CN102844341A - 用于生产高Mz/Mw聚烯烃的催化剂组合物 - Google Patents

用于生产高Mz/Mw聚烯烃的催化剂组合物 Download PDF

Info

Publication number
CN102844341A
CN102844341A CN2011800197048A CN201180019704A CN102844341A CN 102844341 A CN102844341 A CN 102844341A CN 2011800197048 A CN2011800197048 A CN 2011800197048A CN 201180019704 A CN201180019704 A CN 201180019704A CN 102844341 A CN102844341 A CN 102844341A
Authority
CN
China
Prior art keywords
carbon atoms
independently
alkyl
reach
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800197048A
Other languages
English (en)
Other versions
CN102844341B (zh
Inventor
杨清
M·P·麦克丹尼尔
W·B·比尤利
J·L·马丁
T·R·克雷恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron Phillips Chemical Co LLC
Original Assignee
Chevron Phillips Chemical Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44120994&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102844341(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chevron Phillips Chemical Co LLC filed Critical Chevron Phillips Chemical Co LLC
Publication of CN102844341A publication Critical patent/CN102844341A/zh
Application granted granted Critical
Publication of CN102844341B publication Critical patent/CN102844341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/76Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from titanium, zirconium, hafnium, vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/07Catalyst support treated by an anion, e.g. Cl-, F-, SO42-
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/09Cyclic bridge, i.e. Cp or analog where the bridging unit linking the two Cps or analogs is part of a cyclic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Abstract

本发明提供使用双柄型茂金属催化剂系统的聚合方法。也提供由所述聚合方法生产的聚合物,并且这些聚合物具有反向共聚单体分布、非双峰分子量分布、Mw/Mn的比从约3至约8和Mz/Mw的比从约3至约6。

Description

用于生产高Mz/Mw聚烯烃的催化剂组合物
发明背景
一般而言,本发明涉及烯烃聚合催化、茂金属催化剂组合物、烯烃聚合和共聚的方法、以及聚烯烃的领域。更具体而言,本发明涉及具有高Mz/Mw比的烯烃聚合物,和用于生产这种烯烃聚合物的催化剂组合物和聚合方法。
在聚合物科学中,使用聚合物平均分子量的各种量度。例如,Mn是数均分子量,Mw是重均分子量,和Mz是z均分子量。Mw/Mn的比通常用作聚合物分子量分布宽度的量度,并且该比也称为多分散指数。Mz/Mw的比是聚合物分子量分布的高分子量分数宽度的度量。
可使用催化剂系统和聚合方法的各种组合生产聚烯烃均聚物、共聚物、三元共聚物等。可用于生产这种聚烯烃的一种方法使用茂金属基催化剂系统。使用茂金属基催化剂系统生产的具有单峰分子量分布的聚烯烃通常具有相对低的Mw/Mn和Mz/Mw比。使用茂金属基催化剂系统生产比常规茂金属基聚烯烃具有更高Mz/Mw比的聚烯烃将是有利的。因此,这是本发明的目的。
发明内容
本发明公开聚合方法,其使用双催化剂系统用于生产具有高Mz/Mw比的聚合物。
按照本发明的一个方面,提供催化剂组合物,并且该催化剂组合物包含催化剂组分I、催化剂组分II和活化剂。另一方面,提供烯烃聚合方法,并且在该方面,方法包含将催化剂组合物与烯烃单体和任选地烯烃共聚单体在聚合条件下接触以生产烯烃聚合物,其中催化剂组合物包含催化剂组分I、催化剂组分II和活化剂。
在这些催化剂组合物和聚合方法中,催化剂组分I可包含具有式(I)的至少一种柄型茂金属化合物:
Figure BDA00002272684800021
其中:
MA是Ti、Zr或Hf;
X1A和X2A独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达18个碳原子的烷基或芳基基团;或烃氧基(hydrocarbyloxide group)、烃氨基(hydrocarbylamino group)或烃甲硅烷基(hydrocarbylsilyl group),其任何一个具有上达18个碳原子;
EA是C或Si;
R1A和R2A独立地为H、具有上达18个碳原子的烃基,或R1A和R2A连接形成具有上达18个碳原子的环状或杂环基团,其中R1A和R2A不是芳基;
R6A和R7A独立地为H或具有上达18个碳原子的烃基;和
CpA是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpA上的任何取代基独立地为H或具有上达36个碳原子的烃基或烃甲硅烷基。
在这些催化剂组合物和聚合方法中,催化剂组分II可包含具有式(II)的至少一种柄型茂金属化合物:
Figure BDA00002272684800022
其中:
MB是Ti、Zr或Hf;
X1B和X2B独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达18个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达18个碳原子;
EB是C或Si;
R1B和R2B独立地为H或具有上达18个碳原子的烃基,其中R1B和R2B的至少一种是具有上达18个碳原子的芳基基团;
R6B和R7B独立地为H或具有上达18个碳原子的烃基;和
CpB是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpB上的任何取代基独立地为H或具有上达36个碳原子的烃基或烃甲硅烷基。
使用这些催化剂系统由烯烃聚合产生的聚合物——产生均聚物、共聚物等——可用于生产各种加工制品。在本发明的一些方面中,本文产生的乙烯聚合物可表征为具有下述聚合物性质:非双峰分子量分布、Mw/Mn的比从约3至约8、Mz/Mw的比从约3至约6、和反向共聚单体分布。
附图简述
图1图解代表性双峰分子量分布曲线。
图2图解代表性双峰分子量分布曲线。
图3图解代表性双峰分子量分布曲线。
图4图解代表性双峰分子量分布曲线。
图5图解代表性双峰分子量分布曲线。
图6图解代表性非双峰分子量分布曲线。
图7图解代表性非双峰分子量分布曲线。
图8图解代表性非双峰分子量分布曲线。
图9图解代表性非双峰分子量分布曲线。
图10图解代表性非双峰分子量分布曲线。
图11图解代表性非双峰分子量分布曲线。
图12图解分子量分布曲线上D90和D10的定义。
图13图解分子量分布曲线上D85和D15的定义。
图14图解基本上线性的短支链分布。
图15图解非基本上线性的短支链分布(SCBD)。
图16呈现实施例5-6的聚合物分子量分布的图。
图17呈现对于实施例5-6的聚合物,作为分子量对数函数的每1000个碳原子的短支链(SCB)数目的图,和线性回归分析。
图18呈现对于实施例6的聚合物,作为分子量对数函数的每1000个碳原子的短支链(SCB)数目的图,和线性回归分析。
定义
为了更清楚地定义本文使用的术语,提供以下定义。就由通过引用并入本文的任何文献提供的任何定义或用法与本文提供的定义或用法冲突来说,以本文提供的定义或用法为准。
术语“聚合物”在本文使用一般包括烯烃均聚物、共聚物、三元共聚物等。共聚物源自烯烃单体和一种烯烃共聚单体,而三元共聚物源自烯烃单体和两种烯烃共聚单体。因此,“聚合物”包括源自本文公开的任何烯烃单体和共聚单体(一种或多种)的共聚物、三元共聚物等。类似地,乙烯聚合物将包括乙烯均聚物、乙烯共聚物、乙烯三元共聚物等。作为例子,烯烃共聚物,比如乙烯共聚物,可源于乙烯和共聚单体,比如1-丁烯、1-己烯或1-辛烯。如果单体和共聚单体分别是乙烯和1-己烯,所得聚合物将归类为乙烯/1-己烯共聚物。
类似地,术语“聚合”的范围包括均聚、共聚、三聚等。所以,共聚方法包括将一种烯烃单体(例如,乙烯)和一种烯烃共聚单体(例如,1-己烯)接触以生产共聚物。
在本公开中的氢可指用于聚合方法中的氢气(H2)或可出现在例如茂金属化合物上的氢原子(H)。当用于指示氢原子时,氢将表示为“H”,而如果意图是公开氢气在聚合方法中的使用时,其简单地称为“氢”。
术语“助催化剂”在本文使用一般指有机铝化合物,其可构成催化剂组合物的一种组分。另外,除了活化剂载体,当使用时,“助催化剂”还可指催化剂组合物的其他组分,其包括但不限于铝氧烷、有机硼或有机硼酸盐化合物和电离化离子化合物,如本文所公开的。无论化合物的实际功能或化合物可起作用的任何化学机制如何,使用术语“助催化剂”。本发明的一个方面,术语“助催化剂”用于区分催化剂组合物的组分与茂金属化合物(一种或多种)。
术语“化学处理的固体氧化物”、“活化剂载体”、“处理的固体氧化物化合物”等在本文用于指示相对高孔隙率的固体、无机氧化物,其可显示路易斯酸性或布朗斯台德酸性性质,并且其已经用吸电子组分,通常为阴离子处理,并且其被煅烧。吸电子组分通常是吸电子阴离子源化合物。因此,化学处理的固体氧化物可包含至少一种固体氧化物与至少一种吸电子阴离子源化合物的煅烧接触产物。通常,化学处理的固体氧化物包含至少一种酸性固体氧化物化合物。术语“载体”和“活化剂载体”用于暗示这些组分是惰性的,并且这些组分不应解释为催化剂组合物的惰性组分。本发明的活化剂载体可以是化学处理的固体氧化物。如本文所使用术语“活化剂”一般指下述物质,其能够将茂金属组分转化成可聚合烯烃的催化剂或将茂金属组分和向茂金属提供可活化配体(例如,烷基、氢负离子)的组分——当茂金属化合物未包含这种配体时——的接触产物转化成可聚合烯烃的催化剂。无论实际的活化机制如何,使用该术语。示意性活化剂包括活化剂载体、铝氧烷、有机硼或有机硼酸盐化合物、电离化离子化合物等。如果用于不存在活化剂载体的催化剂组合物,铝氧烷、有机硼或有机硼酸盐化合物和电离化离子化合物一般称为活化剂。如果催化剂组合物包含活化剂载体,那么铝氧烷、有机硼或有机硼酸盐和电离化离子化物质通常称为助催化剂。
术语“氟有机硼化合物”在本文使用具有其通常的意思,指BY3形式的中性化合物。术语“氟有机硼酸盐化合物”也具有其通常的意思,指[阳离子]+[BY4]-形式的氟有机硼化合物的单阴离子盐,其中Y代表氟化有机基团。这些类型的物质通常并统称为“有机硼或有机硼酸盐化合物”。
如本文所使用的术语“茂金属”描述包含至少一个η3至η5-环链二烯基型部分的化合物,其中η3至η5-环链二烯基部分包括环戊二烯基配体、茚基配体、芴基配体等,包括这些任何一种的部分饱和的或杂原子取代的衍生物或类似物。这些配体上可能的取代基可包括H,因此本发明包含部分饱和的配体,比如四氢茚基、四氢芴基、八氢芴基、部分饱和的茚基、部分饱和的芴基等。也包括杂原子取代形式的环链二烯基部分,即杂原子取代形式的环戊二烯基、茚基或芴基,其包含一个或多个杂原子比如氮、硅、硼、锗或磷结合碳原子以形成各自的环状部分。在某些情况下,茂金属简称为“催化剂”,同样术语“助催化剂”在本文使用指例如有机铝化合物。
术语“催化剂组合物”、“催化剂混合物”、“催化剂系统”等不依赖于由所要求的催化剂组合物/混合物/系统的初始组分接触或反应产生的实际产物或组合物,活性催化部位的性质,或助催化剂、茂金属化合物(一种或多种)、用于制备预接触混合物的任何烯烃单体或活化剂(例如,活化剂载体),在这些组分组合之后的去向(fate)。所以,术语“催化剂组合物”、“催化剂混合物”、“催化剂系统”等包括组合物的初始组分,以及可由这些初始组分接触产生的任何产物(一种或多种),并且这包括多相和均相催化剂系统或组合物。
术语“接触产物”在本文用于描述其中组分以任何顺序、任何方式接触在一起并持续任何时间长度的组合物。例如,可通过掺和或混合接触组分。进一步,任何组分的接触可在存在或缺乏本文描述的组合物的任何其他组分的情况下发生。可通过任何合适的方法完成结合另外的材料或组分。进一步,术语“接触产物”包括混合物、掺和物、溶液、淤浆、反应产物等或其组合。尽管“接触产物”可包括反应产物,但其对于各自组分彼此反应不是必须的。类似地,术语“接触”在本文用于指可被掺和、混合、成浆、溶解、反应、处理或以一些其他方式另外接触的材料。
术语“预接触”混合物在本文用于描述接触第一时间段的催化剂组分的第一混合物,然后所述第一混合物被用于形成接触第二时间段的催化剂组分的“后接触”混合物或者第二混合物。通常,预接触混合物描述茂金属化合物(一种或多于一种)、烯烃单体(或多种单体)和有机铝化合物(或多种化合物)的混合物,然后该混合物接触活化剂载体(一种或多种)和任选的另外有机铝化合物。因此,预接触描述用于相互接触的组分,但是该接触是在与第二、后接触混合物中的组分接触之前。因此,本发明有时可以区分用于制备预接触混合物的组分和混合物已经被制备之后的组分。例如,根据本说明书,对于预接触的有机铝化合物而言,一旦其与茂金属化合物和烯烃单体接触,则可能已经反应形成至少一种与用于制备所述预接触混合物的不同有机铝化合物不同的化合物、化学制剂(formulation)或化学结构。在这种情况下,预接触的有机铝化合物或组分被描述为包括用于制备预接触混合物的有机铝化合物。
另外,预接触混合物可描述茂金属化合物(一种或多种)和有机铝化合物(一种或多种)的混合物,然后该混合物接触活化剂载体(一种或多种)。该预接触混合物也可描述茂金属化合物(一种或多种)、烯烃单体(一种或多种)和活化剂载体(一种或多种)的混合物,然后该混合物接触一种或多种有机铝助催化剂化合物。
类似地,术语“后接触”混合物在本文用于描述接触第二时间段的催化剂组分的第二混合物,并且其组成之一是接触第一时间段的催化剂组分的“预接触”或第一混合物。通常,术语“后接触”混合物在本文用于描述茂金属化合物(一种或多种)、烯烃单体(一种或多种)、有机铝化合物(一种或多种)和活化剂载体(一种或多种)的混合物,其是由使部分这些组分的预接触混合物与加入以组成后接触混合物的任何附加组分接触而形成的。通常,活化剂载体包含化学处理的固体氧化物。例如,加入以组成后接触混合物的附加组分可以是化学处理的固体氧化物(一种或多于一种),并且,任选地,可以包括与用于制备预接触混合物的有机铝化合物相同或不同的有机铝化合物,如本文所述的。因此,本发明有时也可以区别用于制备后接触混合物的组分和混合物已经被制备之后的组分。
尽管与本文描述的那些类似或等同的任何方法、设备和材料可用于实践或测试本发明,但是本文描述了典型的方法、设备和材料。
为了描述和公开例如在出版物中描述的可能结合本发明使用的构造和方法,本文中提及的所有出版物和专利在此通过引用并入本文。提供遍及本文讨论的任何出版物,仅因为它们在本申请的申请日之前公开。在本文中决不应解释为承认本发明人无权占先于在先发明的这类公开。
对于任何在此公开的具体化合物来说,除非另有说明,所显示的一般结构或特定结构也包含可由一组具体的取代基产生的所有构象异构体、位置异构体(regioisomer)和立体异构体。类似地,除非另有说明,一般结构或特定结构也包括所有的对映体、非对映体和不管是对映体形式还是外消旋形式的其他光学异构体,以及立体异构体的混合物,如本领域技术人员所认识到的。
申请人在本发明中公开了数种类型的范围。这些包括但不限于原子数目的范围、重量比的范围、摩尔比的范围、表面积的范围、孔体积的范围、颗粒大小的范围、催化剂活性的范围等。当申请人公开或要求保护任何类型的范围时,申请人意图单独地公开或要求保护该范围可合理包括的每个可能的数字,包括范围的端点以及其中包括的任何子范围和子范围的组合。例如,当申请人公开或要求保护具有一定数目碳原子的化学部分时,申请人意图单独地公开或要求保护该范围可能包括的所有可能的数目,与本文公开一致。例如,公开部分为C1至C12烷基基团,或以可选的语言,具有上达12个碳原子的烷基基团时,如本文所使用的,指部分可独立地选自具有1、2、3、4、5、6、7、8、9、10、11或12个碳原子,以及这些两个数目之间的任何范围(例如,C1至C6烷基基团),并也包括这些两个数目之间范围的任何组合(例如,C2至C4和C6至C8烷基基团)的烷基基团。
类似地,下面是本发明一个方面中提供的乙烯聚合物的Mz/Mw比的另一代表性例子。通过公开乙烯聚合物的Mz/Mw的范围从约3至约6,申请人意图叙述Mz/Mw可为约3、约3.1、约3.2、约3.3、约3.4、约3.5、约3.6、约3.7、约3.8、约3.9、约4、约4.1、约4.2、约4.3、约4.4、约4.5、约4.6、约4.7、约4.8、约4.9、约5、约5.1、约5.2、约5.3、约5.4、约5.5、约5.6、约5.7、约5.8、约5.9或约6。另外,Mz/Mw可在从约3至约6的任何范围内(例如,从约3至约5.2),并且这也包括约3和约6之间范围的任何组合(例如,Mz/Mw范围从约3至约4或从约5至约6)。类似地,本文公开的所有其他范围应当以与这两个例子类似的方式解释。
如果由于任何原因,申请人选择要求保护小于本公开的整个量度,例如为了考虑申请人在提交申请时不知道的对比文件,申请人保留限制或排除任何这样组的任何单个成员的权利,包括该组内的任何子范围或子范围的组合。进一步,如果由于任何原因,申请人选择要求保护小于本公开的整个量度,例如为了考虑申请人在提交申请时不知道的对比文件,申请人保留限制或排除任何单独取代基、类似物、化合物、配体、结构或其组、或所要求保护组的任何成员的权利。
术语“一个(“a”、“an”)”、“该/所述”,意欲包括复数形式,例如至少一种,除非另有规定。例如,公开“活化剂载体”或“茂金属化合物”意思是分别包括一种活化剂载体或茂金属化合物或一种以上活化剂载体或茂金属化合物的混合物或组合。
虽然使用“包含(comprising)”各种组份或步骤描述了组合物和方法,但组合物和方法也可以“基本上由各种组份或步骤构成”或“由各种组份或步骤构成”。例如,本发明的催化剂组合物可包含;可选地,可基本上有下述组成;或可选地,可由下述组成;(i)催化剂组分I、(ii)催化剂组分II和(iii)活化剂。
发明详述
本发明一般地涉及催化剂组合物、制备催化剂组合物的方法、使用催化剂组合物聚合烯烃的方法、使用这种催化剂组合物生产的聚合物树脂和使用这些聚合物树脂生产的制品。一方面,本发明涉及催化剂组合物,所述催化剂组合物包含催化剂组分I、催化剂组分II和活化剂。
另一方面,提供烯烃聚合方法,并在此方面,该方法包含将催化剂组合物与烯烃单体和任选地烯烃共聚单体在聚合条件下接触以生产烯烃聚合物,其中催化剂组合物包含催化剂组分I、催化剂组分II和活化剂。
使用本文公开的用于烯烃聚合的催化剂组合物和方法可生产烯烃均聚物、共聚物、三元共聚物等。例如,本发明的乙烯聚合物可通过下述聚合物性质表征:非双峰分子量分布、Mw/Mn的比从约3至约8、Mz/Mw的比从约3至约6和反向共聚单体分布。
催化剂组分I
催化剂组分I可包含具有式(I)的至少一种柄型茂金属化合物:
Figure BDA00002272684800091
其中:
MA是Ti、Zr或Hf;
X1A和X2A独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达18个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达18个碳原子;
EA是C或Si;
R1A和R2A独立地为H、具有上达18个碳原子的烃基或R1A和R2A连接形成具有上达18个碳原子的环状或杂环基团,其中R1A和R2A不是芳基;
R6A和R7A独立地为H或具有上达18个碳原子的烃基;和
CpA是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpA上的任何取代基独立地为H或具有上达36个碳原子的烃基或烃甲硅烷基。
上式(I)、本文公开的任何其他结构式和本文公开的任何茂金属种类未设计显示不同部分的立体化学或异构布置(例如,这些式不打算显示顺式或反式异构体或R或S非对映异构体),尽管这些化合物被这些式和/或结构考虑并囊括。
烃基在本文用于指烃基基团,其包括但不限于芳基、烷基、环烷基、烯基、环烯基、环链二烯基、炔基、芳烷基、芳烯基、芳炔基等,并包括其所有取代的、未取代的、直链的和/或支链的衍生物。除非另有说明,本发明的烃基通常包含上达36个碳原子。其他方面,烃基可具有上达24个碳原子,例如,上达18个碳原子、上达12个碳原子、上达10个碳原子、上达8个碳原子或上达6个碳原子。所以,烃氧基一般用于包括烷氧基和芳氧基基团二者,并且这些基团可包含上达约36个碳原子。烷氧基和芳氧基基团(即,烃氧基)的示意性且非限制性例子包括甲氧基、乙氧基、丙氧基、丁氧基、苯氧基、取代的苯氧基等。术语烃氨基一般用于共同地指烷基氨基、芳基氨基、二烷基氨基和二芳基氨基基团。除非另有说明,本发明的烃氨基包含上达约36个碳原子。烃甲硅烷基包括但不限于烷基甲硅烷基基团、烯基甲硅烷基基团、芳基甲硅烷基基团、芳基烷基甲硅烷基基团等,其具有上达约36个碳原子。例如,示意性烃甲硅烷基可包括三甲基甲硅烷基和苯基辛基甲硅烷基。在本发明的其他方面,这些烃氧基、烃氨基和烃甲硅烷基可具有上达24个碳原子;可选地,上达18个碳原子;可选地,上达12个碳原子;可选地,上达10个碳原子;或可选地,上达8个碳原子。
除非另有说明,本文描述的烷基基团和烯基基团意欲包括给定部分的所有结构异构体,直链或支链的;例如,所有对映异构体和所有非对映异构体也包括在该定义内。作为例子,除非另有说明,术语丙基意思是包括正丙基和异丙基,而术语丁基意思是包括正丁基、异丁基、叔丁基、仲丁基等。例如,辛基异构体的非限制性例子包括2-乙基己基和新辛基。可在本发明中使用的烷基基团的合适例子包括但不限于甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基等。在本发明范围内的烯基基团的示意性例子包括但不限于乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基、癸烯基等。烯基基团可以是末端烯基基团,但这不是必须的。例如,具体的烯基基团取代基可包括但不限于3-丁烯基、4-戊烯基、5-己烯基、6-庚烯基、7-辛烯基、3-甲基-3-丁烯基、4-甲基-3-戊烯基、1,1-二甲基-3-丁烯基、1,1-二甲基-4-戊烯基等。
在本公开中,芳基意思是包括芳基和芳基烷基基团,并且这些包括但不限于苯基、烷基-取代的苯基、萘基、烷基-取代的萘基、苯基-取代的烷基、萘基-取代的烷基等。因此,可在本发明中使用的这种“芳基”部分的非限制性例子包括苯基、甲苯基、苄基、二甲基苯基、三甲基苯基、苯乙基、苯丙基、苯丁基、丙基-2-苯乙基等。除非另有说明,本文使用的任何取代的芳基部分意思是包括所有位置异构体;例如,术语甲苯基意思是包括任何可能的取代基位置,即,邻、间或对。
根据本发明的一方面,在式(I)中,至少一种R1A和R2A是具有上达12个碳原子的末端烯基基团或CpA上的至少一种取代基是具有上达12个碳原子的末端烯基或末端烯基甲硅烷基基团。
根据本发明的另一方面,催化剂组分I包含具有式(IA)的至少一种柄型茂金属化合物:
Figure BDA00002272684800111
其中:
MA是Ti、Zr或Hf;
X1A和X2A独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达12个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达12个碳原子;
EA和YA独立地为C或Si;
R1A和R2A独立地为H、具有上达12个碳原子的烃基,或R1A和R2A连接形成具有上达12个碳原子的环状或杂环基团,其中R1A和R2A不是芳基;
R3A、R4A和R5A独立地为H或具有上达10个碳原子的烃基;
R6A和R7A独立地为H或具有上达12个碳原子的烃基;和
CpA是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpA上任何另外的取代基独立地为H或具有上达12个碳原子的烃基;
其中R1A、R2A、R3A、R4A和R5A的至少一种是烯基基团。
在式(I)和(IA)中,MA是Ti、Zr或Hf。在本文公开的一些方面,MA是Zr或Hf。
X1A和X2A可独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基。烃氧基、烃氨基、烃甲硅烷基和R可具有上达18个碳原子,或可选地,上达12个碳原子。
X1A和X2A可独立地为F、Cl、Br、I、苄基、苯基或甲基。例如,在本发明的一方面,X1A和X2A独立地为Cl、苄基、苯基或甲基。另一方面,X1A和X2A独立地为苄基、苯基或甲基。仍然另一方面,X1A和X2A二者可为Cl;可选地,X1A和X2A二者可为苄基;可选地,X1A和X2A二者可为苯基;或可选地,X1A和X2A二者可为甲基。
式(I)和(IA)中的EA和式(IA)中的YA独立地为C或Si。通常,EA和YA二者为C。
在式(I)和(IA)中,R1A和R2A独立地为H;具有上达18个碳原子,或可选地上达12个碳原子的烃基;或R1A和R2A连接形成具有上达18个碳原子,或可选地上达12个碳原子的环状或杂环基团。但是,R1A和R2A不是芳基。环基包括环烷基和环烯基部分,并且这种部分可包括但不限于环戊基、环戊烯基、环己基、环己烯基等。例如,桥连原子EA、R1A和R2A可形成环戊基或环己基部分。一般地,当EA是C时,杂原子取代的环基可由氮、氧或硫杂原子形成。而在本发明的一些方面,这些杂环基可具有上达12或18个碳原子,杂环基可以是3-元、4-元、5-元、6-元或7-元基团。
本发明的一个方面,R1A和R2A独立地为H、甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基或癸烯基。另一方面,R1A和R2A独立地为H或具有上达8个碳原子的烷基或末端烯基基团。例如,R1A和R2A可独立地为H、甲基、乙基、丙基或丁基。仍另一方面,R1A和R2A的至少一种是具有上达8个碳原子,或可选地上达6个碳原子的末端烯基基团。仍另一方面,R1A和R2A的至少一种是甲基基团;所以,在本发明的一些方面,R1A和R2A二者可都为甲基基团。
式(I)和(IA)中的芴基上的R6A和R7A独立地为H或具有上达18个碳原子的烃基,或可选地具有上达12个碳原子的烃基。因此,R6A和R7A可独立地为H或具有上达6个碳原子的烃基,比如,例如,甲基、乙基、丙基、丁基、戊基或己基等。一些方面,R6A和R7A独立地为甲基、乙基、丙基、正丁基、叔丁基或己基,而在其他方面,R6A和R7A独立地为H或叔丁基。例如,R6A和R7A二者可都为H,或可选地,R6A和R7A二者可都为叔丁基。
在式(IA)中,R3A、R4A和R5A独立地为H或具有上达10个碳原子的烃基。而R3A、R4A和R5A的任何一种单独可具有上达10个碳原子,R3A、R4A、R5A和YA中碳原子的总数目通常小于或等于24;可选地,小于或等于18;或可选地,小于或等于12。在本发明的一个方面,YA是C或Si,并且R3A、R4A和R5A独立地选自H、甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基或癸烯基。另一方面,R3A和R4A独立地为H或甲基,并且R5A是具有上达8个碳原子,或可选地具有上达6个碳原子的末端烯基基团。
在式(I)和(IA)中,CpA是环戊二烯基、茚基或芴基或其杂原子取代的衍生物。CpA上可能的取代基可包括H,因此本发明包含部分饱和的配体比如四氢茚基、四氢芴基、八氢芴基、部分饱和的茚基、部分饱和的芴基等。CpA可以是杂原子-取代形式的环戊二烯基、茚基或芴基;在这些情况下,CpA可包含一个或多个杂原子,比如氮、硅、硼、锗或磷,结合碳原子以形成各自的环状部分。
在本发明的方面中,CpA是环戊二烯基基团、茚基基团或芴基基团。通常,CpA是环戊二烯基基团。
式(I)中的CpA上的任何取代基可独立地为H或具有上达36个碳原子,例如,上达24个碳原子或上达18个碳原子的烃基或烃甲硅烷基。上面提供的示意性烃基和烃甲硅烷基可以是CpA上的取代基,比如,例如烯基(乙烯基、丙烯基、丁烯基、戊烯基、己烯基等)或烯基甲硅烷基基团。对于式(IA),CpA上任何另外的取代基可独立地为H或具有上达12个碳原子的烃基。
在式(IA)中,R1A、R2A、R3A、R4A和R5A的至少一种是烯基基团,例如,乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基或癸烯基等。在一些方面,R1A、R2A、R3A、R4A和R5A的至少一种可为具有上达10个碳原子;可选地,上达8个碳原子;可选地,上达6个碳原子;或可选地,上达5个碳原子的末端烯基基团。
适合在催化剂组分I中使用的柄型茂金属化合物的非限制性例子包括但不限于下述:
Figure BDA00002272684800141
Figure BDA00002272684800161
等或其任意组合。申请人使用简称“Me”表示甲基和“t-Bu”表示叔丁基。其他桥连的茂金属化合物可用于催化剂组分I中,只要该化合物符合式(I)和/或(IA)。所以,本发明的范围不限于上面提供的桥连的茂金属种类。
在本发明一些方面中,可在催化剂组分I中使用的其他代表性的柄型茂金属化合物在美国专利号6,524,987、7,119,153、7,226,886和7,312,283中公开,其公开内容通过参考以其整体并入本文。
催化剂组分II
催化剂组分II可包含具有式(II)的至少一种柄型茂金属化合物:
其中:
MB是Ti、Zr或Hf;
X1B和X2B独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达18个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达18个碳原子;
EB是C或Si;
R1B和R2B独立地为H或具有上达18个碳原子的烃基,其中R1B和R2B的至少一种是具有上达18个碳原子的芳基基团;
R6B和R7B独立地为H或具有上达18个碳原子的烃基;和
CpB是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpB上的任何取代基独立地为H或具有上达36个碳原子的烃基或烃甲硅烷基。
如上所述,式(II)、本文公开的任何其他结构式和本文公开的任何茂金属种类未设计显示不同部分的立体化学或异构布置(例如,这些式不打算显示顺式或反式异构体或R或S非对映异构体),尽管这些化合物被这些式和/或结构考虑并囊括。
根据本发明的一方面,式(II)中,R1B和R2B的至少一种是具有上达12个碳原子的末端烯基基团,或CpB上的至少一种取代基是具有上达12个碳原子的末端烯基或末端烯基甲硅烷基基团。
根据本发明的另一方面,催化剂组分II包含具有式(IIB)的至少一种柄型茂金属化合物:
Figure BDA00002272684800171
其中:
MB是Ti、Zr或Hf;
X1B和X2B独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达12个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达12个碳原子;
EB和YB独立地为C或Si;
R1B和R2B独立地为H或具有上达12个碳原子的烃基,其中R1B和R2B的至少一种是具有上达12个碳原子的芳基基团;
R3B、R4B和R5B独立地为H或具有上达10个碳原子的烃基;
R6B和R7B独立地为H或具有上达12个碳原子的烃基;和
CpB是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpB上任何另外的取代基独立地为H或具有上达12个碳原子的烃基;
其中R1B、R2B、R3B、R4B和R5B的至少一种是烯基基团。
在式(II)和(IIB)中,MB是Ti、Zr或Hf。在本文公开的一些方面,MB是Zr或Hf。
X1B和X2B可独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基。烃氧基、烃氨基、烃甲硅烷基和R可具有上达18个碳原子,或可选地上达12个碳原子。
X1B和X2B可独立地为F、Cl、Br、I、苄基、苯基或甲基。例如,本发明的一方面,X1B和X2B独立地为Cl、苄基、苯基或甲基。另一方面,X1B和X2B独立地为苄基、苯基或甲基。仍然另一方面,X1B和X2B二者可都为Cl;可选地,X1B和X2B二者可都为苄基;可选地,X1B和X2B二者可都为苯基;或可选地,X1B和X2B二者可都为甲基。
式(II)和(IIB)中的EB和式(IIB)中的YB独立地为C或Si。通常,EB和YB二者都为C。
在式(II)和(IIB)中,R1B和R2B独立地为H;具有上达18个碳原子,或可选地上达12个碳原子的烃基。但是,R1B和R2B的至少一种是芳基基团,并且芳基基团可具有上达18个碳原子,或可选地上达12个碳原子。R1B和/或R2B的合适的“芳基”部分的示意性非限制性例子包括苯基、甲苯基、苄基、二甲基苯基、三甲基苯基、苯乙基、苯丙基、苯丁基、丙基-2-苯乙基等。
在本发明的一个方面,R1B和R2B的至少一种是具有上达10个碳原子的芳基基团。例如,芳基基团可以是苯基基团。另一方面,R1B是具有上达8个碳原子的芳基基团,并且R2B是具有上达8个碳原子的烷基或末端烯基基团。仍另一方面,R1B是苯基,并且R2B是乙烯基、丙烯基、丁烯基、戊烯基或己烯基。仍另一方面,R1B和R2B是苯基。
在式(II)和(IIB)中的芴基上的R6B和R7B独立地为H或具有上达18个碳原子,或可选地具有上达12个碳原子的烃基。因此,R6B和R7B可独立地为H或具有上达6个碳原子的烃基,比如,例如甲基、乙基、丙基、丁基、戊基或己基等。在一些方面,R6B和R7B独立地为甲基、乙基、丙基、正丁基、叔丁基或己基,而在其他方面,R6B和R7B独立地为H或叔丁基。例如,R6B和R7B二者可都为H,或可选地,R6B和R7B二者可都为叔丁基。
在式(IIB)中,R3B、R4B和R5B独立地为H或具有上达10个碳原子的烃基。而R3B、R4B和R5B的任何一种单独可具有上达10个碳原子,R3B、R4B、R5B和YB中的碳原子总数目通常小于或等于24;可选地,小于或等于18;或可选地,小于或等于12。在本发明的一个方面,YB是C或Si,并且R3B、R4B和R5B独立地选自H、甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基或癸烯基。在另一方面,R3B和R4B独立地为H或甲基,并且R5B是具有上达8个碳原子,或可选地具有上达6个碳原子的末端烯基基团。
在式(II)和(IIB)中,CpB是环戊二烯基、茚基或芴基或其杂原子取代的衍生物。CpB上可能的取代基可包括H,因此本发明包含部分饱和的配体比如四氢茚基、四氢芴基、八氢芴基、部分饱和的茚基、部分饱和的芴基等。CpB可以是杂原子-取代形式的环戊二烯基、茚基或芴基;在这些情况下,CpB可包含一个或多个杂原子,比如氮、硅、硼、锗或磷,结合碳原子以形成各自的环状部分。
在本发明的一些方面中,CpB是环戊二烯基基团、茚基基团或芴基基团。通常,CpB是环戊二烯基基团。
式(II)中CpB上任何取代基可独立地为H或具有上达36个碳原子,例如上达24个碳原子或上达18个碳原子的烃基或烃甲硅烷基。上面提供的示意性烃基和烃甲硅烷基可以是CpB上的取代基,比如,例如烯基(乙烯基、丙烯基、丁烯基、戊烯基、己烯基等)或烯基甲硅烷基基团。对于式(IIB),CpB上任何另外的取代基可独立地为H或具有上达12个碳原子的烃基。
在式(IIB)中,R1B、R2B、R3B、R4B和R5B的至少一种是烯基基团,例如乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基或癸烯基等。在一些方面,R1B、R2B、R3B、R4B和R5B的至少一种可以是末端烯基基团,其具有上达10个碳原子;可选地,上达8个碳原子;可选地,上达6个碳原子;或可选地,上达5个碳原子。
适合在催化剂组分II中使用的柄型茂金属化合物的非限制性例子包括但不限于下述:
Figure BDA00002272684800201
Figure BDA00002272684800211
等或其任意组合。申请人使用简称“Ph”表示苯基和“t-Bu”表示叔丁基。可在催化剂组分II中使用其他桥连的茂金属化合物,只要该化合物符合式(II)和/或(IIB)。所以,本发明的范围不限于上面提供的桥连的茂金属种类。
在本发明一些方面中,可在催化剂组分II中使用的其他代表性的柄型茂金属化合物在美国专利号7,226,886、7,312,283、7,517,939和7,619,047中公开,其公开内容通过参考以其整体并入本文。
活化剂载体
本发明包括包含可以为活化剂载体的活化剂的多种催化剂组合物。一方面,活化剂载体包含化学处理的固体氧化物。可选地,活化剂载体可包含粘土矿物质、柱撑粘土、剥离粘土、成胶至另一氧化物基体中的剥离粘土、分层硅酸盐矿物质、非分层硅酸盐矿物质、分层硅铝酸盐矿物质、非分层硅铝酸盐矿物质或其任意组合。
一般而言,与相应的未处理的固体氧化物化合物相比,化学处理的固体氧化物展示增强的酸度。与相应的未处理的固体氧化物相比,化学处理的固体氧化物也起到催化剂活化剂的作用。尽管化学处理的固体氧化物在不存在助催化剂的情况下活化茂金属,但是没有必要从催化剂组合物中消除助催化剂。与包含相应的未处理的固体氧化物的催化剂组合物相比,活化剂载体的活化作用总体上在增强催化剂组合物活性方面是明显的。但是,相信即使在不存在有机铝化合物、铝氧烷、有机硼或有机硼酸盐化合物、电离化离子化合物等的情况下,化学处理的固体氧化物可起到活化剂的作用。
化学处理的固体氧化物可包含用吸电子阴离子处理的固体氧化物。尽管不打算被下述陈述所束缚,但相信用吸电子组分处理固体氧化物增大或增加氧化物的酸度。因此,活化剂载体展示路易斯酸性或布朗斯台德酸性,其通常大于未处理的固体氧化物的路易斯酸性或布朗斯台德酸性强度,或活化剂载体具有比未处理的固体氧化物更多数量的酸性位点,或二者。量化化学处理的和未处理的固体氧化物物质的酸度的一种方法是通过比较在酸性催化反应下处理的和未处理的氧化物的聚合活性。
本发明化学处理的固体氧化物一般由无机固体氧化物形成,所述无机固体氧化物展示路易斯酸性或布朗斯台德酸性性质并具有相对高的孔隙率。固体氧化物用吸电子组分,通常吸电子阴离子化学处理以形成活化剂载体。
根据本发明的一方面,用于制备化学处理的固体氧化物的固体氧化物孔体积大于约0.1cc/g。根据本发明的另一方面,固体氧化物孔体积大于约0.5cc/g。根据本发明的仍另一方面,固体氧化物孔体积大于约1.0cc/g。
另一方面,固体氧化物表面积为从约100至约1000m2/g。仍另一方面,固体氧化物表面积为从约200至约800m2/g。本发明的仍另一方面,固体氧化物表面积为从约250至约600m2/g。
化学处理的固体氧化物可包含固体无机氧化物,其包含氧和一种或多种选自元素周期表下列族的元素:2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、12族、13族、14族或15族,或包含氧和一种或多种选自镧系和锕系元素的元素(见:Hawley′s CondensedChemical Dictionary,11th Ed.,John Wiley&Sons,1995;Cotton,F.A.,Wilkinson,G.,Murillo;C.A.,and Bochmann,M.,Advanced InorganicChemistry,6th Ed.,Wiley-Interscience,1999)。例如,无机氧化物可包含氧和选自下列的一种或多种元素:Al、B、Be、Bi、Cd、Co、Cr、Cu、Fe、Ga、La、Mn、Mo、Ni、Sb、Si、Sn、Sr、Th、Ti、V、W、P、Y、Zn和Zr。
可用于形成化学处理的固体氧化物的固体氧化物材料或化合物的合适例子包括但不限于A12O3、B2O3、BeO、Bi2O3、CdO、Co3O4、Cr2O3、CuO、Fe2O3、Ga2O3、La2O3、Mn2O3、MoO3、NiO、P2O5、Sb2O5、SiO2、SnO2、SrO、ThO2、TiO2、V2O5、WO3、Y2O3、ZnO、ZrO2等,包括其混合的氧化物,和其组合。例如,固体氧化物可包含二氧化硅、氧化铝、二氧化硅-氧化铝、二氧化硅涂覆的氧化铝(silica-coatedalumina)、磷酸铝、磷铝酸盐(aluminophosphate)、杂多钨酸盐、氧化钛、氧化锆、氧化镁、氧化硼、氧化锌、其混合的氧化物或其任意组合。
本发明的固体氧化物包括氧化物材料比如氧化铝,其“混合的氧化物”化合物,比如二氧化硅-氧化铝,和其组合和混合物。混合的氧化物化合物,比如二氧化硅-氧化铝,可以是单化学相或具有超过一种金属与氧结合形成固体氧化物化合物的多化学相。可在本发明的活化剂载体中使用的混合的氧化物的例子包括但不限于二氧化硅-氧化铝、二氧化硅-氧化钛、二氧化硅-氧化锆、沸石、各种粘土矿物质、氧化铝-氧化钛、氧化铝-氧化锆、锌-铝酸盐等。本发明的固体氧化物也包括氧化物材料,比如二氧化硅涂覆的氧化铝,如在美国专利申请号12/565,257中所描述的,其公开内容通过参考以其整体并入本文。
用于处理固体氧化物的吸电子组分可以是当处理后增加固体氧化物的路易斯或布朗斯台德酸度(与未用至少一种吸电子阴离子处理的固体氧化物相比)的任何组分。根据本发明的一方面,吸电子组分是源自盐、酸或其他用作吸电子阴离子来源或前体的化合物,比如挥发性有机化合物的吸电子阴离子。吸电子阴离子包括但不限于硫酸根、硫酸氢根、氟根、氯根、溴根、碘根、氟硫酸根、氟硼酸根、磷酸根、氟磷酸根、三氟乙酸根、三氟甲磺酸根、氟锆酸根、氟钛酸根等,包括其混合物和组合。另外,用作这些吸电子阴离子来源的其他离子化或非离子化合物也可在本发明中使用。在本发明的一些方面,考虑吸电子阴离子可以是或可以包含氟根、氯根、溴根、磷酸根、三氟甲磺酸根、硫酸氢根或硫酸根等或其任意组合。在其他方面,吸电子阴离子可包含硫酸根、硫酸氢根、氟根、氯根、溴根、碘根、氟硫酸根、氟硼酸根、磷酸根、氟磷酸根、三氟乙酸根、三氟甲磺酸根、氟锆酸根、氟钛酸根等或其任意组合。
因此,例如,在本发明的催化剂组合物中使用的活化剂载体(例如,化学处理的固体氧化物)可以是或可以包含氟化氧化铝、氯化氧化铝、溴化氧化铝、硫酸化氧化铝、氟化二氧化硅-氧化铝、氯化二氧化硅-氧化铝、溴化二氧化硅-氧化铝、硫酸化二氧化硅-氧化铝、氟化二氧化硅-氧化锆、氯化二氧化硅-氧化锆、溴化二氧化硅-氧化锆、硫酸化二氧化硅-氧化锆、氟化二氧化硅-氧化钛、氟化二氧化硅涂覆的氧化铝、硫酸化二氧化硅涂覆的氧化铝、磷酸化二氧化硅涂覆的氧化铝等或其组合。在一些方面,活化剂载体包含氟化氧化铝;可选地,包含氯化氧化铝;可选地,包含硫酸化氧化铝;可选地,包含氟化二氧化硅-氧化铝;可选地,包含硫酸化二氧化硅-氧化铝;可选地,包含氟化二氧化硅-氧化锆;可选地,包含氯化二氧化硅-氧化锆;或可选地,包含氟化二氧化硅涂覆的氧化铝。
当吸电子组分包括吸电子阴离子的盐时,此盐的抗衡离子或阳离子可选自使该盐在煅烧期间复原或分解恢复为酸的任何阳离子。决定具体盐用作吸电子阴离子源的适宜性的因素包含,但不限于:盐在期望溶剂中的溶解度、阳离子不利反应的缺乏、阳离子和阴离子之间的离子配对效应、由阳离子等赋予盐的吸湿性质和阴离子的热稳定性。在吸电子阴离子的盐中合适的阳离子的例子包括但不限于铵、三烷基铵、四烷基铵、四烷基H+、[H(OEt2)2]+等。
进一步,可以使用不同比例的一种或多种不同的吸电子阴离子的组合,使活化剂-载体的具体酸度适合于期望的水平。可以使吸电子组分的组合同时地或单独地与氧化物物质接触,以及以提供期望的化学处理的固体氧化物酸度的任何顺序接触。例如,本发明的一方面是在两个或更多个单独的接触步骤中采用两种或更多种吸电子阴离子源化合物。
因此,制备化学处理的固体氧化物的该类方法的一个例子如下:使选择的固体氧化物或固体氧化物的组合与第一吸电子阴离子源化合物接触,以形成第一混合物;煅烧该第一混合物,然后使其与第二吸电子阴离子源化合物接触,以形成第二混合物;第二混合物接着煅烧形成处理的固体氧化物。在该方法中,第一和第二吸电子阴离子源化合物可以是相同的或不同的化合物。
根据本发明的另一方面,化学处理的固体氧化物包含固体无机氧化物材料、混合的氧化物材料或无机氧化物材料的组合,其是用吸电子组分化学处理的,并任选地用金属源——包括金属盐、金属离子或其他包含金属的化合物——处理的。金属或金属离子的非限制性例子包括锌、镍、钒、钛、银、铜、镓、锡、钨、钼、锆等或其组合。包含金属或金属离子的化学处理的固体氧化物的离子包括但不限于锌浸渍的氯化氧化铝、钛浸渍的氟化氧化铝、锌浸渍的氟化氧化铝、锌浸渍的氯化二氧化硅-氧化铝、锌浸渍的氟化二氧化硅-氧化铝、锌浸渍的硫酸化氧化铝、氯化铝酸锌(chlorided zinc aluminate)、氟化铝酸锌、硫酸化铝酸锌、六氟钛酸处理的二氧化硅涂覆的氧化铝、锌处理并接着氟化处理的二氧化硅涂覆的氧化铝等或其任意组合。
可使用用金属浸渍固体氧化物材料的任何方法。氧化物与金属源——通常是盐或包含金属的化合物——接触的方法,可包括但不限于胶凝、共胶凝、一种化合物浸渍到在另一种上等。如果期望,包含金属的化合物以溶液形式添加至或浸渍在固体氧化物中,并且一旦煅烧随后转化为负载金属(supported metal)。因此,固体无机氧化物可进一步包含选自下列的金属:锌、钛、镍、钒、银、铜、镓、锡、钨、钼等或这些金属的组合。例如,锌通常用于浸渍固体氧化物,因为其可以低的成本提供改善的催化剂活性。
可在固体氧化物用吸电子阴离子处理之前、之后或同时,用金属盐或包含金属的化合物处理固体氧化物。任何接触方法之后,固体化合物、吸电子阴离子和金属离子的接触混合物通常被煅烧。可选地,固体氧化物材料、吸电子阴离子源和金属盐或包含金属的化合物被同时接触和煅烧。
使用各种方法形成在本发明中有用的化学处理的固体氧化物。化学处理的固体氧化物可包含一种或多种固体氧化物与一种或多种吸电子阴离子源的接触产物。固体氧化物不必须在接触吸电子阴离子源之前煅烧。接触产物通常在固体氧化物与吸电子阴离子源接触期间或之后煅烧。固体氧化物被煅烧或不被煅烧。已经报道了制备可在本发明中使用的固体氧化物活化剂载体的各种方法。例如,这类方法描述在美国专利号6,107,230、6,165,929、6,294,494、6,300,271、6,316,553、6,355,594、6,376,415、6,388,017、6,391,816、6,395,666、6,524,987、6,548,441、6,548,442、6,576,583、6,613,712、6,632,894、6,667,274和6,750,302中,其公开内容通过参考以其整体并入本文。
根据本发明的一方面,固体氧化物材料通过使其与吸电子组分——通常为吸电子阴离子源——接触而进行化学处理。进一步,固体氧化物材料任选地用金属离子处理,并接着煅烧形成包含金属的或金属浸渍的化学处理的固体氧化物。根据本发明的另一方面,固体氧化物材料和吸电子阴离子源同时接触和煅烧。
氧化物与吸电子组分——通常为吸电子阴离子盐或酸——接触的方法可包括但不限于胶凝、共胶凝、一种化合物浸渍到在另一种上等。因此,任何接触方法之后,固体氧化物、吸电子阴离子和任选的金属离子的接触混合物被煅烧。
因此,固体氧化物活化剂载体(即,化学处理的固体氧化物)可通过包括下列的方法产生:
1)使固体氧化物(或多种固体氧化物)与吸电子阴离子源化合物(或多种化合物)接触以形成第一混合物;和
2)煅烧第一混合物以形成固体氧化物活化剂载体。
根据本发明的另一方面,固体氧化物活化剂载体(化学处理的固体氧化物)通过包含下列的方法产生:
1)使固体氧化物(或多种固体氧化物)与第一吸电子阴离子源化合物接触以形成第一混合物;
2)煅烧第一混合物以生产煅烧的第一混合物;
3)使煅烧的第一混合物与第二吸电子阴离子源化合物接触以形成第二混合物;和
4)煅烧第二混合物以形成固体氧化物活化剂载体。
根据本发明的仍另一方面,通过使固体氧化物与吸电子阴离子源化合物接触生产或形成化学处理的固体氧化物,其中固体氧化物化合物在接触吸电子阴离子源之前、期间或之后被煅烧,并且其中基本上不存在铝氧烷、有机硼或有机硼酸盐化合物和电离化离子化合物。
一般在环境氛围,通常在干燥环境氛围下,在约200℃至约900℃的温度下进行煅烧处理的固体氧化物,时间为约1分钟至约100小时。煅烧可在从约300℃至约800℃的温度下,或可选地,在从约400℃至约700℃的温度下进行。煅烧可进行约30分钟至约50小时或约1小时至约15小时。因此,例如,煅烧可在从约350℃至约550℃的温度下进行约1至约10小时。在煅烧期间可采用任何合适的环境氛围。一般而言,煅烧在氧化氛围比如空气中进行。可选地,可使用惰性氛围,比如氮或氩,或还原氛围,比如氢或一氧化碳。
根据本发明的一方面,固体氧化物材料用卤离子、硫酸根离子、或阴离子的组合的源处理,和任选地用金属离子处理,然后煅烧以提供颗粒固体形式的化学处理的固体氧化物。例如,固体氧化物材料可可用硫酸根的来源(称为“硫酸化剂”)、氯离子的来源(称为“氯化剂”)、氟离子的来源(称为“氟化剂”)或其组合处理,并煅烧以提供固体氧化物活化剂。有用的酸性活化剂载体包括但不限于溴化氧化铝、氯化氧化铝、氟化氧化铝、硫酸化氧化铝、溴化二氧化硅-氧化铝、氯化二氧化硅-氧化铝、氟化二氧化硅-氧化铝、硫酸化二氧化硅-氧化铝、溴化二氧化硅-氧化锆、氯化二氧化硅-氧化锆、氟化二氧化硅-氧化锆、硫酸化二氧化硅-氧化锆、氟化二氧化硅-氧化钛、六氟钛酸处理的氧化铝、六氟钛酸处理的二氧化硅涂覆的氧化铝、六氟锆酸处理的二氧化硅-氧化铝、氟化氧化硼-氧化铝、四氟硼酸处理的二氧化硅、四氟硼酸处理的氧化铝、六氟磷酸处理的氧化铝、柱撑粘土,比如柱状蒙脱石、任选地用氟根、氯根或硫酸根处理;任选地用硫酸根、氟根或氯根处理的磷酸化氧化铝或其他磷铝酸盐;或上述任何组合。进一步,任何这些活化剂载体任选地可用金属离子处理。
化学处理的固体氧化物可包含颗粒固体形式的氟化固体氧化物。可通过使固体氧化物与氟化剂接触形成氟化固体氧化物。通过在合适的溶剂,比如醇和水中形成氧化物的淤浆,氟离子可添加至氧化物,由于它们的挥发性和低的表面张力,所述溶剂包括但不限于1至3碳醇。合适的氟化剂的例子包括但不限于氢氟酸(HF)、氟化铵(NH4F)、氟化氢铵(NH4HF2)、四氟化硼铵(NH4BF4)、氟化硅酸铵(ammoniumsilicofluoride(六氟硅酸盐(hexafluorosilicate))((NH4)2SiF6)、六氟磷酸铵(ammonium hexafluorophosphate)(NH4PF6)、六氟钛酸(H2TiF6)、六氟钛酸铵((NH4)2TiF6)、六氟锆酸(H2ZrF6)、AlF3、NH4AlF4、其类似物和其组合。也可采用三氟甲磺酸和三氟甲磺酸铵。例如,由于易于使用和易于获得,氟化氢铵(NH4HF2)可用作氟化剂。
如果期望,固体氧化物在煅烧步骤期间用氟化剂处理。可以使用在煅烧步骤期间能够充分接触固体氧化物的任何氟化剂。例如,除了前面所述的那些氟化剂之外,可以使用挥发性有机氟化剂。在本发明方面有用的挥发性有机氟化剂的例子包括但不限于氟利昂、全氟己烷(perfluorohexane)、全氟苯(perfluorobenzene)、氟代甲烷、三氟乙醇等,和其组合。煅烧温度一般必须足够高以分解化合物并释放氟根。如果氟化的同时煅烧,气态氟化氢(HF)或氟(F2)本身也可与固体氧化物一起使用。也可采用四氟化硅(SiF4)和包含四氟硼酸根(BF4 -)的化合物。使固体氧化物与氟化剂接触的一种方便的方法是在煅烧期间使氟化剂蒸发到用于流化固体氧化物的气流中。
类似地,在本发明的另一方面,化学处理的固体氧化物包含颗粒固体形式的氯化固体氧化物。通过使固体氧化物接触氯化剂形成氯化固体氧化物。可通过在合适的溶剂中形成氧化物淤浆,将氯离子添加至氧化物。固体氧化物可在煅烧步骤期间用氯化剂处理。可使用在煅烧步骤期间能够用作氯根来源并与氧化物充分接触的任何氯化剂,比如SiCl4、SiMe2Cl2、TiCl4、BCl3等,包括其混合物。可使用挥发性有机氯化剂。合适的挥发性有机氯化剂的例子包括但不限于某些氟利昂、全氟苯、氯甲烷、二氯甲烷、氯仿、四氯化碳、三氯乙醇等或其任意组合。气态氯化氢或氯本身也可在煅烧期间与固体氧化物一起使用。使该氧化物与氯化剂接触的一种方便的方法是在煅烧期间使氯化剂蒸发到用于流化固体氧化物的气流中。
在煅烧固体氧化物之前存在的氟离子或氯离子的量按重量计一般从约1%至约50%,其中重量百分数基于煅烧之前固体氧化物例如二氧化硅-氧化铝的重量。根据本发明的另一方面,在煅烧固体氧化物之前存在的氟离子或氯离子的量按重量计从约1%至约25%,并根据本发明的另一方面,按重量计从约2%至约20%。根据本发明的仍另一方面,在煅烧固体氧化物之前存在的氟离子或氯离子的量按重量计从约4至约10%。一旦用卤化物浸渍,卤化的氧化物可通过任何合适的方法干燥,所述方法包括但不限于抽气过滤(suction filtration)然后蒸发、在真空下干燥、喷雾干燥等,尽管也可能立即启动煅烧步骤,而不干燥浸渍的固体氧化物。
用于制备处理的二氧化硅-氧化铝的二氧化硅-氧化铝通常的孔体积大于约0.5cc/g。根据本发明的一方面,孔体积大于约0.8cc/g,并根据本发明的另一方面,大于约1.0cc/g。进一步,二氧化硅-氧化铝通常的表面积大于约100m2/g。根据本发明的另一方面,表面积大于约250m2/g。仍然另一方面,表面积大于约350m2/g。
本发明中使用的二氧化硅-氧化铝通常的氧化铝含量按重量计从约5至约95%。根据本发明的一方面,二氧化硅-氧化铝的氧化铝含量为按重量计从约5至约50%或从约8%至约30%的氧化铝。另一方面,可采用高氧化铝含量的二氧化硅-氧化铝化合物,其中这些二氧化硅-氧化铝化合物的氧化铝含量范围通常按重量计从约60%至约90%或从约65%至约80%的氧化铝。根据本发明的仍另一方面,固体氧化物组分包含氧化铝,而没有二氧化硅,并根据本发明的另一方面,固体氧化物组分包含二氧化硅,而没有氧化铝。
硫酸化固体氧化物包含硫酸盐和固体氧化物组分,比如以颗粒固体形式的氧化铝或二氧化硅-氧化铝。任选地,硫酸化氧化物进一步用金属离子处理,从而煅烧的硫酸化氧化物包含金属。根据本发明的一方面,硫酸化固体氧化物包含硫酸盐和氧化铝。在一些情况下,通过其中氧化铝被硫酸根源,例如硫酸或硫酸盐比如硫酸铵处理的方法,形成硫酸化氧化铝。一般通过在其中已经添加期望浓度硫酸化剂的合适溶剂比如醇或水中形成氧化铝的淤浆实施该方法。合适的有机溶剂包括但不限于1至3碳醇,因为它们的挥发性和低表面张力。
根据本发明的一方面,在煅烧之前存在的硫酸根离子的量相对于约100重量份固体氧化物为从约0.5至约100重量份的硫酸根离子。根据本发明的另一方面,在煅烧之前存在的硫酸根离子的量相对于约100重量份的固体氧化物为从约1至约50重量份的硫酸根离子,并且根据本发明的仍另一方面,相对于约100重量份的固体氧化物为从约5至约30重量份的硫酸根离子。这些重量比基于煅烧之前固体氧化物的重量。一旦用硫酸盐浸渍,硫酸化的氧化物可以通过任何合适的方法干燥,所述方法包括但不限于抽气过滤然后蒸发、真空下干燥、喷雾干燥以及类似方法,尽管其可能立即启动煅烧步骤。
根据本发明的另一方面,在制备本发明的催化剂组合物中使用的活化剂载体包含可离子交换的活化剂载体,其包括但不限于硅酸盐和硅铝酸盐化合物或矿物质——其具有分层或非分层结构——以及其组合。在本发明的另一方面,可离子交换的分层硅铝酸盐比如柱撑粘土用作活化剂载体。当酸性活化剂载体包含可离子交换的活化剂载体时,其可任选地用至少一种吸电子阴离子比如本文公开的那些处理,尽管通常可离子交换的活化剂载体不用吸电子阴离子处理。
根据本发明的另一方面,本发明的活化剂载体包含粘土矿物质,其具有可交换的阳离子和能够膨胀的层。典型的粘土矿物质活化剂载体包括但不限于可离子交换的分层硅铝酸盐,比如柱撑粘土。尽管使用术语“载体”,但并不意味着解释为催化剂组合物的惰性成分,而是应当考虑催化剂组合物的活性组分,因为其与茂金属组分密切相关联(intimate association)。
根据本发明的另一方面,本发明的粘土材料包括以其天然状态或已经用各种离子通过湿润、离子交换或柱支撑(pillaring)处理的材料。通常,本发明的粘土材料活化剂载体包含已经用大的阳离子——包括多核、高电荷金属络合阳离子——进行离子交换的粘土。但是,本发明的粘土材料活化剂载体也包括已经用简单的盐,包括但不限于用具有配体比如卤根、醋酸根、硫酸根、硝酸根或亚硝酸根的Al(III)、Fe(II)、Fe(III)和Zn(II)盐离子交换的粘土。
根据本发明的另一方面,活化剂载体包含柱撑粘土。使用术语“柱撑粘土”指已经用大的、典型多核、高电荷金属络合阳离子进行离子交换的粘土材料。这种离子的例子包括但不限于可具有电荷比如7+的Keggin离子、各种多金属氧酸根和其他大离子。因此,术语柱支撑指简单的交换反应,其中粘土材料可交换阳离子被大的高电荷的离子比如Keggin离子取代。这些聚合阳离子接着被固定在粘土的层之间并当煅烧时转化成金属氧化物“柱(pillar)”,其有效地支撑粘土层为柱样结构。因此,一旦粘土被干燥并煅烧产生粘土层之间的支撑住,保持膨胀的网格结构并增强了孔隙率。所得空隙的形状和尺寸可作为柱支撑材料和使用的母体粘土材料的函数而改变。柱支撑和柱撑粘土的例子见:T.J.Pinnavaia,Science 220(4595),365-371(1983);J.M.Thomas,Intercalation Chemistry,(S.Whittington和A.Jacobson编辑)3章,55-99页,Academic Press,Inc.,(1972);美国专利号4,452,910;美国专利号5,376,611;和美国专利号4,060,480;其公开内容通过参考以其整体并入本文。
柱支撑方法使用具有可交换的阳离子和能够膨胀的层的粘土矿物质。可使用可增强本发明的催化剂组合物中烯烃聚合的任何柱撑粘土。所以,用于柱支撑的合适的粘土矿物质包括但不限于水铝英石;蒙脱石类,二八面体(Al)和三八面体(Mg)二者和其衍生物,比如蒙脱石(膨润土)、绿脱石、锂蒙脱石或锂藻土(laponite);多水高岭石;蛭石;云母;氟化云母;绿泥石;混合层粘土;纤维粘土,其包括但不限于海泡石、绿坡缕石和坡缕石;蛇纹石粘土;伊利石;锂藻土;滑石粉;和其任意组合。一方面,柱撑粘土活化剂载体包含膨润土或蒙脱石。膨润土的主要成分是蒙脱石。
如果需要可预处理柱撑粘土。例如,柱撑的膨润土在添加至聚合反应器之前,通过在约300℃、惰性气氛通常干燥氮气下被预处理约3小时。尽管本文描述了示例性预处理,但是应当理解预加热可在许多其他温度和时间下进行,包括温度和时间步骤的任何组合,其所有被本发明包括。
用于制备本发明催化剂组合物的活化剂载体可结合其他无机载体材料,其包括但不限于沸石、无机氧化物、磷酸化无机氧化物等。一方面,使用的典型的载体材料包括但不限于二氧化硅、二氧化硅-氧化铝、氧化铝、氧化钛、氧化锆、氧化镁、氧化硼、氧化钍、磷铝酸盐、磷酸铝、二氧化硅-氧化钛、共沉淀的二氧化硅/氧化钛,其混合物或其任意组合。
根据本发明的另一方面,一种或多种茂金属化合物可与烯烃单体和有机铝化合物预接触第一时间段,然后使该混合物与活化剂载体接触。一旦茂金属化合物(一种或多种)、烯烃单体和有机铝化合物的预接触混合物与活化剂载体接触,进一步包含活化剂载体的该组合物被称为“后接触”混合物。可使后接触混合物保持进一步接触第二时间段,然后填料至将进行聚合过程的反应器中。
根据本发明的仍另一方面,一种或多种茂金属化合物可与烯烃单体和活化剂载体预接触第一时间段,然后使该混合物与有机铝化合物接触。一旦茂金属化合物(一种或多种)、烯烃单体和活化剂载体的预接触混合物与有机铝化合物接触,进一步包含有机铝的组合物被称为“后接触”混合物。可使该后接触混合物保持进一步接触第二时间段,然后引入聚合反应器。
有机铝化合物
一些方面,本发明的催化剂组合物可包含一种或多种有机铝化合物。这种化合物可包括但不限于具有下式的化合物:
(RC)3Al;
其中RC是具有从1至10个碳原子的脂肪族基团。例如,RC可以是甲基、乙基、丙基、丁基、己基或异丁基。
可用于本文公开的催化剂组合物的其他有机铝化合物可包括但不限于具有下式的化合物:
Al(X3)m(X4)3-m
其中X3是烃基;X4是烷氧基或芳氧基、卤根或氢负离子;并且m从1到3,并包括1和3。烃基在本文用于指羟基基团并包括但不限于芳基、烷基、环烷基、烯基、环烯基、环链二烯基、炔基、芳烷基、芳烯基、芳炔基等,并包括其所有取代的、未取代的、支链的、直链的、和/或杂原子取代的衍生物。
一方面,X3是具有从1至约18个碳原子的烃基。本发明的另一方面,X3是具有从1至10个碳原子的烷基。例如,本发明的仍另一方面,X3可以是甲基、乙基、丙基、正丁基、仲丁基、异丁基或己基等。
根据本发明的一方面,X4是烷氧基或芳氧基,其任何一种具有从1至18个碳原子;卤根或氢负离子。在本发明的另一方面,X4独立地选自氟和氯。仍然另一方面,X4是氯。
在式Al(X3)m(X4)3-m中,m是从1至3的数,并包括1和3,并且通常,m是3。m的值不限于为整数;所以,该式包括倍半卤化物(sesquihalide)化合物或其他有机铝簇(cluster)化合物。
适合按照本发明使用的有机铝化合物的例子包括但不限于三烷基铝化合物、卤化二烷基铝化合物、二烷基铝烷醇(dialkylaluminumalkoxide)化合物、氢化二烷基铝化合物和其组合。合适的有机铝化合物的具体的非限制性例子包括三甲基铝(TMA)、三乙基铝(TEA)、三正丙基铝(TNPA)、三正丁基铝(TNBA)、三异丁基铝(TIBA)、三正己基铝、三正辛基铝、氢化二异丁基铝、二乙基乙醇铝、氯化二乙基铝等或其组合。
本发明考虑下述方法:预接触茂金属化合物与有机铝化合物和烯烃单体以形成预接触混合物,然后使该预接触混合物与活化剂载体接触以形成催化剂组合物。当催化剂组合物以该方式制备时,通常,尽管不是必须的,但是一部分有机铝化合物被添加至预接触混合物并且另一部分有机铝化合物被添加至当预接触混合物与固体氧化物活化剂载体接触时制备的后接触混合物。但是,全部的有机铝化合物可用于在预接触或后接触步骤中制备催化剂组合物。可选地,所有催化剂组分在单个步骤中接触。
进一步,多于一种有机铝化合物可用于预接触或后接触步骤中。当有机铝化合物在多个步骤中添加时,本文公开的有机铝化合物的量包括在预接触和后接触混合物二者中使用的有机铝化合物,和添加至聚合反应器中任何另外有机铝化合物的总量。所以,公开了有机铝化合物的总量,无论是使用单一有机铝化合物还是多于一种有机铝化合物。
铝氧烷化合物
本发明进一步提供催化剂组合物,其可包含铝氧烷化合物。如本文所使用的,术语“铝氧烷”指铝氧烷化合物、组合物、混合物或离散种类,不管这种铝氧烷如何制备、形成或以其他方式提供。例如,可制备包含铝氧烷化合物的催化剂组合物,其中铝氧烷作为聚(烃基氧化铝)(poly(hydrocarbyl aluminum oxide))提供,或其中铝氧烷作为铝烷基化合物和活性质子来源比如水的组合提供。铝氧烷也被称为聚(烃基氧化铝)或有机铝氧烷。
其他催化剂组分通常与铝氧烷在饱和烃化合物溶剂中接触,但可使用对活化步骤的反应物、中间产物和产物基本上惰性的任何溶剂。通过任何合适的方法例如通过过滤收集以这种方式形成的催化剂组合物。可选地,在不进行分离的情况下,将催化剂组合物引入聚合反应器。
本发明的铝氧烷化合物可以是低聚铝化合物,其包含直链的结构、环状结构或笼型结构或所有三者的混合物。本发明包括具有下式的环状铝氧烷化合物:
Figure BDA00002272684800341
其中该式中的R是直链或支链烷基,其具有从1至10个碳原子,并且p是从3至20的整数。这里显示的AlRO部分也构成直链铝氧烷中的重复单元。因此,本发明也包括具有下式的直链铝氧烷:
Figure BDA00002272684800342
其中该式中的R是直链或支链烷基,其具有从1至10个碳原子,并且q是从1至50的整数。
进一步,铝氧烷可具有式Rt 5r+αRb r-αAl4rO3r的笼型结构,其中Rt是具有从1至10个碳原子的末端直链或支链烷基基团;Rb是具有从1至10个碳原子的桥连直链或支链烷基基团;r是3或4;并且α等于nAl(3)-nO(2)+nO(4),其中nAl(3)是3配位铝原子的数目,nO(2)是2配位氧原子的数目,并且nO(4)是4配位氧原子的数目。
因此,可在本发明的催化剂组合物中采用的铝氧烷通常由式比如(R-Al-O)p、R(R-Al-O)qAlR2等表示。在这些式中,R基团通常是直链或支链C1-C6烷基,比如甲基、乙基、丙基、丁基、戊基或己基。可按照本发明使用的铝氧烷化合物的例子包括但不限于甲基铝氧烷、乙基铝氧烷、正丙基铝氧烷、异丙基铝氧烷、正丁基铝氧烷、叔丁基铝氧烷、仲丁基铝氧烷、异丁基铝氧烷、1-戊基铝氧烷、2-戊基铝氧烷、3-戊基-铝氧烷、异戊基铝氧烷、新戊基铝氧烷等或其任意组合。甲基铝氧烷、乙基铝氧烷和异丁基铝氧烷分别由三甲基铝、三乙基铝或三异丁基铝制备,并有时分别被称为聚(甲基氧化铝)、聚(乙基氧化铝)和聚(异丁基氧化铝)。结合三烷基铝——比如在美国专利号4,794,096公开的,其通过参考以其整体并入本文——使用铝氧烷,也在本发明的范围内。
本发明分别考虑铝氧烷式(R-Al-O)p和R(R-Al-O)qAlR2的p和q的许多值。一些方面,p和q至少为3。但是,根据如何制备、存储和使用有机铝氧烷,p和q的值可在铝氧烷的单个样品中变化,并且本文考虑有机铝氧烷的这种组合。
在制备包含铝氧烷的催化剂组合物中,铝氧烷(或多种铝氧烷)中铝的总摩尔数与组合物中茂金属化合物(一种或多种)的总摩尔数的摩尔比一般在约1∶10和约100,000∶1之间。另一方面,摩尔比范围为从约5∶1至约15,000∶1。任选地,铝氧烷可以下列范围添加至聚合区:从约0.01mg/L至约1000mg/L、从约0.1mg/L至约100mg/L或从约1mg/L至约50mg/L。
可通过各种过程制备有机铝氧烷。有机铝氧烷制剂的例子在美国专利号3,242,099和4,808,561中公开,其公开内容通过参考以其整体并入本文。例如,惰性有机溶剂中的水可与铝烷基化合物,比如(RC)3Al反应,以形成期望的有机铝氧烷化合物。虽然不打算被该陈述所束缚,但相信该合成方法可提供直链的和环状R-Al-O铝氧烷种类二者的混合物,其二者包括在本发明中。可选地,可通过在惰性有机溶剂中,使铝烷基化合物如(RC)3Al与水合盐如水合硫酸铜反应制备有机铝氧烷。
有机硼/有机硼酸盐化合物
根据本发明的另一方面,催化剂组合物可包含有机硼或有机硼酸盐化合物。这种化合物包括中性硼化合物、硼酸盐等或其组合。例如,考虑氟有机硼化合物和氟有机硼酸盐化合物。
本发明可使用任何氟有机硼或氟有机硼酸盐化合物。可在本发明中使用的氟有机硼酸盐化合物的例子包括但不限于氟化芳基硼酸盐比如N,N-二甲基苯胺四(五氟苯基)硼酸盐、三苯基碳
Figure BDA00002272684800361
四(五氟苯基)硼酸盐、四(五氟苯基)硼酸锂、N,N-二甲基苯胺四[3,5-双(三氟甲基)苯基]硼酸盐、三苯基碳四[3,5-双(三氟甲基)苯基]硼酸盐等,或其混合物。在本发明中可用作助催化剂的氟有机硼化合物的例子包括但不限于三(五氟苯基)硼、三[3,5-双(三氟甲基)苯基]硼等,或其混合物。尽管不打算被下述理论所束缚,但是氟有机硼酸盐和氟有机硼化合物和相关化合物的例子被认为当与有机金属或茂金属化合物结合时形成“弱配位”阴离子,如在美国专利5,919,983中所公开的,其公开内容通过参考以其整体并入本文。申请人也考虑使用二硼或双硼化合物或在化学结构中包含两个或更多个硼原子的其他双官能化合物,比如在J.Am.Chem.Soc.,2005,127,pp.14756-14768中所公开的,其公开内容通过参考以其整体并入本文。
一般而言,可使用任何数量的有机硼化合物。根据本发明的一方面,有机硼或有机硼酸盐化合物(或多种化合物)的总摩尔数与催化剂组合物中茂金属化合物总摩尔数的摩尔比的范围从约0.1∶1至约15∶1。通常,使用的氟有机硼或氟有机硼酸盐化合物的量为每摩尔的茂金属化合物(催化剂组分I、催化剂组分II和任何其他茂金属化合物(一种或多种))约0.5摩尔至约10摩尔的硼/硼酸盐化合物。根据本发明的另一方面,氟有机硼或氟有机硼酸盐化合物的量为每摩尔的茂金属化合物约0.8摩尔至约5摩尔的硼/硼酸盐化合物。
电离化离子化合物
本发明进一步提供催化剂组合物,其可包含电离化离子化合物。电离化离子化合物是离子化合物,其可起到助催化剂的作用,以增强催化剂组合物的活性。尽管不打算被理论所束缚,但是相信电离化离子化合物能够与茂金属化合物反应并将茂金属转化成一种或多种阳离子茂金属化合物或初始阳离子茂金属化合物。再一次,尽管不打算被理论所束缚,但是相信电离化离子化合物通过从茂金属完全或部分地提取阴离子配体,可能是非链二烯基配体可起到离子化合物的作用。但是,不管它是否离子化茂金属、以形成离子对的形式吸收配体、弱化茂金属中的金属-配体键、简单地与配体配位、或通过一些其他方式活化茂金属,电离化离子化合物是活化剂或助催化剂。
进一步,电离化离子化合物没有必要仅活化茂金属(一种或多种)。当与不包括电离化离子化合物的催化剂组合物相比较时,就增强作为整体的催化剂组合物的活性而言,电离化离子化合物的活化功能是明显的。
电离化离子化合物的例子包括但不限于下列化合物:三(正丁基)铵四(对甲苯基)硼酸盐、三(正丁基)铵四(间甲苯基)硼酸盐、三(正丁基)铵四(2,4-二甲基苯基)硼酸盐、三(正丁基)铵四(3,5-二甲基苯基)硼酸盐、三(正丁基)铵四[3,5-双(三氟甲基)苯基]硼酸盐、三(正丁基)铵四(五氟苯基)硼酸盐、N,N-二甲基苯胺四(对甲苯基)硼酸盐、N,N-二甲基苯胺四(间甲苯基)硼酸盐、N,N-二甲基苯胺四(2,4-二甲基苯基)硼酸盐、N,N-二甲基苯胺四(3,5-二甲基苯基)硼酸盐、N,N-二甲基苯胺四[3,5-双(三氟甲基)苯基]硼酸盐、N,N-二甲基苯胺四(五氟苯基)硼酸盐、三苯基碳
Figure BDA00002272684800371
四(对甲苯基)硼酸盐、三苯基碳
Figure BDA00002272684800372
四(间甲苯基)硼酸盐、三苯基碳四(2,4-二甲基苯基)硼酸盐、三苯基碳
Figure BDA00002272684800374
四(3,5-二甲基苯基)硼酸盐、三苯基碳
Figure BDA00002272684800375
四[3,5-双(三氟甲基)苯基]硼酸盐、三苯基碳
Figure BDA00002272684800376
四(五氟苯基)硼酸盐、
Figure BDA00002272684800377
四(对甲苯基)硼酸盐、
Figure BDA000022726848003710
四(间甲苯基)硼酸盐、
Figure BDA000022726848003711
Figure BDA000022726848003712
四(2,4-二甲基苯基)硼酸盐、
Figure BDA000022726848003713
Figure BDA000022726848003714
四(3,5-二甲基苯基)硼酸盐、
Figure BDA000022726848003715
Figure BDA000022726848003716
四[3,5-双(三氟甲基)苯基]硼酸盐、
Figure BDA000022726848003717
Figure BDA000022726848003718
四(五氟苯基)硼酸盐、四(五氟苯基)硼酸锂、四苯基硼酸锂、四(对甲苯基)硼酸锂、四(间甲苯基)硼酸锂、四(2,4-二甲基苯基)硼酸锂、四(3,5-二甲基苯基)硼酸锂、四氟硼酸锂、四(五氟苯基)硼酸钠、四苯基硼酸钠、四(对甲苯基)硼酸钠、四(间甲苯基)硼酸钠、四(2,4-二甲基苯基)硼酸钠、四(3,5-二甲基苯基)硼酸钠、四氟硼酸钠、四(五氟苯基)硼酸钾、四苯基硼酸钾、四(对甲苯基)硼酸钾、四(间甲苯基)硼酸钾、四(2,4-二甲基苯基)硼酸钾、四(3,5-二甲基苯基)硼酸钾、四氟硼酸钾、四(五氟苯基)铝酸锂、四苯基铝酸锂、四(对甲苯基)铝酸锂、四(间甲苯基)铝酸锂、四(2,4-二甲基苯基)铝酸锂、四(3,5-二甲基苯基)铝酸锂、四氟铝酸锂、四(五氟苯基)铝酸钠、四苯基铝酸钠、四(对甲苯基)铝酸钠、四(间甲苯基)铝酸钠、四(2,4-二甲基苯基)铝酸钠、四(3,5-二甲基苯基)铝酸钠、四氟铝酸钠、四(五氟苯基)铝酸钾、四苯基铝酸钾、四(对甲苯基)铝酸钾、四(间甲苯基)铝酸钾、四(2,4-二甲基苯基)铝酸钾、四(3,5-二甲基苯基)铝酸钾、四氟铝酸钾等或其组合。用于本发明的电离化离子化合物不限于这些;美国专利号5,576,259和5,807,938公开了电离化离子化合物的其他例子,其公开内容通过参考以其整体并入本文。
烯烃单体
本发明的催化剂组合物和聚合方法可采用的不饱和的反应物通常包括烯烃化合物,其具有每分子2至30个碳原子并具有至少一个烯烃双键。本发明包括使用单烯烃比如乙烯或丙烯的均聚方法,以及使用烯烃单体与至少一种不同的烯烃化合物的共聚反应、三聚反应等。例如,所得到的乙烯共聚物、三元共聚物等,一般包含主要量的乙烯(>50摩尔百分数)和少量的共聚单体(<50摩尔百分数),尽管这不是必须的。可与乙烯共聚的共聚单体在它们的分子链中通常具有3至20个碳原子。
无环、环状、多环状、末端(α)、内部、直链的、支链的、取代的、未取代的、官能化的和非官能化的烯烃可在本发明中采用。例如,可与本发明的催化剂组合物聚合的典型不饱和的化合物包括但不限于乙烯、丙烯、1-丁烯、2-丁烯、3-甲基-1-丁烯、异丁烯、1-戊烯、2-戊烯、3-甲基-1-戊烯、4-甲基-1-戊烯、1-己烯、2-己烯、3-己烯、3-乙基-1-己烯、1-庚烯、2-庚烯、3-庚烯、四正辛烯(例如,1-辛烯)、四正壬烯、五正癸烯等,或两个或更多个这些化合物的混合物。包括但不限于环戊烯、环己烯、降冰片烯、降冰片二烯等的环状和双环状烯烃也可如上述聚合。苯乙烯也可在本发明中用作单体。一方面,烯烃单体是C2-C10烯烃;可选地,烯烃单体是乙烯;或可选地,烯烃单体是丙烯。
当需要共聚物(或可选地,三元共聚物)时,烯烃单体可包含,例如乙烯或丙烯,其与至少一种共聚单体共聚。根据本发明的一方面,聚合方法中的烯烃单体包含乙烯。在此方面,合适的烯烃共聚单体的例子包括但不限于丙烯、1-丁烯、2-丁烯、3-甲基-1-丁烯、异丁烯、1-戊烯、2-戊烯、3-甲基-1-戊烯、4-甲基-1-戊烯、1-己烯、2-己烯、3-乙基-1-己烯、1-庚烯、2-庚烯、3-庚烯、1-辛烯、1-癸烯、苯乙烯等或其组合。根据本发明的一方面,共聚单体可包含1-丁烯、1-戊烯、1-己烯、1-辛烯、1-癸烯、苯乙烯或其任意组合。
一般而言,基于单体和共聚单体的总重量,引入反应器区以生产共聚物的共聚单体的量为从约0.01至约50重量百分数的共聚单体。根据本发明的另一方面,基于单体和共聚单体的总重量,引入反应器区的共聚单体的量从约0.01至约40重量百分数的共聚单体。仍另一方面,基于单体和共聚单体的总重量,引入反应器区的共聚单体的量为从约0.1至约35重量百分数的共聚单体。仍然另一方面,基于单体和共聚单体的总重量,引入反应器区的共聚单体的量为从约0.5至约20重量百分数的共聚单体。
尽管不打算被支链、取代的或官能化的烯烃用作反应物的理论束缚,但是相信位阻可阻碍和/或减缓聚合过程。因此,有些从碳-碳双键去除的烯烃支链和/或环状部分(一个或多个)不期望以更靠近碳-碳双键位置的相同烯烃取代基可能的方式妨碍反应。根据本发明的一方面,至少一种单体/反应物是乙烯,所以聚合是仅包括乙烯的均聚或与不同的无环、环状、末端、内部、直链、支链、取代的或未取代的烯烃的共聚。另外,本发明的催化剂组合物可用于二烯烃化合物包括但不限于1,3-丁二烯、异戊二烯、1,4-戊二烯和1,5-己二烯的聚合。
催化剂组合物
本发明采用催化剂组合物,其包含催化剂组分I、催化剂组分II和至少一种活化剂。这些催化剂组合物可用于生产聚烯烃——均聚物、共聚物等——用于各种终端应用。上面讨论了催化剂组分I和II。在本发明的方面中,考虑催化剂组分I可包含多于一种茂金属化合物和/或催化剂组分II可包含多于一种茂金属化合物。另外,也可使用多于一种活化剂。
一般而言,本发明的催化剂组合物包含催化剂组分I、催化剂组分II和至少一种活化剂。本发明的一些方面,至少一种活化剂可包含至少一种活化剂载体。上面公开了本发明中使用的活化剂载体。这种催化剂组合物可进一步包含一种或多于一种有机铝化合物(上面也讨论了合适的有机铝化合物)。因此,本发明的催化剂组合物可包含催化剂组分I、催化剂组分II、至少一种活化剂载体和至少一种有机铝化合物。例如,至少一种活化剂载体可包含氟化氧化铝、氯化氧化铝、溴化氧化铝、硫酸化氧化铝、氟化二氧化硅-氧化铝、氯化二氧化硅-氧化铝、溴化二氧化硅-氧化铝、硫酸化二氧化硅-氧化铝、氟化二氧化硅-氧化锆、氯化二氧化硅-氧化锆、溴化二氧化硅-氧化锆、硫酸化二氧化硅-氧化锆、氟化二氧化硅-氧化钛、氟化二氧化硅涂覆的氧化铝、硫酸化二氧化硅涂覆的氧化铝、磷酸化二氧化硅涂覆的氧化铝等或其组合。另外,至少一种有机铝化合物可包含三甲基铝、三乙基铝、三正丙基铝、三正丁基铝、三异丁基铝、三正己基铝、三正辛基铝、氢化二异丁基铝、二乙基乙醇铝、氯化二乙基铝等或其组合。
在本发明的另一方面,提供催化剂组合物,其包含催化剂组分I、催化剂组分II、至少一种活化剂载体和至少一种有机铝化合物,其中该催化剂组合物基本上不含铝氧烷、有机硼或有机硼酸盐化合物、电离化离子化合物和/或其他类似材料;可选地,基本上不含铝氧烷;可选地,基本上不含有机硼或有机硼酸盐化合物;或可选地,基本上不含电离化离子化合物。这些方面,催化剂组合物在不存在这些另外材料的情况下具有催化剂活性,下面将讨论。例如,本发明的催化剂组合物可基本上由催化剂组分I、催化剂组分II、活化剂载体和有机铝化合物组成,其中催化剂组合物中不存在其他物质,其从不存在所述材料的催化剂组合物的催化剂活性增加/降低催化剂组合物的活性大于约10%。
但是,在本发明的其他方面,可采用这些活化剂/助催化剂。例如,包含催化剂组分I、催化剂组分II和活化剂载体的催化剂组合物可进一步包含任选的助催化剂。此方面中合适的助催化剂包括但不限于铝氧烷化合物、有机硼或有机硼酸盐化合物、电离化离子化合物等或其任意组合。多于一种助催化剂可在催化剂组合物中存在。
在不同的方面,提供不需要活化剂载体的催化剂组合物。这种催化剂组合物可包含催化剂组分I、催化剂组分II和至少一种活化剂,其中至少一种活化剂包含至少一种铝氧烷化合物、至少一种有机硼或有机硼酸盐化合物、至少一种电离化离子化合物或其组合。
在本文考虑的具体方面,催化剂组合物是双催化剂组合物,其包含活化剂(一种或多于一种)、仅一种催化剂组分I柄型茂金属化合物和仅一种催化剂组分II柄型茂金属化合物。例如,催化剂组合物可包含至少一种活化剂、仅一种具有式(I)的柄型茂金属化合物和仅一种具有式(II)的柄型茂金属化合物。可选地,催化剂组合物可包含至少一种活化剂、仅一种具有式(IA)的柄型茂金属化合物和仅一种具有式(IIB)的柄型茂金属化合物。这些方面,仅两种茂金属化合物存在于催化剂组合物中,即,一种催化剂组分I柄型茂金属化合物和一种催化剂组分II柄型茂金属化合物。也考虑双茂金属催化剂组合物可包含少量的另外的茂金属化合物(一种或多种),但这不是必要的,并且一般地,双催化剂组合物可基本上由前述的两种茂金属化合物组成,并且基本上不存在任何另外的茂金属化合物,其中任何另外的茂金属化合物从不存在另外的茂金属化合物的催化剂组合物的催化剂活性增加/降低催化剂组合物的活性大于约10%。
本发明进一步包括制造这些催化剂组合物的方法,比如,例如以任何次序或顺序接触各自的催化剂组分。
来自催化剂组分I的茂金属化合物、来自催化剂组分II的茂金属化合物或二者可以与烯烃单体——如果期望的话,没有必要是待被聚合的烯烃单体——和有机铝化合物预接触第一时间段,然后使该预接触混合物与活化剂载体接触。茂金属化合物、烯烃单体和有机铝化合物之间的第一接触时间段——预接触时间,通常的范围为从约1分钟至约24小时,例如,从约0.05小时至约1小时的时间段。也采用从约10分钟至约30分钟的预接触时间。可选地,预接触过程在多个步骤中而不是在单个步骤中进行,其中制备多个混合物,每个包含不同组的催化剂组分。例如,至少两个催化剂组分接触形成第一混合物,随后通过使第一混合物与至少一种其他催化剂组分接触形成第二混合物等等。
多个预接触步骤可在单个容器或在多个容器中进行。进一步,多个预接触步骤可连续(顺序地)、平行或其组合进行。例如,两种催化剂组分的第一混合物可在第一容器中形成,包含第一混合物加上一种另外的催化剂组分的第二混合物可在第一容器或在第二容器中形成,所述第二容器通常放置在第一容器的下游。
另一方面,一种或多种催化剂组分可在不同的预接触处理中分开或使用。例如,部分催化剂组分进料至第一预接触容器用于与至少一种其他催化剂组分预接触,而该催化剂组分的剩余部分进料至第二预接触容器用于与至少一种其他催化剂组分预接触,或直接进料至反应器或其组合。预接触可以在任何合适的设备,比如罐、搅拌混合罐、各种静态混合设备、烧瓶、任何类型容器或这些装置的组合中进行。
本发明的另一方面,当进行聚合反应时,各种催化剂组分(例如,催化剂组分I、催化剂组分II、活化剂载体、有机铝助催化剂和任选地不饱和的烃)在聚合反应器中同时接触。可选地,这些催化剂组分的任何两种或多种可在容器中预接触,然后进入反应区。该预接触步骤可以是连续的,其中预接触产物连续进料至反应器,或其可以是逐步或分批次过程,其中一批预接触产物被添加以制造催化剂组合物。该预接触步骤可进行一段时间,其范围可为从数秒钟至长达数天或更长。在此方面,连续的预接触步骤一般持续从约1秒钟至约1小时。另一方面,连续的预接触步骤持续从约10秒钟至约45分钟或从约1分钟至约30分钟。
一旦催化剂组分I茂金属化合物和/或催化剂组分II茂金属、烯烃单体和有机铝助催化剂的预接触混合物与活化剂载体接触,则该组合物(添加了活化剂载体)称为“后接触混合物”。该后接触混合物任选地保持接触第二时间段——后接触时间,然后开始聚合过程。预接触混合物和活化剂载体之间的后接触时间范围通常从约1分钟至约24小时。在进一步方面,后接触时间范围从约0.05小时至约1小时。预接触步骤、后接触步骤或二者,相比于没有预接触或后接触的制备的相同催化剂组合物,可增加聚合物的生产率。但是,预接触步骤和后接触步骤都不是必须的。
后接触混合物可在温度下加热并持续足够的一段时间以使预接触混合物和活化剂载体吸附、浸渍或相互作用,从而预接触混合物的一部分组分被固化、吸附或沉积在其上。其中采用加热,后接触混合物一般加热至从约0°F至约150°F或从约40°F至约95°F之间的温度。
根据本发明的一方面,催化剂组合物中催化剂组分I与催化剂组分II的重量比范围一般从约100∶1至约1∶100。另一方面,重量比范围从约75∶1至约1∶75、从约50∶1至约1∶50或从约30∶1至约1∶30。仍然另一方面,催化剂组合物中催化剂组分I与催化剂组分II的重量比范围从约25∶1至约1∶25。例如,重量比范围可从约20∶1至约1∶20、从约15∶1至约1∶15、从约10∶1至约1∶10或从约5∶1至约1∶5。
当使用预接触步骤时,预接触混合物中烯烃单体总摩尔与茂金属(一种或多种)总摩尔的摩尔比范围通常从约1∶10至约100,000∶1。以该比率使用每个组分的总摩尔以考虑本发明的在预接触步骤中使用多于一种烯烃单体和/或多于一种茂金属的方面。进一步,在本发明的另一方面,该摩尔比范围可从约10∶1至约1,000∶1。
一般而言,有机铝化合物与活化剂载体的重量比范围从约10∶1至约1∶1000。如果采用多于一种有机铝化合物和/或多于一种活化剂载体,该比率基于每种各自组分的总重量。另一方面,有机铝化合物与活化剂载体的重量比范围从约3∶1至约1∶100或从约1∶1至约1∶50。
在本发明的一些方面中,茂金属化合物(催化剂组分I和催化剂组分II的总和)与活化剂载体的重量比范围从约1∶1至约1∶1,000,000。如果采用多于一种活化剂载体,该比率基于活化剂载体的总重量。另一方面,该重量比范围从约1∶5至约1∶100,000或从约1∶10至约1∶10,000。仍然另一方面,茂金属化合物与活化剂载体重量比范围从约1∶20至约1∶1000。
本发明的催化剂组合物一般具有大于约100克的聚乙烯(均聚物、共聚物等,根据背景需要)每克的活化剂载体每小时(简称gP/(gAS·hr))的催化剂活性。另一方面,催化剂活性大于约150、大于约200或大于约250gP/(gAS·hr)。仍另一方面,本发明的催化剂组合物的特征为具有大于约500、大于约1000或大于约2000gP/(gAS·hr)的催化剂活性。仍然另一方面,催化剂活性大于约3000gP/(gAS·hr)。该活性是在使用异丁烷作为稀释剂的淤浆聚合条件下、在约80℃的聚合温度下和约350psig的反应器压力下测量的。
如上所讨论的,在本发明的一些方面中,来自催化剂组分I和/或来自催化剂组分II的茂金属化合物、活化剂载体、有机铝化合物和烯烃单体的任何组合可被预接触。当任何预接触与烯烃单体发生时,在预接触步骤中使用的烯烃单体没有必要与待聚合的烯烃相同。进一步,当催化剂组分的任何组合之间的预接触步骤进行第一时间段时,该预接触混合物可用在随后的催化剂组分的任何其他组合之间的后接触步骤持续第二时间段。例如,一种或多种茂金属化合物、有机铝化合物和1-己烯可用于预接触步骤持续第一时间段,并且该预接触混合物接着可与活化剂载体接触以形成后接触混合物,其被接触第二时间段,然后开始聚合反应。例如,茂金属化合物(一种或多种)、烯烃单体、活化剂载体和有机铝化合物的任何组合之间的第一接触时间段——预接触时间,可从约1分钟至约24小时、从约3分钟至约1小时或从约10分钟至约30分钟。后接触混合物任选地允许保持接触第二时间段——后接触时间,然后开始聚合过程。根据本发明的一方面,预接触混合物和任何剩余催化剂组分之间的后接触时间从约1分钟至约24小时或从约0.1小时至约1小时。
聚合方法
本发明的催化剂组合物可用于聚合烯烃以形成均聚物、共聚物、三元共聚物等。在存在本发明催化剂组合物的情况下,聚合烯烃的一种这样的方法包含将催化剂组合物与烯烃单体和任选地烯烃共聚单体在聚合条件下接触以生产烯烃聚合物,其中催化剂组合物包含催化剂组分I、催化剂组分II和至少一种活化剂。催化剂组分I可包含具有式(I)的至少一种柄型茂金属化合物,或可选地具有式(IA)的至少一种柄型茂金属化合物。催化剂组分II可包含具有式(II)的至少一种柄型茂金属化合物,或可选地具有式(IIB)的至少一种柄型茂金属化合物。
按照本发明一方面,聚合方法采用催化剂组合物,其包含催化剂组分I、催化剂组分II和至少一种活化剂,其中至少一种活化剂包含至少一种活化剂载体。该催化剂组合物可进一步包含至少一种有机铝化合物。合适的有机铝化合物可包括但不限于三甲基铝、三乙基铝、三正丙基铝、三正丁基铝、三异丁基铝、三正己基铝、三正辛基铝、氢化二异丁基铝、二乙基乙醇铝、氯化二乙基铝等或其任意组合。
按照本发明的另一方面,聚合方法采用催化剂组合物,其包含仅一种催化剂组分I柄型茂金属化合物(即,具有式(I)或式(IA)的茂金属化合物)、仅一种催化剂组分II柄型茂金属化合物(即,具有式(II)或式(IIB)的茂金属化合物)、至少一种活化剂载体和至少一种有机铝化合物。
按照本发明的仍另一方面,聚合方法采用催化剂组合物,其包含催化剂组分I、催化剂组分II和至少一种活化剂,其中至少一种活化剂包含至少一种铝氧烷化合物、至少一种有机硼或有机硼酸盐化合物、至少一种电离化离子化合物或其组合。
本发明的催化剂组合物期望用于使用各种类型聚合反应器的任何烯烃聚合方法。如本文所使用的,“聚合反应器”包括能够聚合烯烃单体和共聚单体(一种或多于一种共聚单体)以生产均聚物、共聚物、三元共聚物等的任何聚合反应器。各种类型的反应器包括可被称为间歇式反应器、淤浆反应器、气相反应器、溶液反应器、高压反应器、管式反应器、高压釜反应器等或其组合的那些。本领域技术人员熟知各种反应器类型的聚合条件。气相反应器可包含流化床反应器或多级卧式反应器。淤浆反应器包含垂直或水平环管。高压反应器可包含高压釜或管式反应器。反应器类型可包括间歇或连续过程。连续过程可使用间歇式或连续式产物排放。过程也可包括未反应的单体、未反应的共聚单体和/或稀释剂的部分或全部直接循环。
本发明的聚合反应器系统可包含系统中的一种类型的反应器或相同或不同类型的多个反应器。多个反应器中聚合物的产生可包括在由转移装置相互连接的至少两个分离的聚合反应器中的几个阶段,该转移装置使得有可能将从第一低聚反应器得到的聚合物转移到第二反应器中。反应器之一中期望的聚合反应条件可不同于其他反应器的操作条件。可选地,多个反应器中的聚合反应可包括将聚合物从一个反应器手工转移至随后反应器以便进行连续聚合。多个反应器系统可包括任何组合,其包括但不限于多个环管反应器、多个气相反应器、环管和气相反应器的组合、多个高压反应器、或高压反应器与环管和/或气相反应器的组合。多个反应器可以以串联、并联或二者操作。
根据本发明一方面,聚合反应器系统可包含至少一种环管淤浆反应器,其包含垂直或水平环管。单体、稀释剂、催化剂和共聚单体可连续进料至发生聚合的环管反应器。一般而言,连续方法可包含将单体/共聚单体、催化剂和稀释剂连续引入聚合反应器并且从该反应器连续移出包含聚合物颗粒和稀释剂的悬浮物。反应器流出物可被闪蒸以从包含稀释剂、单体和/或共聚单体的液体中移出固体聚合物。各种技术可被用于该分离步骤,包括但不限于闪蒸——其可包括加热和减压;在旋风分离器或旋液分离器中通过旋流动作的分离;或者通过离心的分离的任意组合。
典型的淤浆聚合方法(也称为颗粒形式方法)在例如美国专利号3,248,179、4,501,885、5,565,175、5,575,979、6,239,235、6,262,191和6,833,415中公开,其每一篇通过参考以其整体并入本文。
淤浆聚合中使用的合适稀释剂包括但不限于被聚合的单体和在反应条件下为液体的烃。合适的稀释剂的例子包括但不限于烃,比如丙烷、环己烷、异丁烷、正丁烷、正戊烷、异戊烷、新戊烷和正己烷。一些环管聚合反应可发生在不使用稀释剂的大批条件下。一个例子是丙烯单体聚合,如在美国专利号5,455,314中公开,其通过参考以其整体并入本文。
根据本发明的又一方面,聚合反应器可包括至少一个气相反应器。这种系统可采用包含一种或多种单体的连续循环流,其在聚合条件下、催化剂存在情况下连续循环穿过流化床。循环流可从流化床中取出并且再循环返回入反应器。同时,聚合产物可从反应器中取出,并且可加入新的或新鲜的单体以代替聚合的单体。这种气相反应器可包括烯烃多级气相聚合工艺,其中烯烃在至少两个独立气相聚合区的气相中聚合,同时将第一聚合区中形成的包含催化剂的聚合物进料到第二聚合区。一种类型的气相反应器被公开在美国专利号5,352,749、4,588,790和5,436,304中,其每一篇通过参考以其整体并入本文。
根据本发明的仍另一方面,高压聚合反应器可包含管式反应器或高压釜反应器。管式反应器可具有几个区,其中加入新鲜的单体、引发剂或催化剂。单体可被夹带在惰性气流中并且在反应器的一个区域引入。引发剂、催化剂、和/或催化剂组分可被夹带在惰性气流中并且在反应器的另一区域引入。气流可被混合以进行聚合。可适当地利用热和压力以获得最佳的聚合反应条件。
根据本发明的仍另一方面,聚合反应器可包括溶液聚合反应器,其中单体/共聚单体通过合适的搅拌或其它方式与催化剂组合物进行接触。可以利用包含惰性有机稀释剂或过量单体的载体。如果期望的话,单体/共聚单体可在液体物质存在或不存在下以蒸汽相与催化反应产物接触。聚合区被保持在这样的温度和压力下,其将导致在反应介质中形成聚合物溶液。可采用搅拌以在整个反应区内获得更好的温度控制并保持均匀的聚合混合物。利用合适的方式驱散聚合放出的热。
适合于本发明的聚合反应器可进一步包括下列的任意组合:至少一种原料进料系统、至少一种催化剂或催化剂组分的进料系统、和/或至少一种聚合物回收系统。本发明的合适反应器系统可进一步包括用于原料提纯、催化剂储存和制备、挤出、反应器冷却、聚合物回收、分馏、再循环、储存、卸载、实验室分析和过程控制的系统。
为了效率和提供期望的聚合物性质而控制的聚合条件可包括温度、压力和各种反应物的浓度。聚合温度可影响催化剂生产率、聚合物分子量和分子量分布。合适的聚合温度可以是按照吉布斯(Gibbs)自由能方程的解聚温度以下的任何温度。通常,这包括从约60℃至约280℃,例如或从约60℃至约110℃,这取决于聚合反应器的类型。在一些反应器系统中,聚合温度一般在从约70℃至约90℃或从约75℃至约85℃的范围内。
合适的压力也将根据反应器和聚合类型而变化。环管反应器中液相聚合的压力一般低于1000psig。气相聚合的压力通常在大约200至500psig。管式或高压釜反应器中的高压聚合一般在大约20,000至75,000psig下运行。聚合反应器也可在超临界区操作,所述超临界区通常发生在较高的温度和压力下。在压力/温度图的临界点以上(超临界相)进行操作可提供优势。本发明的方面涉及烯烃聚合方法,其包含将催化剂组合物与烯烃单体和任选地至少一种烯烃共聚单体在聚合条件下接触以生产烯烃聚合物。通过该方法生产的烯烃聚合物的Mz/Mw比可为从约3至约6。另外地或可选地,烯烃聚合物的Mw/Mn比可为从约3至约8。另外地或可选地,烯烃聚合物可具有非双峰分子量分布和/或反向共聚单体分布,其二者将在下面进一步讨论。
本发明的聚合方法可在存在氢的情况下进行,尽管这不是必须的。根据本发明的一方面,控制聚合过程中氢与烯烃单体的比率。基于烯烃单体的重量,该重量比范围可从0ppm至约10,000ppm的氢。例如,氢与烯烃单体的反应物或进料比可控制在落在0ppm至约7500ppm,约5ppm至约5000ppm或约10ppm至约1000ppm范围内的重量比。
也考虑单体、共聚单体(或多种共聚单体)和/或氢可周期性地脉冲输送至反应器,例如,以与美国专利号5,739,220和美国专利公开号2004/0059070中使用的类似方式,其公开内容通过参考以其整体并入本文。
在乙烯聚合中,不管采用的共聚单体(一种或多种)如何,氢与乙烯单体的进料比一般控制在从0ppm至约1000ppm或从约0.1ppm至约500ppm的重量比范围内,但具体的重量比目标可取决于期望的聚合物分子量或熔体指数(MI)。对于MI为约1g/10分钟的乙烯聚合物(均聚物、共聚物等),氢与乙烯的重量比的范围通常为从0ppm至约750ppm,比如,例如,从约5ppm至约500ppm或从约10ppm至约300ppm。
可控制进入聚合反应器的反应物的浓度以生产具有某些物理和化学性质的树脂。将通过聚合树脂形成的建议的终端产品和形成该产品的方法可最终确定期望的聚合物性质和属性。机械性质包括张力、挠性、冲击、蠕变、应力松弛和硬度测试。物理特性包括密度、分子量、分子量分布、解链温度、玻璃化转变温度、结晶的熔化温度(temperaturemelt of crystallization)、密度、立构规整性、龟裂增长、长链支化和流变学测量。
本发明也涉及并包括通过本文公开的任何聚合方法生产的聚合物。加工制品可由按照本发明生产的聚合物形成,和/或可包含按照本发明生产的聚合物。
聚合物和制品
如果按照本发明生产的所得聚合物是例如乙烯的聚合物或共聚物,则其性质可通过各种在聚烯烃工业中已知并使用的分析技术表征。加工制品可由本发明的乙烯聚合物形成,和/或可包含本发明的乙烯聚合物,下面提供其典型的性质。
按照本发明生产的乙烯聚合物(共聚物、三元共聚物等)一般具有的熔体指数为从约0.01至约100g/10分钟。在本发明的一些方面中,考虑熔体指数范围为从约0.05至约50g/10分钟、从约0.1至约30g/10分钟或从约0.3至约20g/10分钟。例如,本发明聚合物的熔体指数范围可从约0.3至约10、从约0.5至约5或从约0.5至约3g/10分钟。
使用本文公开的茂金属化合物生产的乙烯基聚合物的密度通常落在从约0.88至约0.97g/cm3的范围内。在本发明的一个方面中,乙烯聚合物密度的范围从约0.90至约0.95g/cm3。仍然另一方面,密度范围从约0.91至约0.94g/cm3,比如,例如,从约0.91至约0.93g/cm3
在本发明的范围内的乙烯聚合物,比如共聚物和三元共聚物,一般具有的多分散指数——重均分子量(Mw)与数均分子量(Mn)的比——范围为从约3至约8。在本文公开的一些方面,Mw/Mn比范围从约3至约7.5、从约3至约7、从约3至约6.5或从约3至约6。例如,聚合物的Mw/Mn范围可在从约3至约5.8、从约3.1至约5.6、从约3.1至约5.4、从约3.2至约5.2或从约3.2至约5。
本发明聚合物的Mz/Mw比范围通常从约3至约6。Mz是z均分子量,并且Mw是重均分子量。按照一个方面,本发明乙烯聚合物的Mz/Mw范围从约3至约5.8、从约3至约5.6、从约3至约5.4、从约3至约5.2或从约3至约5。按照另一方面,Mz/Mw范围为从约3至约4.8;可选地,从约3至约4.5;可选地,从约3.1至约4.5;或可选地,从约3.2至约4.5。
在本发明的一些方面中,乙烯聚合物的Mz可具有的范围为从约100,000至约975,000g/mol,比如,例如,从约125,000至约900,000、从约150,000至约850,000g/mol或从约175,000至约800,000g/mol。因此,本发明的一个方面,乙烯聚合物的Mz范围可为从约200,000至约750,000g/mol。其他方面,本发明乙烯聚合物具有分子量分布,其中分子量分布曲线不具有使分子量扩展至大于10,000,000g/mol的高分子量组分。
本发明的聚合物也可表征为具有非双峰分子量分布。如本文所使用的,“非双峰(non-bimodal)”意思是在分子量分布曲线中没有两个可区分的峰(如使用凝胶渗透色谱法(GPC)或其他公认的分析技术所确定的)。非双峰包括仅有一个峰的单峰分布。如果在分子量分布曲线中有两个峰并且在峰之间没有明显的谷或一个峰不被认为是可区分的峰,或两个峰都不被认为是可区分的峰,则峰也是不可区分的。图1-5图解代表性的双峰分子量分布曲线。在这些图中,在峰之间具有谷,并且峰可分开或去卷积(deconvoluted)。通常,双峰分子量分布特点为具有可分辨的高分子量组分(或分布)以及可分辨的低分子量组分(或分布)。相反,图6-11图解代表性的非双峰分子量分布曲线。这些包括单峰分子量分布以及包含不易区分、分开或去卷积的两个峰的分布曲线。
使用上述的聚合方法和催化剂系统产生的乙烯聚合物(例如,共聚物)具有反向共聚单体分布。如本文所使用的,反向共聚单体分布指如此聚合物:其中聚合物的更高分子量组分比更低分子量组分具有更高的共聚单体并入。一般而言,随着分子量增加,共聚单体并入增加。通常,与更低的分子量相比,更高分子量的共聚单体并入的量高约20%或高30%。一方面,与更低的分子量相比,更高分子量的共聚单体并入的量高约50%。反向共聚单体分布的另一特征是每1000个总碳原子的短支链(SCB)数目在Mw比在Mn更大。
另外,本发明的聚合物的SCBD(短支链分布)可由在D10处聚合物的每1000个总碳原子的SCB数目与在D90处聚合物的每1000个总碳原子的SCB数目的比,即(D10处的SCB)/(D90处的SCB)表征。D90是按重量计90%的聚合物具有更高分子量的分子量,并且D10是按重量计10%的聚合物具有更高分子量的分子量。对于分子量增加对数的函数的分子量分布曲线,D90和D10在图12中图形地描述。按照本发明的一方面,在D10处聚合物的每1000个总碳原子的短支链(SCB)数目与在D90处聚合物的每1000个总碳原子的SCB数目的比的范围为从约1.1至约5。例如,在D10处聚合物的每1000个总碳原子的短支链(SCB)数目与在D90处聚合物的每1000总碳原子的SCB数目的比范围可从约1.1至约4或从约1.1至约3。一般而言,本文公开的聚合物在D90处每1000总碳原子具有约1至约10个短支链(SCB),并这通常随着聚合物的密度而变化。
类似地,本发明的聚合物的SCBD可由在D15处聚合物的每1000个总碳原子的SCB数目与在D85处聚合物的每1000个总碳原子的SCB数目的比,即(D15处的SCB)/(D85处的SCB)表征。D85是按重量计85%的聚合物具有更高分子量的分子量,并且D15是按重量计15%的聚合物具有更高分子量的分子量。对于分子量增加对数的函数的分子量分布曲线,D85和D15在图13中图形地描述。按照本发明的一方面,在D15处聚合物的每1000个总碳原子的短支链(SCB)数目与在D85处聚合物的每1000总碳原子的SCB数目的比的范围为从约1.1至约4。例如,在D15处聚合物的每1000个总碳原子的短支链(SCB)数目与在D85处聚合物的每1000总碳原子的SCB数目的比的范围为从约1.1至约3.5或从约1.1至约2.5。
而且,本发明的聚合物可表征为具有聚合物的每1000个总碳原子的短支链(SCB)数目对聚合物分子量的对数在D85和D15之间基本线性的图。图14-15是各自SCBD线性回归分析的示意性例子。图中的三角形表示在给定分子量下SCB的测量数据。图中实心直线是来自测量数据的线性回归分析的趋势线。图中的方程式用于趋势线。R2是在每个图中趋势线的相关参数。为了该公开的目的,如果线性回归分析产生测量SCBD的趋势线的R2大于0.8,则聚合物树脂将具有“基本上线性的”SCBD。基于该定义,使用线性回归分析(R2等于约0.97),图14认为具有基本上线性的SCBD。相反,基于线性回归分析(R2等于约0.68),图15不具有基本上线性的SCBD。在本发明的一些方面中,R2可大于约0.85或大于约0.90或大于约0.95。
一般而言,本发明的聚合物具有低水平的长支链,通常每1000个总碳原子小于约0.05但大于0的长支链(LCB)。一些方面,每1000个总碳原子的LCB数目小于约0.04、小于约0.03、小于约0.02或小于约0.01。此外,在本发明的其他方面,本发明的聚合物每1000个总碳原子可具有小于约0.009、小于约0.008、小于约0.007、小于约0.006或小于约0.005的LCB。
本发明的乙烯聚合物的示意性和非限制性例子可由下列表征:非双峰分子量分布;Mw/Mn的比从约3至约8;Mz/Mw的比从约3至约6;和反向共聚单体分布。另一示例性乙烯聚合物具有非双峰分子量分布;Mw/Mn的比从约3至约6;Mz/Mw的比从约3至约5;和反向共聚单体分布。本文公开的仍另一乙烯聚合物具有非双峰分子量分布;Mw/Mn的比从约3.2至约5;Mz/Mw的比从约3至约4.5;和反向共聚单体分布。这种示意性聚合物也可进一步由下列表征:Mz范围从约100,000至约975,000g/mol、和/或熔体指数范围从约0.1至约30g/10分钟、和/或密度从约0.90至约0.95g/cm3、和/或每1000个总碳原子小于约0.008长支链(LCB)、和/或在D90处每1000个总碳原子从约1至约10短支链(SCB)、和/或在D10处聚合物的每1000个总碳原子的短支链(SCB)数目与在D90处聚合物的每1000个总碳原子的SCB数目的比的范围为从1.1至约5、和/或在D15处聚合物的每1000个总碳原子的短支链(SCB)数目与在D85处聚合物的每1000个总碳原子的SCB数目的比的范围从1.1至约4、和/或聚合物的每1000个总碳原子的短支链(SCB)数目对聚合物分子量对数在D90和D10之间的基本上线性的图。
乙烯的聚合物,无论均聚物、共聚物、三元共聚物等,可形成各种加工制品。可包含本发明的聚合物的制品包括但不限于农业薄膜、汽车部件、瓶子、鼓状物、纤维或织物、食品包装薄膜或容器、食品服务制品、燃料罐、土工膜(geomembrance)、家用容器、衬垫、铸模产品、医用设备或材料、管、纸张或带、玩具等。可采用各种方法以形成这些制品。这些方法的非限制性例子包括注射成型、吹塑成型、旋转模塑、薄膜挤出、片挤出(sheet extrusion)、型材挤出(profile extrusion)、热成型等。另外,添加剂和改性剂通常添加至这些聚合物中,以便提供有益的聚合物加工或终端产品属性。
实施例
通过下述实施例进一步阐明本发明,其不应以任何方式解释为给本发明的范围强加限制。在阅读本文的说明书之后,本领域技术人员可想到其各种其他方面、实施方式、修改和等价物,而不背离本发明的精神或所附权利要求的范围。
按照ASTM D1238在190℃下,用2,160克重物测量熔体指数(MI,g/10分钟)。
按照ASTM D1505和ASTM D1928,程序C,在以每小时约15℃冷却、并在室温下适应约40小时的压模样品上测定以克数每立方厘米(g/cm3)为单位的聚合物密度。
使用PL 220SEC高温色谱单元(聚合物实验室)、以三氯苯(TCB)作为溶剂、流速为1mL/分钟、在145℃温度下获得分子量和分子量分布。浓度为0.5g/L的BHT(2,6-二-叔丁基-4-甲基苯酚)用作TCB中的稳定剂。使用200μL的注入体积,标称聚合物浓度为1.5mg/mL。通过在150℃下加热5小时,并偶尔轻轻搅拌,在稳定化的TCB中进行样品的溶解。使用的柱子是3个PLgel混合的A LS柱(7.8×300mm)并用已经测定分子量的宽线性聚乙烯标准品(Phillips
Figure BDA00002272684800521
BHB 5003)校准。
使用SEC-FTIR高温加热的流细胞(聚合物实验室)获得短支链分布(SCBD)数据,如P.J.DesLauriers,D.C.Rohlfing和E.T.Hsieh,Polymer,43,159(2002)描述的。
按照下列过程制备实施例1-6中采用的硫酸化氧化铝活化剂载体。从W.R.Grace公司获得Bohemite,名称为“氧化铝A”并且表面积为约300m2/g以及孔体积为约1.3mL/g。该材料作为粉末获得,平均颗粒大小为约100微米。该材料用硫酸铵水溶液浸渍以初始湿润至等于约15%的硫酸根。该混合物接着放置在平盘中并使其在约110℃的真空下干燥约16小时。
为煅烧该载体,约10克的该粉末状混合物在室温下放置在装有烧结石英盘的1.75-英寸石英管中。当粉末支撑在盘上时,通过经过13X分子筛柱干燥的空气(氮其可被取代)以约1.6至1.8标准立方英尺每小时的线性速率向上吹通过盘。接着打开石英管周围的电炉并且以每小时约400℃的速率升高温度至期望的约600℃的煅烧温度。在该温度下,使粉末在干燥空气中流化约3小时。之后,收集硫酸化氧化铝活化剂载体并在干燥氮气下储存,并在不暴露于大气的情况下使用。
如下在1加仑(3.8-升)的不锈钢反应器中进行聚合反应。首先,用氮气并接着用异丁烷蒸气吹扫反应器。约0.5mL的1M三异丁基铝(TIBA)、100-130mg的硫酸化氧化铝活化剂载体(SA)和期望量的MET 1和/或MET 2(MET 1和MET 2的结构见下面)以上述顺序通过进料孔添加,同时排出异丁烷蒸气。关闭进料孔并添加1.8-2.0L的异丁烷。搅拌并加热反应器的内容物至75-80℃。接着,将30-45克的1-己烯添加至反应器中,随后引入乙烯和氢气,以相对于乙烯流的固定质量比添加氢气。氢气存储在340-mL压力容器中并经自动进料系统与乙烯一起添加,同时通过添加组合的乙烯/氢气/异丁烷,将总反应器压力保持在305psig或355psig。在聚合的整个30-分钟试验时间中,反应器保持并控制在75℃或80℃下。一旦完成,异丁烷和乙烯从反应器排出,打开反应器,并收集和干燥聚合物产物。
实施例1-6
使用茂金属MET 1和/或茂金属MET 2生产的聚合物
茂金属MET 1具有下述结构:
Figure BDA00002272684800541
茂金属MET 2具有下述结构:
MET 1和MET 2可按照任何合适的方法制备。代表性的技术描述在美国专利号7,064,225和7,517,939中,其公开内容通过参考以其整体并入本文。
比较实施例1-3的聚合条件和所得聚合物性质列在表I中。比较实施例4和发明实施例5-6的聚合条件和所得聚合物性质列在表II。MET1∶MET 2的重量比,在实施例5中为约20∶1,并在实施例6中为约13∶1。
如在表I-II中所显示的,实施例1-4的Mz/Mw的比小于3。相反,实施例5-6的Mz/Mw比大于3。
图16图解实施例5-6的聚合物的分子量分布。实施例5-6的聚合物都具有单峰分子量分布。图17比较对于实施例5-6的聚合物,作为分子量对数函数的SCB含量,以及提供各自的线性回归分析。实施例5-6的聚合物显示反向共聚单体分布,而且,实施例5-6的聚合物的SCBD基本上线性的。
图18图解对于实施例6的聚合物,作为分子量对数函数的SCB含量——每1000个碳原子短支链(SCB)的数目的图,和线性回归分析。在D15和D85之间,聚合物的每1000个总碳原子的短支链(SCB)数目对聚合物分子量对数的图是基本上线性的。使用线性回归分析,趋势线的R2等于约0.99。
表I.实施例1-3的聚合条件和聚合物性质。
Figure BDA00002272684800551
-表I注释:
-聚合条件:355psig压力、80℃、2升异丁烷
表I(续)。
表II.实施例4-6的聚合条件和聚合物性质。
Figure BDA00002272684800553
-表II的注释:
-聚合条件:305psig压力、75℃、1.8升异丁烷
表II(续)。
Figure BDA00002272684800554
比较实施例7-8
商业上可获得的聚烯烃树脂的聚合物性质
比较实施例7是获得自Dow Chemical Company,名为Dow 
Figure BDA00002272684800555
5100级别的LLDPE树脂。比较实施例8是获得自Dow ChemicalCompany,名为Dow
Figure BDA00002272684800556
5400级别的LLDPE树脂。比较实施例7-8的聚合物性质列在表III。使用上面列出的分析过程,以如实施例1-6相同的方式测定Mn、Mw、Mz、Mw/Mn和Mz/Mw数据。如在表III中所显示,这些聚合物的Mz/Mw小于3,实际上,小于2.5。
表III.比较实施例7-8的聚合物性质。
Figure BDA00002272684800561
-表III注释:
-MI和密度是取自具体树脂等级的产品说明的标称性质

Claims (20)

1.烯烃聚合方法,所述方法包含:
将催化剂组合物与烯烃单体和任选地至少一种烯烃共聚单体在聚合条件下接触以生产烯烃聚合物,其中所述催化剂组合物包含催化剂组分I、催化剂组分II和至少一种活化剂,其中:
催化剂组分I包含具有式(I)的至少一种柄型茂金属化合物:
Figure FDA00002272684700011
其中:
MA是Ti、Zr或Hf;
X1A和X2A独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达18个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达18个碳原子;
EA是C或Si;
R1A和R2A独立地为H、具有上达18个碳原子的烃基,或R1A和R2A连接形成具有上达18个碳原子的环状或杂环基团,其中R1A和R2A不是芳基;
R6A和R7A独立地为H或具有上达18个碳原子的烃基;和
CpA是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpA上的任何取代基独立地为H或具有上达36个碳原子的烃基或烃甲硅烷基;和
催化剂组分II包含具有式(II)的至少一种柄型茂金属化合物:
Figure FDA00002272684700021
其中:
MB是Ti、Zr或Hf;
X1B和X2B独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达18个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达18个碳原子;
EB是C或Si;
R1B和R2B独立地为H或具有上达18个碳原子的烃基,其中R1B和R2B的至少一种是具有上达18个碳原子的芳基基团;
R6B和R7B独立地为H或具有上达18个碳原子的烃基;和
CpB是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpB上的任何取代基独立地为H或具有上达36个碳原子的烃基或烃甲硅烷基。
2.根据权利要求1所述的方法,其中所述催化剂组合物包含至少一种活化剂、仅一种具有式(I)的柄型茂金属化合物和仅一种具有式(II)的柄型茂金属化合物。
3.根据权利要求1所述的方法,其中所述至少一种活化剂包含至少一种活化剂载体,其包含用吸电子阴离子处理的固体氧化物,其中:
所述固体氧化物包含二氧化硅、氧化铝、二氧化硅-氧化铝、二氧化硅涂覆的氧化铝、磷酸铝、磷铝酸盐、杂多钨酸盐、氧化钛、氧化锆、氧化镁、氧化硼、氧化锌、其混合的氧化物或其任何混合物;和
所述吸电子阴离子包含硫酸根、硫酸氢根、氟根、氯根、溴根、碘根、氟硫酸根、氟硼酸根、磷酸根、氟磷酸根、三氟乙酸根、三氟甲磺酸根、氟锆酸根、氟钛酸根或其任意组合。
4.根据权利要求1所述的方法,其中所述催化剂组合物进一步包含具有下式的至少一种有机铝化合物:
Al(X3)m(X4)3-m
其中:
X3是烃基;
X4是烷氧基或芳氧基、卤根或氢负离子;和
m从1到3,并包括1和3。
5.根据权利要求4所述的方法,其中:
所述至少一种有机铝化合物包含三甲基铝、三乙基铝、三正丙基铝、三正丁基铝、三异丁基铝、三正己基铝、三正辛基铝、氢化二异丁基铝、二乙基乙醇铝、氯化二乙基铝或其任意组合;和
所述至少一种活化剂包含至少一种活化剂载体,并且其中所述至少一种活化剂载体包含氟化氧化铝、氯化氧化铝、溴化氧化铝、硫酸化氧化铝、氟化二氧化硅-氧化铝、氯化二氧化硅-氧化铝、溴化二氧化硅-氧化铝、硫酸化二氧化硅-氧化铝、氟化二氧化硅-氧化锆、氯化二氧化硅-氧化锆、溴化二氧化硅-氧化锆、硫酸化二氧化硅-氧化锆、氟化二氧化硅-氧化钛、氟化二氧化硅涂覆的氧化铝、硫酸化二氧化硅涂覆的氧化铝、磷酸化二氧化硅涂覆的氧化铝或其任意组合。
6.根据权利要求1所述的方法,其中所述至少一种活化剂包含至少一种铝氧烷化合物、至少一种有机硼或有机硼酸盐化合物、至少一种电离化离子化合物或其任意组合。
7.根据权利要求1所述的方法,其中:
在式(I)中:
R1A和R2A的至少一种是具有上达12个碳原子的末端烯基基团;或
CpA上的至少一种取代基是具有上达12个碳原子的末端烯基或末端烯基甲硅烷基基团;和
在式(II)中:
R1B和R2B的至少一种是具有上达12个碳原子的末端烯基基团;或
CpB上的至少一种取代基是具有上达12个碳原子的末端烯基或末端烯基甲硅烷基基团。
8.根据权利要求1所述的方法,其中催化剂组分I包含:
Figure FDA00002272684700041
Figure FDA00002272684700051
或其任意组合。
9.根据权利要求1所述的方法,其中催化剂组分II包含:
Figure FDA00002272684700052
Figure FDA00002272684700061
Figure FDA00002272684700071
或其任意组合。
10.根据权利要求1所述的方法,其中:
催化剂组分I包含具有式(IA)的至少一种柄型茂金属化合物:
Figure FDA00002272684700072
其中:
MA是Ti、Zr或Hf;
X1A和X2A独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达12个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达12个碳原子;
EA和YA独立地为C或Si;
R1A和R2A独立地为H、具有上达12个碳原子的烃基,或R1A和R2A连接形成具有上达12个碳原子的环状或杂环基团,其中R1A和R2A不是芳基;
R3A、R4A和R5A独立地为H或具有上达10个碳原子的烃基;
R6A和R7A独立地为H或具有上达12个碳原子的烃基;和
CpA是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpA上任何另外的取代基独立地为H或具有上达12个碳原子的烃基;
其中,R1A、R2A、R3A、R4A和R5A的至少一种是烯基基团;和
催化剂组分II包含具有式(IIB)的至少一种柄型茂金属化合物:
Figure FDA00002272684700081
其中:
MB是Ti、Zr或Hf;
X1B和X2B独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达12个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达12个碳原子;
EB和YB独立地为C或Si;
R1B和R2B独立地为H或具有上达12个碳原子的烃基,其中R1B和R2B的至少一种是具有上达12个碳原子的芳基基团;
R3B、R4B和R5B独立地为H或具有上达10个碳原子的烃基;
R6B和R7B独立地为H或具有上达12个碳原子的烃基;和
CpB是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpB上任何另外的取代基独立地为H或具有上达12个碳原子的烃基;
其中,R1B、R2B、R3B、R4B和R5B的至少一种是烯基基团。
11.根据权利要求10所述的方法,其中:
MA和MB独立地为Zr或Hf;
X1A、X2A、X1B和X2B独立地为F、Cl、Br、I、甲基、苄基或苯基;
EA、EB、YA和YB是C;
R3A、R4A、R3B和R4B独立地为H或甲基;
R5A和R5B独立地为具有上达8个碳原子的末端烯基基团;
R6A、R7A、R6B和R7B独立地为H或具有上达6个碳原子的烃基;和
CpA和CpB独立地为环戊二烯基、茚基或芴基。
12.根据权利要求11所述的方法,其中:
R1B和R2B是苯基;
R6A、R7A、R6B和R7B独立地为H或叔丁基;和
CpA和CpB是环戊二烯基。
13.根据权利要求1所述的方法,其中所述催化剂组合物中催化剂组分I与催化剂组分II的重量比范围从约100∶1至约1∶100。
14.根据权利要求1所述的方法,其中所述方法在下述中进行:间歇式反应器、淤浆反应器、气相反应器、溶液反应器、高压反应器、管式反应器、高压釜反应器或其组合。
15.根据权利要求1所述的方法,其中所述烯烃单体是乙烯,并且所述至少一种烯烃共聚单体包含丙烯、1-丁烯、2-丁烯、3-甲基-1-丁烯、异丁烯、1-戊烯、2-戊烯、3-甲基-1-戊烯、4-甲基-1-戊烯、1-己烯、2-己烯、3-乙基-1-己烯、1-庚烯、2-庚烯、3-庚烯、1-辛烯、1-癸烯、苯乙烯或其混合物。
16.一种乙烯聚合物,其具有非双峰分子量分布;Mw/Mn的比从约3至约8;Mz/Mw的比从约3至约6;和反向共聚单体分布。
17.根据权利要求16所述的聚合物,其中:
所述聚合物的所述Mw/Mn的比范围从约3至约6;
所述聚合物的所述Mz/Mw的比范围从约3至约5;
所述聚合物的Mz范围从约100,000至约975,000g/mol;
所述聚合物的熔体指数范围从约0.1至约30g/10分钟;
所述聚合物密度从约0.90至约0.95g/cm3;或
所述聚合物每1000个总碳原子具有小于约0.008长支链(LCB);或
其任意组合。
18.根据权利要求16所述的聚合物,其中:
所述聚合物在D90处具有每1000个总碳原子从约1至约10短支链(SCB);
在D10处所述聚合物的每1000个总碳原子的短支链(SCB)数目与在D90处所述聚合物的每1000个总碳原子的SCB数目的比的范围从1.1至约5;
在D15处所述聚合物的每1000个总碳原子的短支链(SCB)数目与在D85处所述聚合物的每1000个总碳原子的SCB数目的比的范围从1.1至约4;或
所述聚合物的每1000个总碳原子的短支链(SCB)数目对所述聚合物分子量的对数的图在D85和D15之间基本上为线性的;或
其任意组合。
19.包含权利要求16所述的聚合物的制品。
20.催化剂组合物,其包含催化剂组分I、催化剂组分II和至少一种活化剂,其中:
催化剂组分I包含具有式(I)的至少一种柄型茂金属化合物:
Figure FDA00002272684700101
其中:
MA是Ti、Zr或Hf;
X1A和X2A独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达18个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达18个碳原子;
EA是C或Si;
R1A和R2A独立地为H、具有上达18个碳原子的烃基,或R1A和R2A连接形成具有上达18个碳原子的环状或杂环基团,其中R1A和R2A不是芳基;
R6A和R7A独立地为H或具有上达18个碳原子的烃基;和
CpA是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpA上的任何取代基独立地为H或具有上达36个碳原子的烃基或烃甲硅烷基;和
催化剂组分II包含具有式(II)的至少一种柄型茂金属化合物:
Figure FDA00002272684700111
其中:
MB是Ti、Zr或Hf;
X1B和X2B独立地为F;Cl;Br;I;甲基;苄基;苯基;H;BH4;OBR2或SO3R,其中R是具有上达18个碳原子的烷基或芳基基团;或烃氧基、烃氨基或烃甲硅烷基,其任何一个具有上达18个碳原子;
EB是C或Si;
R1B和R2B独立地为H或具有上达18个碳原子的烃基,其中R1B和R2B的至少一种是具有上达18个碳原子的芳基基团;
R6B和R7B独立地为H或具有上达18个碳原子的烃基;和
CpB是环戊二烯基、茚基或芴基或其杂原子取代的衍生物,CpB上的任何取代基独立地为H或具有上达36个碳原子的烃基或烃甲硅烷基。
CN201180019704.8A 2010-04-19 2011-04-15 用于生产高Mz/Mw聚烯烃的催化剂组合物 Active CN102844341B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/762,414 2010-04-19
US12/762,414 US8383754B2 (en) 2010-04-19 2010-04-19 Catalyst compositions for producing high Mz/Mw polyolefins
PCT/US2011/032610 WO2011133409A1 (en) 2010-04-19 2011-04-15 CATALYST COMPOSITION FOR PRODUCING HIGH Mz/Mw POLYOLEFINS

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510017098.6A Division CN104530285A (zh) 2010-04-19 2011-04-15 用于生产高Mz/Mw聚烯烃的催化剂组合物

Publications (2)

Publication Number Publication Date
CN102844341A true CN102844341A (zh) 2012-12-26
CN102844341B CN102844341B (zh) 2015-02-11

Family

ID=44120994

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180019704.8A Active CN102844341B (zh) 2010-04-19 2011-04-15 用于生产高Mz/Mw聚烯烃的催化剂组合物
CN201510017098.6A Pending CN104530285A (zh) 2010-04-19 2011-04-15 用于生产高Mz/Mw聚烯烃的催化剂组合物

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510017098.6A Pending CN104530285A (zh) 2010-04-19 2011-04-15 用于生产高Mz/Mw聚烯烃的催化剂组合物

Country Status (14)

Country Link
US (3) US8383754B2 (zh)
EP (1) EP2560999B1 (zh)
KR (1) KR101767702B1 (zh)
CN (2) CN102844341B (zh)
AU (1) AU2011243015B2 (zh)
BR (1) BR112012026842B1 (zh)
CA (1) CA2796737C (zh)
CO (1) CO6620039A2 (zh)
EG (1) EG27034A (zh)
ES (1) ES2667857T3 (zh)
HU (1) HUE038102T2 (zh)
MX (1) MX2012012183A (zh)
SG (1) SG184916A1 (zh)
WO (1) WO2011133409A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004116A (zh) * 2013-02-27 2014-08-27 切弗朗菲利浦化学公司 双活化剂-载体催化剂系统
CN105330771A (zh) * 2014-12-03 2016-02-17 苏州亚培克生物科技有限公司 一种茂金属线性低密度聚乙烯催化剂及其制备方法和应用
CN106459281A (zh) * 2014-05-22 2017-02-22 切弗朗菲利浦化学公司 用于生产具有较宽分子量分布和均匀的短链分枝分布的聚合物的双重催化剂系统
CN107531837A (zh) * 2015-04-23 2018-01-02 尤尼威蒂恩技术有限责任公司 具有特定共聚单体分布的聚乙烯共聚物

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226886B2 (en) * 2005-09-15 2007-06-05 Chevron Phillips Chemical Company, L.P. Polymerization catalysts and process for producing bimodal polymers in a single reactor
US7619047B2 (en) 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
US8114946B2 (en) 2008-12-18 2012-02-14 Chevron Phillips Chemical Company Lp Process for producing broader molecular weight distribution polymers with a reverse comonomer distribution and low levels of long chain branches
US8309485B2 (en) 2009-03-09 2012-11-13 Chevron Phillips Chemical Company Lp Methods for producing metal-containing sulfated activator-supports
US8383754B2 (en) 2010-04-19 2013-02-26 Chevron Phillips Chemical Company Lp Catalyst compositions for producing high Mz/Mw polyolefins
US8637616B2 (en) 2010-10-07 2014-01-28 Chevron Philips Chemical Company Lp Bridged metallocene catalyst systems with switchable hydrogen and comonomer effects
US8609793B2 (en) 2010-10-07 2013-12-17 Chevron Phillips Chemical Company Lp Catalyst systems containing a bridged metallocene
US8629292B2 (en) 2010-10-07 2014-01-14 Chevron Phillips Chemical Company Lp Stereoselective synthesis of bridged metallocene complexes
US9018329B2 (en) 2011-09-02 2015-04-28 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
US9284391B2 (en) 2011-09-02 2016-03-15 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
WO2013151863A1 (en) 2012-04-02 2013-10-10 Chevron Phillips Chemical Company Lp Catalyst systems containing a bridged metallocene reference to related application
US9115233B2 (en) * 2012-06-21 2015-08-25 Nova Chemicals (International) S.A. Ethylene copolymer compositions, film and polymerization processes
CA2798855C (en) * 2012-06-21 2021-01-26 Nova Chemicals Corporation Ethylene copolymers having reverse comonomer incorporation
WO2014078919A1 (pt) 2012-11-26 2014-05-30 Braskem S.A. Catalisador metaloceno suportado em suporte híbrido, processo de obtenção do mesmo, processo de polimerização para obtenção de um homopolímero ou copolímero de etileno com distribuição de massa molar ampla ou bimodal, uso do catalisador de metaloceno suportado e polímero de etileno com distribuição de massa molar ampla ou bimodal
US8912285B2 (en) 2012-12-06 2014-12-16 Chevron Phillips Chemical Company Lp Catalyst system with three metallocenes for producing broad molecular weight distribution polymers
CN104918972B (zh) * 2012-12-14 2018-01-02 诺瓦化学品(国际)股份有限公司 乙烯共聚物组合物、膜和聚合方法
US9156970B2 (en) 2013-09-05 2015-10-13 Chevron Phillips Chemical Company Lp Higher density polyolefins with improved stress crack resistance
KR101549209B1 (ko) 2013-11-18 2015-09-02 주식회사 엘지화학 가공성이 우수한 올레핀계 중합체
US9217049B2 (en) 2013-11-19 2015-12-22 Chevron Phillips Chemical Company Lp Dual catalyst systems for producing polymers with a broad molecular weight distribution and a uniform short chain branch distribution
ES2665432T3 (es) 2013-11-19 2018-04-25 Chevron Phillips Chemical Company Lp Sistemas de catalizadores que contienen compuestos metalocenos de ciclopentadienilo-fluorenilo con puente de boro con un sustituyente alquenilo
US9540465B2 (en) 2013-11-19 2017-01-10 Chevron Phillips Chemical Company Lp Boron-bridged metallocene catalyst systems and polymers produced therefrom
US9303110B2 (en) 2013-11-19 2016-04-05 Chevron Phillips Chemical Company Lp Boron-bridged bis-indenyl metallocene catalyst systems and polymers produced therefrom
US9169337B2 (en) 2014-03-12 2015-10-27 Chevron Phillips Chemical Company Lp Polymers with improved ESCR for blow molding applications
US9273170B2 (en) 2014-03-12 2016-03-01 Chevron Phillips Chemical Company Lp Polymers with improved toughness and ESCR for large-part blow molding applications
US9441063B2 (en) 2014-10-09 2016-09-13 Chevron Phillips Chemical Company Lp Titanium phosphinimide and titanium iminoimidazolidide catalyst systems with activator-supports
US9303106B1 (en) 2014-10-17 2016-04-05 Chevron Phillips Chemical Company Lp Processes for preparing solid metallocene-based catalyst systems
EP3274381B1 (en) * 2015-04-20 2019-05-15 ExxonMobil Chemical Patents Inc. Catalyst composition comprising fluorided support and processes for use thereof
US10414086B2 (en) 2015-05-07 2019-09-17 Fina Technology, Inc. Polyethylene for superior sheet extrusion thermoforming performance
US9289748B1 (en) 2015-06-11 2016-03-22 Chevron Phillips Chemical Company Lp Treater regeneration
US9861955B2 (en) 2015-06-11 2018-01-09 Chevron Phillips Chemical Company, Lp Treater regeneration
FI3320004T4 (fi) 2015-07-08 2024-01-26 Chevron Phillips Chemical Co Lp Ziegler-nattan metalloseenin kaksoiskatalyyttijärjestelmät aktivaattorituella
US9493589B1 (en) 2015-09-09 2016-11-15 Chevron Phillips Chemical Company Lp Polymers with improved ESCR for blow molding applications
US9650459B2 (en) 2015-09-09 2017-05-16 Chevron Phillips Chemical Company Lp Methods for controlling die swell in dual catalyst olefin polymerization systems
US9758599B2 (en) 2015-09-24 2017-09-12 Chevron Phillips Chemical Company Lp Heterogeneous Ziegler-Natta catalysts with fluorided silica-coated alumina
US9845367B2 (en) 2015-09-24 2017-12-19 Chevron Phillips Chemical Company Lp Heterogeneous Ziegler-Natta catalysts with fluorided silica-coated alumina
US9540457B1 (en) 2015-09-24 2017-01-10 Chevron Phillips Chemical Company Lp Ziegler-natta—metallocene dual catalyst systems with activator-supports
RU2744002C1 (ru) 2017-05-03 2021-03-01 ШЕВРОН ФИЛЛИПС КЕМИКАЛ КОМПАНИ ЭлПи (CHEVRON PHILLIPS CHEMICAL COMPANY LP) Регенерация осушителя в отключенном от системы очистителе процесса производства полиолефинов
US10844150B2 (en) 2017-08-04 2020-11-24 Exxonmobil Chemical Patents Inc. Mixed catalysts with 2,6-bis(imino)pyridyl iron complexes and bridged hafnocenes
CN111108130B (zh) 2017-08-04 2022-06-28 埃克森美孚化学专利公司 具有含-CH2-SiMe3部分的非桥连二茂铪的混合催化剂
JP6986163B2 (ja) 2017-10-23 2021-12-22 エクソンモービル ケミカル パテンツ インコーポレイテッド 触媒系およびそれを使用する重合方法
WO2019094131A1 (en) 2017-11-13 2019-05-16 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
EP3710499A1 (en) 2017-11-13 2020-09-23 ExxonMobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
US11130827B2 (en) 2017-11-14 2021-09-28 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
CN111465626B (zh) 2017-11-28 2022-10-18 埃克森美孚化学专利公司 聚乙烯组合物和由其制成的膜
EP3717525B1 (en) 2017-11-28 2023-06-07 ExxonMobil Chemical Patents Inc. Catalyst systems and polymerization processes for using the same
US10865258B2 (en) 2018-01-31 2020-12-15 Exxonmobil Chemical Patents Inc. Mixed catalyst systems containing bridged metallocenes with a pendant group 13 element, processes for making a polymer product using same, and products made from same
US10851187B2 (en) 2018-01-31 2020-12-01 Exxonmobil Chemical Patents Inc. Bridged metallocene catalysts with a pendant group 13 element, catalyst systems containing same, processes for making a polymer product using same, and products made from same
US10792609B2 (en) 2018-05-07 2020-10-06 Chevron Phillips Chemical Company Lp Nitrogen conservation in polymerization processes
WO2020046406A1 (en) 2018-08-30 2020-03-05 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
US10899860B2 (en) 2018-08-30 2021-01-26 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
US10927205B2 (en) 2018-08-30 2021-02-23 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
US11377541B2 (en) 2019-07-26 2022-07-05 Chevron Phillips Chemical Company Lp Blow molding polymers with improved cycle time, processability, and surface quality
KR102565858B1 (ko) * 2019-07-30 2023-08-11 한화솔루션 주식회사 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
US11667777B2 (en) 2019-10-04 2023-06-06 Chevron Phillips Chemical Company Lp Bimodal polyethylene copolymers
US20210130513A1 (en) * 2019-11-01 2021-05-06 Chevron Phillips Chemical Company Lp System and method for catalyst preparation
US11267919B2 (en) 2020-06-11 2022-03-08 Chevron Phillips Chemical Company Lp Dual catalyst system for producing polyethylene with long chain branching for blow molding applications
US20230220136A1 (en) 2020-07-22 2023-07-13 Exxonmobil Chemical Patents Inc. Polyolefin Compositions and Articles Thereof
EP4204465A1 (en) 2020-08-25 2023-07-05 ExxonMobil Chemical Patents Inc. High density polyethylene compositions with exceptional physical properties
CN116323707A (zh) 2020-10-08 2023-06-23 埃克森美孚化学专利公司 负载型催化剂体系及其使用方法
US11578156B2 (en) 2020-10-20 2023-02-14 Chevron Phillips Chemical Company Lp Dual metallocene polyethylene with improved processability for lightweight blow molded products
EP4255942A1 (en) 2020-12-02 2023-10-11 ExxonMobil Chemical Patents Inc. Medium density polyethylene compositions with broad orthogonal composition distribution
US20230406973A1 (en) 2020-12-08 2023-12-21 Exxonmobil Chemical Patents Inc. High density polyethylene compositions with long-chain branching
US11505630B2 (en) 2021-03-15 2022-11-22 Chevron Phillips Chemical Company Lp Peroxide treated blow molding polymers with increased weight swell and constant die swell
WO2023076818A1 (en) 2021-10-26 2023-05-04 Exxonmobil Chemical Patents Inc. Highly oriented linear low density polyethylene films with outstanding processability and mechanical properties
WO2023081577A1 (en) 2021-11-02 2023-05-11 Exxonmobil Chemical Patents Inc. Polyethylene compositions, articles thereof, and methods thereof
US20230227592A1 (en) 2022-01-14 2023-07-20 Chevron Phillips Chemical Company Lp Dual metallocene bimodal hdpe resins with improved stress crack resistance
CN114989339A (zh) * 2022-07-05 2022-09-02 宁夏清研高分子新材料有限公司 一种提高tpx聚合物规整度的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070043176A1 (en) * 2005-08-22 2007-02-22 Martin Joel L Polymerization catalysts and process for producing bimodal polymers in a single reactor
US20070179044A1 (en) * 2006-02-02 2007-08-02 Qing Yang Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching
US20090088537A1 (en) * 2007-09-28 2009-04-02 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with high comonomer incorporation

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3248179A (en) 1962-02-26 1966-04-26 Phillips Petroleum Co Method and apparatus for the production of solid polymers of olefins
US3242099A (en) 1964-03-27 1966-03-22 Union Carbide Corp Olefin polymerization catalysts
US4060480A (en) 1971-09-03 1977-11-29 Chevron Research Company Hydrocarbon hydroconversion process employing hydroxy-aluminum stabilized catalysts supports
US4501885A (en) 1981-10-14 1985-02-26 Phillips Petroleum Company Diluent and inert gas recovery from a polymerization process
US4588790A (en) 1982-03-24 1986-05-13 Union Carbide Corporation Method for fluidized bed polymerization
US4452910A (en) 1982-06-15 1984-06-05 Standard Oil Company (Indiana) Chromium expanded smectite clay
US4808561A (en) 1985-06-21 1989-02-28 Exxon Chemical Patents Inc. Supported polymerization catalyst
US4794096A (en) 1987-04-03 1988-12-27 Fina Technology, Inc. Hafnium metallocene catalyst for the polymerization of olefins
US5565175A (en) 1990-10-01 1996-10-15 Phillips Petroleum Company Apparatus and method for producing ethylene polymer
US5575979A (en) 1991-03-04 1996-11-19 Phillips Petroleum Company Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator
EP0516019B1 (de) * 1991-05-27 1995-12-27 Hoechst Aktiengesellschaft Verfahren zur Herstellung von syndiotaktischen Polyolefinen mit breiter Molmassenverteilung
AU650787B2 (en) 1991-12-09 1994-06-30 Phillips Petroleum Company Process for preparing a pillared chain silicate clay
US5436304A (en) 1992-03-19 1995-07-25 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
US5352749A (en) 1992-03-19 1994-10-04 Exxon Chemical Patents, Inc. Process for polymerizing monomers in fluidized beds
US5576259A (en) 1993-10-14 1996-11-19 Tosoh Corporation Process for producing α-olefin polymer
US5455314A (en) 1994-07-27 1995-10-03 Phillips Petroleum Company Method for controlling removal of polymerization reaction effluent
EP0727443B1 (en) 1995-02-20 2001-01-17 Tosoh Corporation Catalyst for olefin polymerization and process for producing olefin polymers
RU2178422C2 (ru) 1996-03-27 2002-01-20 Дзе Дау Кемикал Компани Активатор катализаторов полимеризации олефинов, каталитическая система и способ полимеризации
IL127069A0 (en) 1996-05-17 1999-09-22 Dow Chemical Co Polyolefin composition with molecular weight maximum occuring in that part of the composition that has the highest comonomer content
US5739220A (en) 1997-02-06 1998-04-14 Fina Technology, Inc. Method of olefin polymerization utilizing hydrogen pulsing, products made therefrom, and method of hydrogenation
US6239235B1 (en) 1997-07-15 2001-05-29 Phillips Petroleum Company High solids slurry polymerization
KR100531628B1 (ko) 1998-03-20 2005-11-29 엑손모빌 케미칼 패턴츠 인코포레이티드 연속적인 슬러리 중합반응의 휘발물질 제거
US6300271B1 (en) 1998-05-18 2001-10-09 Phillips Petroleum Company Compositions that can produce polymers
US6107230A (en) 1998-05-18 2000-08-22 Phillips Petroleum Company Compositions that can produce polymers
US6165929A (en) 1998-05-18 2000-12-26 Phillips Petroleum Company Compositions that can produce polymers
US6294494B1 (en) 1998-12-18 2001-09-25 Phillips Petroleum Company Olefin polymerization processes and products thereof
US6262191B1 (en) 1999-03-09 2001-07-17 Phillips Petroleum Company Diluent slip stream to give catalyst wetting agent
US6355594B1 (en) 1999-09-27 2002-03-12 Phillips Petroleum Company Organometal catalyst compositions
US6376415B1 (en) 1999-09-28 2002-04-23 Phillips Petroleum Company Organometal catalyst compositions
US6395666B1 (en) 1999-09-29 2002-05-28 Phillips Petroleum Company Organometal catalyst compositions
US6548441B1 (en) 1999-10-27 2003-04-15 Phillips Petroleum Company Organometal catalyst compositions
US6391816B1 (en) 1999-10-27 2002-05-21 Phillips Petroleum Organometal compound catalyst
US6613712B1 (en) 1999-11-24 2003-09-02 Phillips Petroleum Company Organometal catalyst compositions with solid oxide supports treated with fluorine and boron
US6548442B1 (en) 1999-12-03 2003-04-15 Phillips Petroleum Company Organometal compound catalyst
HUP0203789A2 (en) 1999-12-16 2003-04-28 Phillips Petroleum Co Organometal compound catalyst
US6750302B1 (en) 1999-12-16 2004-06-15 Phillips Petroleum Company Organometal catalyst compositions
US6524987B1 (en) 1999-12-22 2003-02-25 Phillips Petroleum Company Organometal catalyst compositions
US6632894B1 (en) 1999-12-30 2003-10-14 Phillips Petroleum Company Organometal catalyst compositions
US6667274B1 (en) 1999-12-30 2003-12-23 Phillips Petroleum Company Polymerization catalysts
US6576583B1 (en) 2000-02-11 2003-06-10 Phillips Petroleum Company Organometal catalyst composition
US6388017B1 (en) 2000-05-24 2002-05-14 Phillips Petroleum Company Process for producing a polymer composition
US6932592B2 (en) 2000-06-22 2005-08-23 Exxonmobil Chemical Patents Inc. Metallocene-produced very low density polyethylenes
US6800692B2 (en) 2000-06-22 2004-10-05 Exxonmobil Chemical Patents Inc. Metallocene-produced very low density polyethylenes
RU2296135C2 (ru) 2001-07-19 2007-03-27 Юнивейшн Технолоджиз, Ллс Смешанные металлоценовые каталитические системы, содержащие компонент, обеспечивающий плохое включение сомономера, и компонент, обеспечивающий хорошее включение сомономера
US6936675B2 (en) 2001-07-19 2005-08-30 Univation Technologies, Llc High tear films from hafnocene catalyzed polyethylenes
US20040059070A1 (en) 2002-09-19 2004-03-25 Whitte William M. Process and apparatus for controlling molecular weight distribution and short chain branching for olefin polymers
US6878454B1 (en) 2003-12-05 2005-04-12 Univation Technologies, Llc Polyethylene films
US7119153B2 (en) 2004-01-21 2006-10-10 Jensen Michael D Dual metallocene catalyst for producing film resins with good machine direction (MD) elmendorf tear strength
US7064225B2 (en) 2004-06-25 2006-06-20 Chevron Phillips Chemical Company, L.P. Synthesis of ansa-metallocenes and their parent ligands in high yield
US7868092B2 (en) 2005-06-14 2011-01-11 Univation Technologies, Llc Bimodal polyethylene compositions for blow molding applications
US20060189769A1 (en) * 2005-02-22 2006-08-24 Nova Chemicals (International) S.A. Broad/bimodal resins with controlled comonomer distribution
US7226886B2 (en) 2005-09-15 2007-06-05 Chevron Phillips Chemical Company, L.P. Polymerization catalysts and process for producing bimodal polymers in a single reactor
US7619047B2 (en) 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
WO2008002524A2 (en) 2006-06-27 2008-01-03 Univation Technologies, Llc Ethylene-alpha olefin copolymer's and polymerization processes for making the same
MX2010009009A (es) 2008-02-18 2010-12-15 Basell Polyolefine Gmbh Composicion polimerica adhesiva.
US7884163B2 (en) 2008-03-20 2011-02-08 Chevron Phillips Chemical Company Lp Silica-coated alumina activator-supports for metallocene catalyst compositions
WO2010068045A2 (ko) 2008-12-11 2010-06-17 주식회사 엘지화학 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 올레핀계 중합체의 제조방법
US8114946B2 (en) 2008-12-18 2012-02-14 Chevron Phillips Chemical Company Lp Process for producing broader molecular weight distribution polymers with a reverse comonomer distribution and low levels of long chain branches
US8309485B2 (en) 2009-03-09 2012-11-13 Chevron Phillips Chemical Company Lp Methods for producing metal-containing sulfated activator-supports
US8383754B2 (en) 2010-04-19 2013-02-26 Chevron Phillips Chemical Company Lp Catalyst compositions for producing high Mz/Mw polyolefins
US8703886B1 (en) 2013-02-27 2014-04-22 Chevron Phillips Chemical Company Lp Dual activator-support catalyst systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070043176A1 (en) * 2005-08-22 2007-02-22 Martin Joel L Polymerization catalysts and process for producing bimodal polymers in a single reactor
US20070179044A1 (en) * 2006-02-02 2007-08-02 Qing Yang Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching
US20090088537A1 (en) * 2007-09-28 2009-04-02 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with high comonomer incorporation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004116A (zh) * 2013-02-27 2014-08-27 切弗朗菲利浦化学公司 双活化剂-载体催化剂系统
CN104004116B (zh) * 2013-02-27 2018-03-09 切弗朗菲利浦化学公司 双活化剂‑载体催化剂系统
CN106459281A (zh) * 2014-05-22 2017-02-22 切弗朗菲利浦化学公司 用于生产具有较宽分子量分布和均匀的短链分枝分布的聚合物的双重催化剂系统
CN106459281B (zh) * 2014-05-22 2019-08-20 切弗朗菲利浦化学公司 用于生产具有较宽分子量分布和均匀的短链分枝分布的聚合物的双重催化剂系统
CN105330771A (zh) * 2014-12-03 2016-02-17 苏州亚培克生物科技有限公司 一种茂金属线性低密度聚乙烯催化剂及其制备方法和应用
CN105330771B (zh) * 2014-12-03 2018-12-14 亚培烯科技(杭州)有限公司 一种茂金属线性低密度聚乙烯催化剂及其制备方法和应用
CN107531837A (zh) * 2015-04-23 2018-01-02 尤尼威蒂恩技术有限责任公司 具有特定共聚单体分布的聚乙烯共聚物
CN107531837B (zh) * 2015-04-23 2021-10-15 尤尼威蒂恩技术有限责任公司 具有特定共聚单体分布的聚乙烯共聚物

Also Published As

Publication number Publication date
US8846841B2 (en) 2014-09-30
US8383754B2 (en) 2013-02-26
CA2796737C (en) 2017-11-21
EP2560999B1 (en) 2018-03-14
CN102844341B (zh) 2015-02-11
SG184916A1 (en) 2012-11-29
KR20130060181A (ko) 2013-06-07
BR112012026842A2 (pt) 2017-10-17
US8691715B2 (en) 2014-04-08
EG27034A (en) 2015-04-14
MX2012012183A (es) 2013-02-27
AU2011243015A1 (en) 2012-11-08
CN104530285A (zh) 2015-04-22
BR112012026842B1 (pt) 2020-10-27
US20130178359A1 (en) 2013-07-11
CO6620039A2 (es) 2013-02-15
CA2796737A1 (en) 2011-10-27
WO2011133409A1 (en) 2011-10-27
US20110257348A1 (en) 2011-10-20
US20140163190A1 (en) 2014-06-12
EP2560999A1 (en) 2013-02-27
HUE038102T2 (hu) 2018-09-28
KR101767702B1 (ko) 2017-08-11
ES2667857T3 (es) 2018-05-14
AU2011243015B2 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
CN102844341B (zh) 用于生产高Mz/Mw聚烯烃的催化剂组合物
CN101935366B (zh) 用于降低熔体指数和增加聚合物生产率的双茂金属催化剂体系
CN102348725B (zh) 生产含有高分子量峰尾的聚合物的催化剂和方法
CN104004116B (zh) 双活化剂‑载体催化剂系统
CN101910211B (zh) 纳米级连接的茂金属催化剂组合物及其聚合物产品
CN102958948B (zh) 用于在不添加氢的情况下产生宽分子量分布聚烯烃的催化剂
CN101184782B (zh) 用于烯烃聚合的催化剂
CN101910210B (zh) 纳米级连接的茂金属催化剂组合物及其聚合物产物
CN101928303B (zh) 纳米级连接的异核茂金属催化剂组合物及其聚合产物
CN101935367B (zh) 用于控制聚合反应器中聚合物分子量和氢水平的氢清除催化剂的应用
CN103848931A (zh) 用于产生宽分子量分布聚合物的具有三种茂金属的催化剂系统
CN101747462B (zh) 产生具有反共聚单体分布和低水平长链分支的较宽分子量分布聚合物的方法
CN102020729B (zh) 用于茂金属催化剂组合物的二氧化硅涂敷的氧化铝活化剂-载体
CN101346402B (zh) 用于烯烃聚合的催化剂
CN103154048B (zh) 催化剂系统和具有改进抗渗性的聚合物树脂
CN103819587A (zh) 用于生产宽分子量分布聚合物的金属茂和半夹心双催化剂系统
CN101910209A (zh) 纳米级连接的茂金属催化剂组合物及其聚合物产品
CN102617759A (zh) 单茂金属化合物和催化剂组合物
CN103732604B (zh) 包含具有大体积取代基的硅桥联茂金属的高活性催化剂组合物
CN101628243A (zh) 单茂金属催化剂组合物及其聚合产物
CN103140513A (zh) 具有可变换的氢和共聚单体效应的桥连茂金属催化剂体系
CN103119070A (zh) 新型催化剂系统和具有改进抗渗性的聚合物树脂
CN104781319A (zh) 低密度聚烯烃树脂以及从其制造的膜
CN103183700A (zh) 烯烃聚合的催化剂组合物
CN103159884A (zh) 氢和有机锌化合物用于聚合和聚合物性质控制的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant