成脱氧的铌氧化物。
15.权利要求1的方法,其中所述的消气材料是含镁的消气材料。
16.权利要求1的方法,其中所述的消气材料包含氢化钽颗粒。
17.权利要求1的方法,其中所述的消气材料包含钽、铌,或二者都包含。
18.权利要求1的方法,其中所述的消气材料是14/40目的氢化钽颗粒。
19.权利要求1的方法,其中所述的消气材料是电容器级材料。
20.一种铌氧化物,其中所述的铌氧化物包含NbO、NbO0.7、NbO1.1、或它们的组合,其比表面积为0.5~10m2/g,其中所述铌氧化物为粉末,所述的铌氧化物具有0.1至10微米微孔的多孔结构,和所述铌氧化物用于电容器阳极。
21.权利要求20的铌氧化物,具有5g/in3至35g/in3的Scott密度和/或低于2.0g/cc的表观密度。
22.权利要求20的铌氧化物,其中还包含氮。
23.权利要求30的铌氧化物,其中所述的氮以100ppm至30000ppm的N2存在。
24.一种电解电容器阳极,其是由权利要求20的铌氧化物形成的,所述阳极的电容量高达300000CV/g。
25.一种电解电容器阳极,其是由权利要求20的铌氧化物形成的,所述阳极的电容量为1000至300000CV/g。
26.权利要求25的电解电容器阳极,其中所述阳极的电容量为60000至200000CV/g。
27.权利要求25的电解电容器阳极,其具有0.5至5nA/CV的直流漏电。
28.权利要求20的铌氧化物,其中所述的铌氧化物包括球状的、片状的、角状的、或它们的组合。
29.权利要求20的铌氧化物在制备电容器中的用途。
30.权利要求25的电解电容器阳极在制备电容器中的用途。
31.一种电解电容器阳极,其是由权利要求20的铌氧化物,在1200℃至1750℃的温度下进行烧结而制备的。
32.一种电解电容器阳极,其是由权利要求20的铌氧化物,在1200℃至1450℃的温度下进行烧结而制备的。
33.权利要求29的用途,具有1000至300000CV/g的电容量。
34.权利要求29的用途,具有60000至200000CV/g的电容量。
35.权利要求29的用途,具有0.5至5nA/CV的直流漏电。
36.制备电容器阳极的方法,包括a)制造铌氧化物球团,并且在消气材料存在下,于允许氧原子从铌氧化物转移至消气材料的气氛中,对该球团进行足够时间与温度的热处理,以形成包括该球团的电极体,其中该球团包含脱氧的铌氧化物,和b)阳极氧化处理所述的电极体,以形成所述的电容器阳极,其中所述铌氧化物为五氧化二铌。
37.权利要求36的方法,其中所述的气氛是氢气气氛。
38.权利要求36的方法,其中所述的消气材料包含钽、铌,或二者都包含。
39.权利要求36的方法,其中所述的消气材料是铌。
40.权利要求36的方法,其中所述脱氧的铌氧化物具有的铌对氧的原子比例为1∶小于2.5。
CN2012100630011A 1998-09-16 1999-09-15 部分还原铌金属氧化物的方法和脱氧的铌氧化物 Pending CN102603002A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/154,452 1998-09-16
US09/154,452 US6391275B1 (en) 1998-09-16 1998-09-16 Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US09/347,990 US6416730B1 (en) 1998-09-16 1999-07-06 Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US09/347,990 1999-07-06

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN99811568A Division CN1320103A (zh) 1998-09-16 1999-09-15 部分还原铌金属氧化物的方法和脱氧的铌氧化物

Publications (1)

Publication Number Publication Date
CN102603002A true CN102603002A (zh) 2012-07-25

Family

ID=26851462

Family Applications (2)

Application Number Title Priority Date Filing Date
CN99811568A Pending CN1320103A (zh) 1998-09-16 1999-09-15 部分还原铌金属氧化物的方法和脱氧的铌氧化物
CN2012100630011A Pending CN102603002A (zh) 1998-09-16 1999-09-15 部分还原铌金属氧化物的方法和脱氧的铌氧化物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN99811568A Pending CN1320103A (zh) 1998-09-16 1999-09-15 部分还原铌金属氧化物的方法和脱氧的铌氧化物

Country Status (19)

Country Link
US (6) US6416730B1 (zh)
EP (2) EP1115658B2 (zh)
JP (1) JP5070533B2 (zh)
KR (1) KR20010075153A (zh)
CN (2) CN1320103A (zh)
AT (1) ATE244685T1 (zh)
AU (1) AU757379B2 (zh)
BR (1) BR9913828B1 (zh)
CZ (1) CZ298823B6 (zh)
DE (1) DE69909494T3 (zh)
DK (1) DK1115658T3 (zh)
ES (1) ES2198990T3 (zh)
HK (1) HK1040231B (zh)
IL (1) IL142008A (zh)
MX (1) MXPA01002775A (zh)
PT (1) PT1115658E (zh)
RU (1) RU2232720C2 (zh)
TW (1) TW460414B (zh)
WO (1) WO2000015555A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046323A (zh) * 2017-12-20 2018-05-18 广东省稀有金属研究所 一种铌氧化物的制备方法

Families Citing this family (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6462934B2 (en) 1998-09-16 2002-10-08 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
DE19847012A1 (de) * 1998-10-13 2000-04-20 Starck H C Gmbh Co Kg Niobpulver und Verfahren zu dessen Herstellung
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
CN1317723C (zh) * 2000-03-23 2007-05-23 卡伯特公司 氧还原的铌氧化物电容器阳极及其制备方法
DE10041901A1 (de) * 2000-08-25 2002-03-07 Starck H C Gmbh Kondensatoranode auf Basis Niob
MXPA03003968A (es) * 2000-11-06 2004-05-24 Cabot Corp Oxidos de metal para valvulas, reducidos en oxigeno, modificados.
KR100812687B1 (ko) * 2000-11-30 2008-03-13 쇼와 덴코 가부시키가이샤 커패시터용 니오브 분말, 그 소결체 및 소결체를 이용한커패시터
JP4521849B2 (ja) * 2000-12-01 2010-08-11 昭和電工株式会社 コンデンサ用ニオブ粉と該ニオブ粉を用いた焼結体および該焼結体を用いたコンデンサ
EP1275124B1 (en) * 2000-12-01 2005-05-04 Showa Denko K.K. Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
US7210641B2 (en) * 2001-02-28 2007-05-01 Cabot Corporation Methods of making a niobium metal oxide
US7149074B2 (en) * 2001-04-19 2006-12-12 Cabot Corporation Methods of making a niobium metal oxide
US20030104923A1 (en) * 2001-05-15 2003-06-05 Showa Denko K.K. Niobium oxide powder, niobium oxide sintered body and capacitor using the sintered body
US6934146B2 (en) * 2001-05-15 2005-08-23 Showa Denko K.K. Niobium powder, niobium sintered body and capacitor using the sintered body
US7737066B2 (en) * 2001-05-15 2010-06-15 Showa Denko K.K. Niobium monoxide powder, niobium monoxide sintered body and capacitor using the sintered body
JP3965300B2 (ja) * 2002-01-18 2007-08-29 Necトーキン株式会社 Nb固体電解コンデンサおよびその製造方法
DE10307716B4 (de) * 2002-03-12 2021-11-18 Taniobis Gmbh Ventilmetall-Pulver und Verfahren zu deren Herstellung
JP2004076063A (ja) * 2002-08-13 2004-03-11 Kawatetsu Mining Co Ltd ニオブ合金粉末、固体電解コンデンサ用アノード及び固体電解コンデンサ
BR0204587A (pt) 2002-11-04 2004-06-29 Cbmm Sa Processo de produção de pó de nióbio e/ou de tântalo de elevada área superficial
US7655214B2 (en) * 2003-02-26 2010-02-02 Cabot Corporation Phase formation of oxygen reduced valve metal oxides and granulation methods
ATE419939T1 (de) * 2003-03-28 2009-01-15 Mitsubishi Materials Corp Herstellungsverfahren für schneideinsatz und verwendung einer vorrichtung zur ausrichtung eines grünlings
US7135141B2 (en) * 2003-03-31 2006-11-14 Hitachi Metals, Ltd. Method of manufacturing a sintered body
US7157073B2 (en) * 2003-05-02 2007-01-02 Reading Alloys, Inc. Production of high-purity niobium monoxide and capacitor production therefrom
US20060275204A1 (en) * 2003-05-05 2006-12-07 Companhia Brasileira De Metalurgia E Mineracao Process for the production of niobium oxide powder for use in capacitors
US7445679B2 (en) * 2003-05-16 2008-11-04 Cabot Corporation Controlled oxygen addition for metal material
EP1638891A2 (en) * 2003-05-19 2006-03-29 Cabot Corporation Methods of making a niobium metal oxide and oxygen reduced niobium oxides
DE502004011120D1 (de) * 2003-07-15 2010-06-17 Starck H C Gmbh Niobsuboxidpulver
DE10333156A1 (de) * 2003-07-22 2005-02-24 H.C. Starck Gmbh Verfahren zur Herstellung von Niobsuboxid
PT1505611E (pt) * 2003-07-22 2012-01-12 Starck H C Gmbh Método para a produção de condensadores
BR0304252B1 (pt) * 2003-09-25 2013-05-14 processo de produÇço de pà de monàxido de niàbio, monàxido de niàbio, e, capacitor.
DE10347702B4 (de) * 2003-10-14 2007-03-29 H.C. Starck Gmbh Sinterkörper auf Basis Niobsuboxid
CN1879181B (zh) 2003-11-10 2012-11-14 昭和电工株式会社 用于电容器的铌粉、铌烧结体和电容器
US7803235B2 (en) * 2004-01-08 2010-09-28 Cabot Corporation Passivation of tantalum and other metal powders using oxygen
WO2005068668A1 (en) * 2004-01-14 2005-07-28 Cabot Corporation CONVERSION OF Ta2O5 TO Ta METAL
US20050225927A1 (en) * 2004-04-06 2005-10-13 Tagusagawa Solon Y Processes for the production of niobium oxides with controlled tantalum content and capacitors made therefrom
DE602005008962D1 (de) 2004-06-24 2008-09-25 Starck H C Inc Herstellung von ventilmetallpulvern mit verbesserten physikalischen und elektrischen eigenschaften
WO2006057455A1 (en) 2004-11-29 2006-06-01 Showa Denko K.K. Porous anode body for solid electrolytic capacitor, production mehtod thereof and solid electrolytic capacitor
JP2006206428A (ja) * 2004-12-27 2006-08-10 Mitsui Mining & Smelting Co Ltd ニオブ酸化物及びその製造方法
US7099143B1 (en) * 2005-05-24 2006-08-29 Avx Corporation Wet electrolytic capacitors
PT1890967E (pt) * 2005-06-03 2009-05-05 Starck H C Gmbh Condensador
GB0511321D0 (en) * 2005-06-03 2005-07-13 Starck H C Gmbh Inorganic compounds
WO2007020458A1 (en) 2005-08-19 2007-02-22 Avx Limited Polymer based solid state capacitors and a method of manufacturing them
GB0517952D0 (en) * 2005-09-02 2005-10-12 Avx Ltd Method of forming anode bodies for solid state capacitors
US7283350B2 (en) * 2005-12-02 2007-10-16 Vishay Sprague, Inc. Surface mount chip capacitor
US7480130B2 (en) * 2006-03-09 2009-01-20 Avx Corporation Wet electrolytic capacitor
US7511943B2 (en) * 2006-03-09 2009-03-31 Avx Corporation Wet electrolytic capacitor containing a cathode coating
JPWO2008001774A1 (ja) * 2006-06-26 2009-11-26 三井金属鉱業株式会社 ニオブ酸化物の製造方法及び一酸化ニオブ
MX2009001523A (es) 2006-08-16 2009-02-18 Starck H C Gmbh Productos semiacabados con superficie activa sinterizada estructurada y proceso para su produccion.
GB0622463D0 (en) 2006-11-10 2006-12-20 Avx Ltd Powder modification in the manufacture of solid state capacitor anodes
US7649730B2 (en) * 2007-03-20 2010-01-19 Avx Corporation Wet electrolytic capacitor containing a plurality of thin powder-formed anodes
US7460356B2 (en) 2007-03-20 2008-12-02 Avx Corporation Neutral electrolyte for a wet electrolytic capacitor
US20080232032A1 (en) * 2007-03-20 2008-09-25 Avx Corporation Anode for use in electrolytic capacitors
US7554792B2 (en) * 2007-03-20 2009-06-30 Avx Corporation Cathode coating for a wet electrolytic capacitor
US20080254269A1 (en) * 2007-04-13 2008-10-16 Yuri Freeman NbO Capacitors With Improved Performance And Higher Working Voltages
US8325465B2 (en) * 2007-04-13 2012-12-04 Kemet Electronics Corporation NbO capacitors with improved performance and higher working voltages
JP2010533642A (ja) * 2007-07-18 2010-10-28 キャボット コーポレイション 高電圧ニオブ酸化物およびそれを含むキャパシター
KR101530727B1 (ko) * 2007-08-16 2015-06-22 하.체. 스타르크 게엠베하 밸브 금속 및 밸브 금속 아산화물로 이루어진 나노 크기 구조체 및 그 제조 방법
CN100577574C (zh) 2007-08-25 2010-01-06 宁夏东方钽业股份有限公司 低价氧化铌或铌粉的制备方法
US7760487B2 (en) 2007-10-22 2010-07-20 Avx Corporation Doped ceramic powder for use in forming capacitor anodes
US7852615B2 (en) * 2008-01-22 2010-12-14 Avx Corporation Electrolytic capacitor anode treated with an organometallic compound
US7760488B2 (en) 2008-01-22 2010-07-20 Avx Corporation Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor
US7768773B2 (en) 2008-01-22 2010-08-03 Avx Corporation Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor
US7826200B2 (en) 2008-03-25 2010-11-02 Avx Corporation Electrolytic capacitor assembly containing a resettable fuse
US8094434B2 (en) * 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
US8199462B2 (en) * 2008-09-08 2012-06-12 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
CN102149294B (zh) * 2008-09-09 2016-08-24 株式会社Ndc 手套及其附件
JP2010064923A (ja) * 2008-09-11 2010-03-25 Mitsui Mining & Smelting Co Ltd 一酸化ニオブの製造方法及び一酸化ニオブ
US20100085685A1 (en) * 2008-10-06 2010-04-08 Avx Corporation Capacitor Anode Formed From a Powder Containing Coarse Agglomerates and Fine Agglomerates
US8203827B2 (en) * 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment
US8223473B2 (en) 2009-03-23 2012-07-17 Avx Corporation Electrolytic capacitor containing a liquid electrolyte
US8345406B2 (en) * 2009-03-23 2013-01-01 Avx Corporation Electric double layer capacitor
GB2468942B (en) 2009-03-23 2014-02-19 Avx Corp High voltage electrolytic capacitors
US8405956B2 (en) * 2009-06-01 2013-03-26 Avx Corporation High voltage electrolytic capacitors
US8441777B2 (en) * 2009-05-29 2013-05-14 Avx Corporation Solid electrolytic capacitor with facedown terminations
US8199461B2 (en) 2009-05-29 2012-06-12 Avx Corporation Refractory metal paste for solid electrolytic capacitors
US8279583B2 (en) * 2009-05-29 2012-10-02 Avx Corporation Anode for an electrolytic capacitor that contains individual components connected by a refractory metal paste
US8139344B2 (en) 2009-09-10 2012-03-20 Avx Corporation Electrolytic capacitor assembly and method with recessed leadframe channel
US8194395B2 (en) * 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8125768B2 (en) 2009-10-23 2012-02-28 Avx Corporation External coating for a solid electrolytic capacitor
US8339771B2 (en) * 2010-02-19 2012-12-25 Avx Corporation Conductive adhesive for use in a solid electrolytic capacitor
WO2011125721A1 (ja) * 2010-04-07 2011-10-13 東洋アルミニウム株式会社 電極構造体の製造方法、電極構造体およびコンデンサ
US8619410B2 (en) 2010-06-23 2013-12-31 Avx Corporation Solid electrolytic capacitor for use in high voltage applications
US8512422B2 (en) 2010-06-23 2013-08-20 Avx Corporation Solid electrolytic capacitor containing an improved manganese oxide electrolyte
US8125769B2 (en) 2010-07-22 2012-02-28 Avx Corporation Solid electrolytic capacitor assembly with multiple cathode terminations
US8259436B2 (en) 2010-08-03 2012-09-04 Avx Corporation Mechanically robust solid electrolytic capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8824121B2 (en) 2010-09-16 2014-09-02 Avx Corporation Conductive polymer coating for wet electrolytic capacitor
US8605411B2 (en) 2010-09-16 2013-12-10 Avx Corporation Abrasive blasted conductive polymer cathode for use in a wet electrolytic capacitor
US8968423B2 (en) 2010-09-16 2015-03-03 Avx Corporation Technique for forming a cathode of a wet electrolytic capacitor
US8199460B2 (en) 2010-09-27 2012-06-12 Avx Corporation Solid electrolytic capacitor with improved anode termination
US8259435B2 (en) 2010-11-01 2012-09-04 Avx Corporation Hermetically sealed wet electrolytic capacitor
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8514547B2 (en) 2010-11-01 2013-08-20 Avx Corporation Volumetrically efficient wet electrolytic capacitor
US8355242B2 (en) 2010-11-12 2013-01-15 Avx Corporation Solid electrolytic capacitor element
US8848342B2 (en) 2010-11-29 2014-09-30 Avx Corporation Multi-layered conductive polymer coatings for use in high voltage solid electrolytic capacitors
US8493713B2 (en) 2010-12-14 2013-07-23 Avx Corporation Conductive coating for use in electrolytic capacitors
US8576543B2 (en) 2010-12-14 2013-11-05 Avx Corporation Solid electrolytic capacitor containing a poly(3,4-ethylenedioxythiophene) quaternary onium salt
US8477479B2 (en) 2011-01-12 2013-07-02 Avx Corporation Leadwire configuration for a planar anode of a wet electrolytic capacitor
US8687347B2 (en) 2011-01-12 2014-04-01 Avx Corporation Planar anode for use in a wet electrolytic capacitor
US8514550B2 (en) 2011-03-11 2013-08-20 Avx Corporation Solid electrolytic capacitor containing a cathode termination with a slot for an adhesive
US8451588B2 (en) 2011-03-11 2013-05-28 Avx Corporation Solid electrolytic capacitor containing a conductive coating formed from a colloidal dispersion
US8582278B2 (en) 2011-03-11 2013-11-12 Avx Corporation Solid electrolytic capacitor with improved mechanical stability
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US8451586B2 (en) 2011-09-13 2013-05-28 Avx Corporation Sealing assembly for a wet electrolytic capacitor
US9105401B2 (en) 2011-12-02 2015-08-11 Avx Corporation Wet electrolytic capacitor containing a gelled working electrolyte
US9275799B2 (en) 2011-12-20 2016-03-01 Avx Corporation Wet electrolytic capacitor containing an improved anode
US9576743B2 (en) 2012-01-13 2017-02-21 Avx Corporation Solid electrolytic capacitor with integrated fuse assembly
DE102013101443A1 (de) 2012-03-01 2013-09-05 Avx Corporation Ultrahigh voltage solid electrolytic capacitor
US9053861B2 (en) 2012-03-16 2015-06-09 Avx Corporation Wet capacitor cathode containing a conductive coating formed anodic electrochemical polymerization of a colloidal suspension
US8971020B2 (en) 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing a conductive copolymer
US9129747B2 (en) 2012-03-16 2015-09-08 Avx Corporation Abrasive blasted cathode of a wet electrolytic capacitor
US9076592B2 (en) 2012-03-16 2015-07-07 Avx Corporation Wet capacitor cathode containing a conductive coating formed anodic electrochemical polymerization of a microemulsion
US8971019B2 (en) 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing an alkyl-substituted poly(3,4-ethylenedioxythiophene)
JP2013219362A (ja) 2012-04-11 2013-10-24 Avx Corp 過酷な条件下で強化された機械的安定性を有する固体電解コンデンサ
US8760852B2 (en) 2012-04-24 2014-06-24 Avx Corporation Solid electrolytic capacitor containing multiple sinter bonded anode leadwires
US8947858B2 (en) 2012-04-24 2015-02-03 Avx Corporation Crimped leadwire for improved contact with anodes of a solid electrolytic capacitor
US9776281B2 (en) 2012-05-30 2017-10-03 Avx Corporation Notched lead wire for a solid electrolytic capacitor
GB2502703B (en) 2012-05-30 2016-09-21 Avx Corp Notched lead for a solid electrolytic capacitor
DE102013213720A1 (de) 2012-07-19 2014-01-23 Avx Corporation Temperaturstabiler Festelektrolytkondensator
DE102013213723A1 (de) 2012-07-19 2014-01-23 Avx Corporation Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
US9548163B2 (en) 2012-07-19 2017-01-17 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
CN103578768B (zh) 2012-07-19 2017-10-31 Avx公司 用在电解电容器固体电解质中的非离子表面活性剂
JP5933397B2 (ja) 2012-08-30 2016-06-08 エイヴィーエックス コーポレイション 固体電解コンデンサの製造方法および固体電解コンデンサ
GB2512480B (en) 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
US9324503B2 (en) 2013-03-15 2016-04-26 Avx Corporation Solid electrolytic capacitor
GB2512486B (en) 2013-03-15 2018-07-18 Avx Corp Wet electrolytic capacitor
GB2512481B (en) 2013-03-15 2018-05-30 Avx Corp Wet electrolytic capacitor for use at high temperatures
US9240285B2 (en) 2013-04-29 2016-01-19 Avx Corporation Multi-notched anode for electrolytic capacitor
US9824826B2 (en) 2013-05-13 2017-11-21 Avx Corporation Solid electrolytic capacitor containing conductive polymer particles
US9892862B2 (en) 2013-05-13 2018-02-13 Avx Corporation Solid electrolytic capacitor containing a pre-coat layer
GB2516529B (en) 2013-05-13 2018-08-29 Avx Corp Solid electrolytic capacitor containing a multi-layered adhesion coating
US9236192B2 (en) 2013-08-15 2016-01-12 Avx Corporation Moisture resistant solid electrolytic capacitor assembly
US9269499B2 (en) 2013-08-22 2016-02-23 Avx Corporation Thin wire/thick wire lead assembly for electrolytic capacitor
US9236193B2 (en) 2013-10-02 2016-01-12 Avx Corporation Solid electrolytic capacitor for use under high temperature and humidity conditions
US9589733B2 (en) 2013-12-17 2017-03-07 Avx Corporation Stable solid electrolytic capacitor containing a nanocomposite
TWI560781B (en) * 2014-09-10 2016-12-01 Au Optronics Corp Method for fabricating thin film transistor and apparatus thereof
US9916935B2 (en) 2014-11-07 2018-03-13 Avx Corporation Solid electrolytic capacitor with increased volumetric efficiency
US9620293B2 (en) 2014-11-17 2017-04-11 Avx Corporation Hermetically sealed capacitor for an implantable medical device
US9892860B2 (en) 2014-11-24 2018-02-13 Avx Corporation Capacitor with coined lead frame
US9837216B2 (en) 2014-12-18 2017-12-05 Avx Corporation Carrier wire for solid electrolytic capacitors
US9620294B2 (en) 2014-12-30 2017-04-11 Avx Corporation Wet electrolytic capacitor containing a recessed planar anode and a restraint
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
US9842704B2 (en) 2015-08-04 2017-12-12 Avx Corporation Low ESR anode lead tape for a solid electrolytic capacitor
US9905368B2 (en) 2015-08-04 2018-02-27 Avx Corporation Multiple leadwires using carrier wire for low ESR electrolytic capacitors
DE102015216964A1 (de) * 2015-09-04 2017-03-09 Robert Bosch Gmbh Asymmetrischer Hybridsuperkondensator
US9545008B1 (en) 2016-03-24 2017-01-10 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
US9907176B2 (en) 2016-03-28 2018-02-27 Avx Corporation Solid electrolytic capacitor module with improved planarity
US9870868B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor for use in a subcutaneous implantable cardioverter-defibrillator
US9870869B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor
IL265419B2 (en) 2016-09-22 2024-03-01 Kyocera Avx Components Corp An electrolytic capacitor containing a metal valve derived from a free mine site and a method of making it
US10431389B2 (en) 2016-11-14 2019-10-01 Avx Corporation Solid electrolytic capacitor for high voltage environments
CN106732326B (zh) * 2016-11-18 2019-02-26 湖南稀土金属材料研究院 吸气材料及其制备方法和吸气剂
US11077497B2 (en) 2017-06-07 2021-08-03 Global Titanium Inc. Deoxidation of metal powders
JP7138165B2 (ja) 2017-09-21 2022-09-15 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 非紛争採鉱地から供給される金属部品を含む電子部品及びそれを形成する方法
US10553673B2 (en) 2017-12-27 2020-02-04 Micron Technology, Inc. Methods used in forming at least a portion of at least one conductive capacitor electrode of a capacitor that comprises a pair of conductive capacitor electrodes having a capacitor insulator there-between and methods of forming a capacitor
MX2020009146A (es) 2018-03-05 2020-09-28 Global Advanced Metals Usa Inc Anodos que contienen polvo esferico y capacitores.
US11691197B2 (en) 2018-03-05 2023-07-04 Global Advanced Metals Usa, Inc. Spherical tantalum powder, products containing the same, and methods of making the same
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
WO2020218319A1 (ja) 2019-04-25 2020-10-29 ローム株式会社 固体電解コンデンサ
CN113661551B (zh) 2019-05-17 2023-04-04 京瓷Avx元器件公司 固体电解电容器
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86107657A (zh) * 1986-11-11 1987-12-09 北京有色金属研究总院 球状五氧化二铌的生产提纯方法
WO1997036014A1 (en) * 1996-03-26 1997-10-02 Cabot Corporation METHOD FOR SOLUBILIZING METAL VALUES FROM Ta-Nb-ORE MATERIALS CONTAINING INSOLUBLE FLUORIDES
CN1203567A (zh) * 1995-10-12 1998-12-30 卡伯特公司 五氧化铌和五氧化钽化合物

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US114722A (en) * 1871-05-09 Improvement in extension tables
US135973A (en) * 1873-02-18 Improvement in seats for chairs
US104923A (en) * 1870-07-05 Improved instep-stretcher for boots and shoes
US28175A (en) * 1860-05-08 Frog for bayonet-scabbards
US1123015A (en) 1914-09-03 1914-12-29 Jacob Samuels Stocking attachment.
US1415516A (en) 1919-05-29 1922-05-09 Bridge Arthur Method of and apparatus for reducing metals, etc.
US1906184A (en) 1931-02-27 1933-04-25 Heraeus Vacuumschmelze Ag Method of reducing metal oxides
US2183517A (en) 1937-03-19 1939-12-12 Metallurg De Hoboken Soc Gen Treatment of materials containing tantalum and niobium
GB489742A (en) 1937-03-22 1938-08-03 Metallurg De Hoboken Soc Gen Improvements in and relating to the treatment of substances containing tantalum and/or niobium
GB485318A (en) 1937-03-23 1938-05-18 Metallurg De Hoboken Soc Gen Improvements in and relating to the treatment of materials containing tantulum and niobium
US2242759A (en) 1938-03-02 1941-05-20 Walter H Duisberg Reduction of difficultly reducible oxides
US2443254A (en) * 1945-12-07 1948-06-15 Electro Metallargical Company Separation of columbium and tantalum oxides
US2621137A (en) 1948-07-13 1952-12-09 Charles Hardy Inc Reducing metal powders
US2700606A (en) 1951-08-01 1955-01-25 Harley A Wilhelm Production of vanadium metal
US2761776A (en) 1956-03-29 1956-09-04 Bichowsky Foord Von Process for the manufacture of particulate metallic niobium
GB835316A (en) 1957-07-24 1960-05-18 Johnson Matthey Co Ltd Improvements in and relating to the refining of metals
US2861882A (en) 1957-11-12 1958-11-25 Bichowsky Foord Von Process for reducing niobium oxides to metallic state
US2992095A (en) 1958-01-17 1961-07-11 Wah Chang Corp Process of separating niobium and tantalum values in oxidic ores and of producing pure niobium
US2937939A (en) 1958-11-10 1960-05-24 Harley A Wilhelm Method of producing niobium metal
CH377325A (de) * 1959-12-04 1964-05-15 Ciba Geigy Verfahren zur Herstellung von Niob- und Tantalpentoxyd
GB1123015A (en) 1964-08-07 1968-08-07 Union Carbide Corp A process for producing sintered anodes
US3421195A (en) 1965-12-23 1969-01-14 Dale Electronics Capacitor and method of making same
US3418106A (en) * 1968-01-31 1968-12-24 Fansteel Inc Refractory metal powder
CH515996A (de) 1968-06-06 1971-11-30 Starck Hermann C Fa Verfahren zur Herstellung von hochreinem Niob und/oder Tantal
US3849124A (en) * 1969-12-05 1974-11-19 Norton Co Capacitor powder
US3665260A (en) * 1970-06-01 1972-05-23 Trw Inc Alloy capacitor porous anodes
FR2142203A5 (en) 1971-06-16 1973-01-26 Korotkevich Maria Nitrides, oxides and oxy-nitrides of refractory metals - - in the form of a homogeneous powder
IT963874B (it) 1972-08-10 1974-01-21 Getters Spa Dispositivo getter perfezionato contenente materiale non evapora bile
DE2240658A1 (de) 1972-08-18 1974-02-28 Degussa Verfahren zur desoxydation refraktaerer metalle, insbesondere zur desoxydation von niob und tantal
US3962715A (en) 1974-12-03 1976-06-08 Yeshiva University High-speed, high-current spike suppressor and method for fabricating same
US4032328A (en) 1975-10-23 1977-06-28 University Of Minnesota, Inc. Metal reduction process
US4059442A (en) 1976-08-09 1977-11-22 Sprague Electric Company Method for making a porous tantalum pellet
DE2743842C2 (de) * 1976-10-01 1982-07-01 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka Trockenelektrolytkondensator und Verfahren zu dessen Herstellung
US4201798A (en) 1976-11-10 1980-05-06 Solarex Corporation Method of applying an antireflective coating to a solar cell
US4118727A (en) 1977-09-09 1978-10-03 The United States Of America As Represented By The Secretary Of The Army MOX multi-layer switching device comprising niobium oxide
US4406699A (en) 1981-06-09 1983-09-27 Beck David E High-temperature electrically conductive ceramic composite and method for making same
DE3130392C2 (de) 1981-07-31 1985-10-17 Hermann C. Starck Berlin, 1000 Berlin Verfahren zur Herstellung reiner agglomerierter Ventilmetallpulver für Elektrolytkondensatoren, deren Verwendung und Verfahren zur Herstellung von Sinteranoden
JPS5950604B2 (ja) 1981-11-27 1984-12-10 三菱マテリアル株式会社 酸化チタン粉末の製造法
US4428856A (en) 1982-09-30 1984-01-31 Boyarina Maya F Non-evaporable getter
US4748737A (en) 1985-11-27 1988-06-07 Westinghouse Electric Corp. Method of removing surface oxidation from particulates
JPS62188956A (ja) * 1985-12-03 1987-08-18 コンダクタ ゲゼルシヤフト フユア メス−ウント レゲルテヒニク ミツト ベシユレンクテル ハフツング ウント コンパニ− 化学半電池
US4722756A (en) * 1987-02-27 1988-02-02 Cabot Corp Method for deoxidizing tantalum material
US4805074A (en) * 1987-03-20 1989-02-14 Nitsuko Corporation Solid electrolytic capacitor, and method of manufacturing same
US5211741A (en) * 1987-11-30 1993-05-18 Cabot Corporation Flaked tantalum powder
DE3819779A1 (de) 1988-06-10 1989-12-21 Bayer Ag Verbessertes chromoxidgruen, verfahren zu seiner herstellung und dessen verwendung
US4923531A (en) 1988-09-23 1990-05-08 Rmi Company Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier
US5022935A (en) 1988-09-23 1991-06-11 Rmi Titanium Company Deoxidation of a refractory metal
DE3918691A1 (de) 1989-06-08 1990-12-13 Starck Hermann C Fa Nioboxidpulver (nb(pfeil abwaerts)2(pfeil abwaerts)o(pfeil abwaerts)5(pfeil abwaerts)) sowie verfahren zu dessen herstellung
US4964906A (en) 1989-09-26 1990-10-23 Fife James A Method for controlling the oxygen content of tantalum material
US5011742A (en) * 1989-09-26 1991-04-30 Fife James A Article for controlling the oxygen content in tantalum material
US4960471A (en) 1989-09-26 1990-10-02 Cabot Corporation Controlling the oxygen content in tantalum material
US5013357A (en) 1989-10-26 1991-05-07 Westinghouse Electric Corp. Direct production of niobium titanium alloy during niobium reduction
JP2973499B2 (ja) 1990-09-13 1999-11-08 松下電器産業株式会社 チップ型固体電解コンデンサ
JP3005319B2 (ja) 1990-10-19 2000-01-31 石原産業株式会社 針状あるいは板状低次酸化チタンおよびその製造方法
US5173215A (en) 1991-02-21 1992-12-22 Atraverda Limited Conductive titanium suboxide particulates
US5171379A (en) 1991-05-15 1992-12-15 Cabot Corporation Tantalum base alloys
US5245514A (en) * 1992-05-27 1993-09-14 Cabot Corporation Extruded capacitor electrode and method of making the same
US5284531A (en) * 1992-07-31 1994-02-08 Cabot Corporation Cylindrical metal fibers made from tantalum, columbium, and alloys thereof
US5369547A (en) * 1993-03-22 1994-11-29 The Evans Findings Co., Ltd. Capacitor
FR2703348B1 (fr) 1993-03-30 1995-05-12 Atochem Elf Sa Procédé de préparation de poudre pour céramique en oxynitrure d'aluminium gamma optiquement transparente et la poudre ainsi obtenue.
US5448447A (en) 1993-04-26 1995-09-05 Cabot Corporation Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
US5412533A (en) 1993-06-22 1995-05-02 Rohm Co., Ltd. Solid electrolytic capacitor and manufacturing method thereof
US5470525A (en) 1994-07-01 1995-11-28 H. C. Starck, Inc. Removal of binder from Ta products
US5993513A (en) 1996-04-05 1999-11-30 Cabot Corporation Method for controlling the oxygen content in valve metal materials
US6165623A (en) 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US5825611A (en) 1997-01-29 1998-10-20 Vishay Sprague, Inc. Doped sintered tantalum pellets with nitrogen in a capacitor
US6007597A (en) 1997-02-28 1999-12-28 Teledyne Industries, Inc. Electron-beam melt refining of ferroniobium
US6051326A (en) 1997-04-26 2000-04-18 Cabot Corporation Valve metal compositions and method
US6051044A (en) 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
DE19831280A1 (de) 1998-07-13 2000-01-20 Starck H C Gmbh Co Kg Verfahren zur Herstellung von Erdsäuremetallpulvern, insbesondere Niobpulvern
US6171363B1 (en) * 1998-05-06 2001-01-09 H. C. Starck, Inc. Method for producing tantallum/niobium metal powders by the reduction of their oxides with gaseous magnesium
JP4202609B2 (ja) 1998-05-06 2008-12-24 エイチ・シー・スタルク・インコーポレーテツド 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
US6001281A (en) * 1998-09-04 1999-12-14 Kemet Electronics Corporation Preparation of conductive polymers from stabilized precursor solutions
US6462934B2 (en) * 1998-09-16 2002-10-08 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6391275B1 (en) * 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) * 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6322912B1 (en) * 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6072694A (en) * 1998-09-30 2000-06-06 Kemet Electronics Corporation Electrolytic capacitor with improved leakage and dissipation factor
DE19847012A1 (de) * 1998-10-13 2000-04-20 Starck H C Gmbh Co Kg Niobpulver und Verfahren zu dessen Herstellung
DE19953946A1 (de) 1999-11-09 2001-05-10 Starck H C Gmbh Co Kg Kondensatorpulver
US6576099B2 (en) * 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
CN1317723C (zh) 2000-03-23 2007-05-23 卡伯特公司 氧还原的铌氧化物电容器阳极及其制备方法
DE10030387A1 (de) 2000-06-21 2002-01-03 Starck H C Gmbh Co Kg Kondensatorpulver
US7737066B2 (en) 2001-05-15 2010-06-15 Showa Denko K.K. Niobium monoxide powder, niobium monoxide sintered body and capacitor using the sintered body
US20030104923A1 (en) * 2001-05-15 2003-06-05 Showa Denko K.K. Niobium oxide powder, niobium oxide sintered body and capacitor using the sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86107657A (zh) * 1986-11-11 1987-12-09 北京有色金属研究总院 球状五氧化二铌的生产提纯方法
CN1203567A (zh) * 1995-10-12 1998-12-30 卡伯特公司 五氧化铌和五氧化钽化合物
WO1997036014A1 (en) * 1996-03-26 1997-10-02 Cabot Corporation METHOD FOR SOLUBILIZING METAL VALUES FROM Ta-Nb-ORE MATERIALS CONTAINING INSOLUBLE FLUORIDES

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.WOLD和J. K. RUFF: "《无机合成》", 28 February 1989 *
费多洛夫: "《稀有元素化学》", 30 April 1959 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046323A (zh) * 2017-12-20 2018-05-18 广东省稀有金属研究所 一种铌氧化物的制备方法
CN108046323B (zh) * 2017-12-20 2019-08-02 广东省稀有金属研究所 一种铌氧化物的制备方法

Also Published As

Publication number Publication date
ATE244685T1 (de) 2003-07-15
BR9913828B1 (pt) 2009-01-13
HK1040231B (zh) 2004-02-13
US6416730B1 (en) 2002-07-09
EP1115658B1 (en) 2003-07-09
EP1115658B2 (en) 2011-07-20
US7445762B2 (en) 2008-11-04
DE69909494D1 (de) 2003-08-14
AU757379B2 (en) 2003-02-20
CN1320103A (zh) 2001-10-31
EP1115658A1 (en) 2001-07-18
KR20010075153A (ko) 2001-08-09
CZ298823B6 (cs) 2008-02-13
US6592740B2 (en) 2003-07-15
WO2000015555A1 (en) 2000-03-23
JP2002524378A (ja) 2002-08-06
US6759026B2 (en) 2004-07-06
BR9913828A (pt) 2001-12-18
US6373685B1 (en) 2002-04-16
US20030003044A1 (en) 2003-01-02
EP1357086A1 (en) 2003-10-29
US20050084445A1 (en) 2005-04-21
HK1040231A1 (en) 2002-05-31
DK1115658T3 (da) 2003-10-27
TW460414B (en) 2001-10-21
RU2232720C2 (ru) 2004-07-20
PT1115658E (pt) 2003-11-28
ES2198990T3 (es) 2004-02-01
AU6041299A (en) 2000-04-03
DE69909494T2 (de) 2004-05-27
US20020135973A1 (en) 2002-09-26
IL142008A (en) 2004-09-27
JP5070533B2 (ja) 2012-11-14
IL142008A0 (en) 2002-03-10
CZ2001952A3 (cs) 2002-02-13
US20040033183A1 (en) 2004-02-19
DE69909494T3 (de) 2011-12-01
MXPA01002775A (es) 2002-06-04

Similar Documents

Publication Publication Date Title
CN102603002A (zh) 部分还原铌金属氧化物的方法和脱氧的铌氧化物
CN1320104A (zh) 部分还原某些金属氧化物的方法和脱氧金属氧化物
US6527937B2 (en) Method of making a capacitor anode of a pellet of niobium oxide
AU2010219327C1 (en) Method for the production of valve metal powders
US20020114722A1 (en) Oxygen reduced niobium oxides
JP4275951B2 (ja) 酸化ニオブの製造方法
US20010036056A1 (en) Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
JP4754755B2 (ja) 酸素が減少した酸化ニオブ
CN101676217A (zh) 生产铌金属氧化物的方法和氧还原的铌氧化物
JP2002544375A (ja) 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
AU2001247714A1 (en) Oxygen reduced niobium oxides
US7824452B2 (en) Powder modification in the manufacture of solid state capacitor anodes
WO2005028370A1 (en) A process for the production of niobium oxide power for use in capacitors
KR20020091147A (ko) 산소 환원된 니오븀 산화물

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120725