CN1039902A - 傅里叶处理脉冲多普勒信号的方法和装置 - Google Patents

傅里叶处理脉冲多普勒信号的方法和装置 Download PDF

Info

Publication number
CN1039902A
CN1039902A CN89106234A CN89106234A CN1039902A CN 1039902 A CN1039902 A CN 1039902A CN 89106234 A CN89106234 A CN 89106234A CN 89106234 A CN89106234 A CN 89106234A CN 1039902 A CN1039902 A CN 1039902A
Authority
CN
China
Prior art keywords
signal
sampling
echo
frequency
fourier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN89106234A
Other languages
English (en)
Other versions
CN1022135C (zh
Inventor
威廉·雷勒·梅奥
保罗·迈克尔·恩姆布里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Publication of CN1039902A publication Critical patent/CN1039902A/zh
Application granted granted Critical
Publication of CN1022135C publication Critical patent/CN1022135C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S15/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse-modulated waves and based upon the Doppler effect resulting from movement of targets with measures taken for suppressing velocity ambiguities, i.e. anti-aliasing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/241Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by using reflection of acoustical waves, i.e. Doppler-effect
    • G01P5/244Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by using reflection of acoustical waves, i.e. Doppler-effect involving pulsed waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level

Abstract

一测量脉冲多普勒速度用的处理器,采用二维离散傅里叶变换将宽带信号绘制成频率空间,在该频率空间中,各恒速多普勒频谱分量用辐射线表示,然后用径向投影提取目标速度信息。

Description

本发明涉及测定在一物体区域流体速度分量的一种方法,该方法包括下列步骤:
向物体区域单向发送超声能的一系列周期性脉冲;
接收回波信号,该回波信号表示所述从所述区域向回散射的诸脉冲的回波;
采用大于两倍回波最高频率的取样频率对所述收到的信号的幅值进行取样。
本发明还涉及一种测定在物体区域内运动着的流体的速度用的装置,它包括:
发送装置,用向所述区域定期单向发送射频超声能脉冲;
回波检测装置,用以检测一定数量的从所述区域向回散射,且产生表示其本身信号的所述脉冲的回波;
取样装置,用以从所述系列脉冲的各脉冲回波中抽取一定量的信号取样群。
脉冲多普勒超声系统通常用以测定和测绘人体和动物体内的血流速度。往人体中沿与血管或冠状腔相交的路径通入超声能量的脉冲。脉冲的超声能从血管或冠状腔内的血向回散射,然后回到一换能器中,在那里被转换成电信号。若血流在沿超声波的传播方向上有一个速度分量,散射回波的频率就会相对于入射的超声能的频率偏移。在回波中如此诱发出来的多普勒频移可加以分析以得出血流速度的数字估计值,和/或绘制出血流速度作为体内位置的函数的曲线图。
多普勒血流测量系统往往作为一般测绘声阻抗作为体内位置的函数的关系曲线的超声显象系统的附属或辅助功能部件的一部分。但由于多普勒血流测量对超声信号的要求大体上与高清晰度显象所要求的不同,因而产生了一些困难。一般超声血流测量的多普勒频谱分析要求狭窄的频带宽度,而狭窄的频带宽度本来就限制了在其它情况下理应在超声显象系统能获取的距离分辨能力。超声能的短脉冲(因而其固有频带宽)便被用以最大限度地提高显象系统的距离分辨能力,而频带宽度狭窄的长脉冲则用以进行多普勒测量,以便获得清晰的频谱偏移和高的信噪比。
一般多普勒频谱分析的一个困难在于根据从运动着的血细胞扩散的多普勒频移模型对各信号进行的判断。根据这个模型,多普勒频移在入射的超声波为血细胞所散射之前是与入射超声波的频率成正比的。无论扩散着的血细胞其速度分布如何,超声能的短脉冲都含有宽的入射频谱,因而使其一系列的散射信号具有宽的频谱。此外,宽带滤波器(在这种系统中是需要这种滤波器的)的本性是会使信噪比低于采用窄带滤波器时可能有的信噪比的。
另外,现有技术的多普勒频谱易于混叠,这是因为它们是周期性的,其周期等于脉冲重复频率。因此,从现有技术的多普勒频谱只能确定速度模数(c/2)(fp/fo),其中fp为脉冲重复频率。举例说,若射频超声中心频率fo为5×106赫,谱线频率为5×103谱线/秒,则现有技术的一维多普勒频谱只能明确地确定小于0.75米/秒的速度(假设声速为1500米/秒)。
P.M.Embree和W.T.Mayo等的“超声M模式射频显示技术在流动显形中的应用”(1987年的《Proc.SPIE    768,第70-78页,国际图形识别和声成象专题讨论会,编辑:Leonard    A.Ferrari)一文论述了采用假色数字显示所取得的超声A谱线取样的方法。各向回散射的A谱线的射频取样垂直显示出来,各相邻的A谱线则并排水平地显示,形成二维的假色象。二维图象中的条纹图样可与流体流动显示的传统多普勒处理和相关处理的概念联系起来。如此显示出来的条纹图样其矩形部分是个二维的样本矩阵。
本发明的一个目的是提供处理这种矩阵的一种方法和仪器,以便获得高质量的流体速度测定值。
本发明方法的特征在于,它还包括下列步骤:
就测定取样周期的第一个快时变量和测定脉冲重复周期的慢时变量对所述取样进行二维的离散傅里叶变换,从而将取样组绘制成二维的傅里叶频率空间,其中各恒定的多普勒频移系绘制成辐射线;和
沿所述各辐射线分析所述经变换的取样组,以便从中获得多普勒频移的有关信息。
本发明装置的特征在于,它还包括:
计算装置,用以根据测定所述各取样的射频快时变量和测定所述脉冲列各周期的第二个慢时变量计算二维傅里叶变换,由此将各取样绘制成二维傅里叶频率空间,其中恒定多普勒频移被绘制成辐射线;和
分析装置,用以沿所述傅里叶频率空间中的辐射线分析该经过变换的信号取样,以便确定因流体在所述区域中的流动所产生的多普勒频移。
沿超声A谱线的回波幅值以高于奈奎斯特(Nyguist)频率的频率间断取样。在沿通过物体某一区域的同一方向取向的各连续的A谱线某一选定范围的射频取样矢量形成一二维矩阵,其各组成部分的位置用第一个快时变量和第二个慢时变量加以描述,其中第一个快时变量给定了数据取样沿其A谱线的范围,第二个慢时变量移给定了A谱线在一组集中的A谱线中的位置。数据矩阵是用根据快时变量和慢时变量进行的二维离散傅里叶变换进行处理的,数据组即用该慢时变量绘制成一离散的二维傅里叶频率空间,其中各恒定速度多普勒频移系绘制成辐射线。慢时轴线对应于二维傅里叶频率空间中的慢频(多普勒频率)的轴线,快时轴线则对应于傅里叶频率空间中的快频(射频)轴线。从运动着的各目标散射的宽带脉冲的回波通常在二维傅里叶空间中绘制成椭圆形。椭圆长轴与傅里叶空间各坐标轴之间的夹角是散射介质速度的高质度量。
在一较佳实施例中,频谱在二维傅里叶频率空间中按角度分布的情况(因而在目标范围内各速度分量)是通过计算经变换的数据阵列的径向投影估算出来的。
离散傅里叶变换天生就是周期性的。因此由各高速散射所产生的频谱成分往往会“卷绕着”傅里叶频率空间中的格子单位。这就是大家熟知的与任何取样信号的傅里叶变换有关的“混叠”问题。
估算目标速度的径向投影法可用于频谱卷绕场合下投影线卷绕某一格子单位时的高速度。宽带多普勒信号的二维傅里叶频谱都是些高度偏心的椭圆。这些椭圆的径向投影当投影方向平行于椭圆的长轴时急剧变尖,当投影方向与各椭圆成其它角度相交时则大致变尖。因此在各混叠着的频谱与真的频谱完全相同时,各径向投影使一般多普勒处理免受混叠的影响。
在另一个较佳实施例中,二维傅里叶变换是从A谱线信号的复合包线而不是从实际的射频A谱线回波信号计算出来的。复合包线的计算使回波信号系列在傅里叶空间中的椭圆形轮廓偏移。径向投影法是与复合包线频谱配用的,具体做法是围绕对应于超声入射波的射频中心频率的傅里叶空间的快频轴线上的一个点进行投影。
在对复合包线数据一般进行的多普勒处理中,各A谱线是在各A谱线具有复合取样的情况下将数据阵列压缩成单行的测距选通门上求平均值的,然后在该行上进行一维离散傅里叶变换以产生多普勒频谱。多普勒频谱的谱峰出现在由fmax=(2V/C)fo确定的频率处,其中fo是入射超声波的频率,C是介质中的音速,V则是散射物质的速度。在测距选通门求平均值相当于只计算离散傅里叶二维变换的零频率分量;现有技术的多普勒谱仅仅是通过沿水平(多普勒频率)轴线进行的二维离散傅里叶变换的单个部分。因此本发明的二维频谱比普通的一维多普勒频谱包含更多的信息。
随机数据的离散傅里叶变换本来就是有干扰的,而一般的多谱勒频谱如果不在测距选通门上平均化也会有干扰。这给测距分辨率带来损失。
在二维傅里叶空间进行径向投影是根据二维离散傅里叶变换中的所有信息进行的,这种投影过程本身是要比一维多谱勒频谱的干扰少一些。因此径向投影法使我们可以用比现有技术的多谱勒处理每单位测距选通门更少的取样数和/或更少的A谱线来获取速度的合理估算值。所以信号处理采用径向投影算法的系统要比采用现有技术的多谱勒处理的系统可能具有更高的测距分辨率和/或更高的时间分辨率。
现在参照附图说明本发明的内容,附图中:
图1是一个超声速度测量系统的方框图;
图2例示了数据取样在一个阵列中的排列情况;
图3a至3c例示了散射介质中的运动对存储在阵列中的数据取样值的影响;
图4例示了一般多谱勒信号在二维傅里叶频率空间中的频谱;
图5a和5b例示了二维傅里叶频率空间中的一个径向投影的几何形状;
图6例示了多谱勒信号复合包线的频谱在二维傅里叶频率空间中的径向投影;
图7例示了对二维离散傅里叶变换数据值进行插值的情况,该数据值用以计算沿二维傅里叶频率空间中一显示线上的径向投影;
图8是二维傅里叶频率空间的轮廓曲线,它显示了频谱在各高速情况下“卷绕”的情况;
图9a和9b是在二维傅里叶空间提取普通的一维多谱勒频谱的情况;
图10将由普通一维多谱勒法与二维径向投影法得出的多谱勒速度测量值进行比较。
图11和12分别所例示了用径向投影法和用普通的多谱勒法得出的颈动脉血流速度测量值的范围。
图1例示了体现本发明的一个超声血流速度测量系统。发送器100经由TR开关120(收发两用开关)激励超声变换器110使其往人体130中沿一窄射束发送超声能的宽带脉冲。射束中的超声能从物体的组成部分(例如在动脉150中流动着的血液)向回散射,产生回到变换器110且为变换器110所检测的回波。从物体组成部分散射(沿射束140的轴线方向运动)的超声回波信号其频率会按多谱勒方程相对于变换器所产生的超声能的频率偏移。变换器所产生的回波信号经由TR开关120耦合到接收机160,在接收机160中加以放大。接收机的输出端连接到射频数字转换器170,由射频数字转换器170对回波信号进行取样和数字转换。数字转换器的输出端连接到测距和谱线选通门180的输入端上。
所发送的射频脉冲个个产生一A谱线信号,由该信号将沿射束140的轴线映入信号到达的时间。控制电路190操纵着测距选通门180,使其选择在物体以距离R和射束140为界的部位中产生的信号取样。数字转换器170以至少两倍信号中最大频率分量的速率对A谱线的射频信号进行取样。在距离R内沿各A谱线的连续取样作为矩阵阵列的列矢量存储在存储器200中。各连续的A谱线存储在矩阵的连续列中,使矩阵的各行表示沿连续A谱线的相应范围的取样。于是存储在存储器200矩阵中的各元素可借助于(沿各A谱线因而标记阵的一行的取样S1、……S8)“快时”系数FT连同(标记特定的A谱线从而标记矩阵列的)“慢时”系数ST一起加以标记和编址。图2例示了由一些信号组成的矩阵,矩阵有八条A谱线1、……8,各A谱线在测距选通门R范围内含有八个信号取样S1、……S8。
采用6微米射束在3厘米的集点以5兆赫的射频中心频率和5千赫的脉冲重复频率从45度角对人的一般颈动脉进行扫描可以获得对超声回波数据令人满意的数据处理,这个处理是采用调定得能使其从各64条A谱线中选取32个样本的测距选通门。
发明人Embree和Mayo发表的上述现有技术教导我们,存储在存储器200矩阵内的数据值会表现出条纹图样,该条纹图样表征着物体内有关区域内的运动,如图3a至3c所示。在这些图中,正回波信号以白区表示,负信号以黑区表示。超声变换器100的带通性质使回波信号看起来象一系列明暗交替的条纹。若固定的换能器面向恒流的单根血管,则血管中心的血流最大,在血管壁处减至零。图3C是来自血管壁的信号的特征。水平条纹是沿声束轴线上没有速度分量时的结构特征。图3b例示了偏离变换器的信号结构特征,图3c则例示了趋近换能器的信号的结构特征。
存储在存储器200中的阵列为在二维离散傅里叶变换处理器210中进行处理,处理结果存储在第二个存储器220中。视乎系统的速率和数据条件,二维离散傅里叶变换处理器210可作为一般用途数字计算机中的软件程序来履行任务,也可以由专用的快速傅里叶变换处理器芯片来执行其任务。
离散傅里叶变换处理器210的输出是一阵列的数据单元,它表示对A谱线取样数据根据标记出数据组中各A谱线矢量的第一个(慢时)变量和表示沿各A谱线的离散取样位置的第二个(快时)变量进行的变换。存储器220中的阵列可以看作是就对应于所收到的回波信号的射频频谱的快频变量f2和对应于多谱勒频率分量的慢频变量f1表示的二维频谱。
二维离散傅里叶变换数据提供关于散射介质在对应于测距选通门的区域中速度的信息。若在有关距离内的介质以速度V移向发送器,则二维离散傅里叶变换值的轮廓曲线其一般形状如图4所示。参数取一般值时,椭圆轮廓线的长轴通过二维频率平面的原点,与垂直轴线成θ0角。在本发明的一个实施例中,长轴的斜率可从信号频谱的第一要素与总信号频谱功率的比值确定,再从长轴的斜率计算平均速度。同样速度偏差可用频谱的第二要素计算出来。
在一较佳实施例中,多谱勒信号的速度谱由二维傅里叶频率空间中的径向投影确定。角度,从而速度,是通过计算二维傅里叶变换A(f1,f2)的量值(或量值的平方)的径向投影估计出来的,其中f1是多谱勒频率参数,f2是射频参数。傅里叶量值沿径向θ的径向投影为:
s(θ)=∫ o|A(rsin(θ),rcos(θ))|dr
当θ=θo(这是与运动着的介质的速度有关的角度)时,径向投影会有最大值。图5a例示了径向投影的几何图形,图5b则例示了径向投影的一般曲线。
在较佳实施例中,二维傅里叶变换是从A谱线的复合包线而不是从实际的射频回波信号计算出来的。复合包线信号可用周知的数字滤波法从射频取样获得,或者可用装在接收机160中的模拟复合包线解调器对复合包线信号进行取样。复合包线的傅里叶变换是图4经偏移了的形式;椭圆轮廓线的长轴与快频轴线在-fc处相交,其中fc为所传送的各超声脉冲的中心频率(图6)。因此当采用复合包线数字化取样时,径向投影集中在二维傅里叶频率平面的点(0,-fc)上,且若A(f1,f2)是复合包线的傅里叶变换,则所希望有的径向投影可从下式求出:
s(θ)=∫ o|A(rsin(θ),rcos(θ)-fo)|dr
鉴于二维离散傅里叶变换只给出了离散的取样值,因此实际上该积分近似于沿该投影线的取样值和。径向投影线通常是不直接通过离散傅里叶变换的各取样点的,因此需要进行插值处理。图7表示二维傅里叶变换平面;点表示取样点位置。径向投影是近似地通过将在标有星号的各位置经插值的样本值加起来求出的。这些经插值的数值可用现有技术的插值算法计算出来。在相邻的水平取样点之间进行简单的线性插值能得出令人满意的结果,计算效率也高。
由于离散傅里叶变换具有周期性的本性,因此二维频谱在高速度下卷绕一格子单位,如图8所示。频谱卷绕时,为了在高速度下继续获得良好的径向投影,需要将投影线卷绕各轴线,如图8所示。
附录是个MATLAB程序,例示了从A谱线取样阵列的二维离散傅里叶变换值的平方计算径向投影的过程。
如前面谈过的那样,在普通对复合包线数据进行多谱勒处理的过程中,各A谱线是在测距选通门上求平均值的,该门将数据阵列压成一具有各A谱线均含一复合取样的单一行。由于在测距选通门上求平均值相当于只计算离散傅里叶变换的零频率分量,因而多谱勒频谱只是通过沿慢频轴线进行二维离散傅里叶变换的部分,如图9a和9b所示。因此普通的多谱勒处理过程没有充分利用包含在二维频谱中的信息。
本发明的径向投影法也可以看作是对频率的暂时混合过程。它在数学上相当于将若干取于不同中心频率独立的普通多谱勒频谱改变比例然后求平均值的系统。
图10对比了用32条A谱线组成的带一个含八个复合取样的测距选通门(相当于1.2毫米长的测距选通门)的数据阵列用本发明的方法(实线)和用现有技术的方法(虚线)以人的普通颈动脉中的血流为研究对象测出的速度谱。图11例示了用径向投影获得的速度分布V对距离R的函数曲线图。往下朝曲线中心的竖向波峰对应于动脉外部速度等于零的区域。从图中可以清楚地看到动脉内速度的分布。图12是同样的采用现有技术的多谱勒法进行处理的示意图。
附录
S=zeros(1,Nv);
U=ones(1,Nv);
k=1∶Nv;
alpha=alphal+(k-1)
Figure 891062343_IMG2
dalpha;
for    m=1∶N2;
m=m
nr=alpha
Figure 891062343_IMG3
(m-N2/2-1)
Figure 891062343_IMG4
d2+fo)/d1+N1/2+1;
n=floor(nr);
delta=nr-n;
n=mod(n-1,N1)+1;
np1=n+1;
np1=mod(np1-1,N1)+1;
S=S+(U-delta).
Figure 891062343_IMG5
A2(m,1)+delta.
Figure 891062343_IMG6
A2(m,np1);
end
j=O∶Nv-1;

Claims (8)

1、一测量流体在物体区域内的速度分量的方法,包括下列步骤:
单向向所述物体区域发送超声能的一系列周期性脉冲;
接收回波信号,该回波信号表示所述从所述区域向回散射的各脉冲的回波;
采用大于两倍回波最高频率的取样频率对所述收到的信号的幅值进行取样;
其特征在于,所述方法还包括下列步骤:
就测定取样周期的第一个快时变量和测定脉冲重复周期的慢时变量对所述取样进行二维的离散傅里叶变换,从而将取样组绘制成二维的傅里叶频率空间,其中各恒定的多普勒频移是绘制成辐射线;和
沿所述辐射线分析所述经变换的取样组,以便从中获得多普勒频移的有关信息。
2、一如权利要求1所述的方法,其特征在于,来自运动着的流体的回波信号绘制成二维傅里叶频率空间中的椭圆,而所述领域中沿所述超声能传播方向的速度分量则通过测定所述椭圆长轴与所述傅里叶频率空间的坐标轴之间的夹角确定。
3、如权利要求1所述的方法,其特征在于,分析经变换的取样组的步骤包括下列步骤:
计算所述绘制成的信号在所述傅里叶频率空间中的径向投影;和
分析所述径向投影的波形来计算所述流体在所述回波中引起的多普勒频移。
4、一如权利要求1至3中任一权利要求所述的方法,其特征在于,进行二维变换的步骤包括对所检测出的信号的复合包线的取样进行二维傅里叶变换。
5、一测定在物体区域内运动着的流体的速度用的装置,包括:
发送装置,用以向所述区域定期单向发送射频超声能脉冲;
回波检测装置,用以检测一定数量的所述脉冲的回波,所述脉冲从所述范围向回散射,且产生表示其本身的信号;
取样装置,用以从所述系列脉冲的各脉冲的回波抽取一定量的信号取样群;
其特征在于,所述装置还包括:
计算装置,用于根据测定所述各取样的射频的快时变量和测定所述脉冲列各周期的第二个慢时变量计算二维傅里叶变换,由此将各取样绘制成二维傅里叶频率空间,其中恒定多普勒频移绘制成辐射线;和
分析装置,用以沿所述傅里叶频率空间中的辐射线分析该经过变换的信号取样,以便确定因流体在所述区域中的流动所产生的多普勒频移。
6、一如权利要求5所述的装置,其特征在于,所述分析经变换信号的装置包括计算所述经变换信号在所述傅里叶频率空间中的径向投影的装置。
7、一如权利要求5或6所述的装置,其特征在于,所述装置还包括检测表示回波的信号的复合包线用的装置,和其中通过对回波的复杂波形进行取样的函数取样装置。
8、一如权利要求6所述的装置,其特征在于,所述装置还包括混叠信号抑制装置,用以通过计算沿傅里叶频率空间中卷绕着格子单位的径向线的径向投影来抑制混叠信号。
CN89106234A 1988-07-26 1989-07-24 傅里叶处理脉冲多普勒信号的方法和装置 Expired - Fee Related CN1022135C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US224,106 1988-07-26
US07/224,106 US4930513A (en) 1988-07-26 1988-07-26 Two dimensional processing of pulsed Doppler signals

Publications (2)

Publication Number Publication Date
CN1039902A true CN1039902A (zh) 1990-02-21
CN1022135C CN1022135C (zh) 1993-09-15

Family

ID=22839302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89106234A Expired - Fee Related CN1022135C (zh) 1988-07-26 1989-07-24 傅里叶处理脉冲多普勒信号的方法和装置

Country Status (6)

Country Link
US (1) US4930513A (zh)
EP (1) EP0358249B1 (zh)
JP (1) JP2849827B2 (zh)
CN (1) CN1022135C (zh)
DE (1) DE68911797T2 (zh)
IL (1) IL91081A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101856242A (zh) * 2010-06-30 2010-10-13 深圳市蓝韵实业有限公司 一种脉冲波多普勒成像方法及装置
CN102100567A (zh) * 2009-12-21 2011-06-22 株式会社东芝 彩色多普勒超声波诊断装置
CN103690194A (zh) * 2013-12-17 2014-04-02 中国科学院深圳先进技术研究院 基于宽带信号的血流流速估计方法和系统
CN105222861A (zh) * 2015-09-01 2016-01-06 中国计量学院 一种基于速度匹配谱测量气液两相流相分界面位置的方法
CN109708709A (zh) * 2017-10-25 2019-05-03 傅古月 一种微波固体流量计信号处理方法
CN113343897A (zh) * 2021-06-25 2021-09-03 中国电子科技集团公司第二十九研究所 一种基于辐射信号斜率变化加快信号处理的方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227797A (en) * 1989-04-25 1993-07-13 Murphy Quentin M Radar tomography
US5030956A (en) * 1989-04-25 1991-07-09 Murphy Quentin M Radar tomography
US5201313A (en) * 1989-09-04 1993-04-13 Hitachi, Ltd. Ultrasonic flowmeter
US5121065A (en) * 1990-07-13 1992-06-09 Hewlett-Packard Company Mixed domain mixed ratio frequency response sampling
US5341809A (en) * 1990-08-31 1994-08-30 Hitachi, Ltd. Ultrasonic flowmeter
US5048528A (en) * 1990-11-15 1991-09-17 North American Philips Corp. Alias suppression in pulsed doppler systems
US5349525A (en) * 1993-01-08 1994-09-20 General Electric Company Color flow imaging system utilizing a frequency domain wall filter
US5386830A (en) * 1993-10-25 1995-02-07 Advanced Technology Laboratories, Inc. Ultrasonic pulsed doppler flow measurement system with two dimensional autocorrelation processing
NO942222D0 (no) * 1994-06-14 1994-06-14 Vingmed Sound As Fremgangsmåte ved bestemmelse av hastighet/tid-spektrum ved blodströmning
US5454372A (en) * 1994-06-17 1995-10-03 Siemens Medical Systems, Inc. Angle independent doppler in ultrasound imaging
NO944736D0 (no) * 1994-12-07 1994-12-07 Vingmed Sound As Fremgangsmåte for bestemmelse av blodhastighet
US5713364A (en) * 1995-08-01 1998-02-03 Medispectra, Inc. Spectral volume microprobe analysis of materials
US5813987A (en) * 1995-08-01 1998-09-29 Medispectra, Inc. Spectral volume microprobe for analysis of materials
US5615677A (en) * 1995-08-04 1997-04-01 The Board Of Trustees Of The Leland Stanford Junior University MRI tracking of cyclical motion by fourier integration of velocity
GB9608774D0 (en) * 1996-04-27 1996-07-03 Bloodhound Sensors Limited Apparatus and method for detecting fluids
US5951477A (en) * 1997-09-11 1999-09-14 Uab Vittamed Method and apparatus for determining the pressure inside the brain
US6419632B1 (en) * 1999-03-30 2002-07-16 Kabushiki Kaisha Toshiba High resolution flow imaging for ultrasound diagnosis
EP1744181B8 (en) * 2005-07-15 2014-04-09 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus and ultrasonic image processing method
US8926515B2 (en) * 2008-05-15 2015-01-06 Uab Vittamed Method and apparatus for continuously monitoring intracranial pressure
DE102008062485A1 (de) * 2008-06-02 2009-12-03 Rohde & Schwarz Gmbh & Co. Kg Messvorrichtung und Verfahren zur Bestimmung von Bewegung in einem Gewebe
US8394025B2 (en) 2009-06-26 2013-03-12 Uab Vittamed Method and apparatus for determining the absolute value of intracranial pressure
JP5355327B2 (ja) * 2009-09-18 2013-11-27 日立アロカメディカル株式会社 超音波診断装置
CN107635472A (zh) 2015-06-19 2018-01-26 神经系统分析公司 经颅多普勒探测器
US10048370B2 (en) 2015-07-07 2018-08-14 Honeywell International Inc. Estimating weather and ground reflectivity with doppler spectral information
WO2017120361A1 (en) 2016-01-05 2017-07-13 Neural Analytics, Inc. Integrated probe structure
US11589836B2 (en) 2016-01-05 2023-02-28 Novasignal Corp. Systems and methods for detecting neurological conditions
CN108778140A (zh) 2016-01-05 2018-11-09 神经系统分析公司 用于确定临床指征的系统和方法
CN105997148B (zh) * 2016-05-26 2019-01-29 飞依诺科技(苏州)有限公司 脉冲多普勒超高谱分辨率成像处理方法及处理系统
CA3095784A1 (en) * 2018-04-03 2019-10-10 The Children's Mercy Hospital Systems and methods for detecting flow of biological fluids
CN110632606B (zh) * 2019-08-02 2023-01-10 中国船舶重工集团公司第七一五研究所 一种基于空间重采样的二维快速傅里叶变换三维成像方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2461304A1 (fr) * 1979-07-12 1981-01-30 Ibm France Appareil de calcul de transformee de fourier discrete bidimensionnelle
US4646099A (en) * 1983-09-28 1987-02-24 Sanders Associates, Inc. Three-dimensional fourier-transform device
US4601006A (en) * 1983-10-06 1986-07-15 Research Corporation Architecture for two dimensional fast fourier transform
JPS6140678A (ja) * 1984-08-01 1986-02-26 Hitachi Medical Corp 画像処理装置
JPS61170442A (ja) * 1985-01-23 1986-08-01 松下電器産業株式会社 超音波ドツプラ血流装置
US4770184A (en) * 1985-12-17 1988-09-13 Washington Research Foundation Ultrasonic doppler diagnostic system using pattern recognition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102100567A (zh) * 2009-12-21 2011-06-22 株式会社东芝 彩色多普勒超声波诊断装置
CN101856242A (zh) * 2010-06-30 2010-10-13 深圳市蓝韵实业有限公司 一种脉冲波多普勒成像方法及装置
CN101856242B (zh) * 2010-06-30 2012-04-18 深圳市蓝韵实业有限公司 一种脉冲波多普勒成像方法及装置
CN103690194A (zh) * 2013-12-17 2014-04-02 中国科学院深圳先进技术研究院 基于宽带信号的血流流速估计方法和系统
CN105222861A (zh) * 2015-09-01 2016-01-06 中国计量学院 一种基于速度匹配谱测量气液两相流相分界面位置的方法
CN105222861B (zh) * 2015-09-01 2018-08-21 中国计量学院 一种基于速度匹配谱测量气液两相流相分界面位置的方法
CN109708709A (zh) * 2017-10-25 2019-05-03 傅古月 一种微波固体流量计信号处理方法
CN113343897A (zh) * 2021-06-25 2021-09-03 中国电子科技集团公司第二十九研究所 一种基于辐射信号斜率变化加快信号处理的方法
CN113343897B (zh) * 2021-06-25 2022-06-07 中国电子科技集团公司第二十九研究所 一种基于辐射信号斜率变化加快信号处理的方法

Also Published As

Publication number Publication date
IL91081A (en) 1992-12-01
DE68911797T2 (de) 1994-07-07
JP2849827B2 (ja) 1999-01-27
JPH0268045A (ja) 1990-03-07
DE68911797D1 (de) 1994-02-10
EP0358249A2 (en) 1990-03-14
US4930513A (en) 1990-06-05
CN1022135C (zh) 1993-09-15
IL91081A0 (en) 1990-03-19
EP0358249A3 (en) 1991-06-05
EP0358249B1 (en) 1993-12-29

Similar Documents

Publication Publication Date Title
CN1022135C (zh) 傅里叶处理脉冲多普勒信号的方法和装置
US7535797B2 (en) High-resolution ultrasound displacement measurement apparatus and method
US4182173A (en) Duplex ultrasonic imaging system with repetitive excitation of common transducer in doppler modality
JP4727319B2 (ja) 超音波イメージングに用いる遅延評価方法およびシステム
CN105997148B (zh) 脉冲多普勒超高谱分辨率成像处理方法及处理系统
WO2019214134A1 (zh) 一种经颅三维脑血管成像方法及系统
Wilson Description of broad-band pulsed Doppler ultrasound processing using the two-dimensional Fourier transform
KR101406806B1 (ko) 초음파 영상을 제공하는 초음파 시스템 및 방법
US7022078B2 (en) Method and apparatus for spectral strain rate visualization
US5406949A (en) Digital processing for steerable CW doppler
US6176143B1 (en) Method and apparatus for estimation and display of spectral broadening error margin for doppler time-velocity waveforms
US6262942B1 (en) Turbulence-resolving coherent acoustic sediment flux probe device and method for using
Hoeks et al. Methods to evaluate the sample volume of pulsed Doppler systems
US6142944A (en) Doppler motion detection with automatic angle correction
Molthen et al. Ultrasound echo evaluation by K-distribution
CN106022369A (zh) 一种基于超声背向散射信号成像的骨质评价方法
CN110547825B (zh) 一种基于多频剪切波幅值分析的超声弹性成像技术
US5562097A (en) User control for steerable CW doppler
CN114391876A (zh) 多普勒频谱成像方法、装置、设备及存储介质
US5800358A (en) Undersampled omnidirectional ultrasonic flow detector
EP0486096B1 (en) Alias suppression in pulsed doppler systems
EP1006369B1 (en) Method and apparatus for adaptive filtering by counting acoustic sample zeroes in ultrasound imaging
Giesey et al. Speckle reduction in pulse-echo ultrasonic imaging using a two-dimensional receiving array
US20230065683A1 (en) System and methods for beamforming sound speed selection
JP3142282B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent of invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: PATENTEE; FROM: N.V. PHILIPS OPTICAL LAMP MANUFACTURING COMPANY TO: N.V. PHILIPS OPTICALLAMP LTD., CO.

CP01 Change in the name or title of a patent holder

Patentee after: Philips Electronics N. V.

Patentee before: N.V. Philips' Gloeipenfabrieken

C53 Correction of patent of invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: PATENTEE; FROM: N.V. PHILIPS OPTICAL LAMP LTD., CO. TO: ROYAL PHILIPS ELECTRONICS CO., LTD.

CP01 Change in the name or title of a patent holder

Patentee after: Koninklike Philips Electronics N. V.

Patentee before: Philips Electronics N. V.

C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee