CN1027556C - 从飞机上发射的火箭加速飞行器 - Google Patents

从飞机上发射的火箭加速飞行器 Download PDF

Info

Publication number
CN1027556C
CN1027556C CN89101328A CN89101328A CN1027556C CN 1027556 C CN1027556 C CN 1027556C CN 89101328 A CN89101328 A CN 89101328A CN 89101328 A CN89101328 A CN 89101328A CN 1027556 C CN1027556 C CN 1027556C
Authority
CN
China
Prior art keywords
aircraft
rocket
stage
thruster
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN89101328A
Other languages
English (en)
Other versions
CN1036826A (zh
Inventor
安托尼奥·L·埃利亚斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbital Sciences LLC
Original Assignee
Orbital Sciences Corp II
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orbital Sciences Corp II filed Critical Orbital Sciences Corp II
Publication of CN1036826A publication Critical patent/CN1036826A/zh
Application granted granted Critical
Publication of CN1027556C publication Critical patent/CN1027556C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B7/00Spring guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/002Launch systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D5/00Aircraft transported by aircraft, e.g. for release or reberthing during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/002Launch systems
    • B64G1/005Air launch

Abstract

一种载带一载荷的火箭加速飞行器,该飞行器适于从携带它的且正在飞行中的运载飞机上被释放而发射,具有为飞行器推进及提供轨迹控制的推力装置。所述的推力装置使飞行器从运载飞机释放后进行推进及提供轨迹控制。机翼装置提供了在预定的第一阶段期间上述飞行器从运载飞机上被连接装置释放之后的轨迹控制,在预定的第一阶段之后,所说的机翼装置由分离装置从飞行器上分离,这样所述的载荷可沿一预定的轨迹被提升和推进。

Description

本发明有关于一种装置的火箭推进飞行器。更具体地讲,本发明是有关于一种空中布置的、升力辅助的、以火箭为动力的加速飞行器(ALBV)。实际上,采用了当代最先进的航天飞行器发射技术,在给定载荷重量下与相当的地面发射的加速器来比较,本发明的加速器的总重量可以减少大约百分之五十,并且在发射系统费用上也可以相应的减少。商业部门及政府部门都愈益需要高效、经济而可靠的能运载载荷的空间飞行器及其发射方法。以往采用过许多发射各种载荷到空间去的方法,但至今只能在安全性、经济性、可靠性及操纵灵活性等需要考虑的方面作出种种明显的折衷。
过去常用的发射载荷的方法是采用常规的地面发射的弹道(亦即无升力的)加速火箭。但是,这类火箭需要复杂的地面起飞设施,包括发射台设备;且在操作及地理方面受到极大的限制,由于推进剂及飞行通过人口稠密区而带来危险性。
而且,常规的地面发射的加速器有其固有的低效性,这是由于设计及操纵方面的各种矛盾必须予以调和折衷而引起的。由于这些低效性,这样的系 统在尺寸、成本及复杂性方面都增加了,从而导致了经济性很差或者不适合于某些应用场合。
在常规的地面发射弹道加速器所需考虑的许多矛盾中,其中有一对是推力方向损失及阻力损失,必须采取折衷。具体来讲,由于对圆形、椭圆形及其它多数有兴趣的轨道来讲任务要求的最终飞行姿态是水平或基本上水平的,所以常规的垂直发射火箭必须从其初始的垂直爬升俯仰向上爬升到近于水平以达到最终的轨道飞行姿态。到达轨道时要求高速而近于水平的飞行。为了尽量减少这种与推力方向改变有关的损失(亦即推力方向损失),理想地应该使飞行器在相对较低速度爬升时就俯仰向上,从而使在飞行轨迹的早期就近于水平爬升。美国Apollo    Program    Lunar    Module在升离月球表面以后到达月球轨道就是在无大气条件下(即真空)利用上述这种浅爬升特性的一个例子。
但是结构应力及气动加热等因素,阻碍了这种理想的飞行轨迹在飞行器经过大气层发射条件下的应用。包括阻力及升力的气动力是随参数ρν2增加而增加的,此处ρ大气密度,ν是飞行器速度,乘积1/2ρν2是动压力。所以相应地对于给定速度下,高度低比高度高时阻力大,因为低空时的ρ较大。在爬升过程中,ρ是连续减少的,而同时随着在加速火箭飞行期间的飞行器加速ν2是连续增加的,所以希望在动压力达到最大值之前飞行器尽可能地接近垂直爬升从而使作用在飞行器上的峰值气动载荷变得最小。因此,与Lunar Module的无大气条件下爬升不同,气动载荷的考虑迫使常规的地面发射的加速器按垂直方向发射并且从垂直到最终的飞行姿态的大多数俯仰向上运动应该在ρν2达到其最大值之后才进行。这样一来,俯仰向上运动是在极高的ν(而ρ是低的)时出现,而气动载荷的减少是付出了由于推力方向损失而造成的使用过量的推进剂这样的代价而得到的。
此外,由于常规的弹道加速器花费了大部分飞行时间于垂直或近于垂直的飞行姿态,重力直接与飞行器的部分推力相抵销,从而导致另一种损失,通常称之谓重力损失。虽然重力损失随着飞行器趋于水平飞行而减少,但是上述气动载荷的因素妨碍了飞行器在达到最大ρν2值之前作基本的水平飞行。结果,常规的加速飞行器在其爬升轨迹的大部分过程中遭致显著的重力损失。
而且,加速火箭发动机的效率是随着排气喷口的膨胀比或出口面积的加大而增加的。但是喷管出口面积增加时,作用在火箭发动机喷管出口面积上的大气环境压力会减少发动机的净推力。此推力损失通常是被称之谓“大气压力诱导的推力减少损失”,为了减少上述损失而使在大气稠密区(较低空)中得到最大的净推力就必须在设计常规的加速器的同时考虑到喷管出口面积或膨胀比,结果发动机的推进效率低于峰值发动机推进效率。
前面已经叙述清楚了,推力方向损失、阻力损失、重力损失及大气压力诱导的推力减少损失涉及到各种复杂的互相交织的种种考虑,从而导致了加速器的性能低于最佳性能及其飞行轨迹操纵差于最佳轨迹操纵。这类性能及操纵方面的调和折衷大大增加了给定载荷重量的常规加速器的尺寸、复杂性及经济上的耗费。
为了克服这些缺点,本发明提出了从高空高速飞机上发射具有升力爬升的加速飞行器。从正在飞行中的运载飞机上发射加速飞行器具有显著的附加优点,即将飞机的高度及速度的能量(位能及动能)直接贡献给加速器用作为其在轨道中爬升的部分能量。这些在轨道方面作出的贡献是地面发射的加速飞行器所无法提供的。
地面发射飞行器的另一缺点是其相对于赤道的合成轨道的倾斜角是受到发射位置的纬度及航程考虑的限制,这些限制了发射方向(亦即发射轨迹必须不经过人口稠密区)。从在飞行的飞机上发射的优点是飞机的速度向量能够被调整得与最终需要的轨道平面相一致。运载飞机可以飞到任何需要的发射位置(任意需要的纬度,通常在海洋区上空)且在发射之前调整飞机的速度向量使与轨道平面一致。能飞到所需的位置及纬度以及具有所需的轨道方向的主要优点是:加速飞行器不必进行耗能量的改变倾斜的机动飞行来达到所需的轨道的倾斜,而这种加速器的机动飞行与飞机进行同样的机动飞行来比是效率低的多的。
空中发射比地面发射的另一优点是飞机能在发射时刻飞到具有好天气条件的任何发射地点。地面发射是典型地限制于几个选定的地点,这是由于安全及保卫方面的考虑以及由于它需要可供发射的设施,而这些设施通常只是在固定的地点的。这样,和地面发射相比,空中发射由于天气条件限制而推 迟或取消的可能性就减少了。
曾经提出过各种水平发射的飞行器的结构。但是由下面叙述可见,这些方案中没有一个具有本发明所能提供的设计及运行上的种种优点。
杰克逊(Jackson)等在美国专利4265416中公布了一个方案,其中采用一个或多个可重复使用的涡轮喷气发动机推进的有翼加速飞行器来助推一个可回收的有翼轨道飞行器而从跑道上进行地面水平发射。为了发射,轨道飞行器是可释放地与加速飞行器连接的。加速飞行器帮助火箭动力轨道飞行器爬升到分级的高度(staging    altitude),然后它就被释放而飞回到地面进而水平着落后再使用。飞行器的可回收特点要求它能重返大气层且能利用其机翼飞回并降落到跑道上。在此飞行器中,轨道飞行器及加速器的机翼都能提供升力,这在某种程度上可以克服重力损失。但是由于这种发射用的飞行器的尺寸大且技术复杂而使其设计研制及试验的费用非常庞大,因而对于发射小的轨道载荷即小于1000磅的载荷来讲是不实际的且成本上也是行不通的。再则,主要由于可回收的要求所造成的结构上的复杂性及尺寸加大也降低了飞行器的载荷能力。
Teledyne    Brown    Engineering(公司)曾提出过另一个发射系统,这是利用正在飞行中的运载飞机来发射有翼加速飞行器。该系统包括有一个不载人的带翼航天飞行器,该飞行器是适合于在诸如波音747这种常规飞机的上部进行发射的。所提出的这个“背在肩上”的发射技术必须仔细考虑当飞行器仍固定于运载飞机上部时的起动及测试。这种发射方法是极为危险的因而大大限制了这种方法的广泛应用。另外,这种系统也采用了有翼的加速飞行器,其翼是始终固定于飞行器上的,这将使飞行器的载荷能力下降。
为了避免有关于从运载飞机上部发射的危险,已经试验了从运载飞机下侧方发射的某种高速研究飞机例如NASA/North    American    X-15。但是到目前为止,实际的下侧方的投放一直只限于相对较低马赫数的亚轨道飞行器,还没有设计出一种适合于从运载飞机在空中投放的而能进行轨道飞行的飞行器。X-15飞行器只得到需要到达轨道轨迹的大约20%的能量。另外,无论是X-15机或从飞机投落的其它的火箭推进飞行器都不是采用可分离的两级装置,其第一级提供推进、升力及轨迹的气动控制而第二级提供轨迹的推进及推力控制。另外,X-15飞行器它能重返大气层且降落在水平跑道上的可再次使用的结构而造成其它附加的复杂性。
的确,有许多现有技术的导弹,包括了空空导弹及空地导弹,它们是由运载飞机携带而发射的。但是这些导弹不是设计能离开大气层的,即不能达到轨道的高度及速度,这些导弹只得到到达轨道轨迹所需的能量的约5%。而且在这些导弹中,其翼及其它气动控制表面在爬升超出大气层之后仍是不能和导弹分离的。
本发明的目的是要提供一种飞行器,这种飞行器能利用运载飞机轨迹的能量贡献来增加飞行器到地球轨道及其它所需轨迹去的运载能力。
本发明更进一步的一个目的是要提供一种具有一次性使用的机翼的飞行器以减少飞行器的成本、复杂性以及增加飞行器的载荷能力。
本发明还有这样的一个目的,即要提供一种适应于能经济而可靠地发射无论是大或小的载荷到轨道中去的飞行器。
本发明进而的目的是要提供一种轨道、超轨道或亚轨道的火箭飞行器,它不需要垂直起飞的设施且在地理上不受任务的出发位置、发射位置及方位角、及最终轨道倾斜等因素的限制,由此避免或减少了对天气、安全、保卫、及固定场所的设施的有效性等担心,而以上这些对于地面发射的位置及时间是有很大影响的。
本发明进而还有一个目的是要提供一种能满足上述目的要求的火箭飞行器,该飞行器是立足于1988年最先进的推进、结构及航空电子技术及设备的。
一种载带一载荷的火箭加速飞行器,该飞行器适于从携带它的且正在飞行中的运载飞机上被释放而发射,具有为上述飞行器的推进及提供轨迹控制的推力装置,其特征在于所述的飞行器还包括:
将飞行器可释放地连接在所述的运载飞机上的连接装置;
为上述飞行器提供升力及轨迹控制的一次性使用的机翼装置;
为把上述机翼装置从飞行器处分离出来的分离装置;
其中推力装置在所述的连接装置使飞行器从运载飞机释放后进行推进及提供轨迹控制,所述的机 翼装置提供了在预定的第一阶段期间上述飞行器从运载飞机上被连接装置释放之后的轨迹控制,在预定的第一阶段之后,所说的机翼装置由分离装置从飞行器上分离出来,这样所述的载荷沿一预定的轨迹被提升和推进。
本发明其它的目的及优点将在下面的说明及图中变得很明显,这些图说明了本发明的各具体实施例及其使用方法。
本发明是有关于不载人的一次性使用的火箭飞行器,该飞行器是被设计为有利于从运载飞机侧下方进行空中投放的,以便把大或小的载荷运送到轨道、超轨道或亚轨道的高度及速度。该火箭飞行器包括有机翼及可控制尾翼,相应地当飞行器飞行在大气敏感区时提供升力及姿态控制。在本发明的一个较佳具体实施例中,该飞行器采用了多级结构,且机翼是一次性使用的,机翼是装在飞行器的第一级上以便与第一级一起扔掉。
在运行中,该火箭加速飞行器是装在诸如洛克希德C-130、波音B-52、波音757或其它专用飞机的机身或机翼的侧下方,且该飞行器是被带到高空进行投放的。该飞行器从运载飞机上释放出来之后就处于水平或近于水平的姿态,且其第一级就点燃了。在本发明的另一个实施例中,飞行器可以是装在运载飞机的体内而不是在其机翼或机身的下侧方。之后,该飞行器执行一个特殊的“垂直S”机动飞行,这包括有下述:一个初始的气动控制的俯仰向上到一个最好为约小于45°的飞行轨迹上升角,然后在ρν2达到最大值之后飞行器再执行一个后继的气动控制的俯仰向下。在垂直S机动飞行的终了时,第一级燃料就烧完了,那时第一级及装在其上的气动机翼尾翼就都被扔弃了,而第二级及相继的其它级就以常规方法把飞行器加速到轨道、超轨道或亚轨道的高度及速度。
上述的本发明的飞行器及方法与以往的技术相比有种种明显的优点,这使本发明对于大规模的轨道、超轨道或亚轨道的载荷运送的完全可行的。
由于加速飞行器是由飞行中的运载飞机发射的,所以运载飞机的速度及高度(动能及位能)就直接加给加速飞行器而作为爬升能量。
由于利用了气动升力,本发明的飞行器可以在结构及尺寸方面设计得使其能被水平布局在高空(如40000英尺)高速(如马赫数0.8)的运载飞机上。如前面已述的,气动升力是被利用来当飞行器经过大气敏感区域时帮助火箭加速器进行非垂直爬升。另外,当在大气敏感区域内,轨迹控制是靠飞行器的气动表面的姿态控制来执行的。所以气动升力有助于克服重力损失。而在常规的加速飞行器中到目前为止一直是主要靠火箭加速器的部分推力来平衡这重力损失的。再有,本发明的飞行器其推力方向损失是减少了,这是因为和地面发射的飞行器相比其总的速度向量转变角度是小的多了,以及本发明的大部分速度向量转弯是在低速下进行的,而且转弯的相当大的一部分是靠气动升力来达到的。
而且,在高空投放轨道飞行器,当其随后作上述垂直S机动飞行时,能使本发明的飞行器以一种爬升轨迹飞行,这轨迹既不同于理想的无大气水平发射轨迹,亦不同于典型的用于前述在地球大气层中地面发射的近于垂直的轨迹,这轨迹能避免一般与在大气层中发射有关的附带缺点。具体地说,在布置位置的发射高度的ρ低且速度相对也小,这就使作用在结构上的气动负荷及气动热负荷减轻到最小,而能利用基本上为非垂直的飞行轨迹。在较佳方法中,初始俯仰向上取45°或略低些,这样能提供一个合适的大气的密度梯度以避免破坏性的最大气动载荷及热荷。还有,在达到了最大的气动载荷之后,本发明飞行器是俯仰向下而趋于上述讨论过在真空中的理想水平轨迹。
此外,由于利用基本上为非垂直的飞行轨迹是可行的,所以重力损失随着重力在推力方向的分量的减少而减少,而重力在垂直于推力的方向的分量是由机翼的气动升力所平衡。
进而,机翼及尾翼在它们停止提供有用升力及气动姿态控制之后就被扔弃了,这样和美国的航天飞机或前述的Jackson等飞行器相比本发明的飞行器进一步增加了飞行器的效率及载荷能力,上述航天飞机及Jackson的飞行器必须把不能扔弃的机翼一直带到轨道。
而且,飞行器的空中发射可使有效地达到所需的轨道倾斜,因为发射可以在任意需要的纬度及倾斜角度时进行,因而消除了在加速器上升期间或在达到轨道之后的为改变倾斜角度而作机动飞行的需要。
由本发明设计的火箭发动机还可进一步减少损 失。因为火箭发动机是在大于40000英尺高度的大气压力下点燃工作的,所以可以采用较大的喷管出口面积或膨胀比,以此来提高推进效率及大大减少大气压力的推力减少损失。
图1是本发明的火箭飞行器的一个最佳实施例的侧视图;
图2是本发明的火箭飞行器的最佳实施例的部分剖视平面图;
图3是本发明的火箭飞行器的最佳实施例的正视图;
图4是典型的运载飞机的顶视图,本发明的火箭飞行器是固定在该运载飞机上的;
图5是该运载飞机的侧视图,本发明的火箭飞行器固定在该运载飞机上的;
图6是该运载飞机的正视图,本发明的火箭飞行器固定在该运载飞机上的;
图7是示意图,它是用来说明本发明的火箭飞行器的发射方法的。
图8a和8b示出了所定义的正攻击角和负攻击角;以及
图9概略地示出了火箭加速飞行器具有正、负攻击角时的最佳轨迹。
图1到3表明了本发明的火箭飞行器1000的一个最佳实施例,这是一个以火箭为动力的、在空中布置的、升力辅助的加速飞行器(以下以ALBV简称之)。该飞行器100(即ALBV)是有三级组成的,第一级10及第二级20及第三级30,这三级相应有其自己的火箭发动机19,29及39。第一及第二级最初是在邻接端用1-2级的接头15采用常规的可选择的释放方式连接在一起的,该接头15是按照第一级在飞行中工作结束为条件而释放的。同样地,第二及第三级是在邻接端用2-3级的接头25以可选择的释放方式连接在一起,而接头25是按照第二级在飞行中工作结束为条件而释放的。
在该实施例中,一级二级及三级可以是用合适的推进剂诸如高能HTPB(以羟基封端的聚丁二烯hydroxy    terminated    polybutadyne)为基的推进剂作燃料的固体火箭发动机。第一级的外壳11的材料以钢或丝状体复合材料诸如石墨(filament    composite    e.g.,graphite)为好,这样可使强度好及总飞行器重量减少,而该材料的选择取决于经济及技术上两方面的考虑,而第二及第三级的外壳21及31的材料最好是丝状体复合材料(filament    composite)。喷管12、22及32是分别固定在第一、二及三级的尾部。第一级喷管是按空中发射优化了的固定喷口(即非转向的),其膨胀比最好约为40∶1。第二及第三级的喷管22及32是常规的万向喷口,它们的膨胀比最好相应为80∶1及60∶1。第二及第三级采用了常规的姿态控制机构,例如可用机电式的推力向量控制方法来在动力飞行中控制俯仰及偏转运动,而用冷气(例如氮气)反作用射流来在惯性飞行时进行俯仰及偏转控制以及在动力及惯性飞行时进行滚动控制。第一级的姿态控制是以下述方式而气动执行的。
空气动力机翼23是固定于第一级外壳11上。尾翼24提供了对飞行器的气动控制,且尾翼24是可转动地支承在后裙27内的尾翼执行器26上。电池或加压液压储罐28是尾翼执行器26的动力源。后裙27是靠常规的引伸件(未表示)固定在外壳11上的。航空电子仪器包括有微处理机导航计算机以及惯性的各种姿态参照仪表,这些仪器是安排在环绕着尺寸较小的第三级发动机39周围的仪器组件31之内。第三级的整流罩38通常是常规的加速器的气动力的热屏蔽头罩,当该罩覆盖了载荷以及整个第三级时是个例外。载荷(未表示)是安放在由罩38的前部所形成的腔内。罩38是采用常规的推出机构通常在第二级点燃后被推掉的,但严格的时间控制是取决于任务及轨迹的要求。
图4到6说明了上述ALBV100,它是用装在运载飞机200上的翼下发射架及释放机构101。运载飞机200可以是任意合适的飞机,诸如洛克希德C-130、波音B-S2、波音757或其它专用飞机。虽然该ALBV100可以安装在任意方便的位置,但最好是装于运载飞机的机翼,且在内侧发动机及机身之间,该合适距离是考虑到推进器及发动机间的空间、气动力干扰、起飞时距离地面的空间等因素来确定的。为了运载飞机的安全,发射架的结构中应该包括有合适的保险(fail-safe)手段,以保证在主释放机构出了故障时加速器仍能被发射出来。
参照图7,下面将叙述一个示范性的例子。
在运载飞机200起飞之前,ALBV100是通过 翼下发射架101装于运载飞机200上。之后,运载飞机200从常规的水平起飞设施(即跑道)起飞而升到投放地点。由于该ALBV100是适合于空中投放的,故运载飞机200的任务出发点是只受适合的常规机场设施的有效性及飞机200的航程的限制。而且该ALBV100的空中发射位置及方向是灵活的,这就使得消耗掉的助推级的溅落区位置以及轨道的发射点的选择亦是非常灵活的。
飞机200在到达发射点300且进行了合适的检查性试验及其它功能之后,在t=0秒时ALBV100就以亚音的飞行速度(例马赫数约为0.8)在高空约40000英尺而以基本上为水平的姿态被发射出来。ALBV100与运载飞机200安全地分离之后,在ALBV100准备开始自己的飞行期间有一段自由落下的阶段(从302开始),然后在点306(例t=5秒)处第一级发动机19就点燃了。
之后在点307处,ALBV尾翼上的气动表面就被放在这样的结构位置,以使ALBV100俯仰向上(形成一个正攻角),从而开始了垂直S的机动飞行,且靠气动力使ALBV100按某一上升角向上爬升,该上升角最好小于约45°。上升角应该取得尽可能低平以使最大的可被接受的气动载荷作用在飞行器上。由于气动及热载荷是直接与动压力有关的,所以上升角愈陡则气动及热载荷就愈小。但在另一方面,上升角愈低平则如前所述那样推力方向损失及重力损失就愈少。
在点308,(例t=30,v=马赫3.0,高度为78000英尺)ALBV的尾翼24上的气动控制表面是被放在这样的结构位置,以使ALBV100俯仰向上而由此减少了它的上升飞行角度。点308是这样确定的,在该点上参数ρν2已达到最大值,且相应于该点上在ALBV100上的气动载荷达峰值。在发射之后,动压力1/2ρν2是随时间而变化的,这是因为ALBV100的高度是增加的(使ρ下降)而速度也是增加的。这样动压力与发射之后的时间的函数关系是这样的,即动压力先随时间而增加,之后又减少,而组成一抛物线曲线。
应当指出,如果“push-over”点308选在太低的高度(即ρ仍很高),则合成的较高的ρν2值会要求较重的结构来支承气动载荷,而这会导致载荷能力的减少。如果点308选在太高的高度,由于较陡的轨迹而引起的重力损失亦会导致有效载荷能力的减少。点308是这样的点,它标志着对于“push-over”来讲具有最佳高度及速度的垂直S机动飞行的点。在点308之后,ALBV100按理论的最佳上升角进行无阻力加速是可能的,而不需考虑气动载荷的问题。
在点309(例t=95秒,V=10300英尺/秒,高度=260000英尺),第一级的燃料烧完且脱落,因此,在本实施例中的一次性使用的机翼23、尾翼24、整流罩38连同该第一级就一起被扔掉了。取决于上述扔掉时的高度,在本实施例中的机翼23、尾翼24、整流罩38及燃烧完了的第一级的残留部分或者掉入大洋或者在重返大气层时被烧光。最好是这样确定第一级燃料燃烧完的时刻,使其动压力至少有10磅/平方英尺来确保当第一级发动机19烧完时尾翼24尚有足够的气动力来进行气动姿态控制。
从点300到309代表了ALBV100的飞行的第一阶段320,在该阶段里轨迹完全是由气动控制的。如前所述,在该阶段中气动控制大大改善了第一阶段的效率,原因是推力方向损失大为减少了。另外,由于气动控制,第一级喷管就不需要万向式或其它的控制姿态的手段,从而飞行器的成本及重量就减少了。
第一级烧完之后(点309),经过一段理想的惯性飞行,在点310(例t=135秒)第二级开始点燃。
第三级点燃是在点311(例t=610秒),接着在点312第三级烧完且进入轨道(例t=675秒)。
点310到312代表了轨迹的第二阶段330,在这一阶段中采用了如前述的常规的(非气动的)姿态控制手段。
上述的从飞行中的运载飞机上发射火箭加速飞行器的最佳轨迹可参考图8及9来说明。先参看图8a及8b,图中示出了所定义的正负攻击角。攻击角定义为速度矢量460与飞行器100外壳体轴线的夹角。在图8a中,当轴线在速度矢量460之上时即为正攻击角。而在图8b中,轴线在速度矢量460之下时为负攻击角。对上述攻击角的定义有利于对火箭加速飞行器最佳轨迹的理解。在图9中,最佳轨迹用正、负攻击角来描述。飞行器100从运载飞机上释放后便经历了一段正攻击角增加的区段(410)。之后转入一段正攻击角减小的区段 420。由于飞行器100偏离最佳真空轨迹450并按实际轨迹400飞行,因此要减少正攻击角。经过正攻击角减小区后,飞行器进入负节攻角区段430。这一区段一直延续到飞行器回到最佳真空轨迹,并进入弹道飞行区段440。在弹道飞行区段440,有正、负及零攻击角。
熟悉于这类技术的工作者都明白,在不背离本发明的基本思路的条件下对本发明还可以作许多修改。按照示例的方法,也可采用若干助推级的方案,级的多少取决于下述因素,任务的目的地位置、载荷重量、成本考虑以及运载飞机的类型及机构。而且,尽管在这里叙述的是固体推进剂火箭,一级或多级可以采用包括常规的液体推进剂发动机在内的其它类型的火箭推进。并且,本发明能采用各种类型的运载飞机及各种类型的投放机构。
再则,尽管本实施例采用了机翼23及尾翼24是在第一级上,但机翼23及尾翼24是不一定要这样布置的,它们可以被布置在零级、二级或其后的级,只要那里位置的气动力是适合的话。另外,对于飞行器的尺寸及载荷能力的要求不那么苛刻的应用情况,机翼23及尾翼24也不一定需要是可扔弃式的。在只是单级或多级的应用情况下,亦可以只扔弃机翼23及尾翼24它们本身而不是把23及24与烧完的级一起扔弃掉。但是在这种情况下必须采取合适的安全措施以保证被扔弃掉的机翼23及尾翼24能躲开ALBV100而防止损坏。为了这个目的,可以采用常规的爆炸支座来把机翼23及卷翼24固定在ALBV100上。
最后,虽然在这里是参照一个典型的任务特性来说明ALBV100的运行,但其中的时间、高度、速度及其相继的动作等都只是作为例子提出的,这些参数完全可以根据下述参数来修改,天气、运载飞机类型、载荷类型、所需任务目的及ALBV的结构(例如级数采用的发动机类型、机翼的扔弃方法等)。
有关的技术人员应该理解,本发明不只限于所说实施例,在不背离本发明的基本精神及范围的条件下对此叙述的ALBV100、运载飞机200及发射方式作各种改变是完全可能的。

Claims (13)

1、一种载带一载荷的火箭加速飞行器,该飞行器适于从携带它的且正在飞行中的运载飞机上被释放而发射,具有为上述飞行器的推进及提供轨迹控制的推力装置,其特征在于所述的飞行器还包括:
将飞行器可释放地连接在所述的运载飞机上的连接装置;
为上述飞行器提供升力及轨迹控制的一次性使用的机翼装置;
为把上述机翼装置从飞行器处分离出来的分离装置;
其中推力装置在所述的连接装置使飞行器从运载飞机释放后进行推进及提供轨迹控制,所述的机翼装置提供了在预定的第一阶段期间上述飞行器从运载飞机上被连接装置释放之后的轨迹控制,在预定的第一阶段之后,所说的机翼装置由分离装置从飞行器上分离出来,这样所述的载荷沿一预定的轨迹被提升和推进。
2、根据权利要求1中所述的火箭加速飞行器,其特征在于:所述的飞行器还至少包括第一及第二级,推力装置还至少包括了分别由上述第一级及第二级所携带的第一级推力装置及第二级推力装置,且机翼是固定于上述第一级的,以及分离装置还包括了为把第一级及机翼从飞行器分离开来的装置。
3、根据权利要求2的所述的火箭加速飞行器,其特征在于:所述的飞行器还包括了第三级,所述推力装置还包括了由第三级所携带的第三级推力装置,所述的分离装置还包括了为把第二级从飞行器分离开的装置。
4、根据权利要求3中所述的火箭加速飞行器,其特征在于:所述的第三级还包括携带载荷的载荷装置。
5、根据权利要求1中所述的火箭加速飞行器,其特征在于:所述的机翼装置包括了在所述预定的第一阶段期间提供空气动力的升力的主机翼装置,以及为执行姿态控制的辅助机翼。
6、根据权利要求2中所述的火箭加速飞行器,其特征在于:所述的第一级推力装置的推力方向是固定的,且第二级推力装置的推力方向是可变的。
7、根据权利要求2中所述的火箭加速飞行器,其特征在于:所述的第一级推力装置具有一个固定的推力方向,而所述的第二级推力装置有一组不同而可选择的推力方向。
8、根据权利要求1所述的火箭加速飞行器,其特征在于:当飞行器达到某一高度和速度而上述机翼装置所提供的空气动力控制实际上已变成无效时,所述的第一阶段结束。
9、根据权利要求8所述的火箭加速飞行器,其特征在于:推力装置在所述第一预定阶段之后提供轨迹控制。
10、根据权利要求2所述的火箭加速飞行器,其特征在于:所述的第一和第二级是轴向对准的。
11、根据权利要求2所述的火箭加速飞行器,其特征在于:所述的第一第二级均为火箭加速飞行器的整体件。
12、根据权利要求1,2,3或4所述的火箭加速飞行器,其特征在于:火箭加速飞行器不载带人。
13、根据权利要求1所述的火箭加速飞行器,其特征在于:第一预定的时间阶段起始于飞行器从运载飞机释放时。
CN89101328A 1988-03-11 1989-03-11 从飞机上发射的火箭加速飞行器 Expired - Lifetime CN1027556C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US167,189 1988-03-11
US07/167,189 US4901949A (en) 1988-03-11 1988-03-11 Rocket-powered, air-deployed, lift-assisted booster vehicle for orbital, supraorbital and suborbital flight

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN 93100303 Division CN1030758C (zh) 1993-01-13 1993-01-13 从飞机上发射火箭加速飞行器的方法

Publications (2)

Publication Number Publication Date
CN1036826A CN1036826A (zh) 1989-11-01
CN1027556C true CN1027556C (zh) 1995-02-01

Family

ID=22606320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89101328A Expired - Lifetime CN1027556C (zh) 1988-03-11 1989-03-11 从飞机上发射的火箭加速飞行器

Country Status (11)

Country Link
US (1) US4901949A (zh)
EP (1) EP0364569B1 (zh)
JP (1) JP2647220B2 (zh)
KR (1) KR0163020B1 (zh)
CN (1) CN1027556C (zh)
AU (1) AU612549B2 (zh)
BR (1) BR8906384A (zh)
CA (1) CA1330071C (zh)
DE (1) DE68916502T2 (zh)
IL (1) IL89577A (zh)
WO (1) WO1989008582A1 (zh)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199672A (en) * 1990-05-25 1993-04-06 Orbital Sciences Corporation Method and apparatus for deploying a satellite network
US5088663A (en) * 1990-06-25 1992-02-18 Keith Henson Method of launching payloads
US5566909A (en) * 1993-09-08 1996-10-22 Hughes Aircraft Company System and method for deploying multiple probes
IL120638A (en) * 1993-09-17 1999-12-31 Rockwell International Corp Method for use of a reusable flyback satellite system
US5402965A (en) * 1993-09-20 1995-04-04 Rockwell International Corporation Reusable flyback satellite
US6068211A (en) * 1993-09-17 2000-05-30 Toliver; David M. Method of earth orbit space transportation and return
US5740985A (en) * 1996-09-16 1998-04-21 Scott; Harry Low earth orbit payload launch system
US6119985A (en) * 1997-03-07 2000-09-19 Pioneer Rocketplane Corporation Reusable rocket-propelled high altitude airplane and method and apparatus for mid-air oxidizer transfer to said airplane
US6293503B1 (en) 1998-01-30 2001-09-25 D. Andy Beal Space Launch system with pressure reduction devices between stages
US6347627B1 (en) * 1998-04-23 2002-02-19 Pioneer Inventions, Inc. Nitrous oxide based oxygen supply system
US6176451B1 (en) 1998-09-21 2001-01-23 Lockheed Martin Corporation Utilizing high altitude long endurance unmanned airborne vehicle technology for airborne space lift range support
UA56364C2 (uk) 1999-07-29 2003-05-15 Анатолій Стєпановіч Карпов Авіаційно-космічна система
AU1087400A (en) * 1999-07-29 2001-02-19 Robert Konstantinovich Ivanov Method for controlling an aerospace system to put a payload into an orbit
AU2002255964A1 (en) 2001-03-27 2002-10-08 Space Launch Corporation A system for the delivery and orbital maintenance of micro satellites and small space-based instruments
IL145708A0 (en) 2001-09-30 2003-06-24 Rafael Armament Dev Authority Air launch of payload carrying vehicle from a transport aircraft
FR2839946B1 (fr) 2002-05-24 2004-12-24 Dassault Aviat Ensemble composite de lancement d'une charge utile dans l'espace
EP1620693A2 (en) * 2003-05-06 2006-02-01 Bae Systems Applied Technologies, Inc. Air-based vertical launch ballistic missile defense
US7252270B2 (en) * 2003-08-05 2007-08-07 Israel Aircraft Industries, Ltd. System and method for launching a missile from a flying aircraft
JP4111903B2 (ja) * 2003-10-20 2008-07-02 東海旅客鉄道株式会社 飛翔体発射装置および飛翔体発射方法
US7287722B2 (en) 2005-10-03 2007-10-30 Rocket Racing, Inc. Rocket-powered vehicle racing competition
US7338015B1 (en) * 2005-11-16 2008-03-04 Airlaunch Llc Gravity extraction air launch system for launch vehicle
US7458544B1 (en) 2005-12-23 2008-12-02 Airlaunch Llc Method and apparatus for dropping a launch vehicle from beneath an airplane
US8168929B2 (en) * 2008-01-15 2012-05-01 Eugene Alexis Ustinov Non-powered, aero-assisted pre-stage for ballistic rockets and aero-assisted flight vehicles
WO2010014753A2 (en) * 2008-07-29 2010-02-04 Rocket Racing, Inc. Rocket-powered entertainment vehicle
JP5501690B2 (ja) * 2009-07-31 2014-05-28 三菱重工業株式会社 発射システム及び発射装置
US8403254B2 (en) 2010-02-12 2013-03-26 Eugene Alexis Ustinov Aero-assisted pre-stage for ballistic rockets and aero-assisted flight vehicles
US8528853B2 (en) 2010-07-29 2013-09-10 David I. Luther In-line staged horizontal takeoff and landing space plane
CN102826232B (zh) * 2011-06-17 2015-04-22 航天信息股份有限公司 基于rfid技术的飞机短距离滑行起降系统
RU2482030C2 (ru) * 2011-07-26 2013-05-20 Федеральное Государственное Унитарное Предприятие "Государственный научно-производственный ракетно-космический центр "ЦСКБ-Прогресс" (ФГУП "ГНПРКЦ "ЦСКБ-Прогресс") Ракета-носитель
RU2532976C2 (ru) * 2012-09-20 2014-11-20 Открытое Акционерное Общество "Государственное Машиностроительное Конструкторское Бюро "Радуга" Имени А.Я. Березняка" Устройство для сброса полезной нагрузки с летательного аппарата
DE102012025026A1 (de) * 2012-12-20 2014-06-26 Astrium Gmbh Hilfsvorrichtung für hochfliegendes Flugzeug
US9121680B2 (en) * 2013-01-17 2015-09-01 Raytheon Company Air vehicle with control surfaces and vectored thrust
US9745063B2 (en) * 2014-08-07 2017-08-29 Ventions, Llc Airborne rocket launch system
CN105035341A (zh) * 2015-01-22 2015-11-11 王永泽 升空发射器
US10029806B2 (en) 2015-04-23 2018-07-24 Orbital Atk, Inc. Systems and methods for satellite constellation launch using air-launched vehicles
CN105597334B (zh) * 2015-09-22 2017-11-21 中国航天科技集团公司第四研究院第四十一研究所 一种搭载遥控飞机的固体火箭运载装置
RU2636447C2 (ru) * 2016-02-04 2017-11-23 Владимир Николаевич Чижухин Авиационный ракетно-космический комплекс, формируемый на базе ракеты космического назначения, адаптируемой из МБР ТОПОЛЬ-М, и самолёта-носителя ИЛ-76МФ по выведению малых КА на целевые орбиты путём десантирования РКН из самолёта с применением комбинированной транспортно-пусковой платформы и подъёмно-стабилизирующего парашюта
US20180022455A1 (en) * 2016-07-20 2018-01-25 Dustin McCaslin Dropping mechanism with universal mounting points
CN106839891B (zh) * 2016-12-12 2018-04-10 北京空间机电研究所 一种高速物体柔性捕获装置及捕获方法
US10669047B2 (en) * 2017-05-24 2020-06-02 The Boeing Company System and method for hypersonic payload separation
US10605822B2 (en) * 2017-06-12 2020-03-31 The Boeing Company System for estimating airspeed of an aircraft based on a weather buffer model
EP3489140B1 (en) * 2017-11-27 2022-02-23 Airbus Operations, S.L. Aircraft system with asisted taxi, take off, and climbing
US10815010B2 (en) * 2017-12-27 2020-10-27 Intercept Nexus, Llc High altitude air launched rocket
RU2682944C1 (ru) * 2018-03-16 2019-03-22 Акционерное Общество "Государственное Машиностроительное Конструкторское Бюро "Радуга" Имени А.Я. Березняка" Способ выведения беспилотного летательного аппарата на высотную траекторию полета
RU2702261C2 (ru) * 2018-03-16 2019-10-07 Акционерное Общество "Государственное Машиностроительное Конструкторское Бюро "Радуга" Имени А.Я. Березняка" Беспилотный летательный аппарат
RU2724001C2 (ru) * 2018-09-11 2020-06-18 Иван Анатольевич Пышный Способ авиационно-космического выведения на околоземную орбиту малых искусственных спутников
CN110304276A (zh) * 2019-03-15 2019-10-08 北京蓝箭空间科技有限公司 运载火箭及用于运载火箭子级分离及姿态控制的组合装置
CN110371321A (zh) * 2019-07-05 2019-10-25 中国人民解放军国防科技大学 树形多星叠加共位发射方法
CN110764528B (zh) * 2019-10-18 2023-05-12 北京航天长征飞行器研究所 一种舰载火箭弹垂直转弯控制方法
RU2727770C1 (ru) * 2020-02-17 2020-07-23 Акционерное Общество "Государственное Машиностроительное Конструкторское Бюро "Радуга" Имени А.Я. Березняка Беспилотный летательный аппарат
RU198132U1 (ru) * 2020-02-17 2020-06-19 Акционерное Общество "Государственное Машиностроительное Конструкторское Бюро "Радуга" Имени А.Я. Березняка" Беспилотный летательный аппарат
RU2727363C1 (ru) * 2020-02-17 2020-07-21 Акционерное Общество "Государственное Машиностроительное Конструкторское Бюро "Радуга" Имени А.Я. Березняка Способ выведения беспилотного летательного аппарата на высотную траекторию полета
EP4227633A1 (en) * 2022-02-10 2023-08-16 MBDA UK Limited Apparatus for providing an interface between a missile and a launch platform
GB2616727A (en) * 2022-02-10 2023-09-20 Mbda Uk Ltd Apparatus for providing an interface between a missile and a launch platform
CN116185058B (zh) * 2023-04-21 2023-07-07 东方空间技术(山东)有限公司 一种运载火箭姿态控制方法、装置及飞控计算机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1043516A (fr) * 1951-10-06 1953-11-10 Rateau Soc Perfectionnement aux aérodynes pour vol à très grande altitude
US3702688A (en) * 1971-01-04 1972-11-14 Nasa Space shuttle vehicle and system
US3929306A (en) * 1974-03-05 1975-12-30 Nasa Space vehicle system
US3866863A (en) * 1974-03-21 1975-02-18 Nasa Space vehicle
US4265416A (en) * 1978-05-30 1981-05-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Orbiter/launch system
US4306692A (en) * 1979-03-16 1981-12-22 Communications Satellite Corporation Attitude acquisition maneuver for a bias momentum spacecraft
DE2935044A1 (de) * 1979-08-30 1981-03-19 Vereinigte Flugtechnische Werke Gmbh, 2800 Bremen Unbemannter, aus einem transportbehaelter zu startender flugkoerper
DE3336847A1 (de) * 1983-10-11 1985-04-25 Messerschmitt-Bölkow-Blohm GmbH, 2800 Bremen Luftfahrzeug mit faltbaren und/oder schwenkbaren tragfluegeln
US4657210A (en) * 1985-05-17 1987-04-14 Rca Corporation Spacecraft stabilization system and method
US4691880A (en) * 1985-11-14 1987-09-08 Grumman Aerospace Corporation Torsion spring powered missile wing deployment system

Also Published As

Publication number Publication date
AU3443589A (en) 1989-10-05
JPH03500038A (ja) 1991-01-10
CN1036826A (zh) 1989-11-01
JP2647220B2 (ja) 1997-08-27
DE68916502D1 (de) 1994-08-04
IL89577A0 (en) 1989-09-10
CA1330071C (en) 1994-06-07
EP0364569A4 (en) 1990-11-28
US4901949A (en) 1990-02-20
KR0163020B1 (ko) 1998-12-15
EP0364569A1 (en) 1990-04-25
KR900700840A (ko) 1990-08-17
IL89577A (en) 1994-02-27
EP0364569B1 (en) 1994-06-29
WO1989008582A1 (en) 1989-09-21
BR8906384A (pt) 1990-08-28
DE68916502T2 (de) 1994-10-13
AU612549B2 (en) 1991-07-11

Similar Documents

Publication Publication Date Title
CN1027556C (zh) 从飞机上发射的火箭加速飞行器
CN1120113C (zh) 有效载荷的携带及发射系统
US5402965A (en) Reusable flyback satellite
AU693968B2 (en) Space launch vehicles configured as gliders and towed to launch altitude by conventional aircraft
US6029928A (en) Space launch vehicles configured as gliders and towed to launch altitude by conventional aircraft
US6450452B1 (en) Fly back booster
US6068211A (en) Method of earth orbit space transportation and return
CN106628251A (zh) 组合航天器和轨道飞行器发射回收方法
CN1030758C (zh) 从飞机上发射火箭加速飞行器的方法
CN111959824A (zh) 一种空基发射的重型可重复使用的空天飞行器系统
CN202439843U (zh) 飞碟航天器
CN215285311U (zh) 基于支撑翼和h型尾翼载机的空基发射系统
CN113184219A (zh) 基于亚跨声速载机的空基发射系统及发射方法
CN113335526A (zh) 一种基于火箭动力的洲际快速抵达运输系统
CN215285312U (zh) 基于双机身平直翼布局载机的空基发射系统
CN215285313U (zh) 基于外翼可c形折叠的bwb载机的空射系统
Sarigulklijn et al. A New Air Launch Concept: Vertical Air Launch Sled (VALS)
IL110930A (en) A system of satellites will return for reuse
RU2317923C2 (ru) Авиационный ракетный комплекс
RU2159727C1 (ru) Способ выведения полезной нагрузки на орбиту в космос
RU2359873C2 (ru) Авиационный ракетный комплекс
RU2319643C2 (ru) Авиационный ракетный комплекс
RU2359872C2 (ru) Авиационный ракетный комплекс
RU2314975C1 (ru) Авиационный ракетный комплекс
RU2309090C2 (ru) Авиационный ракетный комплекс

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term