Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationCN103126726 A
Type de publicationDemande
Numéro de demandeCN 201210031518
Date de publication5 juin 2013
Date de dépôt9 févr. 2012
Date de priorité25 nov. 2011
Autre référence de publicationCN103126726B
Numéro de publication201210031518.2, CN 103126726 A, CN 103126726A, CN 201210031518, CN-A-103126726, CN103126726 A, CN103126726A, CN201210031518, CN201210031518.2
Inventeurs毛爱华, 敬李
Déposant重庆海扶医疗科技股份有限公司
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes:  SIPO, Espacenet
Fat thickness measuring device
CN 103126726 A
Résumé
The invention provides a fat thickness measuring device which comprises an ultrasonic probe, a control unit, a display unit and a power supply unit, wherein the ultrasonic probe is used for emitting ultrasonic wave to an object to be measured, receiving ultrasonic echoes of the ultrasonic wave emitted by the ultrasonic probe at the same time, and outputting received ultrasonic echo signals; the control unit is used for controlling the ultrasonic probe to emit the ultrasonic wave, receiving the ultrasonic echo signals outputted by the ultrasonic probe, processing and calculating the ultrasonic echo signals, obtaining the fat thickness of the object to be measured through calculation, and then outputting fat thickness data; the display unit is used for receiving and displaying the fat thickness data outputted by the control unit; and the power supply unit is used for providing electric energy for the ultrasonic probe, the control unit and the display unit. The fat thickness measuring device is small in size, convenient to carry, easy to operate, visualized in numerical reading, and especially suitable for fat thickness monitoring utilization by an individual of families or fitness centers.
Revendications(10)  Langue du texte original : Chinois
1.一种脂肪厚度测量装置,其特征在于,包括: 超声探头,用于向被测对象发射超声波,同时接收其所发射超声波的超声回波,并将接收到的超声回波信号输出; 控制单元,用于控制超声探头发射超声波,接收超声探头输出的超声回波信号并对所述超声回波信号进行处理和计算,通过计算得到被测对象的脂肪厚度,再将该脂肪厚度数据输出; 显示单元,用于接收和显示控制单元输出的脂肪厚度数据; 电源单元,用于为超声探头、控制单元、以及显示单元提供电能。 A fat thickness measuring apparatus, characterized by comprising: an ultrasonic probe for transmitting ultrasonic waves to the object to be measured, they transmit ultrasonic waves simultaneously receiving ultrasonic echoes, and the received ultrasonic echo signal; Control unit for controlling the ultrasonic probe transmitting ultrasonic waves, the ultrasonic echo signal output receiving ultrasonic probe and the ultrasonic echo signal is processed and calculated, obtained by calculating the fat thickness measured object, and then the fat thickness data output; a display unit, and a display control unit for receiving the output of the fat thickness data; power supply unit for an ultrasonic probe, a control unit, and a display unit to provide electrical power.
2.根据权利要求1所述的脂肪厚度测量装置,其特征在于,所述控制单元包括: 发射单元,用于控制超声探头发射超声波; 超声回波处理单元,用于接收超声探头输出的超声回波信号并对所述超声回波信号进行处理,以得到皮肤下的脂肪层与该脂肪层下的皮下筋膜层之间的交界处的超声回波; 计算单元,用于根据得到的超声回波计算皮肤下脂肪层的厚度,再将计算得到的脂肪厚度数据输出至显示单元。 2. fat thickness measuring apparatus according to claim 1, characterized in that said control unit comprises: a transmitting unit, for controlling the ultrasonic probe transmitting ultrasonic waves; ultrasonic echo processing unit, for receiving the output of the ultrasound probe the ultrasound back wave signal and perform signal processing of the ultrasonic echo, in order to obtain ultrasonic echo junction layer of fat under the skin and subcutaneous fat layer under the fascia between; calculating unit for the ultrasonic return obtained Wave calculated thickness of subcutaneous fat layer, and then calculating the fat thickness obtained data is output to the display unit.
3.根据权利要求2所述的脂肪厚度测量装置,其特征在于,所述超声回波处理单元包括前期处理单元和后期处理单元, 前期处理单元,用于对所述超声探头输出的超声回波信号进行幅值放大和消除干扰处理,并将处理后的超声回波信号数字化后进行存储; 后期处理单元,用于提取前期处理单元中的超声回波信号并对所述超声回波信号进行识别,识别出超声探头接收到的皮肤下各个脂肪层与所述各脂肪层下的皮下筋膜层之间的交界处的一次反射回波,并滤除其他的多次反射回波,再将识别得到的一次反射回波信号输出至计算单元; 所述计算单元用于根据后期处理单元输出的一次反射回波信号,通过公式h =(T*V)/2计算被测对象的脂肪厚度,其中,h表示脂肪厚度,T表示时长,即指超声探头发射的超声波从进入皮肤开始直至接收到皮肤下最深处的脂肪层与该脂肪层下的皮下筋膜层之间的交界处的一次反射回波信号的时长,或者指超声探头接收到第N界面的一次反射回波与接收到第(N+1)界面的一次反射回波的时差,V表示超声波在人体中的传播速度,V作为一个固定值预设在计算单元中。 3. fat thickness measuring apparatus according to claim 2, characterized in that said ultrasonic echo processing unit comprises a pre-processing unit and a post-processing unit, a pre-processing unit for the output of the ultrasound probe ultrasound echoes amplifying the signal amplitude and interference elimination processing, and will be stored after processing the digitized ultrasonic echo signals; post-processing unit for extracting the pre-processing unit and the ultrasonic echo signal of the ultrasonic echo signal recognition identify the junction of the first echo ultrasound probe received various skin and subcutaneous fat layer of the fascia layer between each layer of fat under and filter out other multiple echoes, and then identify The resulting echo signals are output to a calculation unit; said calculating means in accordance with a reflection echo signal for post-processing unit outputs, = (T * V) / 2 calculated by the equation h measured object fat thickness, wherein , h represents fat thickness, T represents the junction of the subcutaneous fascia length, meaning the ultrasonic wave transmitted from the ultrasonic probe into the skin until it receives the start deepest fat under the skin and the fat layer under the layer between the first reflected back When the long-wave signal, or the received ultrasonic probe refers to N-th primary interface with the received echo of (N + 1) time difference of the interface reflection echo, V represents the ultrasonic propagation velocity in the human body, V as an fixed preset value calculation unit.
4.根据权利要求3所述的脂肪厚度测量装置,其特征在于所述预设于计算单元中的超声波在人体中的传播速度V = 1540m/s。 4. fat thickness measuring apparatus according to claim 3, wherein, wherein said preset in the computing unit of the ultrasonic propagation velocity in the body V = 1540m / s.
5.根据权利要求4所述的脂肪厚度测量装置,其特征在于,所述前期处理单元中包括有放大电路、滤波电路、检波电路、A/D转换电路和存储器,其中: 放大电路,用于接收超声探头中的超声回波信号,并对超声探头输出的超声回波信号进行放大,再将放大后的超声回波信号输出; 滤波电路,用于接收放大电路输出的超声回波信号,并滤除其中混杂的电磁干扰波以及高次谐波,再将滤波后的超声回波信号输出; 检波电路,用于接收滤波电路输出的超声回波信号,并对接收到的超声回波电路进行峰值包络检波处理,再将经峰值包络检波处理后的超声回波信号输出; A/D转换电路,用于将超声回波信号转换成数字化的超声回波信号,再将数字化的超声回波信号输出; 存储器,用于接收和存储A/D转换电路输出的数字化的超声回波信号。 The fat thickness measuring apparatus according to claim 4, wherein said pre-processing means comprises an amplifier circuit, filter circuit, a detector circuit, A / D conversion circuit and a memory, wherein: the amplification circuit for receiving ultrasonic probe in the ultrasonic echo signal, an ultrasonic probe and ultrasonic echo signals amplified output, thus outputting the ultrasonic echo signals amplified; filtering circuit for receiving the output of the amplifier circuit ultrasonic echo signals, and which was filtered off and the electromagnetic interference wave mixed higher harmonic ultrasonic echo signals and then filtered output; detection circuit, for receiving ultrasonic echo signals output from the filter circuit, and the received ultrasonic echo circuit peak envelope detection processing, and then the package by ultrasonic echo signal peak envelope detector outputs the processed; A / D conversion circuit for converting the ultrasonic echo signals into digitized ultrasonic echo signals, and then digitized ultrasonic return wave signal output; memory for receiving and storing A / D conversion circuit outputs the digitized ultrasonic echo signals.
6.根据权利要求5所述的脂肪厚度测量装置,其特征在于,所述后期处理单元中包括有补偿单元、小信号回波滤除单元、多次反射回波滤除单元和整波单元,所述补偿单元内预设有补偿因子,其中: 补偿单元,用于提取存储器中的数字化的超声回波信号,并将所提取的超声回波信号幅值加上补偿因子后得到补偿后的超声回波信号,再将补偿后的超声回波信号输出; 小信号回波滤除单元,用于接收补偿单元输出的经补偿后的超声回波信号,并滤除其中的小信号回波,再将滤除小信号回波后的超声回波信号输出; 多次反射回波滤除单元,用于接收小信号回波滤除单元输出的超声回波信号,并对滤除小信号回波后的超声回波信号进行分析,从中识别出超声探头接收到的皮肤下各个脂肪层与该脂肪层下的皮下筋膜层之间的交界处的一次反射回波,滤除其他的多次反射回波,再将滤除了多次反射回波后的一次反射回波信号输出; 整波单元,用于接收多次反射回波滤除单元输出的一次反射回波信号,并对其进行整波,再将整波后的一次反射回波信号输出至计算单元。 6. fat thickness measuring apparatus according to claim 5, characterized in that said post-processing unit includes compensation unit, the echo signals filtered small unit, multiple units and the whole was filtered echo wave unit, said compensating means is preset with a compensation factor, wherein: the ultrasonic compensation unit, a memory for extracting digitized ultrasonic echo signals, and the extracted amplitude ultrasonic echo signals obtained after adding the compensation factor compensated echo signal, thus outputting the ultrasonic echo signals after compensation; small signal filtered echo unit, the output of the compensation unit for receiving the compensated by the ultrasound echo signals, and wherein the small signal filtered echo, then multiple echo filtered off unit for receiving the small-signal output unit filtered echo ultrasonic echo signals, and filter out the small signal after echo; ultrasonic echo signal output will ignore small echo signal after The ultrasonic echo signal is analyzed to identify if the junction of the first echo received by the ultrasonic probe under the skin of each of the subcutaneous fat layer and the fascia under the fat layer between the other of the multiple reflections filtered back wave, then filtered off and a reflection echo signal output after the multiple echo; waveshaping means, for receiving the multiple reflection echo cell output a filtered echo signal, and its whole wave, Then a whole wave reflection echo signal output to the calculation unit after.
7.根据权利要求6所述的脂肪厚度测量装置,其特征在于,所述补偿因子=补偿系数*超声波频率,所述补偿系数设定为0.81dB/cm.ΜΗζ,超声波频率指超声探头所发射的超声波频率,该超声波频率的取值范围为1.5MHz〜15MHz。 7. A fat thickness measuring apparatus according to claim 6, characterized in that said compensation factor = * ultrasonic frequency compensation coefficient, the compensation coefficient is set to 0.81dB / cm.ΜΗζ, ultrasonic frequency of the emitted ultrasonic probe means ultrasonic frequency, ultrasonic frequency ranges for 1.5MHz~15MHz.
8.根据权利要求1-7之一所述的脂肪厚度测量装置,其特征在于,该装置中还包括有接口单元,所述接口单元用于将控制单元计算得到的脂肪厚度数据送到外部设备上进行显示或将超声探头接收到的超声回波信号送到外部设备上继续进行处理,或者用于对电源单元进行充电。 8. A fat thickness measuring apparatus according to one of claims 1-7, characterized in that the apparatus further comprises an interface unit, said interface unit is adapted to calculate the fat thickness data obtained by the control unit to an external device on the display or the ultrasound probe receives the ultrasonic echo signal to continue the processing on the external device, or the power supply unit for charging.
9.根据权利要求1-7之一所述的脂肪厚度测量装置,其特征在于,所述控制单元采用DSP芯片或MCU芯片或ARM芯片。 9. A fat thickness measuring apparatus according to one of claims 1-7, characterized in that the control unit uses DSP chip or chip or ARM MCU chip.
10.根据权利要求1-7之一所述的脂肪厚度测量装置,其特征在于,所述超声探头为A型超声诊断装置中的超声探头,该超声探头采用收发分离式超声探头。 10. A fat thickness measuring apparatus according to one of claims 1-7, wherein said ultrasonic probe for A-type ultrasonic diagnostic apparatus in the ultrasonic probe, the ultrasonic probe is made of separate receiving ultrasonic probe.
Description  Langue du texte original : Chinois

一种脂肪厚度测量装置 One fat thickness measuring device

技术领域 FIELD

[0001] 本发明属于超声波应用技术领域,具体涉及一种脂肪厚度测量装置。 [0001] The present invention belongs to the technical field of ultrasonic application, in particular to a fat thickness measuring apparatus.

背景技术 BACKGROUND

[0002] 随着社会经济的发展以及人们生活方式的改变,人们生活水平得到了极大的改善,然而这也使得肥胖现象越来越普遍,肥胖及其所引发的健康问题已成为人们所关注的执占。 [0002] With the changing social and economic development and people's way of life, people's living standard has been greatly improved, but it also makes the increasingly common phenomenon of obesity, obesity and health problems caused by concern has become execution of accounting.

[0003] 人体中脂肪的百分含量是衡量健康状况的重要标志,研究表明,大多数个体的体重指数(Body Mass Index:简称BMI)与身体脂肪的百分含量之间具有明显的相关性,因此目前一些体检机构常用体重指数来衡量机体的肥胖程度。 [0003] The percentage of body fat is an important indicator to measure the health status, research shows that most individuals BMI (Body Mass Index: short BMI) has a significant correlation between the percentage of body fat, So now some medical institutions used to measure the degree of obesity BMI body. 但是,肥胖的原因与多种因素息息相关,体重指数并不能全面地反应肥胖的具体状况,也无法确定身体脂肪主要分布于身体的哪个部位,身体某个部位的脂肪厚度具体是多少。 However, the causes of obesity is closely related to many factors, body mass index and obesity can not fully reflect the specific situation, can not determine which body fat is mainly distributed in the part of the body, the body fat thickness of a portion of the concrete is.

[0004] 经临床实践证明,皮下脂肪是人体脂肪的主要组成部分,皮下脂肪层大约储存了人体脂肪总量的2/3。 [0004] The clinical practice has proved that subcutaneous fat is a major component of body fat, subcutaneous fat layer of body fat stores about two-thirds of the total. 因此,测量皮下脂肪厚度成为估计体内总脂肪状况的有效指数,此外,对特定部位皮下脂肪厚度进行测定还可为相应塑身减肥方法提供参考依据。 Therefore, the measurement of subcutaneous fat thickness is estimated to become effective index of total body fat status, in addition to specific parts of the subcutaneous fat thickness measurement can provide a reference for the corresponding body sculpting weight loss. 目前,测量皮下脂肪厚度常用方法包括皮脂计(也叫指捏法)和卡尺法,然而这两种方法都有一定的局限性,而且都不能直观反映皮下脂肪厚度。 Currently, subcutaneous fat thickness measurement commonly used methods include Sebumeter (also called finger pinch method) and the caliper method, however, both methods have some limitations, but can not directly reflect the thickness of subcutaneous fat.

[0005] 近年来随着医学技术的发展,在国内外已有应用超声法、CT (ComputedTomography:电子计算机X射线断层扫描技术)法、MRI (Magnetic Resonance Imaging:磁共振成像)法等测量皮下脂肪厚度。 [0005] In recent years, with the development of medical technology at home and abroad have been using ultrasonic method, CT (ComputedTomography: X-ray computer tomography) method, MRI (Magnetic Resonance Imaging: Magnetic Resonance Imaging) method to measure subcutaneous fat thickness. 目前认为,CT法和MRI法是测量脂肪分布和含量准确性和可重复性最好的方法,但因成本较高和操作不便等原因不利于推行。 Currently considered, CT and MRI method method is to measure fat distribution and content accuracy and repeatability of the best ways, but the high cost and inconvenience of operational reasons such as not conducive to the implementation.

[0006] 超声法主要是利用超声波穿过人体中各种组织声学特性的差异(如声阻抗不同),会在两种不同声阻抗的界面处产生反射、折射和散射的性质,通过检测不同器官和组织产生不同的反射、折射和散射规律的信号,显示出脏器的界面和组织内部的细微结构,以此作为诊断和测量的依据。 [0006] The ultrasound method is the use of ultrasonic waves through the differences in the acoustic properties of various tissues in the human body (such as acoustic impedance different), will produce the reflection at the interface between two different acoustic impedance, refraction and scattering properties, by detecting the different organs and organizations have different reflection, refraction and scattering law signals, showing the fine structure of the interface and the internal organs of the organization as a basis for diagnosis and measurement. 目前,国内外应用超声法测量皮下脂肪厚度基本都是采用B超诊断装置,但在实际临床应用中,B超诊断装置基本上都是专用于疾病诊断,测量脂肪厚度只是其附带的一个测量项目;而且,B超诊断装置一般只在医疗机构才有,其体积庞大、价格昂贵,而且需要具备相关医学知识的特定人员才能使用并进行准确地测量,目前市面上还没有适合家庭监控脂肪厚度或健身房个人随时观察脂肪厚度,以便随时检验运动和节食效果的小型的、便携式脂肪厚度测量装置。 Currently, domestic and ultrasound measurement of the thickness of subcutaneous fat are basically using the B-diagnostic apparatus, but in actual clinical application, B ultrasound diagnostic device is basically dedicated to the diagnosis, measuring fat thickness is only a measure of its incidental items ; moreover, B-diagnostic devices generally have in medical institutions, its bulky, expensive, and requires specific knowledge of relevant medical personnel to use and accurate measurement, the current market has not yet suitable for home monitoring fat thickness or personal gym fat thickness observed at any time, so feel free to test the effect of exercise and diet of small, portable fat thickness measuring device.

发明内容 SUMMARY

[0007] 本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种体积小、便于携带的脂肪厚度测量装置,该脂肪厚度测量装置尤其适合家庭监控脂肪厚度或健身房个人随时观察脂肪厚度时使用。 Technical problems [0007] The present invention is directed to solve the above problems in the prior art to provide a small, easy to carry fat thickness measuring device, which is fat thickness measuring device is particularly suitable for home or gym personal monitor fat thickness at any time Use fat thickness observed.

[0008] 现有市面上还没有专用于进行脂肪厚度测量的测量装置,目前,脂肪厚度的测量一般是在采用B型超声诊断装置进行疾病诊断的同时,附带地测量皮下脂肪厚度。 [0008] existing on the market are not designed to carry out the measurement of fat thickness measuring apparatus, the current measuring fat thickness is generally in a B-type ultrasonic diagnostic apparatus to diagnose disease while incidentally measure subcutaneous fat thickness.

[0009] 按医学超声设备体系分类,现有的超声诊断设备主要包括A型超声诊断装置和B型超声诊断装置。 [0009] classification system according to medical ultrasound equipment, the existing ultrasound diagnostic equipment including A-type and B-type ultrasonic diagnostic apparatus ultrasound diagnostic devices. 在形成机理上,B型超声诊断装置采用灰度调制成像方式,当其中的超声探头发射超声波之后,返回一个二维切面断层图像,因此能直观地看到每一层面的图像,并进行直观测量,应用范围较广,但由于该探头返回的是二维图像,因而数据量也大,很难制成便携式设备;由于A型超声诊断装置采用幅度调制成像方式,当其中的超声探头发射超声波之后,返回的是一个一维超声回波信号,由于该回波信号只能反映局部组织的信息,不能获得在临床诊断上需要的解剖图形,且操作者的识图经验对诊断的准确性影响很大,因此其应用价值已渐渐低落,目前国内外都很少再生产和使用A型超声诊断装置。 On the formation mechanism, B-type ultrasonic diagnostic apparatus modulation grayscale imaging modalities, after which the ultrasonic probe ultrasonic transmitter, returns a two-dimensional slices surface tomographic images, so can visually see every aspect of the image, and visual measurements wider range of applications, but due to the probe returns a two-dimensional image, and thus the amount of data is large, it is difficult into portable devices; the A-type ultrasonic diagnostic imaging device uses amplitude modulation mode, when one of the ultrasound probe ultrasound after launch , returns a one-dimensional ultrasound echo signals, due to the echo signal can only reflect the information of local organizations, can not be obtained in the clinical diagnosis of anatomical graphics needs, and the accuracy of the impact of the operator's knowledge map is very experienced in the diagnosis large, so its value has gradually depressed, at home and abroad are rarely reproduction and use of A-type ultrasonic diagnostic apparatus.

[0010] 然而,本发明人发现,虽然在A型超声诊断装置中的超声探头所接收的超声回波信号无法获得临床诊断所需要的解剖图形,但该超声回波携带有人体组织结构的原始信号,含有丰富的信息源,排除操作者具有识图差异的因素,其所接收的超声回波信号能真实、准确地反映人体组织结构特性,通过获取此超声回波并对之进行分析处理,就能够测量得到个体的皮下脂肪厚度;并且,A型超声诊断装置中超声探头获得的超声回波虽然没有B型超声诊断装置中超声探头返回的二维超声断层图像那么直观,但是由于其返回的是一个一维信号,因此数据量小,较易于制成便携式设备。 [0010] However, the present inventors have found that, although the ultrasonic echo signals in the A-type ultrasonic diagnostic apparatus of the received ultrasonic probe can not be obtained the desired anatomical diagnosis graphics, but carries the ultrasonic echo of the original tissue structure signal, containing a wealth of information sources, excluding operator has knowledge map differences in factors, ultrasound echo signals it receives a true and accurate reflection of the structural characteristics of human tissue, and the ultrasonic echo through to get this analysis and processing, it is possible to measure the thickness of subcutaneous fat to obtain an individual; and the ultrasound echo A-type ultrasonic diagnostic apparatus of the ultrasonic probe obtained in the two-dimensional ultrasonic tomographic image, although there is no B-mode ultrasound diagnostic apparatus returned ultrasonic probe so intuitive, but because of its return is a one-dimensional signal, so a small amount of data, the portable device is easier to be made.

[0011]同时,从人体解剖学角度来看,人体中包括遍布全身的浅筋膜和深筋膜。 [0011] Also, from the perspective of human anatomy, including the human body over the body of the superficial fascia and deep fascia. 其中,浅筋膜又称皮下筋膜,位于皮下,由疏松结缔组织构成,大多含有脂肪;深筋膜又称固有筋膜,位于浅筋膜以下,由致密结缔组织构成,用于包覆体壁、四肢的组织以及血管、神经等。 Among them, the superficial fascia, also known as subcutaneous fascia, located in the skin, composed of loose connective tissue, mostly containing fat; also known as fascia propria deep fascia, located below the superficial fascia, composed of dense connective tissue, for covering the body wall, limbs, and vascular tissue, nerves and other. 而人体的脂肪组织包括皮下脂肪和体内层状分布的脂肪。 The body's fat tissue including subcutaneous fat and body fat distribution layer. 其中,皮下脂肪是指贮存于皮下的脂肪组织,位于皮肤层(即真皮层)以下,深筋膜层以上;体内脂肪主要是指贮存于腹腔的内脏脂肪组织和存在于骨髓中的黄色脂肪组织。 Wherein, subcutaneous fat stored in adipose tissue refers to subcutaneous, located at the skin layer (i.e., dermis) below, the deep fascia over; primarily refers to the storage of body fat in the abdominal cavity and the visceral adipose tissue in the bone marrow yellow adipose tissue . 由于人体中的脂肪约有2/3均为皮下脂肪,而分布于人体内脏中的脂肪难以进行测量,因此目前脂肪厚度的测量主要是针对皮下脂肪进行的。 Because the human body is about two-thirds of both subcutaneous adipose fat, and distributed in human visceral fat is difficult to measure, so now fat thickness measurement is mainly carried out for the subcutaneous fat. 当超声波穿过人体时,皮下脂肪遇超声波会产生低强度回声,该低强度回声为分散的点状回声;当超声波到达皮下筋膜包覆脂肪的部位(即脂肪层与筋膜层的交界处)时,由于筋膜遇超声波后反射产生的超声回波为幅值较强的高强度回声,因此利用超声探头对该高强度的超声回波进行接收,并通过对所接收到的超声回波的强度进行分析,从而可以识别出皮下不同深度的脂肪层与该脂肪层相邻的皮下筋膜层交界处的超声回波,并依据接收到该超声回波的时间,可得到超声波从进入皮肤到穿过某脂肪层所用的时长,由于超声波在人体组织内的传播速度是公知的,通过计算距离值,最后可得到此脂肪层的厚度。 When the ultrasound passing through the body, in case of subcutaneous fat produces a low intensity ultrasonic wave echo, the echo of the low intensity scattered point-like echo; subcutaneous fascia when the ultrasonic wave reaches the fat coated portion (i.e., the junction of the fat layer and the fascia layer time), after ultrasonic echoes due to reflection of the ultrasonic fascia case for high strength stronger echo amplitude, so the use of high intensity ultrasound probe of the ultrasonic echo received by the received ultrasound echoes The strength of the analysis, which can identify the different depths of subcutaneous fat layer and the fat layer adjacent ultrasonic echo subcutaneous fascia junction, and upon receipt of the ultrasonic echo time, get into the skin from the ultrasound to a fat layer across the length of time used, due to the ultrasonic wave propagation velocity in the body tissue is known, by calculating the distance value, the final thickness of the fat layer can be obtained.

[0012] 解决本发明技术问题所采用的技术方案是该脂肪厚度测量装置包括: [0012] Solution to Problem The present invention is used in the fat thickness measuring apparatus comprising:

[0013] 超声探头,用于向被测对象发射超声波,同时接收其所发射超声波的超声回波,并将接收到的超声回波信号输出; [0013] The ultrasonic probe for transmitting ultrasonic waves to the object to be measured, they transmit ultrasonic waves simultaneously receiving ultrasonic echoes, and the received ultrasonic echo signal;

[0014] 控制单元,用于控制超声探头发射超声波,接收超声探头输出的超声回波信号并对所述超声回波信号进行处理和计算,通过计算得到被测对象的脂肪厚度,再将该脂肪厚度数据输出; [0014] a control unit for controlling the ultrasonic probe transmitting ultrasonic waves, the received ultrasonic echo signal output from the ultrasonic probe and the ultrasonic echo signal is processed and calculated, obtained by calculating the fat thickness measured object, and then the fat thickness data output;

[0015] 显示单元,用于接收和显示控制单元输出的脂肪厚度数据; [0015] the display unit, and a display control unit for receiving output data of the fat thickness;

[0016] 电源单元,用于为超声探头、控制单元、以及显示单元提供电能。 [0016] The power supply unit, an ultrasonic probe is used, the control unit, and a display unit to provide electrical power.

[0017] 优选的是,所述控制单元包括:[0018] 发射单元,用于控制超声探头发射超声波; [0017] Preferably, the control unit comprises: [0018] transmitting unit for controlling the ultrasonic probe transmitting ultrasonic waves;

[0019] 超声回波处理单元,用于接收超声探头输出的超声回波信号并对所述超声回波信号进行处理,以得到皮肤下的脂肪层与该脂肪层下的皮下筋膜层之间的交界处的超声回波; [0019] ultrasonic echo processing unit, between the subcutaneous fat layer and the fascia fat layer under the skin under ultrasound probe for receiving the ultrasonic echo signals and the output of the ultrasonic echo signal is processed to obtain ultrasonic echo junction;

[0020] 计算单元,用于根据得到的超声回波计算皮肤下脂肪层的厚度,再将计算得到的脂肪厚度数据输出至显示单元。 [0020] calculation unit for thickness calculation ultrasound echoes obtained under the fat layer of the skin, and then calculating the fat thickness obtained data is output to the display unit.

[0021] 优选的是,所述超声回波处理单元包括前期处理单元和后期处理单元,其中: [0021] Preferably, the ultrasound echo processing unit comprises a pre-processing unit and a post-processing unit, wherein:

[0022] 前期处理单元,用于对所述超声探头输出的超声回波信号进行幅值放大和消除干扰处理,并将处理后的超声回波信号数字化后进行存储; [0022] The pre-processing unit for the ultrasonic echo signal outputted from the ultrasound probe to eliminate interference amplitude amplification and treatment, and will be stored after processing the digitized ultrasonic echo signals;

[0023] 后期处理单元,用于提取前期处理单元中的超声回波信号并对所述超声回波信号进行识别,识别出超声探头接收到的皮肤下各个脂肪层与所述各脂肪层下的皮下筋膜层之间的交界处的一次反射回波,并滤除其他的多次反射回波,再将识别得到的一次反射回波信号输出至计算单元; [0023] post-processing unit for extracting the pre-processing unit and the ultrasonic echo signal of the ultrasonic echo signal recognition, identified under the ultrasonic probe under the skin of the individual receiving the fat layer and the fat layer of the respective a reflection echo at the junction between the subcutaneous fascia, and filter out other multiple echoes, and then identify a reflection echo signal output to the calculation unit obtained;

[0024] 所述计算单元用于根据后期处理单元输出的一次反射回波信号,通过公式h =(T*V)/2计算被测对象的脂肪厚度,其中,h表示脂肪厚度,T表示时长,即指超声探头发射的超声波从进入皮肤开始直至接收到皮肤下最深处的脂肪层与该脂肪层下的皮下筋膜层之间的交界处的一次反射回波信号的时长,或者指超声探头接收到第N界面的一次反射回波与接收到第(N+1)界面的一次反射回波的时差,V表示超声波在人体中的传播速度,V作为一个固定值预设在计算单元中。 [0024] According to the calculation means for a reflection echo signal output from the post-processing unit, by the equation h = (T * V) / 2 calculating fat thickness measured object, wherein, h represents fat thickness, T represents the time length , meaning that the ultrasonic wave transmitted ultrasonic probe into the skin until it receives the start time duration of the reflected echo signal at the junction of the fat under the skin layer and the innermost layer of the subcutaneous fat layer under the fascia between, or from the ultrasound probe means receiving the N-th primary interface with the received echo of (N + 1) primary interface echo time difference, V represents an ultrasonic propagation velocity in the human body, V preset as a fixed value in the computing unit.

[0025] 其中,所述预设于计算单元中的超声波在人体中的传播速度V = 1540m/so [0025] wherein, in the pre-calculation unit of the ultrasonic propagation velocity in the body V = 1540m / so

[0026] 进一步优选的是,所述前期处理单元中包括有放大电路、滤波电路、检波电路、A/D转换电路和存储器,其中: [0026] It is further preferred that the pre-processing unit comprises an amplifier circuit, filter circuit, a detector circuit, A / D conversion circuit and a memory, wherein:

[0027] 放大电路,用于接收超声探头中的超声回波信号,并对超声探头输出的超声回波信号进行放大,再将放大后的超声回波信号输出; [0027] amplification circuit for receiving the ultrasonic probe in the ultrasonic echo signal, an ultrasonic probe and ultrasonic echo signals amplified output, thus outputting the ultrasonic echo signals amplified;

[0028] 滤波电路,用于接收放大电路输出的超声回波信号,并滤除其中混杂的电磁干扰波以及高次谐波,再将滤波后的超声回波信号输出; [0028] The filter circuit for receiving the output of the amplifier circuit ultrasonic echo signals, and wherein the electromagnetic interference wave mixed filtered and higher harmonics, the output of the ultrasonic echo signal then filtered;

[0029] 检波电路,用于接收滤波电路输出的超声回波信号,并对接收到的超声回波电路进行峰值包络检波处理,再将经峰值包络检波处理后的超声回波信号输出; [0029] The detector circuit for receiving the output of the filter circuit ultrasonic echo signals, and the received ultrasonic echo circuit peak envelope detection processing, and then after the peak packet outputs the ultrasonic echo signal envelope detection processing;

[0030] A/D转换电路,用于将超声回波信号转换成数字化的超声回波信号,再将数字化的超声回波信号输出; [0030] A / D conversion circuit for converting the ultrasonic echo signals into digitized ultrasonic echo signals, and then digitized ultrasonic echo signal;

[0031] 存储器,用于接收和存储A/D转换电路输出的数字化的超声回波信号。 [0031] memory for receiving and storing the A / D conversion circuit outputs the digitized ultrasonic echo signals.

[0032] 进一步优选的是,所述后期处理单元中包括有补偿单元、小信号回波滤除单元、多次反射回波滤除单元和整波单元,所述补偿单元内预设有补偿因子,其中: [0032] It is further preferred that the post-processing unit comprises a compensation unit, the echo signals filtered small unit, multiple echo waveform shaping unit and the unit was filtered off, the compensation factor is preset within the compensation unit , among them:

[0033] 补偿单元,用于提取存储器中的数字化的超声回波信号,并将所提取的超声回波信号幅值加上补偿因子后得到补偿后的超声回波信号,再将补偿后的超声回波信号输出; [0033] compensation unit, a memory for extracting the digitized ultrasonic echo signals, and the extracted amplitude of the ultrasonic echo signal obtained after adding a compensation factor ultrasonic echo signals after compensation, then the compensated ultrasound echo signal output;

[0034]小信号回波滤除单元,用于接收补偿单元输出的经补偿后的超声回波信号,并滤除其中的小信号回波,再将滤除小信号回波后的超声回波信号输出; [0034] Small signal echo filtered unit compensated for receiving compensation unit output after the ultrasonic echo signal and filter out which small signal echo, and then filter out the small signal echo ultrasonic echo after signal output;

[0035]多次反射回波滤除单元,用于接收小信号回波滤除单元输出的超声回波信号,并对滤除小信号回波后的超声回波信号进行分析,从中识别出超声探头接收到的皮肤下各个脂肪层与该脂肪层下的皮下筋膜层之间的交界处的一次反射回波,滤除其他的多次反射回波,再将滤除了多次反射回波后的一次反射回波信号输出; [0035] The multiple reflection echoes filtered off unit for receiving the small-signal output unit filtered echo ultrasonic echo signals, and to analyze the ultrasonic echo signal after echo filter out the small signal, are identified by ultrasound After the probe under the skin once received echo each junction and the subcutaneous fat layer fascia under the fat layer between multiple echo filter out other, and then filter out multiple echo primary reflection echo signal output;

[0036] 整波单元,用于接收多次反射回波滤除单元输出的一次反射回波信号,并对其进行整波,再将整波后的一次反射回波信号输出至计算单元。 [0036] waveshaping means, for receiving the multiple reflection echo cell output a filtered echo signal, and its whole wave, and then a whole-wave reflection echo signal output to the calculation unit after.

[0037] 其中,所述补偿因子=补偿系数*超声波频率,所述补偿系数设定为0.SldB/cm.MHz,超声波频率指超声探头所发射的超声波频率,该超声波频率的取值范围为 [0037] wherein the compensation factor = compensation coefficient * ultrasonic frequency, the compensation factor is set to 0.SldB / cm.MHz, refers to the ultrasonic frequency ultrasonic frequency emitted by the ultrasound probe, the range of the ultrasonic frequency of

1.5MHz 〜15MHzο 1.5MHz ~15MHzο

[0038] 优选的是,该装置中还包括有接口单元,所述接口单元用于将控制单元计算得到的脂肪厚度数据送到外部设备上进行显示或将超声探头接收到的超声回波信号送到外部设备上继续进行处理,或者用于对电源单元进行充电。 [0038] Preferably, the apparatus further comprises an interface unit, said interface unit is adapted to calculate the fat thickness data obtained by the control unit to an external display device or an ultrasound probe of the received ultrasonic echo signal is sent to an external device to continue processing, or for the power supply unit is charged.

[0039] 优选的是,所述控制单元采用DSP芯片或MCU芯片或ARM芯片。 [0039] Preferably, the control unit MCU with DSP chip or chips or ARM chips.

[0040] 优选超声探头为A型超声诊断装置中的超声探头,该超声探头采用收发分离式超声探头。 [0040] A preferred ultrasound probe for ultrasound diagnostic device ultrasound probe, the ultrasound probe is separate transceiver uses an ultrasound probe.

[0041 ] 本发明的有益效果是:本发明脂肪厚度测量装置不仅可以测量皮下整个脂肪层的厚度,同时也可以根据需要查看皮下脂肪的分布情况,以及测出各个脂肪层的厚度。 [0041] The beneficial effects of the present invention are: fat thickness measuring apparatus of the present invention not only can measure the thickness of subcutaneous fat layer of the whole, but may also need to view the subcutaneous fat distribution, and measure the thickness of the individual layers of fat. 该脂肪厚度测量装置体积小、便于携带,且操作简单、读数直观、尤其适合家庭监控脂肪厚度或健身房个人使用,以便于随时观察自身的脂肪厚度,随时检验运动和节食的效果,为人们保持健康体型提供必要的参考,从而可有效减少“肥胖病”的发生。 The fat thickness measuring device is small, portable and easy to operate, intuitive readings, especially for home monitoring fat thickness or the gym for personal use, in order to observe its own fat thickness at any time, at any time to examine the effect of exercise and diet for people to stay healthy Body to provide the necessary reference, which can effectively reduce the "obesity" occurred.

附图说明 Brief Description

[0042] 图1为本发明一个实施例脂肪厚度测量装置的结构框图; [0042] Figure 1 is a block diagram of the structure of the invention the fat thickness measuring apparatus according to an embodiment;

[0043] 图2为图1中超声回波处理单元的结构框图; [0043] Figure 2 is a block diagram of the ultrasonic echo processing unit of Figure 1;

[0044] 图3为经放大电路放大后的超声回波信号的波形图; [0044] FIG. 3 is a waveform diagram of the circuit by amplifying the amplified ultrasonic echo signals;

[0045] 图4为经检波电路检波后得到的超声回波信号的波形图; [0045] Figure 4 is obtained after detecting circuit of the ultrasonic echo signal waveform diagram;

[0046] 图5为经整波单元处理后的超声回波信号的波形图; [0046] FIG. 5 is a waveform shaping unit after processing a waveform diagram of ultrasonic echo signals;

[0047] 图6为超声探头的结构示意图。 [0047] FIG. 6 is a schematic structural view of the ultrasonic probe.

[0048] 图中:1_声接收层;2_超声晶片;3_声匹配层;4_发射晶片;5_绝缘层;6_接收晶片。 [0048] Figure: 1_ sound-receiving layer; 2_ ultrasound wafers; 3_ acoustic matching layer; 4_ launch wafers; 5_ insulating layer; 6_ receive wafers.

具体实施方式 DETAILED DESCRIPTION

[0049] 为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明脂肪厚度测量装置作进一步详细描述。 [0049] In order that those skilled in the art better understand the technical solution of the invention, the accompanying drawings and the following specific embodiments fat thickness measuring apparatus of the present invention is described in further detail.

[0050] 在利用超声波测量人体浅表层的软组织时,根据筋膜的分布可将皮肤以下、深筋膜层以上的人体浅表组织分为多层,其中,皮肤层以下的脂肪层与皮下筋膜层交替分布,设定紧接皮肤的第一脂肪层与第一脂肪层以下紧接第一脂肪层的第一筋膜层之间的界面为第一界面,第一筋膜层以下的第二脂肪层与第二脂肪层以下紧接第二脂肪层的第二筋膜层之间的界面为第二界面,依此类推可能还存在第二筋膜层以下的第三脂肪层与第三脂肪层以下紧接第三脂肪层的第三筋膜层之间的第三界面以及更多的界面。 [0050] in the use of ultrasonic measuring shallow body of soft tissue, according to the distribution of the fascia below the skin can be deep fascial layer above the human superficial tissue into multiple layers, wherein the skin layer and subcutaneous fat layer below the ribs film layer are alternately arranged, a first set of skin immediately fat layer and the first fat layer immediately below the interface of the first layer of the first fascia fat layers between the first interface, the first layer below the first fascia Two fat layer and the interface between the second fascia immediately second fatty layer of the second layer of fat is below a second interface, and so on may also exist a second fascia below the third fat layer and the third a third fat layer immediately below the third interface a third fat layer between the fascia and more interface. 其中,上述第一筋膜层、第二筋膜层、第三筋膜层等多个皮下筋膜层均为厚度很薄的浅筋膜。 Multiple subcutaneous wherein the first fascia, fascia second, third, etc. fascia fascia thickness are thin superficial fascia. [0051] 基于超声波遇到脂肪层与该脂肪层下的皮下筋膜层之间的交界面会产生较强的超声回波的特性,本发明脂肪厚度测量装置将所述交界面所产生的超声回波信号加以接收、放大和处理,并通过对所接收的超声回波的分布特征进行分析,从而可以分别识别出第一界面、第二界面、第三界面以及更多界面处的超声回波,通过分析能够得到第一界面(或 [0051] encounters an interface based on ultrasonic subcutaneous fat layer and the fascial layer of fat between the under layer will have a strong characteristic of the ultrasonic echo, fat thickness measuring device of the present invention will be generated by the ultrasonic interface pay echo signal to be received, amplified and processed, and through the distribution characteristics of the received ultrasonic echo analyzed to identify the first interface may be respectively, a second ultrasonic echo interface, a third interface and more at the interface , can be obtained by analyzing the first interface (or

第二界面、第三界面等)处的一次反射回波、二次反射回波......,再通过识别出皮肤下最 A second echo interface, a third interface, etc.) at the secondary echo ......, and then by identifying the most under the skin

深处的脂肪层与该脂肪层下的皮下筋膜层之间的交界处的一次反射回波的波形,并获知接收该超声回波的时间,从而可获得人体皮下脂肪层的总厚度;更细化的,由于皮肤层以下的脂肪层与皮下筋膜层之间的交界面具有多个,通过识别出某一交界面(比如第一界面)的一次超声回波的波形,并获知接收到该波形的时间,就可以计算得到第一脂肪层的厚度。 First echo waveform junction depths of subcutaneous fat layer and the layer of fat under the fascia between, and to be informed of time to receive the ultrasonic echo, allowing for a total thickness of the body subcutaneous fat layer; more refinement, since the interface layer below the skin and subcutaneous fat layer between the fascia layer having a plurality of, by identifying a particular interface (such as the first interface) is a waveform of the ultrasonic echo, and to be informed is received time of the waveform, can be calculated thickness of the first fat layer. 同理,可以得到第二脂肪层、第三脂肪层的厚度。 Similarly, a second layer of fat can be obtained, the thickness of the third fat layers.

[0052] 如图1所示,本实施例中,该脂肪厚度测量装置包括超声探头、控制单元、显示单元以及电源单元。 Shown in [0052] Figure 1, in this embodiment, the fat thickness measuring apparatus comprises an ultrasonic probe, a control unit, a display unit and a power supply unit.

[0053] 其中,超声探头用于向被测对象发射超声波,同时接收其所发射超声波的超声回波,并将接收到的超声回波信号输出;控制单元用于控制超声探头发射超声波,接收超声探头输出的超声回波并对所述超声回波信号进行处理和计算,通过计算得到被测对象的脂肪厚度,再将该脂肪厚度数据输出;显示单元用于接收和显示控制单元输出的脂肪厚度数据;电源单元用于为超声探头、控制单元以及显示单元提供电能。 [0053] wherein the ultrasonic probe for transmitting ultrasonic waves to a measured object, while they receive ultrasonic echo ultrasonic waves and received ultrasonic echo signal; a control unit for controlling the ultrasonic probe transmitting ultrasonic waves, receiving ultrasonic ultrasonic echo probe and the ultrasonic echo signal output is processed and calculated, obtained by calculating the fat thickness measured object, and then the fat thickness data output; the display control unit outputs the fat thickness unit for receiving and displaying data; power supply unit for an ultrasonic probe, a control unit and a display unit to provide electrical power.

[0054] 超声探头是整个装置的信号部件,在进行脂肪厚度测量时超声探头与人体直接接触。 [0054] The ultrasonic probe is a signal component of the entire apparatus, the ultrasonic probe is in direct contact with the human body during fat thickness measurement. 根据超声波发射与接收是否为同一个探头,可将超声探头分为收发一体式超声探头和收发分离式超声探头。 Whether the ultrasonic transmitter and receiver for the same probe, the ultrasound probe into transceiver ultrasonic probe and transceiver separate ultrasound probe. 在本实施例中,超声探头采用收发分离式超声探头,其包括发射探头和接收探头,发射探头通过发射接口与控制单元中的发射单元连接,由发射单元驱动后触发而产生机械振动发射超声波;接收探头通过接收接口与控制单元中的超声回波处理单元连接,将进入人体后遇组织或脏器后反射回来的超声回波送入超声回波处理单元进行处理。 In the present embodiment, the ultrasonic probe is made of separate receiving ultrasonic probe, which comprises a transmitting probe and receiving probe, the transmitting probe connected with the control unit through a transmission interface of the transmission unit, after the drive is triggered by the transmitting unit generating mechanical vibration transmitting ultrasonic waves; receiving probe connected via interface and control unit receiving ultrasonic echo processing unit, into the human body after the case of the tissue or organ into the ultrasonic echoes reflected ultrasonic echo processing unit for processing. 采用收发分离式超声探头具有如下优势:其一,电路简单、高效。 Using separate transceiver ultrasonic probe has the following advantages: First, the circuit is simple and efficient. 本实施例中,发射单元驱动发射探头所发射的激励信号为高压脉冲,而与接收探头电连接的超声回波处理单元中采用的器件均为低压元器件,若采用收发一体式超声探头,为保证电路的安全,必须在控制单元中超声回波处理单元前增加隔离电路,以防止发射单元中的高电压串入超声回波处理单元中而烧毁低压元器件或干扰超声回波接收,从而会导致控制单元中的电路变得复杂;其二,发射和接收灵敏度高。 In this embodiment, the drive excitation signal transmitting unit for transmitting the transmitted probe high voltage pulse, and the ultrasound echo processing unit electrically connected with the receiving probe devices are used in low-voltage components, the use of a transceiver-type ultrasound probe, for ensure the safety of the circuit, the control unit must be in front of ultrasonic echo processing unit to increase the isolation circuit to prevent high voltage transmission unit in the string into the ultrasonic echo processing unit and burn low-voltage components or interfere with the reception of ultrasonic echoes, which will causes control circuitry in the unit becomes complicated; high Second, transmission and reception sensitivity. 收发一体式超声探头集发射功能和接收功能为一身,即在收发一体式超声探头中发射探头和接收探头均为同一种压电材料,因压电材料性质决定了其发射灵敏度和接收灵敏度不可能完全一样,有的压电材料发射灵敏度很高而接收灵敏度很低,另一些压电材料则接收灵敏度很高而发射灵敏度很低,如果要使探头集发射与接收功能为一体,必使得探头只能将就发射灵敏度或接收灵敏度中较低的一个压电材料,这必然使得收发一体式超声探头的整体灵敏度降低。 Transceiver transmit ultrasonic probe set functions and receiving functions for one, that emit ultrasonic transceiver probe probe and probe are receiving the same kind of piezoelectric material, due to the nature of the piezoelectric material to determine its sensitivity and receiver sensitivity can not launch exactly the same, but some of the piezoelectric material to emit a high-sensitivity receiver sensitivity is low, and some of the piezoelectric material is a high receiver sensitivity and transmitter sensitivity is low, if the probe is set to make the transmit and receive functions into one, so that the probe will only able to transmit or receive sensitivity in the low sensitivity of a piezoelectric material, which inevitably makes the overall sensitivity of the transceiver ultrasonic probe is lowered. 而收发分离式超声探头则可很方便地使发射探头采用发射灵敏度高的压电材料制成,而接收探头采用接收灵敏度高的压电材料制成,从而使得超声探头达到尽可能高的灵敏度。 The ultrasound probe may receive separate easily make sonde transmitter is made of high-sensitivity piezoelectric material, while receiving probe is made of high receiver sensitivity of piezoelectric material, so that the ultrasonic probe to reach the highest possible sensitivity.

[0055] 图6所示为超声探头的结构示意图,其中,图6A为收发一体式超声探头的结构示意图,在图6A中,左侧的视图为超声探头的正视图,右侧的视图为所述超声探头的侧剖视图(下同)。 [0055] Figure 6 is a schematic structural view of the ultrasonic probe, wherein FIG 6A is a schematic structural view of ultrasonic transceiver probe, in Figure 6A, the view on the left is a front view of the ultrasonic probe, the view on the right as side sectional view of the ultrasound probe (below) state. 该收发一体式超声探头包括声接收层1、超声晶片2和声匹配层3;图6B为收发分离式平面超声探头的结构示意图,图6C为聚焦发射、平面接收的收发分离式超声探头的结构示意图,图6D为平面发射、聚焦接收的收发分离式超声探头的结构示意图,上述收发分离式超声探头包括声接收层1、声匹配层3、发射晶片4 (即发射探头)、绝缘层5和接收晶片6 (即接收探头)。 The transceiver integrated ultrasound probe includes a sound-receiving layer, wafer 2 ultrasonic acoustic matching layer 3; Fig. 6B is a schematic diagram of the transceiver structure separate plane ultrasound probe is focusing launch Figure 6C, the structure of the plane received ultrasonic transceiver separate probe and fig 6D plane emission structure diagram focusing received ultrasound probe separate transceiver, said transceiver separate ultrasound probe includes a sound-receiving layer, the acoustic matching layer 3, 4 emission wafer (ie sonde), an insulating layer 5 and receiving chip 6 (ie receiving probe).

[0056] 电源单元作为整个系统的供电单元为该装置的其他单元提供稳定的电压。 [0056] Other elements of the system power supply unit as a power supply unit for the device to provide a stable voltage. 本实施例中,电源单元包括电池、电池充电管理电路以及调压电路。 Embodiment, the power supply unit includes a battery, a battery charge management circuit and a voltage regulator circuit of the present embodiment. 其中,电池一般采用大容量可充电锂电池,电池可采用USB接口充电方式充电,也可采用无线充电方式充电,以使得该装置利于便携式使用;电池充电管理电路包括专用的充电管理芯片,如CN3052、CN3068等,该充电管理芯片具有过压、过流和过温保护,能自动侦测电池电压的高低以获得合适的充电电流,以最大限度保护电池,延长电池的使用寿命,同时还具有充电过程状态(低电流、大电流、充满等)输出,使用户随时掌控该装置的电源状况;调压电路能使电池实现多电源输出,以满足该装置中各个单元的不同电能需求。 Among them, the batteries generally use high-capacity rechargeable lithium battery, the battery can charge USB port charging, wireless charging may also be charged, so that is conducive to a portable device use; battery charge management circuit includes a dedicated charge management chip, such as the CN3052 , CN3068, etc., which charge management chip with overvoltage, overcurrent and overtemperature protection, can automatically detect the battery voltage level to obtain a suitable charging current to maximize the protection of the battery, extending battery life, but also has charging process state (low current, high current, full, etc.) output, allowing users to control the power status of the device; regulator circuit enables the battery to achieve more power output to meet the different needs of the apparatus of power of each unit.

[0057] 显示单元主要包括具有显示功能的IXD显示屏或OLED显示屏,用于显示经控制单元处理后获得的脂肪厚度值,以便人们能直观地读出。 [0057] The main display unit comprises a display function IXD display or OLED display, fat thickness value obtained by the processing control unit for displaying, so that people can read out visually.

[0058] 控制单元作为整个测量装置的中央控制器和信息处理中心,具有以下功能:对电源单元的电量进行监测,以使该装置适于便携式使用;用于控制超声探头发射超声波,同时接收超声探头输出的超声回波信号并对所述超声回波信号进行处理和计算,通过计算得到被测对象的脂肪厚度,再将该脂肪厚度数据输出至显示单元。 [0058] The control unit as a central controller and the information processing center of the whole measuring apparatus, having the following features: The power supply unit is monitored, so that the apparatus is adapted to portable use; for controlling the ultrasonic probe transmitting ultrasonic waves, and receiving ultrasonic ultrasonic echo signal and the ultrasonic echo signal output from the probe is processed and calculated, obtained by calculating the fat thickness measured object, and then the fat thickness data is output to the display unit. 其中,控制单元主要包括发射单元、超声回波处理单元和计算单元。 Wherein the control unit includes a transmitting unit, the ultrasound echo processing unit and a computing unit. 本实施例中,控制单元可采用DSP(Digital SignalProcessing)芯片或MCU (Micro Controller Unit)芯片或ARM (Advanced RISC Machines)芯片等现行的多种具有控制功能的芯片。 In this embodiment, the control unit may be a variety of existing DSP (Digital SignalProcessing) chip or a MCU (Micro Controller Unit) chip or ARM (Advanced RISC Machines) chip having a control function of the chip. 在本实施例中,控制单元采用带DSP功能的PIC单片机芯片。 In this embodiment, the control unit uses PIC microcontroller chip with DSP functionality.

[0059] 发射单元使超声探头获得工作需要的设定电压,并产生高压负脉冲激励信号,该高压负脉冲激励信号输送至超声探头中的发射探头,使发射探头产生机械振动而发射超声波,超声波频率由该超声探头的谐振频率决定,本实施例中超声探头的谐振频率为5MHz。 [0059] transmitting unit causes the ultrasonic probe to obtain the required voltage is set, and generates a high voltage negative pulse excitation signal, the high-voltage negative pulse excitation signal delivered to the ultrasonic probe in the sonde so that the sonde to generate mechanical vibration and transmit ultrasonic waves, ultrasonic frequency is determined by the resonant frequency of the ultrasonic probe, the resonant frequency of the present embodiment examples of the ultrasonic probe is 5MHz.

[0060] 超声探头所发射的超声波的探测深度范围可根据实际需要进行调节。 Ultrasonic detection depth range [0060] The emitted ultrasonic probe can be adjusted according to actual needs. 研究表明,在不同个体中人体组织声透性具有相同的特性,人体内的深筋膜与人体皮肤层的距离一般不超过120_,而通常所测量的脂肪厚度是指与皮下浅筋膜交替布置的脂肪层,由此可知脂肪厚度测量时所测量的脂肪层的厚度一般不会超过120mm。 Studies have shown that individuals in different human tissues sound permeability have the same characteristics from the deep fascia and skin layers in the human body is generally not more than 120_, and fat thickness measured generally refers subcutaneous fascia arranged alternately The fat layer, the thickness of the fat layer is seen when measuring fat thickness measured generally not exceed 120mm. 因此,在本实施例中,可以设定超声波的探测深度为120mm,即可满足测得一组完整的人体脂肪厚度的超声回波数据。 Accordingly, in the present embodiment, the depth of the ultrasonic probe can be set as 120mm, to meet a complete set of the measured body fat thickness ultrasound echo data. 由于发射探头在一次测量过程中只接受一次高压负脉冲激励信号,因此接收探头收到的超声回波信号的幅值必定是逐渐衰减而降低的,即使人体脂肪厚度超过120_,由于在该处所能接收到的超声回波信号较弱,因而可以忽略不计。 Due to launch probe in a measurement process will only accept a negative high voltage pulse excitation signal, so receiving probe received ultrasonic echo signal amplitude must be gradually reduced by decay, and even body fat thickness over 120_ because where can received ultrasonic echo signal is weak, and thus negligible. 当然,在实际应用中,可根据实际需要对超声波的探测深度进行适当调整,以适应不同体型的人体。 Of course, in practical applications, can be adjusted to the depth of the ultrasonic probe according to the actual needs, in order to accommodate different size human body.

[0061] 本实施例中,超声回波处理单元用于对接收到的超声回波信号进行数据处理和保存。 [0061] In the present embodiment, the ultrasonic echo signals of ultrasonic echo processing unit for the received data is processed and stored. 超声波进入人体皮肤层后遇脂肪层与皮下筋膜层的交界处发生反射,反射回来的超声回波由超声探头中的接收探头进行接收,并传送至超声回波处理单元。 After the ultrasound is reflected into the skin layer in case of subcutaneous fat layer and fascia junction, the reflected ultrasound echoes received by the ultrasonic probe in the probe were received and transmitted to the ultrasonic echo processing unit. 如图2所示,超声回波处理单元主要包括前期处理单元和后期处理单元,其中前期处理单元包括放大电路、滤波电路、检波电路、A/D转换电路和存储器,后期处理单元包括补偿单元、小信号回波滤除单元、多次反射回波滤除单元和整波单元。 2, the ultrasound echo processing unit mainly includes a pre-processing unit and a post-processing unit, wherein the processing unit includes a pre-amplifier circuit, filter circuit, a detector circuit, A / D conversion circuit and a memory, the post-processing unit includes a compensating unit, Small signal filtered echo unit, multiple echoes to filter unit and the whole wave units.

[0062] 由于接收探头接收到的超声回波信号一般是很微弱的超声回波信号,为了便于后续处理,先将接收到的微弱的超声回波信号通过放大电路进行放大。 [0062] Since the receiving probe receives ultrasonic echo signals are generally very weak ultrasonic echo signals, in order to facilitate subsequent processing, first weak received ultrasonic echo signals amplified by the amplifying circuit. 图3所示为经放大电路放大后的超声回波信号的波形图,在图3中,横坐标为时间轴,也即代表超声波进入人体内部的深度;纵坐标为超声回波信号的幅度,也即代表超声回波的强度。 Figure 3 is a waveform diagram of the amplifier circuit via the amplified ultrasonic echo signal, in FIG. 3, the abscissa is the time axis, i.e., representative of the depth of the ultrasound into the interior of the body; ordinate is the amplitude of the ultrasonic echo signal, that is representative of the intensity of the ultrasonic echo.

[0063] 在接收探头所接收的超声回波信号中,携带有人体丰富的人体组织结构特征,例如:通过组织界面之间反射回来的超声回波信号能直观反映人体组织层间的厚度;但是,在这些超声回波信号中,也不可避免的包含了一些干扰信号,例如:电磁干扰波、高次谐波和小幅值信号及其它们所产生的小信号回波。 [0063] In the ultrasonic echo signal received by the receiving probe, carrying the rich structure of the human body tissues, such as: Through the interface between the organization reflected ultrasound echo signals can directly reflect the thickness of the tissue layers; however In these ultrasonic echo signals, inevitably contains some interference signal, for example: electromagnetic interference waves, the higher harmonics and the small amplitude signal and a small signal are generated by the echo.

[0064] 在本实施例中,通过滤波电路,具体的采用带通滤波器来消除超声回波信号中的电磁干扰波以及高次谐波。 [0064] In the present embodiment, the filter circuit, the specific band pass filter to eliminate the use of ultrasonic echo signals in electromagnetic interference and higher harmonic waves. 然后,滤波后得到的超声回波信号再通过检波电路进行峰值包络检波处理,由于超声回波的波形关于时间轴(水平轴)对称,为减少数据量的分析,在检波电路中只取大于O的波形部分进行分析。 Then, after the ultrasonic echo signal is then obtained by filtering the peak envelope detection processing by the detecting circuit, since the ultrasonic echo waveform on the time axis (horizontal axis) of symmetry, in order to reduce the amount of data analysis, the detector circuit only be taken greater than waveform portion O for analysis. 图4所示即为经检波电路检波后得到的超声回波信号的波形图。 Waveform shown in FIG. 4 is the ultrasonic echo signal obtained after the detecting circuit of FIG. 在图4中,横坐标为时间轴,也即代表超声波进入人体内部的深度;纵坐标为超声回波的幅度,也即代表超声回波的强度。 In Figure 4, the abscissa is the time axis, i.e., representative of the depth of the ultrasound into the interior of the body; ordinate is the amplitude of the ultrasonic echo, i.e., represents the intensity of the ultrasonic echo.

[0065] 经取峰值包络检波处理后,超声回波信号的数据量降低,但是其数据仍为连续时间信号,即模拟信号。 [0065] After taking the peak envelope detection processing, the data amount of ultrasonic echo signal decreases, but the data is still continuous-time signal, i.e. an analog signal. 而在本实施例中,超声回波处理单元采用带DSP功能的PIC单片机芯片,一般用于处理复杂的数字信号,因此,为了便于后续数据处理,先将经检波后的超声回波信号通过高速A/D转换电路转换为数字化的超声回波信号,并将转换后的一组完整的超声回波数据送入存储器中进行保存。 In this embodiment, the ultrasonic echo processing unit using PIC microcontroller chip with DSP functions, generally used for complex digital signal processing, and therefore, in order to facilitate the subsequent data processing, the first detection by ultrasound echo signals after a high-speed A / D conversion circuit converts the digitized ultrasonic echo signals and a complete set of ultrasound echo data after conversion into the memory to be saved. 其中,A/D转换电路的采样频率由设置在A/D转换电路中的高精度高频晶体振荡器提供,综合精度与成本考虑,采样频率一般选择需采集信号频率的3-8倍。 Wherein the sampling frequency A / D conversion circuit is provided by the high-precision high-frequency crystal oscillator provided in A / D conversion circuit, overall precision and cost considerations, the sampling frequency is typically 3-8 times the required selection signal acquisition frequencies. 在本实施例中,由于超声探头的谐振频率为5MHz,因此将该晶体振荡器的采样频率设置为24MHz。 In the present embodiment, since the resonant frequency of the ultrasonic probe is 5MHz, and therefore the sampling frequency of the crystal oscillator is set to 24MHz.

[0066] 上述保存于存储器中的超声回波信号中,包括有小信号回波信号、人体组织层间的一次反射回波信号以及多次反射回波信号。 [0066] stored in the memory of said ultrasonic echo signal, the echo signal includes a small signal, a reflection echo signal and the human multiple tissue layers between the reflection echo signal. 为准确提取出人体皮肤下各脂肪层与皮下筋膜层之间的交界处的超声回波信号,本实施例中的后期处理单元可基于超声回波分布特征的衰减补偿和阈值滤波进行波形识别,如图2所示,其中后期处理单元包括补偿单元、小信号回波滤除单元、多次反射回波滤除单元、以及整波单元,其主要工作过程如下所述。 To accurately extract the ultrasound echo signals at the junction of each human skin and subcutaneous fat layer between the fascia, the present embodiment of the post-processing unit may perform waveform identification based on the ultrasonic echo attenuation compensation distribution and threshold filtering , as shown in Figure 2, wherein the post-processing unit includes a compensation unit, the echo signals filtered small unit, multiple echoes filtered off unit, and a waveform shaping unit, whose main job process is described below.

[0067] 首先,由补偿单元将经过A/D转换后的一组完整的超声回波数据从存储器读取出来。 [0067] First, by the compensation unit will go through a complete set of ultrasound echo data A / D conversion after the read out of the memory. 由于超声波在人体组织传播过程中,当遇到各种不同的物理界面时不可避免的会产生反射、散射、折射和吸收现象,从而导致超声能量衰减而产生信号差异,即随着超声波传播距离的增加,接收探头所接收的超声回波信号会逐渐减弱。 Because ultrasound propagation process in human tissues, when faced with a variety of physical interfaces when inevitably produce reflection, scattering, refraction and absorption phenomena, resulting in attenuation of ultrasonic energy to produce a signal difference, that is, as the ultrasonic propagation distance increase in the receiving probe received ultrasonic echo signal is waning. 因此,通过在补偿单元中设定补偿因子来补偿超声波在人体组织传播过程中的衰减,以提升远距离信号的强度,从而可使所获得的超声回波的信号强度一致或趋于一致,以便于后续数据的甄别、分析和处理。 Therefore, by setting the compensation factor in compensation unit to compensate for the attenuation of ultrasonic propagation in human tissues in order to enhance the strength of the long-distance signal, thereby allowing consistent signal strength or converge ultrasonic echo obtained for to identify subsequent data analysis and processing. 补偿因子由不同频率的超声波在人体组织中的衰减因子决定,一般是按照超声波在人体组织中的吸收系数来计算。 Compensation factor is determined by the different frequencies of ultrasonic attenuation factor in human tissues, generally in accordance with ultrasound in human tissue absorption coefficient is calculated. 研究表明,当超声波频率在1.5MHz〜15MHz范围内时,超声波被人体组织吸收的系数几乎与频率成正比。 Studies have shown that, when the ultrasonic frequency range within 1.5MHz~15MHz, coefficient ultrasonic waves are absorbed by the body tissue is almost proportional to the frequency. 因此,在本实施例中,将超声波在人体组织中的平均吸收系数选定为0.81dB/cm.MHz,由于超声探头的谐振频率为5MHz,因此设定的补偿系数为 Accordingly, in the present embodiment, the ultrasonic wave in the tissue of the average absorption coefficient chosen as 0.81dB / cm.MHz, since the resonant frequency of the ultrasonic probe is 5MHz, the compensation coefficient is set so as

0.81 X 5dB/cm = 4.05dB/cm。 0.81 X 5dB / cm = 4.05dB / cm. [0068] 根据补偿单元中预先设定好的补偿因子,对超声回波信号进行衰减补偿,具体为将按距离远近,将从存储器读出的超声回波信号幅值加上对应设定的补偿因子幅值,以将超声回波信号强度提升到一个合适的水平,方便后续的处理。 [0068] corresponding to the set compensation unit compensating preset compensation factor, to compensate for attenuation of the ultrasonic echo signal, specifically, will be the distance, the amplitude of the ultrasonic echo signal read out from the memory according to the plus amplitude factors, to the intensity of the ultrasonic echo signal raised to an appropriate level, to facilitate subsequent processing.

[0069] 小信号回波滤除单元用于滤除超声回波中的小信号回波。 [0069] Small signal echo ultrasonic echo filtered unit used to filter out the small signal echoes. 在经衰减补偿后的超声回波信号中,对于其中只出现一次且幅值较小的超声回波信号而言,可认为其分布不存在任何规律,则将其判断为小信号回波信号并进行滤除。 In the ultrasonic echo signals attenuated compensated, for which only appears once and smaller magnitude of ultrasonic echo signals, the distribution can be considered that there is no regularity, it is determined that the small-signal and echo signal were filtered out. 在本实施例中,小信号回波的滤波 In the present embodiment, the small-signal echo filter

阈值设定为经验值,该经验值取该组测量数据中最大峰值的20-60 %,如图4所示,其中的波形B、波形C、波形D、波形H和波形I由于小于设定的滤波阈值,因此将它们作为小信号回波而滤除。 Threshold is set to the value of the experience, the empirical value is taken in the set of measurement data 20 to 60% of the maximum peak, shown in Figure 4, wherein the waveform B, the waveform C, the waveform D, the waveform H and I due to the less than the set waveform The filtering threshold, and therefore they are as small and filter out the echo signal. 实际上,波形C是人体中表皮层与真皮层的交界面,波形D是真皮层与第一脂肪层的交界面,由于表皮层、真皮层和第一脂肪层的声阻抗较为接近,使得在表皮层与真皮层、真皮层与第一脂肪层这两个交界面产生的超声回波信号较小;同时,由于在人体中表皮层和真皮层与第一脂肪层相比均较薄,因此,在本实施例中,将表皮层和真皮层视为第一脂肪层的一部分,而将波形C和波形D滤除。 Indeed, the waveform C is the body of the table in the cortex and dermis of the interface, the interface waveform D is the dermal layer and the first layer of fat, due to the epidermis, the dermis and the acoustic impedance of the first fat layer is closer, so that epidermis and dermis, the dermal layer of the ultrasonic echo signal of the first fat layer interface produced by the two smaller; same time, because the table in the epidermis and dermis with the first layer of fat in the body are relatively thin compared to, so In the present embodiment, the epidermis and dermis seen as a portion of the fat layer, and the waveform C and a waveform D was filtered off.

[0070]多次反射回波滤除单元用于滤除人体组织层间的多次反射回波。 [0070] multiple echo filtered off means for filtering the reflected echo human multiple tissue layers. 在本实施例中,通过所述多次反射回波滤除单元来判断所接收的反射回波中的哪些超声回波为一次反射回波,哪些是多次反射回波,并将这些多次反射回波滤除,只留下一次反射回波。 In the present embodiment, the multiple echoes filtered by means to determine the received reflected echo of the ultrasonic echo which is one echo, which echo is multiple reflection, and these multiple echo was filtered off, leaving only one echo.

[0071] 在多次反射回波滤除单元中,先对已经滤除小信号回波信号的超声回波信号利用统计学原理进行统计并分组,将其中具有相同特性的超声回波归入一个数据组,并统计各数据组的分布规律。 [0071] In the multiple echoes to filter unit, the first of the small signal echo signal has been filtered ultrasound echo signals using statistical principles and statistical grouping, which will have the same characteristics of the ultrasonic echo into one data sets and statistical distribution of each data set. 这些能归入同一数据组中的多个超声回波依次为某一脂肪层与该脂肪层下的某一皮下筋膜层之间的交界处的一次反射回波、二次反射回波、三次反射回 These can be classified as the same data group for a plurality of ultrasonic echo echo sequence at the junction of a fat layer and a subcutaneous fat layer under the fascia between the secondary echo, three reflected back

波......η次反射回波,构成该数据组中多个超声回波的幅值相同或幅值相近(±20%范 ...... Η times the wave echo, in the data group constituting a plurality of the same magnitude or amplitude of the ultrasonic echo similar (± 20% range

围内)且出现概率较大(根据情况,可取概率大于20%的所有反射回波)。 Wai) and the probability of occurrence of large (depending on the circumstances, the desirability of a probability greater than 20% of all echo). 如前所述,超声波在人体组织中传播的过程中,当遇到各种不同的交界面时不可避免的会产生反射,比如,当超声波传播至皮肤下第一脂肪层与第一皮下筋膜层之间的第一界面时,在第一界面处会产生强回声,本实施例将第一界面处第一次产生的超声回波称为一次反射回波,该一次反射回波在向超声探头方向返回的过程中,当碰到另外一个交界处(比如耦合剂与皮肤表面之间的交界处)会再次发生反射,再次发生反射后的超声回波传播至第一界面处又会发生 As described above, the process of ultrasonic wave propagation in human tissues, and when faced with a variety of interface which is caused by reflection, for example, when the ultrasonic wave propagation to the first layer of fat under the skin and subcutaneous fascia first When a first interface layer between the interface at first produce strong echo, the present embodiment will first ultrasonic echoes generated at the interface is called a first echo, the time in the ultrasound echo Probe orientation process is returned, when it comes to another junction (junction coupling agent such as skin surface) reflection will occur again, spread to the first ultrasound echo reflection occurs at the interface will happen again after

反射,从而形成二次反射回波,当然还可能形成三次反射回波、四次反射回波......,从而 Reflection, thereby forming a secondary echo, of course, may also be formed of three echoes, four echo ......, thereby

在上述两个交界处之间形成振荡,直至声能全部衰减完为止。 In the junction formed between the two oscillation, until all the acoustic energy attenuation last. 也就是说,该一次反射回波中除了一部分能量返回至接收探头,还有一部分会在第一界面处重复发生多次反射,该重复发生多次反射的超声回波即二次反射回波、三次反射回波、四次反射回波等称为多次发射回波。 That is, the first echo, in addition to part of the energy is returned to the receiving probe, and part will be the first recurring multiple reflection at the interface, the repeated occurrence of multiple reflection of ultrasonic echo echo that is secondary, Three echo, echo, etc. are called four times shot echoes. 该多次反射回波的幅值是逐渐减小的,其幅值一般为小于一次反射回波的幅值,反射次数越多则反射回波的幅值越小。 The multiple echo amplitude is gradually reduced, the amplitude is generally less than one, the more the amplitude, the number of reflections, the smaller the amplitude of the reflected echoes reflected echoes. 然而,相对于同一界面而言,在所述两个交界处之间发生振荡的多次反射回波的时间间隔是相等的。 However, with respect to the same interface, the oscillation occurring at the junction between the two multiple echo time intervals are equal. 这是因为对于处于同一个数据组中的多个超声回波而言,这些超声回波均是在两个交界面之间反复反射形成的。 This is because in the same data set of a plurality of ultrasonic echoes, these are the ultrasonic echo is repeatedly reflected between the two interface formation. 同理,其他数据组中的多个超声回波之间也具有时间间隔相等的特点。 Similarly, also with a time interval equal to the characteristic data among other groups of a plurality of ultrasonic echoes. 据此,很容易就可以将所述已经滤除小信号回波信号的多个超声回波信号划分成多个数据组。 Accordingly, it is easy to filter out more of the ultrasonic echo signal has a small signal echo signal into a plurality of data sets.

[0072] 对于同一个数据组而言,该数据组中的多个超声回波的幅值一般不相等,其中幅值最大的为一次反射回波,并且所述一次反射回波同时也是该数据组中出现时间最早的超声回波,即一次反射回波应是该数据组中的第一个数据,在计算脂肪层厚度时,可以将这些多次反射回波的数据滤除,每个数据组中仅留下一次反射回波的数据。 [0072] For the same data set, the data set of a plurality of ultrasonic echo amplitude is generally not equal, the maximum amplitude of which is a reflected echo, and the echo time also the data The earliest time ultrasound echoes group appears, i.e., echo time should be in the data group of the first data, when calculating the thickness of the fat layer, these multiple reflections can be filtered echo data, each data group, leaving only one reflection echo data.

[0073] 如果要计算整个脂肪层的厚度,所选择的数据组可以仅为一组,即皮下最深处的脂肪层与该脂肪层下的筋膜层之间的交界处所产生的一次反射回波的数据。 [0073] To calculate the entire thickness of the fat layer, the selected data set may be only one group, i.e., a premises echo junction subcutaneous fat layer and the innermost layer of the fascia under the fat layer between the generated data.

[0074] 如果要分别计算皮肤下每个脂肪层的厚度,则选择的数据组应该为多组。 [0074] If you want to calculate the thickness of each layer of fat under the skin, then the selected data set should be more groups.

[0075] 如图4所示,波形B为耦合层与皮肤表面之间交界处的一次反射回波,如果需要对皮下各脂肪层的厚度分别进行计算,则可以波形B所在位置为计算时间间隔的基准。 [0075] As shown in Figure 4, the waveform B is a reflection echo at the junction between the coupling layer and the surface of the skin, if desired the thickness of the subcutaneous fat layer were each calculated, it is possible to calculate the waveform where the time interval B reference. 从图4中可知,从波形E到波形G的时间间隔与从波形E到波形B的时间间隔完全相等,因而这两个超声回波同属于一个数据组。 Be seen from Fig. 4, waveform E from the waveform G and time interval to the time waveform from the waveform E B completely equal intervals, and thus the two ultrasonic echoes belong to the same data set. 同时,波形E在该数据组中幅值最大,波形G的幅值小于波形E的幅值,且波形E为该数据组中最靠近波形B的超声回波,因而可以判断波形E和波形G分别为该界面处的一次反射回波和二次反射回波,进而可判定波形E为第一脂肪层与第一筋膜层之间的第一界面处产生的一次反射回波,而波形G为波形E的二次反射回波,将该数据组定义为第一数据组,多次反射回波滤除单元能够将第一数据组中的波形G滤去,仅仅留下波形E。 Meanwhile, the waveform data group E in the amplitude of the largest wave amplitude is less than the amplitude of the waveform E G, and E for the waveform data set closest to the ultrasonic echo waveform B, so you can determine waveform waveform E and G respectively, for the primary echo and the secondary echo at the interface, and then can be determined for the first echo waveform E first interface of the first layer and the first fascia layer of fat between the generated and the waveform G secondary echo waveform E, the data set is defined as the first data set, multiple reflection echo can be removed by filtration unit to filter out the first waveform data group G, leaving only the waveform E. 由于波形B在所述波形图上对应皮肤表面的位置,波形E在波形图上对应第一界面的位置,而在本实施例中,是将表皮层和真皮层视为第一脂肪层的一部分,因此,则通过计算波形B与波形E在时间轴上的距离,可以计算出第一脂肪层的厚度。 Since the waveform B on the waveform corresponding to the position of the skin surface, the waveform E in a corresponding position on the waveform of the first interface, in the present embodiment, the epidermis and dermis is considered part of the first layer of fat layers Therefore, the calculated waveform B and E on the timeline waveform distance can be calculated thickness of the first layer of fat.

[0076] 在图4中,波形F和波形J分别为不同数据组中的两个不同超声回波,根据以上的判断,可以得知波形F为第二脂肪层与第二筋膜层之间的第二界面处产生的一次反射回波,因而波形F在波形图上对应第二界面的位置,通过计算波形E与波形F在时间轴上的距离,可以计算出第二脂肪层的厚度;同理,波形J在波形图上对应第三界面的位置,通过计算波形F与波形J在时间轴上的距离,可以计算出第三脂肪层的厚度。 [0076] In Fig. 4, waveform F, and J are different waveform data sets in two different ultrasonic echo, according to the above judgment, can know the waveform F is the fat layer between the second layer and the second fascia a second echo generated at the interface, and therefore the waveform F in the second position on the waveform corresponding to the interface, by calculating the distance waveform E and the waveform F on the time axis can be calculated thickness of the second layer of fat; Similarly, waveform J corresponds to the position on the waveform diagram of a third interface, by calculating the distance waveform F and J waveform on the time axis can be calculated thickness of the third fat layers.

[0077] 其中,在进行数据组的分类时,既可以超声探头与耦合层之间的交界处(即波形A处)产生的超声回波的时间点为参考基准来测算脂肪层的厚度,也可以耦合层与皮肤表面之间的交界处(即波形B处)产生的超声回波的时间点为参考基准来测算脂肪层的厚度。 Time point [0077] wherein, when performing classification data set, both the ultrasound probe and is coupled at the junction between the layers (i.e., the waveform at A) generated by the ultrasonic echo is a reference point to measure the thickness of fat layer, but also can be coupled to the junction between the layer and the skin surface (i.e., the waveform at B) generated by the time point for the reference point of the ultrasonic echo to measure the thickness of the fat layers. 即所选的数据组中的超声回波都是在某一界面与此参考基准之间来回振荡得到的反射回波。 I.e., the selected data group in the ultrasonic echo is a reflection echo interface with this reference oscillate back and forth between the reference obtained. 当该装置用于人体测量时,超声探头与人体皮肤层之间一般都涂有耦合剂,在一次测量中,耦合层的厚度是一个定值,因此,对上述两个参考基准而言,实际测得的超声回波的时间间隔为一个固定值,而任意一个脂肪层的厚度对应该脂肪层两侧的两个界面的超声回波的距离之差,因此利用上述两种参考基准计算得到的结果是相同的。 When the device is used when measuring the body, between the ultrasonic probe and the skin layer is generally coated with a coupling agent, in one measurement, the thickness of the coupling layer is a fixed value, therefore, the above two reference bases, the actual ultrasonic echo measured time interval to a fixed value, while the thickness of the fat layer of any one of the two should be the difference between distance on both sides of the interface of the fat layer of the ultrasonic echo, and therefore the use of the two reference point calculated The result is the same. 因此,在图4中,既可以图4中波形A所在的横坐标值作为计算脂肪层厚度的起始时间,其中波形A表示超声探头与耦合层之间的交界处的超声回波,也即该装置的超声波同步信号;又可以波形B所在的横坐标值作为计算脂肪层厚度的起始时间,其中波形B表示耦合层与皮肤表面之间的交界处的超声回波,即超声波穿透皮肤而产生的超声回波。 Thus, in Figure 4, both the abscissa value where 4 waveform A in FIG calculating fat thickness as the start time, wherein the ultrasonic echo waveform A represents the junction of the ultrasound probe and the coupling between the layers, i.e. ultrasonic synchronizing signal of the device; and B may be the waveform where the abscissa value calculating fat thickness as the start time, wherein the ultrasonic echo waveform B represents the junction between the coupling layer and the skin surface, i.e. ultrasound through the skin generating ultrasound echoes.

[0078] 如图5所示,在整波单元中,对上述已识别出各个脂肪层的超声回波的波形进行整波,从而得到一个或多个窄脉冲方波,这些窄脉冲方波即各脂肪层与相邻筋膜层之间的界面信号。 [0078] shown in Figure 5, the waveform shaping unit, the above has been identified for each of the ultrasonic echo waveform fat layer is whole wave, thereby obtaining one or more narrow pulse square wave, i.e., these narrow pulse square wave Interface signals of the fat layer between the adjacent fascia.

[0079] 这里应该理解的是,在实际应用中,只要在整波前能滤除多次反射回波和小信号回波就不会影响到后续信号的判断和识别,而无需考虑多次反射回波和小信号回波被滤除的先后顺序。 [0079] It should be understood that in practical applications, as long as the wave can be filtered off before the whole multiple echo reflected echo and small signal will not affect the determination and identification of a subsequent signal, regardless of the multiple reflections echo echo and small signal is filtered in the order. [0080] 在计算单元中,如果要测量整个脂肪层的厚度,则通过公式h = (T*V)/2计算被测对象的脂肪厚度,其中,h表示脂肪厚度,T表示时长,即指超声探头发射的超声波从进入皮肤开始直至接收到皮肤下最深处的脂肪层与该脂肪层下的皮下筋膜层之间的交界处的一次反射回波的时长,V表示超声波在人体中的传播速度,V作为一个固定值预设在计算单元中。 [0080] In the calculation means, if the entire thickness of the fat layer to be measured, then by the formula h = (T * V) / 2 calculating fat thickness measured object, wherein, h represents fat thickness, T represents the time length, referring to the ultrasonic wave transmitted from the ultrasonic probe into the skin until it receives a start echo junction depths under the skin and the subcutaneous fat layer of the fascia layer between the fat layer under the length of time, V represents the ultrasonic wave propagation in the human body velocity, V as a fixed value preset in the calculation unit. 本实施例中,设置V= 1540m/s。 In this embodiment, the set V = 1540m / s. 由于皮肤表层和耦合层的厚度极薄,因而超声波穿过皮肤表层和耦合层的时间可以忽略不计。 Since the thickness of the skin surface and the coupling layer is very thin, and thus the ultrasonic coupling through the skin surface and the layer of time can be negligible. 对应图5,假定皮肤下的脂肪层仅为三层,即第三界面为皮肤下最深处的第三脂肪层与该脂肪层下的皮下筋膜层之间的交界处,并采用以超声探头与耦合层之间的交界处(即波形A'处)产生的超声回波的时间点为参考基准来测算脂肪层的厚度,那么时长T即为波形A'与波形J'在时间轴上的间距,即时长T等于波形A'与波形J'的时间间隔。 Corresponding to Fig. 5, assuming the fat layer under the skin only three layers, i.e., the third interface is the junction depths under the skin and the subcutaneous fat layer of the third layer of the fascia under the fat layer between the ultrasound probe and using to Coupled with the junction between the layers (ie, waveform A 'time at the point of ultrasonic echo) generated as a reference point to measure the thickness of the fat layer, then T is the wave length A' waveform J 'on the timeline spacing, real-time waveform length T is equal to A 'and waveform J' interval.

[0081]同理,如果要计算皮下各个脂肪层各自的厚度,则根据各个脂肪层与相邻筋膜层的界面信号的时间间隔利用公式h = (T*V)/2来计算人体组织中的各个脂肪层的厚度值。 [0081] Similarly, if you want to calculate the thickness of subcutaneous fat layer of each individual, then the interface signal fascial layer adjacent to the fat layer in accordance with various time intervals using the equation h = (T * V) / 2 is calculated in human tissues The thickness values of each of the fat layer. 时长T表示超声探头接收到第N界面的一次反射回波与接收到第(N+1)界面的一次反射回波的时差。 T represents the time length of the ultrasound probe receives a reflected echo N interface and receives the first (N + 1) primary interface echo time difference. 比如,在图5中,如果要计算第二脂肪层的厚度,则时长T为波形E与波形F之间的时间间隔。 For example, in Figure 5, if you want to calculate the thickness of the second layer of fat, then the duration T of the time waveform E and the waveform F interval between.

[0082] 在本实施例中,由于横坐标为采样时间,因此可以很容易地得到超声波进入人体组织后遇脂肪层与筋膜层界面反射产生的超声回波返回超声探头的先后时间顺序以及时间间隔,图5中任意两个界面对应的两窄脉冲方波之间的时长T即为时间间隔;或者,若横坐标为采样点时,由于在该装置的A/D转换电路中采样频率是确定的,因此采样周期是确定的,则任意两个界面对应的两窄脉冲方波对应的采样点序号之差与采样周期之积即为时间间隔T。 [0082] In the present embodiment, since the abscissa is the sampling time, it can be easily obtained after the ultrasonic waves into the body tissue and the fat layer in case of the ultrasonic echo fascia interface reflection results in a return of the ultrasonic probe chronological order, and time interval, T is the time duration in any two interface Figure 5 corresponds to a square wave pulse between the two narrow interval; or, if the horizontal axis is the sample point, due to the sampling frequency of the apparatus in the A / D conversion circuit is OK, so the sampling period is determined, then the product of any two interfaces corresponding number of sampling points of the difference between the two sampling periods corresponding narrow pulse square wave is the time interval T. 然后,根据该时间间隔T计算出对应的人体组织中各个界面与参考基准之间的厚度,即该间隔时间T与超声波在人体组织中的传播速度V之积(即T*V)就是超声波在相应两界面中的传播距离,由于超声波从前一个界面到后一界面再由后一界面反射回前一个界面时,走了一个来回,因此该传播距离的1/2(即T*V/2)即为该两个界面的厚度值。 Then, based on the time interval T corresponding to the calculated thickness of the body tissue between each interface and the reference datum, i.e. the interval time T in human tissue with the ultrasonic propagation velocity V of the product (i.e. T * V) is ultrasonic propagation distance between the two corresponding interface, an interface to the front due to the ultrasound screen and then by the latter after a reflection back to the previous screen interface, go back and forth, so the spread of 1/2 (ie T * V / 2) distance is the thickness of the value of the two interfaces. 由于人体软组织中的声速都很接近,所以在本实施例中,设置V= 1540m/s。 Since the human body soft tissue sound velocity is very close, so in the present embodiment, the set V = 1540m / s. 基于上述理由,图5中每相邻两窄脉冲方波之间的距离就是各层脂肪层的厚度h,第一个窄脉冲方波与最后一个窄脉冲方波之间的距离就是被测量者的整个脂肪层的厚度。 For these reasons, the distance between the two narrow square wave pulse in Figure 5 is the thickness of the layers of fat each adjacent layer h, a narrow distance between the first and last square wave pulse with a narrow pulse square wave is measured between those The thickness of the entire fat layers.

[0083] 将经计算得到的脂肪厚度数据输出至显示单元进行显示。 [0083] The fat thickness data obtained by the calculation is output to the display unit for display. [0084] 为了扩充该脂肪厚度测量装置的应用,本实施例所述脂肪厚度测量装置中还可以设置接口单元,该接口单元包括USB接口和蓝牙接口,以方便地实现该装置与其他设备(如电脑、手机等)的连接,即可以通过USB接口或蓝牙接口将存储器中的超声回波信号传送到其他设备进行后续处理,或通过USB接口或蓝牙接口将该装置得到的脂肪厚度数值送到其他设备上进行显示,或者通过USB接口对电源单元中的电池进行充电。 [0084] In order to expand the application of the fat thickness measuring apparatus, the present embodiment the fat thickness measuring apparatus may be provided an interface unit, the interface unit comprises a USB interface and a Bluetooth interface, in order to facilitate the realization of the device with other devices (e.g. connect computers, mobile phones, etc.), which can interface via USB or Bluetooth to transfer memory ultrasound echo signals to other devices for subsequent processing, or by fat thickness values USB interface or Bluetooth interface of the device to get to the other is displayed on the device, or via the USB interface to the power supply unit to charge the battery.

[0085] 利用本实施例所述脂肪厚度测量装置进行测量及超声回波处理的过程为:将超声探头紧贴人体皮肤,打开该装置电源,操作员按下操作键,则控制单元中的发射单元控制超声探头中的发射探头发射超声波,超声波进入人体,在人体组织内传播,每遇到两种不同声阻抗的交界面时,一部分超声波反射回来产生超声回波,该超声回波由接收探头进行接收,另一部分超声波则穿过交界面继续前进;返回的超声回波信号由超声探头中的接收探头传送到超声回波处理单元;在前期处理单元中,超声回波信号依次经放大电路进行放大、滤波电路滤除高次谐波信号和电磁干扰波、取峰值包络检波电路等处理后,并经过高速A/D转换电路采样后转换成数字超声化的超声回波信号,该数字化的超声回波信号保存在存储器中。 [0085] With the present example embodiment the fat thickness measuring apparatus and measurement of ultrasonic echo processing procedure is: the ultrasound probe close to the human skin, to open the power supply apparatus, the operator presses the operation key, the control unit of the emission unit controls the emission of ultrasonic probe emitting ultrasound probe, ultrasound into the body, the spread in the body tissues, every encounter two different acoustic impedance interface, a portion of the reflected ultrasonic echo generated ultrasound, the ultrasound echo received by the probe receiving, through another portion of the interface between the ultrasonic wave to move; ultrasonic echo signals returned by the ultrasonic probe transmitting probe to the receiving ultrasonic echo processing unit; in the pre-processing unit, the ultrasonic echo signals are sequentially performed by the amplifier circuit amplification, filter circuit to filter out the higher harmonic wave signal and electromagnetic interference, after a peak value envelope detector circuit processing, and after the high-speed A / D conversion circuit into a digital sampled ultrasound of ultrasonic echo signals, the digitized ultrasonic echo signals stored in the memory. 等测量数据采样结束后,该测量数据即从存储器中读出至后期处理单元,在后期处理单元中依次对超声回波信号进行衰减补偿、滤除小信号回波和多次反射回波后,然后经过整波得到间隔分布的多个单脉冲方波,由计算单元根据各个单脉冲方波之间的时间间隔计算得出每层脂肪层的厚度,或者整个脂肪层的厚度。 Once the end of the sampling measurement data, the measurement data that is read out from the memory to the post-processing unit, the post-processing units in order to compensate for attenuation of the ultrasonic echo signals, filter out small and multiple echo signal after echo, Then the whole wave obtained through a plurality of single-pulse square wave spaced, by the calculation unit based on the time interval each single square wave pulse between the calculated thickness of each layer of fat, the fat or the thickness of the entire layer. 这样,通过测量从发射超声波到接收超声回波的时间间隔,即可得到皮肤下各层脂肪层的厚度,每一脂肪组织的厚度值都可直接在显示单元中进行显示,以方便测量者读数。 Thus, by measuring the time from the transmission ultrasonic wave to the reception of the ultrasonic echo spacing can be obtained by a thickness of the fat layer beneath the skin layers, the thickness values for each of adipose tissue can be displayed directly on the display unit in order to facilitate the reading of the measurer .

[0086] 这里应该理解的是,本实施例中所述后期处理单元中的处理方式并不限于上述方式,本方式只是出于简单实用的目的而设计的,任何可使得本发明提供的超声脂肪厚度测量装置采集的超声回波信号来实现各层脂肪厚度测量的处理方式均应包括在本发明的保护范围内;当然,本发明提供的测量装置及测量方式也并不限定于测量脂肪厚度,任何根据给定声速值测定物体厚度的应用,例如根据给定声速值测定金属厚度的应用,均落入本发明的保护范围。 [0086] It should be understood that, in this embodiment the post-processing unit is not limited to the treatment described above, the present embodiment just for the purpose of simple and practical design, any such ultrasonic fat present embodiment the present invention provides ultrasonic echo signals acquired thickness measuring device approach to achieve fat thickness measurement of each layer to be included within the scope of the present invention; of course, the measurement apparatus and measurement method provided in the present invention is not limited to the measurement of fat thickness, speed of sound values for any given thickness of the object under measurement application, e.g., application of a given sound velocity value measurement according to the thickness of the metal, are within the scope of the present invention.

[0087] 本实施例中的脂肪厚度测量装置利用超声回波返回超声探头的时间间隔,在超声回波处理单元中得到不同脂肪组织层的分布情况,进而得到脂肪组织层的时间间隔,最后在计算单元中获得脂肪层的厚度数值。 Time [0087] In the present embodiment, the fat thickness measuring apparatus using an ultrasonic echo return ultrasound probe interval to obtain the distribution of the different layers of fatty tissue in the ultrasound echo processing unit, and then to give adipose tissue layer spacing, and finally The thickness value obtained in the calculating unit fat layers. 该装置体积小、便于携带,且操作简单、读数直观,尤其适合用于家庭或健身房个人监控脂肪厚度使用。 The device is small, portable and easy to operate, intuitive readings, particularly suitable for home or gym use personal monitoring fat thickness. [0088] 可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。 [0088] will be appreciated that the above embodiments are merely illustrative of the principles of the invention and the use of exemplary embodiments, but the present invention is not limited thereto. 对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。 Those of ordinary skill in the art is concerned, without departing from the spirit and substance of the present invention may be made various changes and modifications, such variations and modifications are also considered the scope of the present invention.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
CN101469978A *29 déc. 20071 juil. 2009北京时代之峰科技有限公司Adjustable automatic wave amplitude gain compensation method and circuit for ultrasonic thickness gauge
CN101701809A *12 nov. 20095 mai 2010哈尔滨工业大学Electromagnetic ultrasonic thickness gauge and measurement method thereof
JPH04231944A * Titre non disponible
JPH09292214A * Titre non disponible
TW537882B * Titre non disponible
US4359055 *23 juin 198016 nov. 1982Renco CorporationAutomatic digital backfat meter
US5520183 *21 déc. 199228 mai 1996Meat Research CorporationFat depth measuring apparatus
US5613493 *25 sept. 199525 mars 1997Schafer; Mark E.Ultrasonic apparatus and method for measuring animal backfat
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
CN104068896A *11 juil. 20141 oct. 2014云南大学Right-triangle three-receiving ultrasonic subcutaneous fat measuring device
CN105147314A *20 août 201516 déc. 2015京东方科技集团股份有限公司Human body parameter detection method and detection device
Classifications
Classification internationaleA61B8/08
Événements juridiques
DateCodeÉvénementDescription
5 juin 2013C06Publication
10 juil. 2013C10Entry into substantive examination
4 mars 2015C14Grant of patent or utility model